八年级数学试卷答题卡
湘教版八年级下学期期末数学试卷 - 含答案
八年级(下)期末数学试卷一、选择题(本大题共10个小题,每小题只有一个正确选项,请将正确选项填涂到答题卡上,每小题4分,共40分)1.下列条件能确定三角形ABC是直角三角形的是()A.∠A=∠B=∠C B.∠A=40°,∠B=50°C.AB=AC D.AB=2,AC=3,BC=42.下列食品标识中,既是轴对称图形又是中心对称图形的是()A.绿色饮品B.绿色食品C.有机食品D.速冻食品3.一次数学测试后,某班m名学生的成绩被分为5组,第1~4组的频数分别是10,11,7,12,第5组的频率为0.2,则m的值为()A.40B.48C.50D.524.如图,在平行四边形ABCD中,对角线AC与BD相交于点O,下列结论不一定成立的是()A.AD=BC B.∠DAB=∠BCDC.S△AOB=S△COB D.AC=BD5.在数学活动课上,老师和同学们判断一块地板砖上的四边形图案是否为矩形,下面是某学习小组的四位同学拟定的方案,其中正确的是()A.测量对角线是否互相平分B.测量两组对边是否相等C.测量对角线是否相等D.测量对角线是否平分且相等6.一次函数y=(k+3)x+b(k>0,b<0)在平面直角坐标系中的图象大致是()A.B.C.D.7.已知点(﹣4,y1),(2,y2)都在直线y=﹣3x+b上,则y1和y2的大小关系是()A.y1>y2B.y1=y2C.y1<y2D.无法确定8.如图,在Rt△ABC中,∠C=90°,∠BAC的平分线交BC于点D,CD=2,BD=3,Q 为AB上一动点,则DQ的最小值为()A.1B.2C.2.5D.9.如图,在矩形ABCD中,AB=3,BC=5,点E为CB上一动点(不与点C重合),将△CDE沿DE所在直线折叠,点C的对应点C'恰好落在AE上,则CE的长是()A.B.1C.2D.10.2021年4月27日至5月5日湖南省(春季)乡村文化旅游节暨湖南阳明山第十三届“和”文化节在双牌县阳明山和花千谷景区举行,期间吸引了大批游客前往观光.5月1日上午,一辆旅游大巴以40km/h的速度从零陵区某地出发,当大巴车到达途中桐子坳时(大巴车停靠前后速度不变),一私家车从同一地点出发前往阳明山.如图是两车离出发地的距离s(km)与大巴车出发的时间t(h)的函数图象.小明同学根据图象得出以下几个结论:①私家车的速度为60km/h;②大巴车在桐子坳停留了36分钟;③私家车比大巴车早到12分钟;④私家车与大巴车相遇时离景区还有30km;⑤当两车相距6km时,t=2.1或2.7h.其中正确结论的个数是()A.2B.3C.4D.5二、填空题(本大题共8个小题,请将答案填在答题卡的答案栏内,每小题4分,共32分)11.函数y=中自变量x的取值范围是.12.若正多边形的一个外角是45°,则该正多边形的边数是.13.德国有个叫鲁道夫的人,用毕生的精力把圆周率π算到小数点后面35位.他的计算结果是 3.14159265358979423846264338327950288,在这串数字中“3”出现的频率是.(结果保留两位小数)14.若点A(1+m,2)与点B(﹣3,1﹣n)关于y轴对称,则m+n的值是.15.函数y=mx+m+2的图象经过第一、二、四象限,则m的整数解是.16.如图,在Rt△ABC中,∠ACB=90°,点D,E,F分别为AB,AC,BC的中点.若CD=9,则EF的长为.17.我们知道,四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD 的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D'处,则点C的对应点C'的坐标为.18.如图,在边长为2的正方形ABCD中,动点F,E分别以相同的速度从D,C两点同时出发向C和B运动(任何一个点到达即停止),连接AE,BF交于点P,过点P作PM∥CD交BC于M点,PN∥BC交CD于N点,连接MN,在运动过程中则下列结论:①△ABE≌△BCF;②AE=BF;③AE⊥BF;④线段MN的最小值为﹣1.其中正确的结论有.(填写正确的序号)三、解答题(本大题共8个小题,共78分,解答题要求写出证明步骤或解答过程)19.(8分)如图,在Rt△ABC和Rt△CDE中,∠B=∠D=90°,C为BD上一点,AC=CE,BC=DE.求证:∠BAC=∠DCE.20.(8分)某中学积极开展跳绳锻炼,一次体育测试后,体育委员统计了全班同学单位时间的跳绳次数,列出了频数分布表和频数分布直方图,如图:次数频数60≤x<80a80≤x<1004100≤x<12018120≤x<14013140≤x<1608160≤x<1804180≤x<2001(1)补全频数分布直方图并求出频数分布表中a的值.(2)表中组距是次,组数是组.(3)跳绳次数在100≤x<160范围的学生有人,全班共有人.(4)若规定跳绳次数不低于140次为优秀,求全班同学跳绳的优秀率是多少?21.(8分)如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(5,2),B(3,5),C(﹣1,﹣1).将点A向下平移4个单位得到A',将点B向左平移2个单位得到B',点C'与点C关于x轴对称.(1)请分别写出A',B',C'的坐标;(2)求△A'B'C'的面积.22.(10分)在等腰△ABC中,AB=AC,点D,E分别是边AB,AC的中点,AF⊥BC,垂足为F.(1)求证:四边形DFCE是平行四边形;(2)若∠ADE=30°,DF=4,求BF的长.23.(10分)暑期将至,某游泳馆面向学生推出暑期优惠活动,活动方案如下.方案一:购买一张学生暑期专享卡,每次游泳费用按六折优惠;方案二:不购买学生暑期专享卡,每次游泳费用按八折优惠.设某学生暑期游泳x(次),按照方案一所需费用为y1(元),且y1=k1x+b;按照方案二所需费用为y2(元),且y2=k2x.其函数图象如图所示.(1)求k1和b的值;(2)八年级学生小华计划暑期前往该游泳馆游泳8次,应选择哪种方案所需费用更少?请说明理由.24.(10分)如图,小明家门前有一块矩形空地ABCD,AB=4m,BC=8m,小明想把这块空地改造成两个停车位,于是小明做了如下操作:①连接BD;②在BC上取一点F,使得∠EDB=∠FDB;③在AD上取一点E,使得AE=CF;④分别取DE,BF的中点M,N.这样小明就成功地改造了两个停车位EBNM和MNFD.(1)求证:四边形BFDE是菱形;(2)请你帮助小明计算出EM的长.25.(12分)已知直线y=x+4与x轴、y轴相交于A、B两点.(1)求A、B两点的坐标;(2)将直线AB进行平移,平移后的函数解析式为y=kx+b,并与x轴、y轴相交于C、D两点,当S△OCD=24时,求直线CD的解析式;(3)在x轴上有一点P,使得△ABP是等腰三角形.请你直接写出所有满足条件的点P 的坐标.26.(12分)如图①,点E是线段AB延长线上一点,且AB>BE,分别以AB和BE为边作正方形ABCD和BEFG,连接AG,CE.(1)请你直接写出AG与CE的数量与位置关系;(2)将正方形BEFG绕点B顺时针旋转α(0°<α<90°),AG与CE相交于点O,AG 与BC相交于点H,BG与CE相交于点M,如图②,请问(1)中AG与CE的数量与位置关系是否成立?若成立,请证明;若不成立,请说明理由;(3)连接CG,AE,如图③,若AB=4,BE=3,请求出CG2+AE2的值.八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题只有一个正确选项,请将正确选项填涂到答题卡上,每小题4分,共40分)1.下列条件能确定三角形ABC是直角三角形的是()A.∠A=∠B=∠C B.∠A=40°,∠B=50°C.AB=AC D.AB=2,AC=3,BC=4【分析】根据勾股定理的逆定理和三角形的内角和定理逐个判断即可.【解答】解:A、∠A=∠B=∠C=60°,不是直角三角形,不符合题意;B、∠A=40°,∠B=50°,∠C=90°,是直角三角形,符合题意;C、AB=AC,是等腰三角形,不一定是直角三角形,不符合题意;D、22+32≠42,不是直角三角形,不符合题意;故选:B.2.下列食品标识中,既是轴对称图形又是中心对称图形的是()A.绿色饮品B.绿色食品C.有机食品D.速冻食品【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、既不是轴对称图形,也不是中心对称图形,故本选项不合题意;B、是轴对称图形,不是中心对称图形,故本选项不合题意;C、不是轴对称图形,是中心对称图形,故本选项不合题意;D、既是轴对称图形,又是中心对称图形,故本选项符合题意;故选:D.3.一次数学测试后,某班m名学生的成绩被分为5组,第1~4组的频数分别是10,11,7,12,第5组的频率为0.2,则m的值为()A.40B.48C.50D.52【分析】根据频率公式:频率=即可求解.【解答】解:根据题意,得=0.2,解得m=50.故选:C.4.如图,在平行四边形ABCD中,对角线AC与BD相交于点O,下列结论不一定成立的是()A.AD=BC B.∠DAB=∠BCDC.S△AOB=S△COB D.AC=BD【分析】由平行四边形的性质可求解.【解答】解:∵四边形ABCD是平行四边形,∴AO=CO,BO=DO,AB=CD,∠BAD=∠BCD,AD=BC,AD∥BC,∴S△AOB=S△COB,∴不能得到AC=BD,故选:D.5.在数学活动课上,老师和同学们判断一块地板砖上的四边形图案是否为矩形,下面是某学习小组的四位同学拟定的方案,其中正确的是()A.测量对角线是否互相平分B.测量两组对边是否相等C.测量对角线是否相等D.测量对角线是否平分且相等【分析】由矩形的判定定理和平行四边形的判定与性质分别对各个选项进行判断即可.【解答】解:A、测量对角线是否互相平分,能判定平行四边形,不能判定矩形,故选项A不符合题意;B、测量两组对边是否相等,能判定平行四边形,不能判定矩形,故选项B不符合题意;C、测量对角线是否相等,不能判定平行四边形,更不能判定矩形,故选项C不符合题意;D、测量对角线是否平分且相等,能判定矩形;故选:D.6.一次函数y=(k+3)x+b(k>0,b<0)在平面直角坐标系中的图象大致是()A.B.C.D.【分析】根据题目中的函数解析式和一次函数的性质,可以得到该函数的图象经过哪几个象限,本题得以解决.【解答】解:∵一次函数y=(k+3)x+b(k>0,b<0),∴k+3>0,∴该函数图象经过第一、三、四象限,故选:C.7.已知点(﹣4,y1),(2,y2)都在直线y=﹣3x+b上,则y1和y2的大小关系是()A.y1>y2B.y1=y2C.y1<y2D.无法确定【分析】先根据直线y=﹣3x+b判断出函数图象的增减性,再根据各点横坐标的大小进行判断即可.【解答】解:∵直线y=﹣3x+b,k=﹣3<0,∴y随x的增大而减小,又∵﹣4<2,∴y1>y2.故选:A.8.如图,在Rt△ABC中,∠C=90°,∠BAC的平分线交BC于点D,CD=2,BD=3,Q 为AB上一动点,则DQ的最小值为()A.1B.2C.2.5D.【分析】作DH⊥AB于H,根据角平分线的性质得到DH=DC=2,然后根据垂线段最短求解.【解答】解:作DH⊥AB于H,如图,∵AD平分∠BAC,DH⊥AB,DC⊥AC,∴DH=DC=2,∵Q为AB上一动点,∴DQ的最小值为DH的长,即DQ的最小值为2.故选:B.9.如图,在矩形ABCD中,AB=3,BC=5,点E为CB上一动点(不与点C重合),将△CDE沿DE所在直线折叠,点C的对应点C'恰好落在AE上,则CE的长是()A.B.1C.2D.【分析】由矩形的性质得出∠B=∠C=90°,AD=BC=5,CD=AB=3,由折叠的性质得C'D=CD=3,C'E=CE,由勾股定理得出AC',在Rt△ABE中,由勾股定理得出方程,解方程即可.【解答】解:∵四边形ABCD是矩形,∴∠B=∠C=90°,AD=BC=5,CD=AB=3,由折叠的性质得:C'D=CD=3,C'E=CE,∠DC'E=∠C=90°,∴∠AC'D=90°,∴AC'===4,设CE=C'E=x,在Rt△ABE中,BE=5﹣x,AE=x+4,由勾股定理得:(5﹣x)2+32=(x+4)2,解得:x=1,故选:B.10.2021年4月27日至5月5日湖南省(春季)乡村文化旅游节暨湖南阳明山第十三届“和”文化节在双牌县阳明山和花千谷景区举行,期间吸引了大批游客前往观光.5月1日上午,一辆旅游大巴以40km/h的速度从零陵区某地出发,当大巴车到达途中桐子坳时(大巴车停靠前后速度不变),一私家车从同一地点出发前往阳明山.如图是两车离出发地的距离s(km)与大巴车出发的时间t(h)的函数图象.小明同学根据图象得出以下几个结论:①私家车的速度为60km/h;②大巴车在桐子坳停留了36分钟;③私家车比大巴车早到12分钟;④私家车与大巴车相遇时离景区还有30km;⑤当两车相距6km时,t=2.1或2.7h.其中正确结论的个数是()A.2B.3C.4D.5【分析】由图象得:大巴车出发48÷40=1.2(h)停留,则停留了1.8﹣1.2=0.6(h),继续行驶(96﹣48)÷40=1.2(h)到达阳明山.则大巴车共用时1.8+1.2=3(h),可得私家车的速度为96÷(2.8﹣1.2)=60(km/h),求出大巴车在桐子坳停留后继续行驶和私家车的解析式,可得两车相遇的时间和当两车相距6km时的时间.【解答】解:由图象得:大巴车出发48÷40=1.2(h)停留,则停留了1.8﹣1.2=0.6(h)=36分钟,②正确;私家车的速度为96÷(2.8﹣1.2)=60(km/h),①正确;大巴车继续行驶(96﹣48)÷40=1.2(h)到达阳明山.则大巴车共用时1.8+1.2=3(h),3﹣2.8=0.2(h)=12分钟,③正确;设大巴车在桐子坳停留后继续行驶时离出发地的距离s(km)与大巴车出发的时间t(h)的函数的解析式为s=kt+b,,解得:,∴s=40t﹣24,设离出发地的距离s(km)与大巴车出发的时间t(h)的函数的解析式为s=k′t+b′,,解得:,∴s=60t﹣72,60t﹣72=40t﹣24,解得:t=2.4,∴家车与大巴车相遇时离景区还有(2.8﹣2.4)×60=24(km),④错误;当两车相距6km时:有一下几种情况a:40t=6,解得:t=0.15,b:60t﹣72﹣(40t﹣24)=6,解得:t=2.7,c:40t﹣24﹣(60t﹣72)=6,解得:t=2.1,∴当两车相距6km时,t=0.15或2.1或2.7h.⑤错误.其中正确的结论有①②③,故选:B.二、填空题(本大题共8个小题,请将答案填在答题卡的答案栏内,每小题4分,共32分)11.函数y=中自变量x的取值范围是x≤5.【分析】根据二次根式的性质列出不等式,求出不等式的取值范围即可.【解答】解:若使函数y=有意义,∴5﹣x≥0,即x≤5.故答案为x≤5.12.若正多边形的一个外角是45°,则该正多边形的边数是8.【分析】根据多边形外角和是360度,正多边形的各个内角相等,各个外角也相等,直接用360°÷45°可求得边数.【解答】解:∵多边形外角和是360度,正多边形的一个外角是45°,∴360°÷45°=8即该正多边形的边数是8.13.德国有个叫鲁道夫的人,用毕生的精力把圆周率π算到小数点后面35位.他的计算结果是 3.14159265358979423846264338327950288,在这串数字中“3”出现的频率是0.17.(结果保留两位小数)【分析】频数即一组数据中出现符合条件的数据的个数,频率=频数÷总数.依据频数的计算公式即可求解.【解答】解:在3.14159265358979423846264338327950288中,“3”出现的次数是6次,所以在这串数字中“3”出现的频率是6÷36≈0.17.故答案为:0.17.14.若点A(1+m,2)与点B(﹣3,1﹣n)关于y轴对称,则m+n的值是1.【分析】关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标相同.据此可得m,n的值.【解答】解:∵点A(1+m,2)与点B(﹣3,1﹣n)关于y轴对称,∴,解得,∴m+n=2﹣1=1,故答案为:1.15.函数y=mx+m+2的图象经过第一、二、四象限,则m的整数解是﹣1.【分析】根据函数y=mx+m+2的图象经过第一、二、四象限,可知k=m<0,b=m+2>0,从而可以求得m的取值范围,然后即可写出m的整数解.【解答】解:∵函数y=mx+m+2的图象经过第一、二、四象限,∴,解得﹣2<m<0,∴m的整数解是﹣1,故答案为:﹣1.16.如图,在Rt△ABC中,∠ACB=90°,点D,E,F分别为AB,AC,BC的中点.若CD=9,则EF的长为9.【分析】根据直角三角形的性质求出AB,根据三角形中位线定理解答即可.【解答】解:在Rt△ABC中,∠ACB=90°,点D为AB的中点,CD=9,∴AB=2CD=2×9=18,∵E,F分别为AC,BC的中点,∴EF是△ABC的中位线,∴EF=AB=9,故答案为:9.17.我们知道,四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD 的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D'处,则点C的对应点C'的坐标为(2,).【分析】由已知条件得到AD′=AD=2,AO=AB=1,根据勾股定理得到OD′==,于是得到结论.【解答】解:∵AD′=AD=2,AO=AB=1,∴OD′==,∵C′D′=2,C′D′∥AB,∴C′(2,),故答案为(2,).18.如图,在边长为2的正方形ABCD中,动点F,E分别以相同的速度从D,C两点同时出发向C和B运动(任何一个点到达即停止),连接AE,BF交于点P,过点P作PM∥CD交BC于M点,PN∥BC交CD于N点,连接MN,在运动过程中则下列结论:①△ABE≌△BCF;②AE=BF;③AE⊥BF;④线段MN的最小值为﹣1.其中正确的结论有①②③④.(填写正确的序号)【分析】由正方形的性质及F,E以相同的速度运动,利用SAS证明△ABE≌△BCF,得到AE=BF,∠BAE=∠CBF,再根据∠CBF+∠ABP=90°,可得∠BAE+∠ABP=90°,进而得到AE⊥BF,根据点P在运动中保持∠APB=90°,可得点P的路径是一段以AB 为直径的弧,设AB的中点为H,连接CH交弧于点P,此时CP的长度最小,根据勾股定理,求出CH的长度,再求出PH的长度,即可求出线段CP的最小值,根据矩形对角线相等即可得到MN.【解答】解:∵动点F,E分别以相同的速度从D,C两点同时出发向C和B运动,∴DF=CE,∵四边形ABCD是正方形,∴AB=BC=CD=2,∠ABC=∠BCD=90°,∴CF=BE,∴△ABE≌△BCF(SAS),故①正确;∴AE=BF,∠BAE=∠CBF,故②正确;∵∠CBF+∠ABP=90°,∴∠BAE+∠ABP=90°,∴∠APB=90°,即AE⊥BF,故③正确;∵点P在运动中始终保持∠APB=90°,∴点P的路径是一段以AB为直径的弧,如图,设AB的中点为H,连接CH交弧于点P,此时CP的长度最小,在Rt△BCH中,CH==,∵PH=AB=1,∴CP=CH﹣PH=﹣1,∵PM∥CD,PN∥BC,∴四边形PMCN是平行四边形,∵∠BCD=90°,∴四边形PMCN是矩形,∴MN=CP=﹣1,即线段MN的最小值为﹣1,故④正确.故答案为:①②③④.三、解答题(本大题共8个小题,共78分,解答题要求写出证明步骤或解答过程)19.(8分)如图,在Rt△ABC和Rt△CDE中,∠B=∠D=90°,C为BD上一点,AC=CE,BC=DE.求证:∠BAC=∠DCE.【分析】根据HL证明Rt△ABC≌△Rt△CDE,可得结论.【解答】证明:在Rt△ABC和Rt△CDE中,,∴Rt△ABC≌△Rt△CDE(HL),∴∠BAC=∠DCE.20.(8分)某中学积极开展跳绳锻炼,一次体育测试后,体育委员统计了全班同学单位时间的跳绳次数,列出了频数分布表和频数分布直方图,如图:次数频数60≤x<80a80≤x<1004100≤x<12018120≤x<14013140≤x<1608160≤x<1804180≤x<2001(1)补全频数分布直方图并求出频数分布表中a的值.(2)表中组距是20次,组数是7组.(3)跳绳次数在100≤x<160范围的学生有39人,全班共有50人.(4)若规定跳绳次数不低于140次为优秀,求全班同学跳绳的优秀率是多少?【分析】(1)根据频数分布直方图中的数据,可以得到a的值,然后根据频数分布表中的数据,可知140≤x<160这一组的频数,然后即可将频数分布直方图补充完整;(2)根据频数分布表中的数据,可以得到组距和组数;(3)把第3组和第4组,第5组的频数相加可得到跳绳次数在100≤x<160范围的学生数,把全部7组的频数相加可得到全班人数;(4)用后三组的频数和除以全班人数可得到全班同学跳绳的优秀率.【解答】解:(1)由直方图中的数据可知,a=2,由频数分布表可知,140≤x<160这一组的频数为8,补全的频数分布直方图如图所示,;(2)根据频数分布表得:表中组距是20次,组数是7组.故答案为:20,7;(3)跳绳次数在100≤x<160范围的学生有18+13+8=39(人),全班人数为2+4+18+13+8+4+1=50(人);故答案为:39,50;(4)跳绳次数不低于140次的人数为8+4+1=13,所以全班同学跳绳的优秀率=×100%=26%.21.(8分)如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(5,2),B(3,5),C(﹣1,﹣1).将点A向下平移4个单位得到A',将点B向左平移2个单位得到B',点C'与点C关于x轴对称.(1)请分别写出A',B',C'的坐标;(2)求△A'B'C'的面积.【分析】(1)依据点A向下平移4个单位得到A',将点B向左平移2个单位得到B',点C'与点C关于x轴对称,即可得到A',B',C'的坐标;(2)依据割补法进行计算,即可得出△A'B'C'的面积.【解答】解:(1)如图所示,A'(5,﹣2),B'(1,5),C'(﹣1,1);(2)如图所示,△A'B'C'的面积=6×7﹣﹣﹣=42﹣4﹣9﹣14=15.22.(10分)在等腰△ABC中,AB=AC,点D,E分别是边AB,AC的中点,AF⊥BC,垂足为F.(1)求证:四边形DFCE是平行四边形;(2)若∠ADE=30°,DF=4,求BF的长.【分析】(1)根据三角形的性质得到BF=CF,根据三角形中位线定理得到DE∥BC,DF∥AC,由平行四边形的判定定理即可得到四边形DFCE是平行四边形;(2)由三角形的中位线定理得到DE∥BC,DE=BC,求得DE=BF,根据直角三角形的性质得到OF=DF=2,由勾股定理得到OD,于是得到结论.【解答】(1)证明:∵AB=AC,AF⊥BC,∴BF=CF,∵D,E分别是边AB,AC的中点,∴DE和DF分别是△ABC的中位线,∴DE∥BC,DF∥AC,即DE∥CF,DF∥CE,∴四边形DFCE是平行四边形;(2)解:如图,设AF与DE交于O,∵D,E分别是边AB,AC的中点,∴DE∥BC,DE=BC,∵BF=CF=BC,∴DE=BF,∵AF⊥BC,∴DE⊥AF,∴∠DOF=90°,∵∠ADE=30°,DF=4,∴OF=DF=2,∴OD===2,∵DE∥BC,∴∠ADE=∠B,∠C=∠AED,∴∠ADE=∠AED,∴AD=AE,∴DE=2OD=4.23.(10分)暑期将至,某游泳馆面向学生推出暑期优惠活动,活动方案如下.方案一:购买一张学生暑期专享卡,每次游泳费用按六折优惠;方案二:不购买学生暑期专享卡,每次游泳费用按八折优惠.设某学生暑期游泳x(次),按照方案一所需费用为y1(元),且y1=k1x+b;按照方案二所需费用为y2(元),且y2=k2x.其函数图象如图所示.(1)求k1和b的值;(2)八年级学生小华计划暑期前往该游泳馆游泳8次,应选择哪种方案所需费用更少?请说明理由.【分析】(1)利用待定系数法求解即可;(2)求出y2与x之间的函数关系式,将x=8分别代入y1、y2关于x的函数解析式,比较即可.【解答】解:(1)根据题意,得:,解得,∴方案一所需费用y1与x之间的函数关系式为y1=18x+30,∴k1=18,b=30;(2)∵打折前的每次游泳费用为18÷0.6=30(元),∴k2=30×0.8=24;∴y2=24x,当游泳8次时,选择方案一所需费用:y1=18×8+30=174(元),选择方案二所需费用:y2=24×8=192(元),∵174<192,∴选择方案一所需费用更少.24.(10分)如图,小明家门前有一块矩形空地ABCD,AB=4m,BC=8m,小明想把这块空地改造成两个停车位,于是小明做了如下操作:①连接BD;②在BC上取一点F,使得∠EDB=∠FDB;③在AD上取一点E,使得AE=CF;④分别取DE,BF的中点M,N.这样小明就成功地改造了两个停车位EBNM和MNFD.(1)求证:四边形BFDE是菱形;(2)请你帮助小明计算出EM的长.【分析】(1)先判定四边形BEDF是平行四边形,再根据FD=FB,即可得出四边形BEDF 是菱形;(2)设DE=BE=xm,则AE=(8﹣x)m,在Rt△ABE中利用勾股定理列方程,即可得到DE的长,进而得出EM的长.【解答】(1)证明:∵四边形ABCD是矩形,∴AD=BC,AD∥BC,∴∠EDB=∠FBD,又∵AE=CF,∴DE=BF,∴四边形BEDF是平行四边形,又∵∠EDB=∠FDB,∴∠DBF=∠BDF,∴FD=FB,∴四边形BEDF是菱形;(2)解:由题可得AD=BC=8m,∠A=90°,设DE=BE=xm,则AE=(8﹣x)m,在Rt△ABE中,AE2+AB2=BE2,即(8﹣x)2+42=x2,解得x=5,∴DE=5m,又∵M是DE的中点,∴EM=DE=m.25.(12分)已知直线y=x+4与x轴、y轴相交于A、B两点.(1)求A、B两点的坐标;(2)将直线AB进行平移,平移后的函数解析式为y=kx+b,并与x轴、y轴相交于C、D两点,当S△OCD=24时,求直线CD的解析式;(3)在x轴上有一点P,使得△ABP是等腰三角形.请你直接写出所有满足条件的点P 的坐标.【分析】(1)根据直线解析式可得出A、B的坐标;(2)设平移后的解析式,求出点C、点D的坐标,根据S△OCD=24求出b值,即可得直线CD的解析式;(3)根据等腰三角形的判定,分三类讨论,可求点P的坐标.【解答】解:(1)当x=0时,y=4,则B点的坐标为:(0,4);当y=0时,x=﹣3,则点A的坐标为:(﹣3,0);(2)由题意得直线CD的解析式为:y=x+b,∴当x=0时,y=b,则C点的坐标为:(0,b);当y=0时,x=﹣b,则点D的坐标为:(﹣b,0);∵S△OCD=24,∴S△OCD=OC•OD=×|b|×|﹣b|=24,∴b2=64,解得:b=8或﹣8,∴直线CD的解析式为y=x+8或y=x﹣8;(3)①当P A=PB时,点P在线段AB的垂直平分线上,如图:∴AM=BM,PM⊥AB,∵A(﹣3,0),B(0,4),∴AB===5,∵∠AOB=∠AMP=90°,∠OAB=∠MAP,∴△AOB∽△AMP,∴,即,∴AP=,∴OP=AP﹣OA=﹣3=,∴P(,0);②当P A=AB时,如图:∵A(﹣3,0),B(0,4),∴AB===5,∴P A=AB=5,∴OP1=3+5=8,OP2=5﹣3=2,∴P(﹣8,0)或(2;0);②当PB=AB时,点B在线段AP的垂直平分线上,如图:∵A(﹣3,0),B(0,4),∴AB===5,∴PB=AB=5,在Rt△AOB和Rt△POB中,,∴Rt△AOB≌Rt△POB(HL),∴OP=OA=3,∴P(3,0);综上可得点P的坐标为(,0)或(﹣8,0)(2;0)或(3,0).26.(12分)如图①,点E是线段AB延长线上一点,且AB>BE,分别以AB和BE为边作正方形ABCD和BEFG,连接AG,CE.(1)请你直接写出AG与CE的数量与位置关系;(2)将正方形BEFG绕点B顺时针旋转α(0°<α<90°),AG与CE相交于点O,AG 与BC相交于点H,BG与CE相交于点M,如图②,请问(1)中AG与CE的数量与位置关系是否成立?若成立,请证明;若不成立,请说明理由;(3)连接CG,AE,如图③,若AB=4,BE=3,请求出CG2+AE2的值.【分析】(1)延长AG交CE于P,根据SAS证△ABG≌△CBE,可证AG=CE,∠GAB+∠CEB=90°,可证AG⊥CE;(2)连接AC,与(1)同理证AG=CE,根据∠GAB+∠CAG+45°=90°,∠GAB=∠BCE,得∠AOC=90°,即AG与CE的数量与位置关系仍成立;(3)连接AC,EG,根据勾股定理可得CG2+AE2=AO2+OE2+OC2+OG2=AC2+EG2=(AB)2+(BE)2,代入数值即可得出.【解答】解:(1)如图①,延长AG交CE于P,在△ABG和△CBE中,,∴△ABG≌△CBE(SAS),∴AG=CE,∠AGB=∠CEB,∵∠AGB+∠GAB=90°,∴∠GAB+∠CEB=90°,∴∠APE=90°,即AG⊥CE;(2)AG与CE的数量与位置关系仍成立,理由如下:连接AC,在△ABG和△CBE中,α,∴△ABG≌△CBE(SAS),∴AG=CE,∠OAB=∠ECB,∵∠OAB+∠CAO+∠DAC=90°,∠DAC=∠ACB,∴∠ECB+∠ACB+∠CAO=90°,∴∠AOC=90°,即AG⊥CE;(3))连接AC,EG,∵四边形ABCD和BEFG都是正方形,AB=4,BE=3,∴AC=AB=4,EG=BE=3,∴由勾股定理得CG2+AE2=AO2+OE2+OC2+OG2=AC2+EG2=(4)2+(3)2=50,即CG2+AE2的值为50.。
2024—2025学年最新人教新版八年级下学期数学期末考试试卷(含答题卡和参考答案)
2024—2025学年最新人教新版八年级下学期数学期末考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、已知△ABC的三条边分别为a,b,c,下列条件不能判断△ABC是直角三角形的是()A.a2=b2﹣c2B.a=6,b=8,c=10C.∠A=∠B+∠C D.∠A:∠B:∠C=3:4:52、下列命题正确的是()A.对角线相等的四边形是平行四边形B.对角线相等且互相平分的四边形是菱形C.对角线垂直且互相平分的四边形是矩形D.对角线垂直、相等且互相平分的四边形是正方形3、在平行四边形ABCD中,∠A:∠B:∠C:∠D的值可以是()A.1:2:3:4B.1:2:2:1C.1:2:1:2D.1:1:2:2 4、直线y=3x+1向下平移2个单位,所得直线的解析式是()A.y=3x+3B.y=3x﹣2C.y=3x+2D.y=3x﹣15、一次函数y=﹣2x﹣4的图象上有两点A(﹣3,y1)、B(1,y2),则y1与y2的大小关系是()A.y1>y2B.y1=y2C.y1<y2D.无法确定6、演讲比赛中,有11名学生参加比赛,他们决赛的最终成绩各不相同,其中的一名学生要想知道自己能否进入前6名,不仅要了解自己的成绩,还要了解这11名学生成绩的()A.众数B.方差C.平均数D.中位数7、我国古代数学著作《九章算术》中记载了一个问题:“今有池方一丈,葭生其中,出水一尺.引葭赴岸,适与岸齐.问水深几何.”(丈、尺是长度单位,1丈=10尺)其大意为:有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面.水的深度是多少?则水深为()A.10尺B.11尺C.12尺D.13尺8、一次函数y=ax+b的自变量和函数值的部分对应值如下表所示:x05y35则关于x的不等式ax+b>x的解集是()A.x<5B.x>5C.x<0D.x>09、如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM=PN若MN=2,则OM=()A.3B.4C.5D.610、如图,矩形ABCD被直线OE分成面积相等的两部分,BC=2CD,CD=11DE,若线段OB,BC的长是正整数,则矩形ABCD面积的最小值是()A.B.81C.D.121二、填空题(每小题3分,满分18分)11、要使式子有意义,则a的取值范围是.12、已知一次函数y=(2﹣m)x﹣3m+9的图象经过第一、二、四象限,则m的取值范围为.13、如图,将矩形纸片ABCD沿AE折叠,顶点B落在CD边上点F处,若AB =3,BC=2,则DF=.14、如图是“赵爽弦图”,其中△ABH、△BCG、△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形.如果AB=10,AH=6,那么EF等于.15、已知四边形ABCD是菱形,周长是40,如果AC=16,那么菱形ABCD的面积为.16、如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,P为AB上任意一点,PF⊥AC于F,PE⊥BC于E,则EF的最小值是.2024—2025学年最新人教新版八年级下学期数学期末考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、计算:()﹣1+|2﹣|﹣(﹣1)2024.18、主题演讲比赛,比赛的成绩分为A、B、C、D四个等级,其中相应等级的得分依次记为100分、90分、80分、70分,校团委随机抽取部分学生的比赛成绩,并将结果绘制成如图所示的两幅不完整的统计图.根据统计图中的信息,解答下列问题:(1)被抽取的学生共有人,B等级的学生有人;(2)本次演讲成绩的中位数落在等级,扇形图中D组对应扇形的圆心角为度;(3)若该校共有100名同学参加了此次演讲比赛,请估计比赛成绩不低于90分的学生共有多少名?19、如图,在Rt△ABC中,∠C=90°,边AB的垂直平分线交AB和AC于点D,E,并且BE平分∠ABC.(1)求∠A的度数;(2)若CE=1,求AB的长.20、如图,在Rt△ABC中,∠ABC=90°,AB<BC,D是AC的中点,过点D作DE⊥AC交BC于点E,延长ED至F,使DF=DE,连接AE,AF,CF.(1)求证:四边形AECF是菱形;(2)若BE=1,EC=4,求EF的长.21、如图,在直角坐标系中,点A(2,m)在直线y=2x﹣上,过点A的直线交y轴于点B(0,3).(1)求m的值和直线AB的函数表达式;(2)若点P(t,y1)在线段AB上,点Q(t﹣1,y2)在直线y=2x﹣上,求y1﹣y2的最大值.22、如图,O为坐标原点,一次函数y=kx+b的图象与x轴、y轴分别相交于A、B两点,半径为2的⊙O经过A、B两点.(1)写出A、B两点的坐标;(2)求此一次函数的解析式;(3)求圆心O到直线AB的距离.23、当排球和足球纳入中招考试体育加试后,这两种球的销量逐步提升.某体育用品商店看准时机,第一次购入30个排球和70个足球共花费4550元.第二次购入60个排球和40个足球共花费4100元.商店将排球和足球以50元/个和70元/个的价格出售,前两次进货很快销售一空.(1)求每个排球和足球的进价.(2)该商店准备第三次购入排球和足球共200个,根据市场需求,排球的购买个数不少于40个且不超过100个.购买时生产厂家对排球进行了优惠,规定购买排球不超过50个时保持原价,超过50个时超过的部分打八折.设第三次进货销售完的总利润为W元(利润=销售额﹣成本),其中购进排球x个.①求W与x的函数关系式.②商店为了回馈顾客,开展促销活动.将其中的m(m为正整数)个排球按30元/个,3m个足球按50元/个进行销售.若第三次进货销售完后,获得的最大利润不能低于3000元,求m的最大值.24、如图,在平面直角坐标系xOy中,四边形OABC的顶点是O(0,0),A(2,2),B(4,2),C(4,0),点P是x轴上一动点,连接OB,AP.(1)求直线OB的解析式;(2)若∠P AO=∠AOB,求点P的坐标;(3)当点P在线段OC(点P不与点C重合)上运动时,设P A与线段OB 相交于点D,以DA,DC为边作平行四边形ADCE,连接BE,求BE的最小值.25、如图,点E是正方形ABCD边BC上一动点(不与B、C重合),CM是外角∠DCN的平分线,点F在射线CM上.(1)当∠CEF=∠BAE时,判断AE与EF是否垂直,并证明结论;(2)若在点E运动过程中,线段CF与BE始终满足关系式CF=BE.①连接AF,证明的值为常量;②设AF与CD的交点为G,△CEG的周长为a,求正方形ABCD的面积.八年级下学期数学期末考试(参考答案)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟11、a≥﹣112、2<m<3 13、14、2 15、96 16、4.8三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、2+218、(1)20,5 (2)C,72 (3)4019、(1)30°;(2).20、(1)证明略(2)21、(1)m=AB的表达式为y=﹣x+3 (2)22、(1)A(2,0),B(0,2);(2)y=﹣x+2;(3)圆心O到直线AB的距离为.23、(1)排球的进价为每个35元,足球的进价为每个50元;(2)①W=;②m的最大值为10.24、(1)直线OB的解析式为.(2)点P的坐标为(1,0)或(﹣2,0).(3)BE的最小值为.25、(1)AE⊥EF;(2)①=;②.。
数学试卷答题卡初二
姓名:______________________ 学号:______________________ 班级:______________________一、选择题(每题4分,共20分)1. 下列各数中,有理数是()A. √-1B. √2C. πD. 2/32. 已知a、b是实数,且a + b = 0,则下列选项中一定成立的是()A. a² = b²B. ab = 0C. a = bD. a² = -b²3. 若等腰三角形底边长为4cm,腰长为5cm,则该三角形的面积是()A. 10cm²B. 12cm²C. 16cm²D. 20cm²4. 下列函数中,y是x的二次函数的是()A. y = 2x + 3B. y = x² + 2x + 1C. y = 3x³ + 2x² + x + 1D. y = 2x - 45. 若一个数的平方根是-2,则这个数是()A. 4B. -4C. 8D. -8二、填空题(每题4分,共20分)6. (1)一个数的平方根是2,则这个数是______。
(2)若|a| = 5,则a的值为______。
(3)若m² - 4 = 0,则m的值为______。
(4)若x² - 4x + 3 = 0,则x的值为______。
7. (1)一个等腰三角形的底边长为6cm,腰长为8cm,则该三角形的周长是______cm。
(2)若一个数的平方根是3,则这个数的立方根是______。
(3)若m² + 2m + 1 = 0,则m的值为______。
(4)若x² + 5x + 6 = 0,则x的值为______。
三、解答题(每题10分,共40分)8. 解下列方程:(1)2x² - 4x - 6 = 0(2)3x² + 12x + 9 = 09. 已知函数y = ax² + bx + c(a ≠ 0),若a = 2,b = -6,c = 3,求该函数的顶点坐标。
2021-2022学年八上学期期末数学试题(含解析)
A. B.
C. D. 或
10.如图,在四边形 中,连接 、 ,已知 , , , ,则四边形 的面积为()
A. B.3C. D.4
二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,只需把答案直接填写在答题卡上相应的位置)
答案与解析
一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请用2B铅笔把答题卡上相应的选项标号涂黑)
1.第24届冬季奥林匹克运动会将于2022年2月4日至2月20日在中国北京市和张家口市联合举办.以下是历届的冬奥会会徽设计的部分图形,其中不是轴对称图形的是()
A. B. C. D.
6.下列函数中,属于正比例函数的是()
A. B. C. D.
7.已知 , , 分别是 的三边,根据下列条件能判定 为直角三角形的是()
A. , , B. , ,
C. , , D. , ,
8.等腰三角形的周长为21cm,其中一边长为5cm,则该等腰三角形的底边长为()
A.5cmB.11cmC.8cm或5cmD.11cm或5cm
17.如图, 中, , 为 中点, 在 上,且 ,若 , ,则边 的长度为______.
18.如图,在边长为2的等边 中,射线 于点 ,将 沿射线 平移,得到 ,连接 、 ,则 的最小值为______.
三、解答题(本大题共8小题,共66分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)
【答案】A
【解析】
【分析】题目给出等腰三角形一条边长为5,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.
重庆市九龙坡区重庆实验外国语学校2022-2023学年八年级上学期开学数学试卷(含答案)
2022-2023学年重庆实验外国语学校八年级(上)开学数学试卷(附答案与解析)一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑。
1.(4分)在实数:3.1010010001,,,π中,无理数是()A.3.1010010001B.C.D.π2.(4分)下列调查中,适宜采用全面调查(普查)方式的是()A.对全国初中生视力情况的调查B.对暑期重庆市中小学生的阅读情况的调查C.疫情期间,对进入重庆市科技馆的游客“渝康码”的检查D.对重庆市各大超市蔬菜农药残留量的调查3.(4分)已知a>b,则下列结论正确的是()A.3﹣a<3﹣b B.﹣a>﹣b C.a2>b2D.5a>3b4.(4分)一个三角形三个内角的度数之比为2:4:7,这个三角形一定是()A.直角三角形B.等腰三角形C.锐角三角形D.钝角三角形5.(4分)如图,在△ABC和△ABD中,已知AC=AD,则添加以下条件,仍不能判定△ABC≌△ABD的是()A.BC=BD B.∠ABC=∠ABD C.∠C=∠D=90°D.∠CAB=∠DAB 6.(4分)下列命题中,是真命题的是()A.平方根等于它本身的数是0和1B.的算术平方根是4C.5是25的平方根D.有理数分为正有理数和负有理数7.(4分)已知在平面直角坐标系中,点A(m+4,2m+3)位于第四象限,则m的取值范围是()A.m>﹣B.m<﹣4C.﹣4<m<D.﹣4<m<﹣8.(4分)《孙子算经》中有这样一个数学问题:今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?意思是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺,木长多少尺?小明同学准备用二元一次方程组解决这个问题,他已列出一个方程是x﹣y=4.5,则符合题意的另一个方程是()A.x+1=y B.2x+1=y C.x﹣1=y D.2x﹣1=y 9.(4分)如图,AD,BE是△ABC的高线,AD与BE相交于点F.若AD=BD=6,且△ACD的面积为12,则AF的长度为()A.4B.3C.2D.1.510.(4分)观察下列图形,图①中有7个空心点,图②中有11个空心点,图③中有15个空心点,…,按此规律排列下去,第50个图形中有()个空心点.A.196B.199C.203D.20711.(4分)若关于x的不等式组恰好有3个整数解,且关于y的方程的解是非负数,则符合条件的所有整数m之和是()A.﹣6B.﹣5C.﹣3D.﹣212.(4分)如图,已知在四边形ABCD中,AC为对角线,∠B=90°,AB=BC,AC=AD,在BC边上取一点E,连接AE、DE.若∠DAC=2∠BAE,现有下列五个结论:①∠DEC =∠DAC;②∠BAE与∠ACD互余;③AE平分∠BED;④DE=AB+BE,⑤S△ADC=S△CED+S△ABE,其中正确的命题个数有()A.2个B.3个C.4个D.5个二、填空题:(每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上。
江苏省连云港市灌南县2024-2025学年八年级上学期第一次月考数学试卷(含答案)
2024-2025学年度第一学期学业质量阶段性检测八年级数学试题(A 卷)(满分分值:150分 考试时间:100分钟)一、选择题(本大题共8小题,每小题3分,共24分。
在每小题所给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填写在答题卡相应位置上)1.《国语・楚语》记载:“夫美也者,上下、内外、大小、远近皆无害焉,故曰美.”这一记载充分表明传统美的本质特征在于对称和谐。
下列四个图案中,是轴对称图形的是( )A. B. C. D.2.下列说法中正确的是( )A.面积相等的两个图形是全等图形B.周长相等的两个图形是全等图形C.所有正方形都是全等图形D.能够完全重合的两个图形是全等图形3.有下列说法:(1)线段是轴对称图形;(2)成轴对称的两个图形中,对应点的连线被对称轴垂直平分;(3)成轴对称的两个图形一定全等;(4)轴对称图形的对称点一定在对称轴的两侧。
其中正确的有( )A.1个B.2个C.3个D.44.如图,已知,那么添加下列一个条件后,不能判定的是( )A. B. C. D.5.如图,若,四个点B 、E 、C 、F 在同一直线上,,,则CF 的长是( )A.2 B.3 C.5 D.76.如图,两个三角形是全等三角形,x 的值是( )A.30B.45C.50D.857.如图,在中,,平分交边BC 于点,若,,则的面积是()AB AD =ABC ADC ≅△△CB CD=BAC DAC ∠=∠BCA DCA ∠=∠90B D ︒∠=∠=ABC DEF ≅△△7BC =5EC =ABC △90C ∠=︒AD BAC ∠D 3CD =8AB =ABD △A.36B.24C.12D.108.如图,已知,为的平分线,、、…为的平分线上的若干点.如图1,连接BD 、CD ,图中有1对全等三角形;如图2,连BD 、CD 、BE 、CE ,图中有3对全等三角形;如图3,连接BD 、CD 、BE 、CE 、BF ,CF ,图中有6对全等三角形,依此规律,第2025个图形中全等三角形的对数是( )图1 图2 图3A.2049300 B.2051325 C.2068224 D.2084520二、填空题(本大题共8小题,每小题3分,共24分.不需要写出解答过程,只需把答案直接填写在答题卡相应位置上)9.如图,,则AD 的对应边是________。
2023-2024学年四川省成都市高新区八年级(上)期末数学试卷(含答案)
2023-2024学年四川省成都市高新区八年级(上)期末数学试卷一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.(4分)下列各数中,属于无理数的是()A.B.C.D.0.572.(4分)下列运算正确的是()A.B.C.D.3.(4分)下面4组数值中,是二元一次方程3x+y=10的解是()A.B.C.D.4.(4分)如图,这是一个利用平面直角坐标系画出的某学校的示意图,如果这个坐标系以正东方向为x轴的正方向,以正北方向为y轴的正方向,并且综合楼和教学楼的坐标分别是(﹣4,﹣1)和(1,2)则食堂的坐标是()A.(3,5)B.(﹣2,3)C.(2,4)D.(﹣1,2)5.(4分)甲、乙、丙、丁四名同学参加立定跳远训练,他们成绩的平均数相同,方差如下:,,,,则成绩最稳定的是()A.甲B.乙C.丙D.丁6.(4分)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,CD是斜边的高,则CD 的长为()A.B.C.5D.107.(4分)某城市几条道路的位置关系如图所示,道路AB∥CD,道路AB与AE的夹角∠BAE=80°,城市规划部门想新修一条道路CE,要求CF=EF,则∠C的度数为()A.30°B.40°C.50°D.80°8.(4分)关于一次函数y=﹣2x+4,下列说法正确的是()A.函数值y随自变量x的增大而减小B.图象与x轴交于点(4,0)C.点A(1,6)在函数图象上D.图象经过第二、三、四象限二、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)9.(4分)一块面积为3m2的正方形桌布,其边长为m.10.(4分)在平面直角坐标系xOy中,点A的坐标是(2,3),若AB∥x轴,且AB=4,则点B的坐标是.11.(4分)下表是小明参加一次“青春风采”才艺展示活动比赛的得分情况:项目书法舞蹈演唱得分859070总评分时,按书法占40%,舞蹈占30%,演唱占30%考评,则小明的最终得分为.12.(4分)若直线y=x向上平移m个单位长度后经过点(3,5),则m的值为.13.(4分)如图,有两棵树,一棵高12米,另一棵高7米,两树相距12米,一只小鸟从一棵树的树梢A飞到另一棵树的树梢B,则小鸟至少要飞行米.三、解答题(本大题共5个小题,共48分,解答过程写在答题卡上)14.(12分)(1)计算:;(2)解方程组:.15.(8分)学校组织七、八年级学生参加体育综合素质评价测试,已知七、八年级各有160人,现从两个年级分别随机抽取8名学生的测试成绩(单位:分)进行统计.七年级:89,87,91,91,93,98,94,97八年级:98,84,92,93,95,95,88,95整理如下:年级平均数中位数众数七年级92.5x91八年级92.594y根据以上信息,回答下列问题:(1)填空:x=,y=;(2)甲同学说:“这次测试我得了93分,位于年级中等偏上水平”,你认为甲同学在哪个年级,并简要说明理由;(3)若规定测试成绩不低于90分为“优秀”,估计该学校这两个年级测试成绩达到“优秀”的学生总人数.16.(8分)在平面直角坐标系xOy中,△ABC的顶点A(1,1),B(3,2),C(2,3)均在正方形网格的格点上.(1)画△ABC关于y轴的对称图形△A1B1C1;(2)已知点D的坐标为(3,﹣3),判断△ABD的形状,并说明理由.17.(10分)某单位准备购买一种水果,现有甲、乙两家超市进行促销活动,该水果在两家超市的标价均为13元/千克.甲超市购买该水果的费用y(元)与该水果的质量x(千克)之间的关系如图所示;乙超市该水果在标价的基础上每千克直降3元.(1)求y与x之间的函数表达式;(2)现计划用290元购买该水果,选甲、乙哪家超市能购买该水果更多一些?18.(10分)如图,在△ABC中,∠BAC=90°,AB=AC.点D是△ABC所在平面内一点,且∠ADB=90°.(1)如图1,当点D在BC边上,求证:AD=CD;(2)如图2,当点D在△ABC外部,连接CD,若AB=5,AC=CD,求线段BD的长;(3)如图3,当点D在△ABC内部,连接CD,若∠ADC=∠BDC,AD=3,求点D到BC的距离.一、填空题(本大题共5个小题,每小题4分,共20分)19.(4分)如图,数轴上的点A表示的实数是.20.(4分)已知直线y=﹣3x与y=x+n(n为常数)的交点坐标为(1,m),则方程组的解为.21.(4分)如图,在平面直角坐标系xOy中,△ABC的顶点坐标分别为A(0,3),B(0,1),C(﹣4,0),点D在y轴右侧,若以A,B,D为顶点的三角形与△ABC全等,则点D的坐标为.22.(4分)在Rt△ABC中,∠BAC=90°,BD=AD=2,在BC的延长线上有一点E使得AE=AD,过点E作AC的垂线,垂足为F,若∠FEA=67.5°,则CE =.23.(4分)定义:若三个正整数a,b,c满足a<b,a2+b2=c2,且c﹣b=2,则称(a,b,c)为“偶差”勾股数组.例如:(6,8,10),(8,15,17)都是“偶差”勾股数组.令m=a+b+c,将m从小到大排列,分别记为m1,m2,m3,…,m n(n为正整数),则m20的值为.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)24.(8分)2023年12月4日至10日,国际乒联混合团体世界杯在四川成都举行,在此期间,成都某酒店对三人间及双人间客房进行优惠大酬宾,优惠方案为:三人间为每天每间360元,双人间为每天每间300元,一个40人的旅游团于2023年12月4日在该酒店入住,住了一些三人间及双人间客房,且每个客房正好住满.(1)若旅游团一天共花去住宿费5100元,求该旅行团租住了三人间、双人间各多少间?(2)设有x人住三人间,这个团一天共花去住宿费y元,请求出y与x的函数表达式.25.(10分)如图1,在边长为2的正方形ABCD中,点E是射线BC上一动点,连接AE,以AE为边在直线AE右侧作正方形AEFG.(1)当点E在线段BC上,连接DG,求证:BE=DG;(2)当点E是线段BC的中点,连接CF,求线段CF的长;(3)如图2,点E在线段BC的延长线上,连接BG,若ED的延长线恰好经过BG的中点P,求线段EP的长.26.(12分)如图,直线l1:y=﹣x+3与x轴,y轴分别交于A,B两点,点C坐标为(﹣5,﹣2),连接AC,BC,点D是线段AB上的一动点,直线l2过C,D两点.(1)求△ABC的面积;(2)若点D的横坐标为1,直线l2上是否存在点E,使点E到直线l1的距离为,若存在,求出点E的坐标,若不存在,请说明理由;(3)将△BCD沿直线CD翻折,点B的对应点为M,若△ADM为直角三角形,求线段BD 的长.参考答案一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.C;2.D;3.D;4.B;5.C;6.A;7.B;8.A;二、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)9.;10.(6,3)或(﹣2,3);11.32.16;12.2;13.13;三、解答题(本大题共5个小题,共48分,解答过程写在答题卡上)14.(1)4;(2).;15.92;95;16.(1)见解答.(2)△ABD为直角三角形,理由见解答.;17.(1)y1与x之间的函数解析式为y1=;(2)在甲商店购买更多一些.;18.(1)证明见解析.(2);(3).;一、填空题(本大题共5个小题,每小题4分,共20分)19.1+; 20.;21.(4,4)或(4,0);22.2﹣2;23.1012;二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)24.(1)此旅游团住了三人间客房10间,住了双人间客房5间;(2)y与x的函数表达式为y=﹣30x+6000.;25.(1)证明见解答;(2)线段CF的长为;(3)EP=3.;26.(1)S△ABC=15;(2)存在,点E的坐标为或;(3)BD的长为或﹣.。
河南省驻马店市正阳县2022-2023学年八年级上学期期末数学试题(含答案)
2022—2023学年度第一学期期末质量监测试卷八年级数学注意事项1.本试卷共8页,三大题,23个小题,满分120分,考试时间100分钟.请用黑色水笔或2B 铅笔在答题卡上作答.2.答卷前将相关信息在答题卡上准确填涂.一二三题号1~1011~151617181920212223总分得分一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填涂在答题卡上.1.下列图形中,是轴对称图形的是( )A. B. C. D.2.科学家在实验中检测出新型冠状病毒直径约为0.000000018米.将数0.000000018用科学记数法表示为( )A. B. C.D.3.已知三角形的两边长分别为和,则第三边的长可以是()A. B. C. D.4.下列运算正确的是( )A. B. C. D.5.如图所示,已知,用尺规在线段上确定一点P ,使得,则符合要求的作图痕迹是( )A. B.C. D.6.已知点与点关于x 轴对称,则( )A. B. C. D.461.810-⨯81.810-⨯71.810-⨯71810-⨯5cm 8cm 2cm3cm6cm13cm326a aa ⋅=2ab bab ÷=()222m n m n -=-()239239x yx y -=()AC AB B C C AB <<△BC PA PC BC +=(),2A a ()3,B b 2a b +=4-1-2-7.如果代数式,那么代数式的值是( )A.22B.18C. D.8.定义运算“※”: ,若3※,则x 的值为( )A.1B.5C.1或5D.5或79.如图,在中,,以为底边在外作等腰,过点D 作的平分线分别交,于点E ,F .若,,点P 是直线上的一个动点,则周长的最小值为( )A.15B.17C.18D.2010.如图,在中,,的平分线与的平分线交于点,得,的平分线与的平分线交于点,得的平分线与的平分线交于点,得,则( )A.B. C. D.二、填空题(每小题3分,共15分)11.如图所示,第四套人民币中菊花1角硬币.则该硬币边缘镌刻的正九边形的一个外角的度数为 .12.如图,在和中,,,要使,还需添加一个条件,这个条件可以是 .2317y y --=2662y y +-8-10-2,2,a b a ba b a b b a ⎧>⎪⎪-=⎨⎪<⎪-⎩※1x =ABC △90ACB ∠=︒AC ABC △ACD △ADC ∠AB AC 5BC =30CAB ∠=︒DE PBC △ABC △αA ∠=ABC ∠ACD ∠1A 1A ∠1A BC ∠1D A C ∠2A 22022,,A A BC ∠∠ 2022D A C ∠2023A 2023A ∠2023A ∠=α2022α20232022α22023α2ABC △DFE △90A D ∠=∠=︒AC DE =ABC DFE △≌△13.“数理世界”展厅的WiFi 的密码被设计成如图的数学问题.小东在参观时认真思索,输入密码后顺利地连接到了网络,则他输入的密码是 .14.如图,在三角形中,点分别是的中点,且的面积为8,则阴影部分的面积是 .15.如图,在直角三角形中,,,点D 是边上的一点,连接,将沿折叠,使点C 落在点E 处,当是直角三角形时,的度数为 .三、解答题(本大题共8个小题,共75分)16.(每小题5分,共10分)(1)计算:;(2)解方程:.17.(9分)如图,在边长为1个单位长度的小正方形组成的网格中,按要求作图.ABC D E F 、、BC AD CE 、、ABC △ABC 90C ∠=︒60BAC ∠=︒BC AD ACD △AD BDE △CAD ∠()12022112 3.143π-⎛⎫---+--- ⎪⎝⎭4322x x x x--=--(1)利用尺规作图:在边上找一点,使点到的距离相等.(不写作法,保留作图痕迹)(2)在网格中,的下方,直接画出,使与全等.18.(9分)先化简,再求值:,其中,且a 是整数.19.如图,用10块高度都是的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(,),点C 在上,点A 和B 分别与木墙的顶端重合.(1)求证:(2)求两堵木墙之间的距离.20.为保障新冠病毒疫苗接种需求,某生物科技公司开启“加速”模式,生产效率比原先提高了25%,生产300万剂疫苗比原来要少用1天,求现在每天生产疫苗多少万剂?21.如图,在中,,,.将三角板中角的顶点D 放在边上移动,使这个角的两边分别与的边相交于点E ,F ,且使始终与垂直.(1)求证:是等边三角形.(2)设,,则 .(用含x 的式子表示y )(3)当移动点D 使时,求AD 的长.22.阅读并解答:对于三次多项式,我们把代入多项式,发现,由此可以推断多项式中有因式,设另一个因式为,多项式可以表示成,整理得,可得到,,所以,,把求出的a ,b 代入,就可以把多项式因式分解.以上这种因式分解的方法叫“试根法”.对于多项式,用“试根法”分解因式.23.(1)问题:如图1,在四边形中,对角线平分,.求证:.思考:“角平分线对角互补”可以通过“截长、补短”等构造全等去解决问题.方法1:在上截取,连接,得到全等三角形,进而解决问题;方法2:延长到点N ,使得,连接,得到全等三角形,进而解决问题.结合图1,在方法1AC D D AB BC 、ABC △EBC △EBC △ABC △322293344a a a a a a -⎛⎫÷++ ⎪--+⎝⎭15a <<2cm AC BC =90ACB ∠=︒DE ADC CEB △≌△Rt ABC △90ACB ∠=︒30A ∠=︒1BC =30︒AB 30︒ABC △AC BC ,DE AB BDF △AD x =CF y =y =//EF AB 3233x x x --+1x =32330x x x --+=()1x -()2x ax b ++()()322331x x x x x ax b --+=-++()()3232331x x x x a x a b x b --+=-----11a -=3b =-0a =3b =-3233x x x --+324318x x x +--ABCD BD ABC ∠180A C ∠+∠=︒DA DC =+BC BM BA =DM BA BN BC =DN和方法2中任选一种,添加辅助线并完成证明.(2)问题解决:如图2,在(1)的条件下,连接,当时,探究线段,,之间的数量关系,并说明理由;(3)问题拓展:如图3,在四边形中,,,过点D 作,垂足为点E ,请直接写出线段、、之间的数量关系:.AC 60DAC ∠=︒AB BC BD ABCD 180A C ∠+∠=︒DA DC =DE BC ⊥AB CE BC2022—2023学年度第一学期期末质量监测试卷八年级数学参考答案与评分标准一、选择题(每小题3分,共30分)题号12345678910答案ABCBABDCAD二、填空题(每小题3分,共15分)题号1112131415答案(答案不唯一)20222或三、解答题(本大题共8个小题,满分75分)16.解:(1)原式(2)去分母,得:去括号,得:移项,得:合并同类项,得:系数化为1,得:检验:把代入,得:所以是增根,原分式方程无解.17.解:(1)如图点D 即为所求;(2)或即为所求(画出一个即可得4分)18解:原式,且,a 是整数.可以取4当时,原式40︒BC EF =30︒45︒1213=--++1=()432x x x +-=-436x x x +-=-364x x x +-=-+2x -=-2x =2x =2x -20x -=2x =EBC △E BC '△()()()()22233932a a a a a a -+-+=÷--2232a a a a-=⨯-32a a -=-()()230a a a --≠ 15a <<a ∴4a =431422-==-19.(1)证明:由题意得:,,,,,,,在和中(2)解:由题意得:,,,,答:两堵木墙之间的距离为20cm.20.解:设原来每天生产疫苗x 万剂,则现在每天生产疫苗万剂根据题意得:解得:经检验得:是原方程的解答:现在每天生产疫苗75万剂21.(1)证明:,,,,,,,是等边三角形(2)(3)当时,,,,,,,即22.解:当时,,AC BC =90ACB ∠=︒AD DE ⊥BE DE ⊥90ADC CEB ∴∠=∠=︒90ACD BCE ∠+∠=︒∴90ACD DAC ∠+∠=︒BCE DAC∴∠=∠ADC △CEB △ADC CEB DAC ECBAC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩()ADC CEB AAS ∴△≌△236cm AD =⨯=7214cmBE =⨯=ADC CEB △≌△6cm EC AD ==∴14cm DC BE ==()20cm DE DC CE ∴=+=()125%x +()1300300125%x x =++60x =60x =()125% 1.256075x ∴+=⨯=ED AB ⊥ 30EDF ∠=︒60FDB ∴∠=︒30A ∠=︒ 90ACB ∠=︒60B ∴∠=︒60DFB ∠=︒∴BDF ∴△1x -//EF AB 30CEF ∠=︒90FED EDA ∠=∠=︒12E CF F ∴=12EF DF =1DF BF y ==- ()114y y ∴=-15y ∴=615x y =+=65AD =2x =3243188166180x x x +--=+--=多项式有因式,设另一个因式为,,,,,23.解:(1)方法1:在上截,连接,如图.平分,.在和中,,.,.,.方法2:延长到点N ,使得,连接,如图.平分,.在和中,.,.∴()2x -()2x ax b ++()()32243182x x x x ax b x ∴+--=-++()()32324318222x x x a x a b x bx ∴+--=+----24a ∴-=218b -=-6a ∴=9b =()()()()2322431826923x x x x x x x x +--=∴-++=-+BC BM BA =DM BD ABC ∠ABD CBD ∴∠=∠ABD △MBD △BD BD ABD MBD BA BM =⎧⎪∠=∠⎨⎪=⎩ABD MBD∴△≌△A BMD ∴∠=∠AD MD =180BMD CMD +∠=︒∠ 180C A ∠+∠=︒C CMD ∴∠=∠DM DC ∴=DA DC ∴=BA BN BC =DN BD ABC ∠NBD CBD ∠=∠∴NBD △CBD △BD BD NBD CBDBN BC =⎧⎪∠=∠⎨⎪=⎩NBD CBD ∴△≌△BND C ∴∠=∠ND CD =,..,.(2)之间的数量关系为:.(或者:,)理由:延长CB 到点P ,使,连接AP ,如图所示.由(1)可知,.为等边三角形.,.,..,为等边三角形.,.,,即.在和中,,.,,.(3)(或者:,)(解:连接BD ,过点D 作于F ,如图所示.,..180NAD BAD ∠+∠=︒ 180C BAD ∠+∠=︒BND NAD ∴∠=∠DN DA ∴=DA DC ∴=AB BC BD 、、AB BC BD +=BD CB AB -=BD AB CB -=BP BA =AD CD =60DAC ∠=︒ ADC ∴△AC AD ∴=60ADC ∠=︒180BCD BAD ∠+∠=︒ 36018060120ABC ∴∠=︒-︒-︒=︒18060PBA ABC ∴∠=︒-∠=︒BP BA = ABP ∴△60PAB ∠=︒∴AB AP =60DAC ∠=︒ PAB BAC DAC BAC ∴∠+∠=∠+∠PAC BAD ∠=∠PAC △BAD △PA BA PAC BAD AC AD =⎧⎪∠=∠⎨⎪=⎩PAC BAD ∴△△≌PC BD ∴=PC BP BC AB BC =+=+ AB BC BD +=∴2BC AB CE -=2BC CE AB -=2AB CE BC +=DF AB ⊥180BAD C ∠+∠=︒ 180BAD FAD ∠+∠=︒FAD C ∴∠=∠在和中,,,,.在和中,.,,.DFA △DEC △DFA DEC FAD C DA DC ∠=∠⎧⎪∠=∠⎨⎪=⎩DFA DEC ∴△≌△DF DE ∴=AF CE =Rt BDF △Rt BDE △BD BD DF DE=⎧⎨=⎩Rt Rt BDF BDE ∴△≌△BF BE ∴=2BC BE CE BA AF CE BA CE ∴=+=++=+2BC BA CE ∴-=。
贵州省黔东南苗族侗族自治州2023-2024学年八年级下学期期末数学试题(含答案)
黔东南州2023—2024学年度第二学期期末文化水平测试八年级数学试卷同学你好!答题前请认真阅读以下内容:1.本卷为数学试题卷,全卷共6页,三大题25小题,满分150分,考试时间为120分钟.2.一律在《答题卡》相应位置作答,在试题卷上答题视为无效.3.不能使用计算器.一、选择题:以下每小题均有A、B、C、D、四个选项,其中只有一个选项正确,请用2B铅笔在答题卡相应位置作答,每题3分,共36分.1)A.4B.-4C.8D.2.下列计算中,正确的是A.B.CD3.某学校在6月6日全国爱眼日当天,组织学生进行了视力测试.小红所在的学习小组每人视力测试的结果分别为:5.0,4.8,4.5,4.8,4.6,这组数据的众数和中位数分别为()A.4.8,4.74B.4.8,4.5C.5.0,4.5D.4.8,4.84.下列函数中,是正比例函数的是()A.B.C.D.5.如图,平地上、两点被池塘隔开,测量员在岸边选一点,并分别找到和的中点、,测量得米,则、两点间的距离为()A.30米B.32米C.36米D.48米6.下列曲线中,不能表示是的函数的是()A.B.C.D.7.若,且,则函数的图象可能是()4±2-=3==5= 23y x=5y x=6yx=1y x=-A B C AC BC D E16DE=A By xkb<k b<y kx b=+A .B .C .D .8.如图,在平面直角坐标系中,已知点,,以点为圆心,长为半径画弧,交轴的正半轴于点,则点的坐标是()A .B .C .D .9.下列命题中:①对角线垂直且相等的四边形是正方形;②对角线互相垂直平分的四边形为菱形;③一组对边平行,另一组对边相等的四边形是平行四边形;④若顺次连接四边形各边中点得到的是矩形,则该四边形的对角线相等.是真命题的有( )A .1个B .2个C .3个D .4个10.如图,是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形、、、的面积分别为2、5、1、2.则最大的正方形的面积是()A .5B .10C .15D .2011.如图,在中,对角线,相交于点,若,,,则的长为()A .8B .9C .10D .1212.如图1,将正方形置于平面直角坐标系中,其中边在轴上,其余各边均与坐标轴平行,直线沿轴的负方向以每秒1个单位长度的速度平移,在平移的过程中,该直线被正方形的边所截得的线段长为,平移的时间为(秒),与的函数图象如图2所示,则图2中的值为()(0,0)O (1,3)A O OA x BB(3,0)A B C D E ABCD AC BD O 90ADB ∠=︒6BD =4AD =ACABCD AD x :3l y x =-x ABCD m t m t bA .B .C .D .二、填空题:每小题4分,共16分.13的取值范围是______.14.某校学生期末美术成绩满分为100分,其中课堂表现占,平时绘画作业占,期末手工作品占,小花的三项成绩依次为90,85,95,则小花的期末美术成绩为______分.15.已知甲、乙两地相距,,两人沿同一公路从甲地出发到乙地,骑摩托车,骑电动车,图中,分别表示,两人离开甲地的路程与时间的关系图象.则两人相遇时,是在出发后______小时.16.在矩形中,点,分别是,上的动点,连接,将沿折叠,使点落在点处,连接,若,,则的最小值为______.三、解答题:本大题9小题,共98分.17.(8分)计算:(1)(2)18.(10分)如图,每个格子都是边长为1的小正方形,,四边形的四个顶点都在格点上.(1)求四边形的周长;(2)连接,试判断的形状,并求四边形的面积.x 30%50%20%90km A B A B DE OC A B (km)S (h)t B ABCD E F AB AD EF AEF △EF A P BP 2AB =3BC =BP 90ABC ∠=︒ABCD ABCD AC ACD △ABCD19.(10分)如图,在平行四边形中,点是边的中点,的延长线与的延长线相交于点.(1)求证:;(2)连接、,试判断四边形的形状,并证明你的结论.20.(12分)2024年4月30日,“神舟十七号”载人飞船成功着陆,激发了同学们的爱国热情.某校为了解七、八年级学生对“航空航天”知识的掌握情况,对七、八年级学生进行了测试,此次“航空航天”知识测试采用百分制,并规定90分及以上为优秀;80~89分为良好;60~79分为及格;59分及以下为不及格.现从七、八年级各随机抽取20名学生的测试成绩,并将数据进行以下整理与分析.①抽取的七年级20名学生的成绩如下:57 58 65 67 69 69 77 78 79 81838788898994969797100②抽取的七年级20名学生的成绩的频数分布直方图如图1所示,数据分成5组:,,,,)③抽取的八年级20名学生的成绩的扇形统计图如图2所示.④七、八年级各抽取的20名学生成绩的平均数、中位数、方差如下表所示.年级平均数中位数方差七年级81167.9八年级8281106.3请根据以上信息,解答下列问题.(1)______,______.并补全抽取的七年级20名学生的成绩的频数分布直方图.(2)目前该校七年级学生有300人,八年级学生有200人,估计两个年级此次测试成绩达到优秀的学生总人数.(3)从平均数和方差的角度分析,你认为哪个年级的学生成绩较好?请说明理由.21.(10分)如图是某货站传送货物的平面示意图.为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°为30°.已知原传送带长为.(1)求新传送带的长度;(2)若需要在货物着地点的左侧留出2m 的通道,试判断和点相距5m (即)的货物是否需要挪走,并说明理由.)ABCD E AD BE CD F ABE DFE △≌△BD AF ABDF 5060x ≤<6070x ≤<7080x ≤<8090x ≤<90100x ≤≤aa =m =AB AC C B 5PB =MNQP 1.4≈ 1.7≈22.(12分)某小型企业获得授权生产甲、乙两种奥运吉祥物,生产每种吉祥物所需材料及所获利润如下表:种材料种材料所获利润(元)每个甲种吉祥物0.30.510每个乙种吉祥物0.60.220该企业现有种材料,种材料,用这两种材料生产甲、乙两种吉祥物共2000个.设生产甲种吉祥物个,生产这两种吉祥物所获总利润为元.(1)求出(元)与(个)之间的函数关系式,并求出自变量的取值范围;(2)该企业如何安排甲、乙两种吉祥物的生产数量,才能获得最大利润?最大利润是多少?23.(12分)如图,在矩形中,延长到,使,延长到,使,连接.(1)求证:四边形是菱形;(2)连接,若,,求的长.24.(12分)如图,在平面直角坐标系中,一次函数的图象与轴交于点,与轴交于点,且与正比例函数的图象的交点为.(1)求一次函数的解析式;(2)根据图像直接写出:当时,的取值范围.(3)一次函数的图象上有一动点,连接,当的面积为5时,求点的坐标.25.(12分)在正方形中,点是线段上的动点,连接,过点作(点在直线的下方),且,连接.A ()2m B ()2m A 2900m B 2850m x y y x x ABCO AO D DO AO =CO E EO CO =AE ED DC CA 、、、AEDC EB 4AE =60AED ∠=︒EB xOy 1y kx b =+x (3,0)A -y B 243y x =(,4)C m 1y kx b =+12y y >x 1y kx b =+P OP OPC △P ABCD E AB DE D DF DE ⊥F DE DF DE =EF(1)【动手操作】在图①中画出线段,;与的数量关系是:______;(2)【问题解决】利用(1)题画出的图形,在图②中试说明,,三点在一条直线上;(3)【问题探究】取的中点,连接,利用图③试求的值.黔东南州2023-2024学年度第二学期期末考试八年级数学参考答案一、选择题123456789101112ACDBBADAABCA二、填空题13、14、88.515、1.816、三、解答题17.(8分)(1)解:原式(2)解:原式18.(10分)解:(1),,,,(2),,,,,∴,∴△ACD 是直角三角形,19.(10分)(1)四边形ABCD 是平行四边形,AB //CDAB //CF ,ABE =∠DFE ,E 是边AD 的中点,AE =DEDF EF ADE ∠CDF ∠B C F EF P CP CPBE2≥x 313-4=-+432+===4=AB 3=BC 54322=+=CD 257122=+=AD 251225534+=+++=ABCD C 四边形5=AC 5=CD 25=AD 5022=+CD AC 502=AD 222AD CD AC =+2136225=-=-=ABC ACD ABCD S S S △△四边形 ∴∴∴∠ ∴在△ABE 与△DFE 中,△ABE ≌△DFE (AAS )(2)四边形ABDF 是平行四边形,如图:由(1)得:△ABE ≌△DFE ,则BE =EFBE = EF ,AE =ED ,四边形ABDF 是平行四边形20.(12分)(1)82;30(2)七年级优秀人数人,八年级优秀人数人75+60=135人,答:两个年级此次测试成绩达到优秀的学生总人数为135人.(3)八年级学生的成绩较好.理由:八年级学生成绩的平均数较大,而且方差较小,说明平均成绩较高,并且波动较小,所以八年级学生的成绩较好.21.(10分)(1),∴AD =BD ,∴解得:AD =4,在Rt △ACD 中∵∠ACD =30°,∴AC =2AD =8(2)货物MNQP 不需要挪走.理由:在Rt △ABD 中,BD =AD =4(米).在Rt△ACD 中,2.2>2∴货物MNQP 不需要挪走.22.(12分)AE DE ABE FAEB DEF =∠=∠∠=∠⎧⎪⎨⎪⎩∴ ∴75205300=⨯6030200=⨯%︒=∠45ABD ABD Rt 中,△在()222242==AB AD 2.28.258.24343422≈-≈-=∴≈-=-=∴=-=CB PB PC BD CD CB AD AC CD(1)解:根据题意得,,由题意,解得:,自变量的取值范围是,且是整数;(2)由(1),,随的增大而减小,又且是整数,当时,有最大值,最大值是(元),生产甲种吉祥物个,乙种吉祥物个,所获利润最大,最大为元.23.(12分)(1)证明:∵四边形是矩形,∴,∴,即,∵,,∴四边形是菱形.(2)解:连接,如图:∵四边形是菱形,,∴,∵,∴,∴,∴,∵四边形是矩形,∴,,∴.24.(12分)解(1)把,,∴C (3,4)把A (-3,0),C (3,4)代入得,解得∴解析式是()10202000y x x =+-1040000y x ∴=-+()()0.30.620009000.50.22000850x x x x +-≤⎧⎪⎨+-≤⎪⎩10001500x ≤≤∴x 10001500x ≤≤x 1040000y x =-+100k =-< y ∴x 10001500x ≤≤x ∴1000x =y 1010004000030000-⨯+=∴1000100030000ABCO =90AOC ∠︒AO OC ⊥AD EC ⊥DO AO =EO CO =AEDC EB AEDC 60AED ∠=︒30AEO ∠=︒904AOE AE ∠=︒=,122OA AE ==EO ===2CE EO ==ABCO 2BC OA ==90BCE ∠=︒EB ===()x y m C 3442=代入,443m =3m =b kx y +=13034k b k b -+=⎧⎨+=⎩232k b ⎧=⎪⎨⎪=⎩2321+=x y(2)<3(3)设点P ,∵B (0,2),C (3,4),所以或25.(12分)(1)如图,∠ADE =∠CDF(2)证明:如图②,连接CF .∵四边形ABCD 是正方形,∴AD =CD ,∠ADC =,即∠ADE+∠EDC=,∵∠EDF =,即∠EDC+∠CDF=,∴∠ADE=∠CDF ∵DE =DF ,∴△ADE ≌△CDF ,∠DAE=∠DCF=∴∠BCD+∠DCF=,即B ,C ,F 三点在一条直线上(3)连接PB ,PD .在Rt △EDF 和Rt △EBF 中∵P 是斜边EF 的中点,∴x ⎪⎭⎫ ⎝⎛+232,m m 232-⋅=∴m S OPC △2,821-==m m ⎪⎭⎫ ⎝⎛-32,21P ⎪⎭⎫⎝⎛322,82P 90 90 90 90 90 180EF PB PD 21==又∵BC =DC ,PC =PC ,∴△BCP ≌△DCP ∴∠BCP=∠DCP=取BF 的中点P ,连接PG ,则PG ∥EB .∴∠PGF=∠EBF=,∴△PGC 是等腰直角三角形.设PG =x ,则CP =,BE =2x ,∴4521=∠BCD 90x 22222==x x BE CP。
人教版8年级数学试卷及答案
βα2022年春季期末质量监测八年级数学试卷(本卷共三道大题,26个小题。
时间:120分钟,满分:150分)注意事项:1.试题的答案用蓝黑墨水钢笔或签字笔书写在答题卷上,不得在试卷上直接作答。
2. 答题前将答题卡上密封线内的各项内容写清楚。
3. 考试结束,由监考人员将答题卡收回,试卷不回收,由所在学校保存。
一、选择题(本题共48分,每小题4分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上对应题目的正确答案标号涂黑.1中字母x 的取值范围是( ) A .x <3 B .x ≤3 C .x >3 D .x ≥32.剪纸是我国传统的民间艺术,下列剪纸作品中,是轴对称图形,但不是中心对称图形的为( )A B C D3.直角三角形中,两直角边分别是12和5,则斜边上的中线长是( ) A .34B .26C .8.5D .6.54.下列因式分解正确的是( )A.x 2-xy+x=x(x-y);B.a 3+2a 2b+ab 2=a(a+b)2;C.x 2-2x+4=(x-1)2+3;D.ax 2-9=a(x+3)(x-3). 5.下列各式中,运算正确的是( ) A2=- B= C4= D.2=6.如图,一个等边三角形纸片,剪去一个角后得到一个x xy O 2212y b=-+1y ax=P四边形,则图中∠α+∠β的度数是( )A .180°;B .220°;C .240°;D .300°.7.如果点A (1,m )与点B (3,n )都在直线21y x =-+上,那么m 与n 的关系是( ) A .m n >B .m n <C .m n =D .不能确定8.下表记录了甲、乙、丙、丁四名同学最近几次数学考试成绩的平均数与方差:要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择( ) A .甲B .乙C .丙D .丁9.在四边形ABCD 中,∠A =∠B =∠C = 90°,如果再添加一个条件,即可推出该四边形是正方形,这个条件可以是( ) A .= CDC .∠D = 90° D .AD = BC10A .1.x ; D .x 2。
(完整word版)中考数学答题卡
滨州市二0一六年初中学生学业考试数学模拟试卷答题卡姓名 座号准考证号请在各题目的答题区域内作答,超出边框的答案无效请在各题目的答题区域内作答,超出边框的答案无效请在各题目的答题区域内作答,超出边框的答案无效请在各题目的答题区域内作答,超出边框的答案无效请在各题目的答题区域内作答,超出边框的答案无效请在各题目的答题区域内作答,超出边框的答案无效请在各题目的答题区域内作答,超出边框的答案无效请在各题目的答题区域内作答,超出边框的答案无效请在各题目的答题区域内作答,超出边框的答案无效请在各题目的答题区域内作答,超出边框的答案无效请在各题目的答题区域内作答,超出边框的答案无效请在各题目的答题区域内作答,超出边框的答案无效请在各题目的答题区域内作答,超出边框的答案无效请在各题目的答题区域内作答,超出边框的答案无效请在各题目的答题区域内作答,超出边框的答案无效请在各题目的答题区域内作答,超出边框的答案无效。
八年级数学)答题卡1
请 在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效
请 在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效 2 5. (10 分) 2 6.(10 分)(1)如图 1,已知:在△ABC 中,∠BAC=90°,AB=AC,直 线 m 经过点 A,BD⊥直线 m,CE⊥直线 m,垂足分别为点 D、E. 证 明:DE=BD+CE. (2)如图 2,将(1)中的条件改为:在△ABC 中,AB=AC,D、A、E
三 点都在直线 m 上,并且有∠BDA=∠AEC=∠BAC= ,其中 为任意
锐角或钝角.请问结论 DE=BD+CE 是否成立?如成立,请你给出证明; 若 不成立,请说明理由. 请 在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效
数学(八年级)数学答题卡 第 2 面(共 2 面)
(3)拓展与应用:如图 3,D、E 是 D、A、E 三点所在直线 m 上的两动 点(D、A、E 三点互不重合),点 F 为∠BAC 平分线上的一点,且△ABF
和△ACF 均为等边三角形,连接 BD、CE,若∠BDA=∠AEC=∠BAC, 试判断△DEF 的形状并说明理由. 26.(10 分)
数学(八年级)答题卡 第 1 面(共 2 面)
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效 22.(8 分) 如图,点 E 在 AB 上,△ABC≌△DEC.
2022-2023学年四川省成都七中育才学校八年级第一学期期中数学试卷及参考答案
成都市七中育才学校2022-2023学年度上半期学业质量监测八年级数学试卷A 卷(共100分)第Ⅰ卷(选择题,共32分)一、选择题(每小题4分,共32分,请将正确的答案涂在答题卡上)1.的绝对值是( )A.4-B.4C.2-D.22.下列各数中的无理数是( )B.227C.3.4D.23.三个正方形的面积如图,中间三角形为直角三角形,则正方形A 的边长为( )A.6B.36C.64D.84.下列二次根式是最简二次根式的是( )5.在平面直角坐标系中,点()2,2P -在( )A.第一象限B.第二象限C.第三象限D.第四象限6.如图作图所示,点A 所表示的数为x ,则x =( )A.1B.1- D.7.为响应国家“双减”政策,丰富学生的课余生活.“青青草原”社团打算规划一块面积为2300m 的土地,使它的长与宽的比为3:2,则宽约为多少m ?( )A.12~13之间B.13~14之间C.14~15之间D.15~16之间8.对于函数23y x =-+,下列结论正确的是( )A.它的图象必经过点()1,3B.它的图象经过第一、三、四象限C.当0x >时,0y <D.y 随x 的增大而减小第Ⅱ卷(非选择题,共68分)二、填空题(本大题共4小题,每小题4分,共16分)1的相反数是__________,绝对值是______________.10.平面直角坐标系中,若点A在第二象限,且到x轴的距离为3,到y轴的距离为2,则点A的坐标为________.11.如图,有五个小正方形,每个小正方形的边长为1,可通过“剪一剪”,“拼一拼”,将其拼成一个正方形,则这个正方形的边长是____________.12.已知函数y=(1)自变量x的取值范围为___________;(2)当4x=时,y的值为___________.三、解答题(本大题共6小题,共52分)13.(12分)(1;)(12012-⎛⎫+- ⎪⎪⎝⎭14.(6分)解方程:()22180x--=.15.(8分)已知31a b+-的平方根是3±,c262a b c+-的值.16.(8分)如图,在平面直角坐标系中,已知点()5,1A-,()4,5B-,()2,2C-.(1)画出ABC△.(2)若111A B C△与ABC△关于y轴对称,则点1A的坐标是________.111A B C△的面积是___________.17.(8分)如图,某小区的两个喷泉A ,B 位于小路AC 的同侧,两个喷泉的距离AB 的长为250m .现要为喷泉铺设供水管道AM ,BM ,供水点M 在小路AC 上,供水点M 到AB 的距离MN 的长为120m ,BM 的长为150m .(1)求供水点M 到喷泉A ,B 需要铺设的管道总长;(2)求出喷泉B 到小路AC 的最短距离.18.(10分)如图,四边形OABC 是一张长方形纸片,将其放在平面直角坐标系中,使得点O 与坐标原点重合,点A 、C 分别在x 轴、y 轴的正半轴上,点B 的坐标为()3,4,D 的坐标为()2,4.现将纸片沿过D 点的直线折叠,使顶点C 落在线段AB 上的点F 处,折痕与y 轴的交点记为E .(1)求点F 的坐标和FDB ∠的大小;(2)在x 轴正半轴上是否存在点Q ,满足QDE CDE S S =△△,若存在,求出Q 点坐标,若不存在请说明理由; (3)点P 在直线DE 上,且PEF △为等腰三角形,请直接写出点P 的坐标.B 卷(共50分)一、填空题(本大题共5小题,每小题4分,共20分,答案写在答题卡上)19.点()2,a 和()1,5b +关于x 轴对称,则a b +=___________.20.已知18y ==____________.21.已知一次函数()12y m x m =-+-图像不经过第一象限,求m 的取值范围___________.22.如图,在Rt ABC △中,点D 在AC 边上,且满足45ABD ∠=︒,当DE BC ⊥,1DE =,3BE =,EC =____.23.如图,在平面直角坐标系中,C 点坐标()2,0,B 点坐标()6,0,A 点在直线:OA y =上,且满足OA AB =,D 为直线OA 上一动点,连接DC ,DC 绕点C 顺时针旋转90︒得到CE ,连接DE ,BE ,则BE 的最小值为____. 二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)24.(8分)已知x =,y =; (1)求223x y xy +-的值;(2)若x 的小数部分为a ,y 的小数部分为b ,求2()a b +的值.25.(10分)在ABC △和CDE △中,90ACB ECD ∠∠==︒,AC BC =,点D 是CB 延长线上一动点,点E 在线段AC 上,连接DE 与AB 交于点F .(1)如图1,若30EDC ∠=︒,6EF =,求AEF △的面积.(2)如图2,若BD AE =,求AF 、AE 、BC 之间的数量关系.(3)如图3,移动点D ,使得点F 是线段AB 的中点时,3DB =,AB =P ,Q 分别是线段AC ,BC 上的动点,且AP CQ =,连接DP ,FQ ,求DP FQ +的最小值.26.(12分)已知,如图1,直线:4AB y kx k =--,分别交平面直角坐标系于A ,B 两点,直线:22CD y x =-+分别交平面直角坐标系于C ,D 两点,两直线交于点(),E a a -;(1)求点E 的坐标和k 的值;(2)如图2,点M 是y 轴上一动点,连接ME ,将AEM △沿ME 翻折,当A 点对应点刚好落在x 轴上时,求ME 所在直线解析式;(3)在直线AB 上是否存在点P ,使得45ECP ∠=︒,若存在,请求出P 点坐标,若不存在请说明理由.参考答案一、选择题(每小题4分,共32分)1.D2.A3.A4.D5.B6.D7.C8.D二、填空题(每小题4分,共16分)9.11 10.()2,3-12.1x > 三、解答题(共52分)13.(12分)(1)==(2)331=+-7=-14.(6分)()214x -= 13x =,21x =-15.(8分)310a b +=3c =原2210311=⨯-=16.(8分)(1) (2)()5,1++5,517.(8分) (1)在Rt BMN △中,90BNM ∠=︒ 22222215012090BN BM MN =-=-= ∴90BN =米∴25090160AN AB BN =-=-= 在Rt ANN △,90ANM ∠=︒∴222222*********AM AN MN =+=+=. ∴200AM =米∴200150350AM BM +=+=米(2)在AMB △中22222200150250AM BM AB +∞=+== ∴90AMB ∠=︒∴B 到AC 的距离为150BM =米18.(10分)解:(1)∵1BD =,2CD =∴2DF =,BF =∴(3,4F ,60FOB ∠=︒(2)∵折叠∴ODE FDE △≌△∴ODE FDE S S =△△过F 作FQ DE ∥交x 轴于Q设:6FQ l y kx =+,则k =(3,4F -得4y =+-令0y =,则4x =∴43Q ⎛⎫- ⎪ ⎪⎝⎭(3)(11,4P ,(23,4P +,3P -,(4P -B 卷(50分)一、填空题(每小题4分,共20分)19.-4 20.21.12m <≤22.2 23.2 二、解答题。
江苏省苏州市-学年数学阳光指标学业模拟试卷 八年级数学(PDF版含答案答题卡)
·
·
(第 13 题) 14. 如图, 正方形网格中, 每一小格的边长为 1. 网格内有△
(第 14 题) , 则∠ +∠ 的度数是 ▲ .
初二数学 第二页 (共六页)
15. 一次函数 = +2 与 轴、 轴围成的三角形面积为 ▲ . (用含有 的代数式表示) 16. 在平面直角坐标系 中, (4, 2), 绕原点 旋转 90° 得到 , 则 的坐标是 ▲ .
1. 下面的四个化学实验器材中, 是轴对称图形的是
量筒
锥形瓶
酒精灯
2. √3 729 的算术平方根等于
9
±9
3
3. 在平面直角坐标系中,点 (-2, 2+1)所在的象限是
为常数, 且 (3 +3, +1), 则该点于正比例函数
导管 ±3
第四象限
=3
= -3
=1
=3 -1
15. 2
16.(-2, 4)或(2, -4) 17. 1 <3
18.7√3
三、解答题(本大题共 10 小题, 共 64 分. 请在答.题.卡.指.定.区.域.内.作.答.. 解答时应写出文字说明、证明或演 算步骤. )
19. (本题满分 5 分) 解: 原式=1+√3-√3-1
=0
20. (本题满分 5 分) (1)9 192 631 770 (2)9 192 631 770≈9 190 000 000=9.19×109
在 △ 中,∠ =90°,所以 =√2×42=4√2.
26. (本题满分 7 分) (1)因为∠ =∠ =2∠ ,
所以 5∠ =180°, 所以∠ =36°, ∠ =∠ =72°, 所以∠ABC=36°, ∠BDC=72°. 以为∠ =∠ =72°,所以 = . (2)36°,72°,72° 或 36°,36°,102°.
八年级数学试卷答题卡
一、选择题(每题3分,共30分)1. 下列各数中,属于有理数的是()A. √2B. πC. 0.1010010001…D. 2/32. 若a、b是实数,且a + b = 0,则a和b的关系是()A. a > bB. a < bC. a = bD. 无法确定3. 下列函数中,是反比例函数的是()A. y = x^2B. y = 2x + 3C. y = 1/xD. y = 3x^2 - 44. 下列各数中,绝对值最小的是()A. -3B. -2C. 0D. 15. 若一个三角形的三边长分别为3、4、5,则这个三角形是()A. 等腰三角形B. 直角三角形C. 等边三角形D. 不规则三角形6. 已知一元二次方程x^2 - 4x + 3 = 0,下列选项中正确的是()A. 方程有两个实数根B. 方程有两个虚数根C. 方程无实数根D. 无法确定7. 下列各图中,是轴对称图形的是()A. ①B. ②C. ③D. ④8. 若一个正方形的对角线长为10cm,则该正方形的面积是()A. 50cm^2B. 100cm^2C. 50√2cm^2D. 100√2cm^29. 下列不等式中,正确的是()A. 3x > 2xB. 3x < 2xC. 3x ≤ 2xD. 无法确定10. 若函数y = kx + b的图象经过点(2,3),则k和b的关系是()A. k > 0,b > 0B. k < 0,b < 0C. k > 0,b < 0D. k < 0,b > 0二、填空题(每题3分,共30分)11. 有理数a、b满足a - b = 3,则a + b = ________。
12. 已知函数y = 2x - 1,当x = 3时,y的值为 ________。
13. 下列数中,绝对值最大的是 ________。
14. 在直角坐标系中,点A(2,3)关于y轴的对称点为 ________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
!
9
9
9
9
9
9
9 9 9 源自D ! 20
A
B
C
D
!
21
A
B
C
D
(2)实验与探究:坐标: 、 ;
5. ; 6. ;
7. ; 8.
9. 10. 11. 12.
!
2011—2012学年度第一学期期末学情分析
八年级数学试卷答题纸
二、选择题(填涂在左侧表中相应位置)
三、解答题
22.计算、求值(每小题4分,共8分)
(2)
准
考
证
号
!
学 校
(1)①
②
!
1
2
某通讯公司推出①、②两种通讯收费方式供用户选择,其中一种有月租费,另一种无月租费,且两种收费方式的通讯时间x(分钟)与收费y(元)之间的函数关系如图所示.
(1)有月租费的收费方式是 (填①或②),
月租费是 元;
一、填空题(每题2分,共24分)
1. ; 2. ;
3. ; 4. ;
1
常州慧光科技有限公司设计
!
!
!
!
4
4
4
4
4
4
4
4
4
!
5
5
5
5
5
5
5
5
5
!
姓 名
工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答, 超出答
题区域书写的答题无效, 在草稿纸、试题纸上答题无
效。
4.保持卡面清洁,不要折叠,不要弄破。
!
17
A
B
C
D
!
18
A
B
C
D
!
19
A
B
C
!
2
2
2
2
2
2
2
2
2
!
班 级
3
3
3
3
3
3
3
3
3
0
0
0
0
0
0
0
0
0
(1)已知:(x+5)2=16,求x;
(2)计算:.
!
1
1
1
1
1
1
1
1
1
23.(本题8分)操作与探究
24.(本题7分)
25.(本题6分)
(1)
6
6
6
6
6
6
6
6
6
!
7
7
7
7
7
7
7
7
7
!
8
8
8
8
8
8
8
8
8
说明你的理由。
!
13
A
B
C
D
!
14
A
B
C
D
26.(本题6分)
27.(本题7分)
28.(本题8分)
29.(本题8分)
二、选择题(每题2分,共18分)
如图,在△ABC中,D是BC上的点,O是AD的中点,过A作BC的平行线交BO的延长线于点E,则四边形ABDE是什么四边形?
(2)分别求出①、②两种收费方式中y与自变量x之间的函数关系式;
(3)请你根据用户通讯时间的多少,给出经济实惠的选择建议.
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效
已知:如图,平面直角坐标系 xOy中,直线与直线交于点A(-2,4)。
(1)求直线的解析式;
(2)若直线还与另一直线交于点B,且点B的横坐标为-4,求直线AB的解析式和△ABO的面积。
!
15
A
B
C
D
!
16
A
B
C
D
归纳与发现:的坐标为 .
缺考考生,由监考员用2B铅笔代为填涂准考证号并填涂下面的缺考违纪标记。缺考涂1,违纪涂2。考生禁涂。
注意事项
1.答题前,考生先将自己的学校、班级、姓名、准考证
号填写清楚,并填涂相应的考号信息点。
2.选择题必须使用2B铅笔填涂,解答题必须使用黑色
的签字笔书写,不得用铅笔或圆珠笔做解答题, 字体