铁碳合金的平衡结晶过程

合集下载

铁碳合金相图及平衡组织分析

铁碳合金相图及平衡组织分析

实验三铁碳合金相图及平衡组织分析一、实验目的1.认识和熟悉铁碳合金平衡状态下的显微组织特征;2.了解含碳量对铁碳合金平衡组织的影响,建立Fe-Fe3C状态图与平衡组织的关系3.了解平衡组织的转变规律并能应用杠杆定律4.掌握金相显微镜用铁碳合金样品的制备二、实验原理通常将碳含量小于2.11%的铁碳合金称为钢,碳含量大于2.11%的Fe-C合金称为铁,根据铁碳二元相图(图1),它们在室温下组成相都是铁素体和渗碳体,但是它们在纤维组织上却有很大的差异。

按组织分区的Fe-Fe3C相图(一)铁碳合金中的几种基本相和组织(1)铁素体(F)。

它是碳在α-Fe中的固溶体,为体心立方晶格。

具有磁性及良好的塑性,硬度较低。

用3%-4%硝酸酒精溶液浸蚀后,在显微镜下呈现明亮的多边形晶粒。

亚共析钢中,铁素体呈现块状分布;当碳含量接近共析成分时,铁素体则呈现断续的网状分布于珠光体(共析体)周围。

(2)渗碳体(Fe3C,又称Cementite),它是铁与碳形成的一种化合物,其碳含量为6.69%。

用3%-4%的硝酸酒精溶液寝蚀后,呈现亮白色;若用热苦味酸钠溶液寝蚀,则渗碳体呈现黑色而铁素体仍为白色,由此可以区别铁素体与渗碳体。

此外,按铁碳合金成分和形成条件不同,渗碳体呈现不同的的形态:一次渗碳体,从液相中析出,呈现条状;二次渗碳体(次生相),从奥氏体中析出,呈现网络状,沿奥氏体晶界分布,经球化退火,渗碳体呈现颗粒状;三次渗碳体,从铁素体中析出,常呈现颗粒状;共晶渗碳体与奥氏体同时生长,称为莱氏体;共析渗碳体与铁素体同时生长,称为珠光体。

(3)珠光体(P),它是铁素体和渗碳体的机械混合物,是共析转变的产物。

由杠杆定律可以求得铁素体和渗碳体的含量比为8:1。

因此,铁素体后,渗碳体薄。

硝酸酒精寝蚀后可观察到两种不同的组织形态。

1)片状珠光体,它是由铁素体与渗碳体交替排列形成的层状组织,腈硝酸酒精溶液寝蚀后,在不同放大倍数下,可以观察到具有不同特征的层片状组织。

铁碳相图中平衡相和平衡组织的计算

铁碳相图中平衡相和平衡组织的计算

铁碳相图中平衡相和平衡组织的计算作者:朱守琴来源:《世界家苑》2018年第10期摘要:铁碳相图是铁碳合金的平衡相图,通过铁碳相图根据杠杆定律可以计算铁碳合金中的各平衡相的含量和各平衡组织的含量,可以大致的分析出铁碳合金不同性能原因。

其中铁碳合金的硬度主要和相的组成有关,相的计算可以公式化。

而强度、塑韧性等性能主要与组织有关,组织的计算需分析铁碳合金的平衡结晶过程。

关键词:平衡相图;杠杆定律;平衡相;平衡组织Calculation of equilibrium phase and equilibrium structure in iron carbon phase diagramZHU Shou-qinMechanical and Electronic Engineering College Chaohu University,chaohu 238000,China) Abstract:The iron-carbon phase diagram is the equilibrium phase diagram of the iron-carbon alloy.According to lever law,the content of each equilibrium phase and the content of eachequilibrium structure in the iron-carbon alloy can be calculated by the iron-carbon phase diagram.Thecause of different properties of iron-carbon alloy can be roughly analyzed.The hardness ofiron-carbon alloy is mainly related to the composition of phase,and the calculation of phase can be formulated.The properties of strength,plasticity and toughness are mainly related to the microstructure.The equilibrium crystallization process of Fe-C alloy should be analyzed in order to calculate the microstructure.Key words:equilibrium phase diagram,lever law,equilibrium phase,equilibrium organization1.引言鐵碳合金相图是研究铁碳合金的重要工具,铁碳合金是应用广泛的工程材料,因此学好铁碳相图是从事各类加工和热处理的基础。

铁碳合金相图及平衡组织分析

铁碳合金相图及平衡组织分析

实验三铁碳合金相图及平衡组织分析一、实验目的1.认识和熟悉铁碳合金平衡状态下的显微组织特征;2.了解含碳量对铁碳合金平衡组织的影响,建立Fe-Fe3C状态图与平衡组织的关系3.了解平衡组织的转变规律并能应用杠杆定律4.掌握金相显微镜用铁碳合金样品的制备二、实验原理通常将碳含量小于2.11%的铁碳合金称为钢,碳含量大于2.11%的Fe-C合金称为铁,根据铁碳二元相图(图1),它们在室温下组成相都是铁素体和渗碳体,但是它们在纤维组织上却有很大的差异。

按组织分区的Fe-Fe3C相图(一)铁碳合金中的几种基本相和组织(1)铁素体(F)。

它是碳在α-Fe中的固溶体,为体心立方晶格。

具有磁性及良好的塑性,硬度较低。

用3%-4%硝酸酒精溶液浸蚀后,在显微镜下呈现明亮的多边形晶粒。

亚共析钢中,铁素体呈现块状分布;当碳含量接近共析成分时,铁素体则呈现断续的网状分布于珠光体(共析体)周围。

(2)渗碳体(Fe3C,又称Cementite),它是铁与碳形成的一种化合物,其碳含量为6.69%。

用3%-4%的硝酸酒精溶液寝蚀后,呈现亮白色;若用热苦味酸钠溶液寝蚀,则渗碳体呈现黑色而铁素体仍为白色,由此可以区别铁素体与渗碳体。

此外,按铁碳合金成分和形成条件不同,渗碳体呈现不同的的形态:一次渗碳体,从液相中析出,呈现条状;二次渗碳体(次生相),从奥氏体中析出,呈现网络状,沿奥氏体晶界分布,经球化退火,渗碳体呈现颗粒状;三次渗碳体,从铁素体中析出,常呈现颗粒状;共晶渗碳体与奥氏体同时生长,称为莱氏体;共析渗碳体与铁素体同时生长,称为珠光体。

(3)珠光体(P),它是铁素体和渗碳体的机械混合物,是共析转变的产物。

由杠杆定律可以求得铁素体和渗碳体的含量比为8:1。

因此,铁素体后,渗碳体薄。

硝酸酒精寝蚀后可观察到两种不同的组织形态。

1)片状珠光体,它是由铁素体与渗碳体交替排列形成的层状组织,腈硝酸酒精溶液寝蚀后,在不同放大倍数下,可以观察到具有不同特征的层片状组织。

1.3 铁碳合金和铁碳相图

1.3 铁碳合金和铁碳相图
硬度高(800HBW)强度低(b35MPa), 脆, δ几乎为零 Fe3C是一个亚稳相,在一 定条件下可发生分解: Fe3C→3Fe+C(石墨), 该反

应对铸铁有重要意义。

钢中的渗碳体
由于碳在-Fe中的溶解度
很小,因而常温下碳在铁
碳合金中主要以Fe3C或石
墨的形式存在。
铸铁中的石墨
二、铁碳合金相图基本分析
模锻
焊 缝 组 织
4、铁碳合金相图的应用

① 选材的参考:
建筑结构及各种型钢需要塑性韧性好,选低碳钢;各种机械零件需要强 度、塑韧性都较好的材料,选中碳钢;各种工具需要硬度、耐磨性好的, 选高碳钢。 白口铸铁硬度高,太脆,耐磨性好,铸造性能优良,可做 要求耐磨、不受冲击、形状复杂的铸件如冷轧辊、犁等。
同素异构转变:金属在温度(压力)改变时 发生晶体结构变化的现象。


⒉相
⑴ 铁素体:

碳在-Fe中的固溶体称
铁素体, 用F 或 表示。
铁素体

碳在δ-Fe中的固溶体称δ -铁素体,用δ 表示。 都是体心立方间隙固溶体。铁素体的溶碳能力很低, 在727℃时最大为0.0218%,室温下仅为0.0008%。 铁素体的组织为多边形晶粒,性能与纯铁相似。
返回


⇄ ⇄ ⇄
2、相区分析
5单相区 7双相区
3三相区
返回
3、特性线分析
液相线 、固相线 、 GS(A3线)、 GP、 ES(Acm)、 PQ线
相图中的三条水平线
包晶反应:L+δ=γ
共晶反应:L=Le( FeC3+ γ ) 共析反应: γ=P (FeC3+ α)

铁碳合金的平衡 结晶过程及组织

铁碳合金的平衡  结晶过程及组织

47.8%
( WγE = 1-47.8% = 52.2% )
第四节 含碳量对铁碳合 金平衡组织和性能的影响
一、含碳量对平衡组织的影响
随C含量 ,铁碳合金组织变化:
α+Fe3C α+P P P+Fe3CⅡ+Ld’ Ld’
P+Fe3CⅡ Ld’+Fe3CⅠ
C% ,Fe3C
Fe3C的形态及分布:随C
L'd
共晶白口铸铁的室温组织
亚共晶白口铁 2.11%<C%<4.3%
t1 t2
t3
L
L 初
L 共晶+Fe3C即Ld
共晶 转变
初Fe3CⅡ 共晶Fe3CⅡ
共+Fe3C即P 初+Fe3C即P
室温组织 :
共析 转变
P +Fe3CⅡ+L'd(P+Fe3C+ Fe3CⅡ)
组织:P+ Fe3CⅡ +L’d (L’d →P+Fe3CⅡ +Fe3C )
共 和析 平钢 衡的 结冷 晶却 过曲 程线
组织:P 组织特征:Fe3C片状分布于F基体上,呈 贝壳状 性能:良好的综合力学性能(具有强度较高 和一定的塑、韧性)
共析钢的室温平衡组织 1000 ×
亚 和共 平析 衡钢 结的 晶冷 过却 程曲
线
亚共析钢 (0.0218% < Wc <0.77%)
L’d
Fe3CІ
过共晶白口铸铁室温组织
三、杠杆定律的应用
1、0.4%C钢
K
组织组成物:α+P
S 0.4 0.77 0.4

PS

铁碳合金的分类及其平衡结晶综述

铁碳合金的分类及其平衡结晶综述
Ld 室温组织: ,无相对量问题。
室温相组成:α+Fe3C,两相相对量为:
Fe C
3
2K 6.69% 4.3% 100% 100%; PK 6.69% 0.0218 % 1
渗碳体包括三部分:共晶渗碳体、 二次渗碳体和共析渗碳体
上一内容
下一内容
PK
100 % 88 .7%, Fe3C 1 11 .3%
在显微图4.6(b)中黑色线条可视为渗碳体,白色部分为 铁素体。
上一内容
下一内容
回主目录
返回
二.典型铁碳合金的结晶过程
2. 亚共析钢(以含碳量0.55%的亚共析钢为例) 过成分点作垂线,和相图上的液相线、固相线、GS线、共析线分别交1、 2、3、5点。 平衡结晶过程组织变化的表达式:
回主目录
返回
二.典型铁碳合金的结晶过程
5.亚共晶白口铸铁 以含碳量为3.0%的合金为例。过成分点作垂线,和液相线、共晶线、 共析线交于1、2、3点。 平衡结晶过程组织变化的表达式:
先 先 先 L3.0 L 先 E LC 1148 E Ld ( 先 Fe3C) Ld ( S Fe3C) Ld
L0.55 L 0.55


先 P
S
727
先 P
P

P
图中,白色为先 共析铁素体,黑 色为珠光体
上一内容
下一内容
回主目录
返回
二.典型铁碳合金的结晶过程
室温组织组成物:α先+P。两组织相对量用杠杆定律 (连接线PS?)

727 (P Fe3C) L/d

铁碳合金相图与共析钢结晶过程

铁碳合金相图与共析钢结晶过程

珠光体
室温下,珠光体中两
相的相对重量百分比

1
2
是多少?
4L Q QL
3
6 .6 9 0 .7 7 8 8 .5 % 6 .6 9 0 .0 0 0 8
Q4
9
Q Fe3C 1 0 0 % 8 8 .5 % 1 1 .5 %
共析钢的结晶过程
总结:钢的结晶过程
1、共析钢的结晶过程 L → L+A → A → P 相组成物:F,Fe3C 2、亚共析钢的结晶过程 L→L+A → A → A+F → P+F 相组成物:F,Fe3C 3、过共析钢的结晶过程 L→L+A→A→A+Fe3CII→P+Fe3CII 相组成物:F,Fe3C
相图中有很广阔的奥氏体 区,面心立方晶格的高温 奥氏体有优良的塑性和较 好的强度,塑性变形抗力 很低,是热锻、热轧极好 的组织,轧、锻温度一般 选在图中影线部分。
(4)在焊接方面的应用
含碳量越低的钢焊接性越 好,含碳量增加时,随着 焊件壁厚的增加,需要预 热和焊后回火处理。
直线关系增大, 由全部为F的硬度约80 HB增大到全部为Fe3C时的约800 HB。 强度是一个对组织形态很敏感的性能。
高温组织为单相A ⒈ 含碳量对室温平衡组织的影响
11%C)高温组织为单相A ⑵ 两相区: L+A、L+Fe3C、A+Fe3C、A+F、F+Fe3C
即ECF(L+A+ Fe3C)、PSK(A+F+ Fe3C)两条水平线
L+ Fe3C
共析转变的产物是 F与
Fe3C的机械混合物,称 作珠光体,用P表示。
珠光体

典型铁碳合金结晶过程分析 (2)

典型铁碳合金结晶过程分析 (2)

第二章碳钢C相图第3节Fe-Fe3第5讲典型铁碳合金结晶过程分析2典型铁碳合金的结晶过程分析-4共晶白口铸铁w c =4.3%铁碳合金的结晶过程CD EFK124.30%共晶白口铸铁w c =4.3%铁碳合金的结晶过程CD EFK124.30%1交点:液相开始发生共晶转变1~2之间:共晶奥氏体中会出现二次渗碳体2交点:γ发生共析转变→P (珠光体)共晶渗碳体不发生变化2 以下:组织低温莱氏体(L′d )L 4.31148∘C(γ2.11+Fe 3C)共晶转变生成莱氏体(Ld )奥氏体为共晶奥氏体,渗碳体为共晶渗碳体w c=4.3%的铁碳合金结晶过程示意图低温莱氏体金相照片(黑斑区为珠光体,白色为渗碳体)室温组织:(L′d )室温相:α+ Fe 3Cw c =4.3%的铁碳合金的结晶过程通过杠杆定律计算室温下各组织含量通过杠杆定律计算室温下各相含量自学内容w α=6.69−4.36.69−0.0008×100%≈?w Fe 3C =1−w α≈?%100='d L w典型铁碳合金的结晶过程分析-5亚共晶白口铸铁w c =3%铁碳合金的结晶过程CD EFK1233.0%亚共晶白口铸铁w c =3%铁碳合金的结晶过程CD EFK1233.0%3以下2交点:存在两相L +γ2~3:奥氏体中会出现二次渗碳体3交点:γ发生共析转变→P (珠光体)二次渗碳体+ Ld 不发生变化3 以下:组织低温莱氏体(L′d + Fe 3C II + P )L 4.31148∘C(γ2.11+Fe 3C)1交点:液相开始发生匀晶转变L →γ其中的室温组织:(L'd + P + Fe 3C Ⅱ)室温相:α+ Fe 3Cw c =3.0%的铁碳合金的结晶过程通过杠杆定律计算室温下各组织含量通过杠杆定律计算室温下各相含量自学内容w Fe 3C =1−w α≈?w α= 6.69−3.06.69−0.0008×100%≈?w L ′d=3.0−2.114.3−2.11×100%≈?w P = 4.3−3.04.3−2.11×6.69−2.116.69−0.77×100%≈?w Fe 3C II =1−w L ′d −w P ≈?结晶过程示意图亚共晶白口铸铁的金相照片亚共晶白口铸铁w c =3%铁碳合金3以下典型铁碳合金的结晶过程分析-6过共晶白口铸铁w c =5.3%铁碳合金的结晶过程CDEF K123典型铁碳合金的结晶过程分析-6过共晶白口铸铁w c =5.3%铁碳合金的结晶过程CDEF K1231~2:一次渗碳体形成的温度高,故其形貌为粗大的片状结构2交点:共晶转变3交点:γ发生共析转变3 以下:组织低温莱氏体(L′d + Fe 3C I )1交点:液相开始发生匀晶转变L →Fe 3C I过共晶白口铸铁w c=5.3%铁碳合金L'd+Fe3CⅠ过共晶白口铸铁的室温组织典型铁碳合金的结晶过程分析-7工业纯铁w c <0.01%铁碳合金的结晶过程A GH J NP Q1234567工业纯铁w c <0.01%铁碳合金的结晶过程A GH J NP Q12345671~2:L 减少δ增加1以上:液相1交点:匀晶转变L →δ2点:单相δ (0.01%)2~3:单相δ (0.01%)3点开始:δ →γ3~4:δ减少γ增加4~5:单相γ(0.01%)5点开始:γ→α5~6:γ减少α增加6点,6~7:单相α (0.01%)7点:α析出Fe 3C ⅡI工业纯铁w c<0.01%铁碳合金室温下的相:F+Fe3C 室温组织: F + Fe3CⅢ工业纯铁室温组织金相照片。

铁碳相图结晶过程

铁碳相图结晶过程

三条水平线
§2 典型铁碳合金结晶过程分析

一、铁碳合金按其含碳量及室温组织分类 ①纯铁 :wc <0.0218%

②钢

亚共析钢: wc= 0.0218~0.77%
共析钢: wc= 0.77% 过共析钢: wc= 0.77~2.11% 亚共晶白口铁: wc= 2.11~4.3% 共晶白口铁: wc= 4.3%
2.为制定热加工工艺提供依据
对铸造:确定铸造温度;根据相图上液相线和固相线间距离估计
铸造性能的好坏.
对于锻造:确定锻造温度。 对焊接:根据相图来分析碳钢焊缝组织,并用适当热处理方法来
减轻或消除组织不均匀性。
对热处理:相图更为重要,这在下面一章中详细介绍。
§3 碳 钢


一、钢中常存杂质元素对钢的性能的影响


4.含碳1.2%的过共析钢(合金④)
5.含碳4.3%的共晶白口铁(合金⑤) 6.含碳3.0%的亚共晶白口铁(合金⑥)

7.含碳5.0%的过共晶白口铁(合金⑦)
1.含碳0.01%的工业纯铁
图4-3 工业纯铁结晶过程
2. 0.77%共析钢结晶过程
图4-5 共析钢结晶过程示意图
3.亚共析钢结晶过程


二、碳钢的分类、编号和用途


1.碳钢的分类
(1)按含碳量分类 低碳钢:wc=0.01~0.25% 中碳钢:wc= 0.25~0.6% 高碳钢:wc= 0.6~1.3% (2)按质量分类 普通碳素钢:ws≤0.055% wp≤0.045% 优质碳素钢:ws、wp ≤0.035~0.040% 高级优质碳素钢:ws ≤0.02~0.03%;wp ≤ 0.03~0.035% (3)按用途分类 碳素结构钢:用于制造各种工程构件,如桥梁、船舶、建筑构件 等,及机器零件,如齿轮、轴、连杆、螺钉、螺母等。 碳素工具钢:用于制造各种刀具、量具、模具等,一般为高碳钢。

第五章__铁碳相图习题参考答案

第五章__铁碳相图习题参考答案

第五章铁碳相图习题参考答案一、解释下列名词答:1、铁素体:碳溶入α-Fe中形成的间隙固溶体。

奥氏体:碳溶入γ-Fe中形成的间隙固溶体。

渗碳体:铁与碳形成的具有复杂晶体结构的金属化合物。

珠光体:铁素体和渗碳体组成的机械混合物。

莱氏体:由奥氏体和渗碳体组成的机械混合物。

2、Fe3CⅠ:由液相中直接析出来的渗碳体称为一次渗碳体。

Fe3CⅡ:从A中析出的Fe3C称为二次渗碳体。

Fe3CⅢ:从铁素体中析出的Fe3C称为三次渗碳体。

共析Fe3C:经共析反应生成的渗碳体即珠光体中的渗碳体称为共析渗碳体。

共晶Fe3C:经共晶反应生成的渗碳体即莱氏体中的渗碳体称为共晶渗碳体。

3、钢:含碳量大于0.00218%,小于2.11%的铁碳合金。

白口铸铁:含碳量大于2.11%的铁碳合金。

二、填空题1、常温平衡状态下,铁碳合金基本相有铁素体(F)、渗碳体(Fe3C)等两个。

2、Fe-Fe3C相图有4个单相区,各相区的相分别是液相(L)、δ相、铁素体(F)、奥氏体(A)。

3、Fe-Fe3C 相图有三条水平线,即HJB、ECF和PSK线,它们代表的反应分别是包晶反应、共晶反应和共析反应。

4、工业纯铁的含碳量为≤0.0218%,室温平衡组织为F+ Fe3CⅢ。

5、共晶白口铁的含碳量为4.3%,室温平衡组织P占40.37%,Fe3C共晶占47.82%,Fe3CⅡ占11.81%。

6、一钢试样,在室温平衡组织中,珠光体占60%,铁素体占40%,该钢的含碳量为0.4707。

7、钢的组织特点是高温组织为奥氏体(A),具有良好的塑、韧性,因而适于热加工成形。

8、白口铸铁的特点是液态结晶都有共晶转变,室温平衡组织中都有莱氏体,因而适于通过铸造成形。

三、简答题1、为什么γ-Fe 和α- Fe 的比容不同?一块质量一定的铁发生(γ-Fe →α-Fe )转变时,其体积如何变化?答:因为γ-Fe和α- Fe原子排列的紧密程度不同,γ-Fe的致密度为74%,α- Fe的致密度为68%,因此一块质量一定的铁发生(γ-Fe →α-Fe )转变时体积将发生膨胀。

第四章 铁碳合金的平衡组织

第四章 铁碳合金的平衡组织

高温莱氏体
低温莱氏体
共晶白口铁金相
6.亚共晶白口铸铁,2.11%<C%<4.3% 相组成物:F,Fe3C 组织组成物:P,Le’,Fe3CII
亚共晶白口铁金相
7.过共晶白口铸铁 相组成物:F, Fe3C 组织组成物:Le’,Fe3C
过共晶白口铁金相
二、Fe-C合金的成分-组织-性能关系
[思考题 思考题] 思考题
• 1. 什么叫冷脆、热脆?引起这些现象的原 因是什么?如何防止? 2. 现有四块形状尺寸完全相同的平衡状态 的铁碳合金,其含碳量分别为0.2%、 0.40%、1.2%、3.5%, • 根据学过的理论,有哪些方法可以区分它 们?
“铁碳合金” 练习题 参考答案 铁碳合金” 参考答案1 铁碳合金
4.2 Fe-C合金平衡结晶过程
• • • • • • (一)Fe-C合金平衡结晶过程分析 1.工业纯铁 2.共析钢 3.亚共析钢 4.过共析钢 5.共晶白口铁 6.亚共晶白口铸铁 7.过共晶白口铸铁 (二)Fe-C合金的成分-组织-性能关系
1.工业纯铁(C%≤0.0218%)
• L--->L+A--->A-->A+F--->F+Fe3CIII • 相组成物:F+Fe3C C%>0.0008% • F C%<0.0008% • 组织组成物:F和 Fe3CIII
45钢金相
4.过共析钢
• L--->L+A--->A-->A+Fe3CII-->A+P+Fe3CII-->P+Fe3CII • 相组成物:F, Fe3C • 组织组成物:P, Fe3CII
T12钢金相

典型铁碳合金的结晶过程

典型铁碳合金的结晶过程

一、共析钢的结晶过程图中Ⅰ表示共析钢(Wc=0.77%),合金在1点以上为液体(L),当缓冷至稍低于1点温度时,开始从液体中结晶出奥氏体(A),A的数量随温度的下降而增多。

温度降到2点时,液体全部结晶为奥氏体。

2~S点之间,合金是单一奥氏体相。

继续缓冷至S点时,奥氏体发生共析转变,转变成珠光体(P)。

727℃以下,P基本上不发生变化。

故室温下共析钢的组织为P。

共析钢的结晶过程如下图。

二、亚共析钢的结晶过程图3-6中合金Ⅱ表示亚共析钢。

合金在1点以上为液体。

缓冷至稍低于1点,开始从液体中结晶出奥氏体,冷却到2点结晶终了。

在2~3点区间,合金为单一的奥氏体组织,当冷却到与GS线相交的3点时,开始从奥氏体中析出时,就会将多余的碳原子转移到奥氏体中,引起未转变的奥氏体的含碳量增加。

沿着GS线变化。

当温度降至4点(727℃)时,剩余奥氏体含碳量增加到了Wc=0.77%,具备了共析转变的条件,转变为珠光体。

原铁素体不变保留了在基体中。

4点以下不再发生组织变化。

故亚共析钢的室温组织为铁素体+珠光体。

亚共析钢的结晶过程如图3-8所示。

三、过共析钢的结晶过程图3-6中合金Ⅲ表示过共析钢。

合金在1点以上为液体,当缓冷至稍低于1点后,开始从液体中结晶出奥氏体,直至2点结晶终了。

在2~3点之间是含碳时为合金Ⅲ奥氏组织。

缓冷至3点时,奥氏体中开始沿晶界析出渗碳体(即二次渗碳体)。

随着温度不断降低,由奥氏体中析出的二次渗碳愈来愈多,而奥氏体中的含碳量不断减少,并沿着ES线变化。

3~4点之间的组织为奥氏体+二次渗碳体。

降至4点(727℃)时,奥氏体的成分达到了共析成分,于是这部分奥氏体发生共析反应,转变为珠光体。

在4点以下,合金的组织不再发生变化。

故室温组织为珠光体+二次渗碳体。

过共析钢结晶过程如图3-9。

图3-6中合金Ⅲ表示过共析钢。

合金在1点以上为液体,当缓冷至稍低于1点后,开始从液体中结晶出奥氏体,直至2点结晶终了。

在2~3点之间是含碳时为合金Ⅲ奥氏组织。

§3-5铁碳合金平衡图(一)了解铁碳合金的基本知识,掌握铁碳合金

§3-5铁碳合金平衡图(一)了解铁碳合金的基本知识,掌握铁碳合金

§3-5 铁碳合金平衡图(一)了解铁碳合金的基本知识,掌握铁碳合金平衡图,掌铁铁碳合金组织与性能的关系。

铁碳合金的基本知识,铁碳合金平衡图,铁碳合金组织与性能的关系。

铁碳合金平衡图的分析。

理论课讲授多媒体课件十二2/201.复习上节课的内容。

2.讲解铁碳合金的基本相。

3.多媒体演示、挂图讲解铁碳合金平衡图的主要特性点与线。

§3-5 铁碳合金平衡图(一)我们研究的铁碳合金平衡图只是含碳量6.67%以下的部分,实际上是Fe—Fe3C平衡图。

一、铁碳合金的基本相:铁和碳相互作用,碳能溶于铁的两种晶格(γ-Fe和α-Fe)中,形成两种间隙固溶体。

当碳含量超过铁的溶解度时,多余的碳与铁化合成铁碳化合物Fe3C。

故铁碳合金在固态下有三种基本相:1、奥氏体(A)碳溶解在γ-Fe中形成的固溶体。

为面心立方晶格。

(见晶格模型及奥氏体显微组织挂图)γ-Fe晶格虽然原子排列紧密,但空隙较集中,故能溶解较多的碳,在1148℃时最多能溶解2.11%(重量比)的碳,随温度下降溶碳能力降低,至727℃时为0.77%。

奥氏体强度不高,塑性好(压力加工时一般把钢加热到高温奥氏体状态的原因),奥氏体无磁性(奥氏体不锈钢可以用磁铁辨真假)。

2、铁素体(F)碳溶于α-Fe中形成的固溶体。

为体心立方晶格。

体心立方晶格的原子排列虽不如面心立方晶格紧密,但空隙较分散,几乎不能溶解碳,在727℃时溶解度最大,也只能溶解0.02%(重量比)的碳,随温度下降溶碳能力更低,室温时仅能溶解0.0008%,因而可把铁素体看成纯的α-Fe。

铁素体性能近似于纯铁,强度、硬度低,塑性、韧性好。

在768℃以下有磁性。

3、渗碳体(Fe3C)铁与碳形成的化合物Fe3C称渗碳体。

其含碳量为6.67%,熔点为一计算值(1227℃或1600℃有争议)。

渗碳体晶格复杂,硬度高(HV≈860),可刻划玻璃,但塑性很差,非常脆。

故渗碳体不能单独使用,一般在合金中与固溶体形成机械混合物。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三、典型铁碳合金的平衡结晶过程铁碳相图上的合金,按成分可分为三类:⑴ 工业纯铁(<0.0218% C ),其显微组织为铁素体晶粒,工业上很少应用。

⑵ 碳钢(0.0218%~2.11%C ),其特点是高温组织为单相A ,易于变形,碳钢又分为亚共析钢(0.0218%~0.77%C )、共析钢(0.77%C )和过共析钢(0.77%~2.11%C )。

⑶ 白口铸铁(2.11%~6.69%C ),其特点是铸造性能好,但硬而脆,白口铸铁又分为亚共晶白口铸铁(2.11%~4.3%C )、共晶白口铸铁(4.3%C )和过共晶白口铸铁(4.3—6.69%C )下面结合图3-26,分析典型铁碳合金的结晶过程及其组织变化。

图3-26 七种典型合金在铁碳合金相图中的位置㈠ 工业纯铁(图3-26中合金①)的结晶过程合金液体在1~2点之间通过匀晶反应转变为δ铁素体。

继续降温时,在2~3点之间,不发生组织转变。

温度降低到3点以后,开始从δ铁素体中析出奥氏体,在3~4点之间,随温度下降,奥氏体的数量不断增多,到达4点以后,δ铁素体全部转变为奥氏体。

在4~5点之间,不发生组织转变。

冷却到5点时,开始从奥氏体中析出铁素体,温度降到6点,奥氏体全部转变为铁素体。

在6-7点之间冷却,不发生组织转变。

温度降到7点,开始沿铁素体晶界析出三次渗碳体Fe 3C III 。

7点以下,随温度下降,Fe 3C III 量不断增加,室温下Fe 3C III 的最大量为:%31.0%1000008.069.60008.00218.03=⨯--=ⅢC Fe Q 。

图3-27为工业纯铁的冷却曲线及组织转变示意图。

工业纯铁的室温组织为α+Fe 3C III ,如图3-28所示,图中个别部位的双晶界内是Fe 3C III 。

图3-27 工业纯铁的冷却曲线及组织转变示意图 图3-28 工业纯铁的显微组织 400× ㈡ 共析钢(图3-26中合金②)的结晶过程共析钢的含碳量为0.77%,超过了包晶线上最大的含碳量0.53%,因此冷却时不发生包晶转变,其结晶过程及组织转变示于图3 - 29。

合金液体在1 ~ 2 点间通过匀晶反应转变为奥氏体。

在2 ~ 3点之间,不发生组织转变。

到达3点以后,发生共析转变:γ0。

77 → α0。

0218 +Fe 3C ,由奥氏体相同时析出铁素体和渗碳体。

反应结束后,奥氏体全部转变为珠光体。

继续冷却会从珠光体的铁素体中析出少量的三次渗碳体,但是它们往往依附在共析渗碳体上,难于分辨。

共析钢的室温组织为100%的珠光体,如图3-30所示。

由图3-30可以看出,珠光体是铁素体与渗碳体片层相间的组织,呈指纹状,其中白色的基底为铁素体,黑色的层片为渗碳体。

室温下珠光体中两相的相对重量百分比为:,%5.88%1000008.069.677.069.6=⨯--=αQ %5.11%5.88%1003=-=C Fe Q 。

图3-29 共析钢的冷却曲线及组织转变示意图 图3-30 珠光体组织 400× ㈢ 亚共析钢(图3-27中合金③)的结晶过程含碳量在0.09%~0.53%之间的亚共析钢结晶时将发生包晶反应。

现以含0.45%C的钢为例分析亚共析钢的结晶过程,其冷却曲线及组织转变示于图3-31。

该合金从液态缓慢冷却到1点后,发生匀晶反应,开始析出δ铁素体。

到达2点温度时,匀晶反应停止,开始发生包晶转变:L0.53 + δ0.09→γ0.17。

包晶转变结束后,除了新形成的奥氏体外,液相还有剩余。

温度继续下降,在2-3点之间,剩余的液相通过匀晶反应全部转变为奥氏体。

在3-4点之间,不发生组织变化。

冷却到4点,开始从奥氏体中析出铁素体,并且随温度的降低,铁素体数量增多。

温度降到5点,奥氏体的成分沿GS线变化到S点,此时,奥氏体向铁素体的转变结束,剩余的奥氏体发生共析反应:γ0.77→α0.0218+ Fe3C,转变为珠光体。

温度继续下降,从铁素体中析出三次渗碳体,但是由于其数量很少,因此可忽略不计。

亚共析钢的室温组织为珠光体+铁素体,如图3-32所示,图中的白色组织为先共析铁素体,黑色组织为珠光体。

图3-31 亚共析钢的冷却曲线及组织转变示意图(a) 0.20%C (a) 0.45%C图3-32 亚共析钢的显微组织 400×室温下,含0.45%C亚共析钢中先共析铁素体和珠光体两个组织组成物的相对重量百分比为:%6.41%4.58%100%4.58%1000008.077.00008.045.0=-==⨯--=αQQ P,。

而铁素体和渗碳体两相的相对重量百分比为:%3.93%7.6%100%7.6%1000008.069.60008.045.03=-==⨯--=αQ Q C Fe ,。

在0.0218%~0.77%C 范围内珠光体的相对重量随含碳量的增加而增加。

由于室温下铁素体中含碳量极低,珠光体与铁素体密度相近,所以在忽略铁素体中含碳量的情况下,可以利用平衡组织中珠光体所占的面积百分比,近似地估算亚共析钢的含碳量:%77.0%%⨯=面积P C 。

式中,P Q P =面积,为珠光体的面积百分比。

㈣ 过共析钢(图3-26中合金④)的结晶过程过共析钢的结晶过程及组织转变示于图3-33。

合金液体在1~2点间发生匀晶转变,全部转变为奥氏体。

冷却到3点后,开始沿奥氏体晶界析出二次渗碳体,并在晶界上呈网状分布。

在3~4点之间,二次渗碳体量不断增多。

温度降到4点,二次渗碳体析出停止,奥氏体成分沿ES 线变化到S 点,剩余的奥氏体发生共析反应:γ0.77 → α0.0218 + Fe 3C ,转变为珠光体。

继续冷却,二次渗碳体不再发生变化,珠光体的变化同共析钢。

过共析钢的室温组织为珠光体 +网状二次渗碳体,如图3–34所示,图中的白色网状的是二次渗碳体,黑色为珠光体。

室温下,含1.2%C 过共析钢中二次渗碳体和珠光体两个组织组成物的相对重量百分比为:%74.92%26.7%100%26.7%10077.069.677.02.13=-==⨯--=P C Fe Q Q ,。

过共析钢中Fe 3C Ⅱ的量随含碳量增加而增加,当含碳量达到2.11%时,Fe 3C Ⅱ量最大:%6.22%10077.069.677.011.23=⨯--=ⅡC Fe Q 。

图3-33 过共析钢的冷却曲线及组织转变示意图(a) 硝酸酒精浸蚀 (b) 苦味酸钠浸蚀图3-34 过共析钢的显微组织 400×㈤ 共晶白口铸铁(图3-26中合金⑤)的结晶过程共晶白口铸铁的含碳量为4.3%,其结晶过程如图3-35所示。

该合金液态冷却到1点即1148︒C 时,发生共晶反应:L 4。

3 → γ2。

11 + Fe 3C ,全部转变为莱氏体(Le ),莱氏体是共晶奥氏体和共晶渗碳体的机械混合物,呈蜂窝状。

此时:%2.52%10011.269.63.469.6=⨯--=γQ ,%8.47%2.52%1003=-=C Fe Q 。

温度继续下降,共晶奥氏体成分沿ES 线变化,同时析出二次渗碳体,由于二次渗碳体与共晶渗碳体 结合在一起而不易分辨,因而莱氏体仍作为一个组织看待。

温度降到2点,奥氏体成分达到0.77%,并发生共析反应,转变为珠光体。

这种由珠光体与共晶渗碳体组成的组织称为低温莱氏体,用符号Le’表示,此时,%4.40%10077.069.63.469.6=⨯--=P Q ,%6.59%4.40%1003=-=C Fe Q 。

温度继续下降,莱氏体中珠光体的变化与共析钢的相同,珠光体与渗碳体的相对重量不再发生变化。

共晶白口铸铁的室温组织为Le’(P+ Fe 3C ),它保留了共晶转变产物的形态特征,如图3-36所示,图中黑色蜂窝状为珠光体,白色基体为共晶渗碳体。

室温下两相的相对重量百分比为:%7.35%1000008.069.63.469.6=⨯--=αQ ,%3.64%7.35%1003=-=C Fe Q 。

图3-35 共晶白口铸铁的冷却曲线及组织转变示意图 图3-36 共晶白口铸铁的显微组织 400× ㈥ 亚共晶白口铸铁(图3-26中合金⑥)的结晶过程以含3.0%C 的亚共晶白口铸铁为例进行分析,图3-37为其冷却曲线及组织转变示意图。

当合金液体冷却到1点温度时,发生匀晶反应,结晶出奥氏体,称为一次奥氏体或先共晶奥氏体。

在1~2点之间,奥氏体量不断增多并呈树枝状长大。

冷却到2点以后,剩余液相的成分沿BC 线变化到C 点,并发生共晶转变,转变为莱氏体。

继续降温,将从一次奥氏体和共晶奥氏体中析出二次渗碳体。

由于一次奥氏体粗大,沿其周边析出的二次渗碳体被共晶奥氏体衬托出来。

而共晶奥氏体析出二次渗碳体的过程,与共晶白口铸铁相同。

温度降到3点,奥氏体成分沿GS 线变到S 点,并发生共析反应,转变为珠光体。

其室温组织为P+ Fe 3C Ⅱ+Le’,如图3-38所示,图中树枝状的黑色粗块为珠光体,其周围被莱氏体中珠光体衬托出的白圈为二次渗碳体,其余为低温莱氏体。

室温下,含3.0%C 白口铸铁中三种组织组成物的相对重量百分比为: %64.40%10011.23.411.20.3'=⨯--==Le Le Q Q ,%44.13%10077.069.677.011.211.23.40.33.43=⨯--⨯--=ⅡC Fe Q ,%92.45%44.13%64.40%100%1003'=--=--=ⅡC Fe Le P Q Q Q 。

而该合金在结晶过程中所析出的所有二次渗碳体(包括一次奥氏体和共晶奥氏体中析出二次渗碳体)的总量为:%24.18%10011.269.677.011.211.269.60.369.63=⨯--⨯--=总ⅡC Fe Q 。

图3-37 亚共晶白口铸铁的冷却曲线及组织转变示意图 图3-38 亚共晶白口铸铁的显微组织 400×㈦ 过共晶白口铸铁(图3-26中合金⑦)的结晶过程过共晶白口铸铁的冷却曲线及组织转变示于图3-39。

合金液体在1--2点间发生匀晶反应,结晶出一次渗碳体Fe 3C Ⅰ。

一次渗碳体呈粗条片状。

冷却到2点,余下的液相成分沿DC 线变化到C 点,并发生共晶反应,转变为莱氏体。

继续冷却,一次渗碳体成分重量不再发生变化,而莱氏体的变化同共晶合金。

过共晶白口铸铁的室温组织为Fe 3C Ⅰ+Le’,如图3-40所示,图中粗大的白色条片为一次渗碳体,其余为低温莱氏体。

图3-39 过共晶白口铸铁的冷却曲线及组织转变示意图图3-40 过共晶白口铸铁的显微组织 400×㈧组织组成物在铁碳合金相图上的标注根据以上对铁碳合金相图的分析,可将组织组成物标注在铁碳合金相图中,C和如图3-41所示。

相关文档
最新文档