北京市东城区初三二模数学试卷及答案

合集下载

2022初三东城二模试题及答案

2022初三东城二模试题及答案

2022初三东城二模试题及答案一、选择题(每题2分,共20分)1. 下列哪个选项不是中国四大名著之一?A.《红楼梦》B.《西游记》C.《三国演义》D.《水浒传》E.《金瓶梅》答案:E2. 光合作用中,植物通过什么将光能转化为化学能?A. 叶绿素B. 叶黄素C. 胡萝卜素D. 花青素E. 淀粉答案:A3. 以下哪个历史事件标志着中国近代史的开始?A. 鸦片战争B. 甲午战争C. 辛亥革命D. 五四运动E. 抗日战争答案:A4. 以下哪个数学公式是勾股定理?A. \( a^2 + b^2 = c^2 \)B. \( (a + b)^2 = a^2 + 2ab + b^2 \)C. \( a^3 + b^3 = (a + b)(a^2 - ab + b^2) \)D. \( \sqrt{a^2 + b^2} = c \)E. \( a^4 + b^4 = (a^2 + b^2)^2 \)答案:A5. 英语中,哪个单词的意思是“图书馆”?A. LibraryB. ClassroomC. GymnasiumD. LaboratoryE. Auditorium答案:A6. 以下哪个选项是正确的化学方程式?A. \( 2H_2O + O_2 \rightarrow 2H_2O_2 \)B. \( 2H_2 + O_2 \rightarrow 2H_2O \)C. \( H_2 + O_2 \rightarrow H_2O \)D. \( 2H_2O + CO_2 \rightarrow CH_4 + 2O_2 \)E. \( 2H_2 + CO_2 \rightarrow CH_4 + 2H_2O \)答案:B7. 以下哪个国家不是G20成员国?A. 美国B. 中国C. 印度D. 巴西E. 挪威答案:E8. 以下哪个选项是正确的物理公式?A. \( F = ma \)B. \( F = mv \)C. \( F = m \times a^2 \)D. \( F = m \times v^2 \)E. \( F = m \times a \times v \)答案:A9. 以下哪个选项是正确的地理现象?A. 地球自转导致昼夜更替B. 地球公转导致季节变化C. 地球自转导致季节变化D. 地球公转导致昼夜更替E. 地球公转导致潮汐现象答案:A10. 以下哪个选项是正确的生物进化论观点?A. 物种是不变的B. 物种是逐渐演化的C. 物种演化是随机的D. 物种演化是神创造的E. 物种演化是人为选择的答案:B二、填空题(每题2分,共10分)11. 中国的首都是________。

北京市东城区2019-2020学年中考数学二模考试卷含解析

北京市东城区2019-2020学年中考数学二模考试卷含解析

北京市东城区2019-2020学年中考数学二模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.某公园有A、B、C、D四个入口,每个游客都是随机从一个入口进入公园,则甲、乙两位游客恰好从同一个入口进入公园的概率是()A.12B.14C.16D.182.已知函数()()()()22113{513x xyx x--≤=-->,则使y=k成立的x值恰好有三个,则k的值为()A.0 B.1 C.2 D.33.下列计算正确的是()A.2a2﹣a2=1 B.(ab)2=ab2C.a2+a3=a5D.(a2)3=a64.下列运算结果是无理数的是()A.32×2B.32⨯C.722÷D.22135-5.已知一元二次方程1–(x–3)(x+2)=0,有两个实数根x1和x2(x1<x2),则下列判断正确的是( ) A.–2<x1<x2<3 B.x1<–2<3<x2C.–2<x1<3<x2D.x1<–2<x2<36.如图,剪两张对边平行且宽度相同的纸条随意交叉叠放在一起,转动其中一张,重合部分构成一个四边形,则下列结论中不一定成立的是()A.∠ABC=∠ADC,∠BAD=∠BCD B.AB=BCC.AB=CD,AD=BC D.∠DAB+∠BCD=180°7.如图,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M是OP的中点,则DM的长是()A.2 B.2C3D.38.下列二次函数的图象,不能通过函数y=3x2的图象平移得到的是()A.y=3x2+2 B.y=3(x﹣1)2C.y=3(x﹣1)2+2 D.y=2x29.已知M,N,P,Q四点的位置如图所示,下列结论中,正确的是( )A.∠NOQ=42°B.∠NOP=132°C.∠PON比∠MOQ大D.∠MOQ与∠MOP互补10.如图,AB∥CD,FH平分∠BFG,∠EFB=58°,则下列说法错误的是()A.∠EGD=58°B.GF=GH C.∠FHG=61°D.FG=FH11.已知3x+y=6,则xy的最大值为()A.2 B.3 C.4 D.612.随着“中国诗词大会”节目的热播,《唐诗宋词精选》一书也随之热销.如果一次性购买10本以上,超过10本的那部分书的价格将打折,并依此得到付款金额y(单位:元)与一次性购买该书的数量x(单位:本)之间的函数关系如图所示,则下列结论错误的是()A.一次性购买数量不超过10本时,销售价格为20元/本B.a=520C.一次性购买10本以上时,超过10本的那部分书的价格打八折D.一次性购买20本比分两次购买且每次购买10本少花80元二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在平面直角坐标系中,将矩形AOCD沿直线AE折叠(点E在边DC上),折叠后顶点D恰好落在边OC上的点F处.若点D的坐标为(10,8),则点E的坐标为.14.因式分解:-3x2+3x=________.15.用4块完全相同的长方形拼成正方形(如图),用不同的方法,计算图中阴影部分的面积,可得到1个关于a b、的等式为________.16.如图,已知正方形ABCD的边长为4,⊙B的半径为2,点P是⊙B上的一个动点,则PD﹣12PC的最大值为_____.17.如图,某城市的电视塔AB坐落在湖边,数学老师带领学生隔湖测量电视塔AB的高度,在点M处测得塔尖点A的仰角∠AMB为22.5°,沿射线MB方向前进200米到达湖边点N处,测得塔尖点A在湖中的倒影A′的俯角∠A′NB为45°,则电视塔AB的高度为______米(结果保留根号).18.如图,当半径为30cm的转动轮转过120 角时,传送带上的物体A平移的距离为______cm .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图甲,直线y=﹣x+3与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线y=x2+bx+c 与x轴的另一个交点为A,顶点为P.(1)求该抛物线的解析式;(2)在该抛物线的对称轴上是否存在点M,使以C,P,M为顶点的三角形为等腰三角形?若存在,请直接写出所符合条件的点M的坐标;若不存在,请说明理由;(3)当0<x<3时,在抛物线上求一点E,使△CBE的面积有最大值(图乙、丙供画图探究).20.(6分)如图,已知CD=CF,∠A=∠E=∠DCF=90°,求证:AD+EF=AE21.(6分)已知关于x 的一元二次方程x 2﹣(m+3)x+m+2=1.(1)求证:无论实数m 取何值,方程总有两个实数根;(2)若方程有一个根的平方等于4,求m 的值.22.(8分)如图1,BAC ∠的余切值为2,25AB =,点D 是线段AB 上的一动点(点D 不与点A 、B 重合),以点D 为顶点的正方形DEFG 的另两个顶点E 、F 都在射线AC 上,且点F 在点E 的右侧,联结BG ,并延长BG ,交射线EC 于点P .(1)点D 在运动时,下列的线段和角中,________是始终保持不变的量(填序号);①AF ;②FP ;③BP ;④BDG ∠;⑤GAC ∠;⑥BPA ∠;(2)设正方形的边长为x ,线段AP 的长为y ,求y 与x 之间的函数关系式,并写出定义域;(3)如果PFG ∆与AFG ∆相似,但面积不相等,求此时正方形的边长.23.(8分)水龙头关闭不紧会造成滴水,小明用可以显示水量的容器做图①所示的试验,并根据试验数据绘制出图②所示的容器内盛水量W (L )与滴水时间t (h )的函数关系图象,请结合图象解答下列问题:容器内原有水多少?求W 与t 之间的函数关系式,并计算在这种滴水状态下一天的滴水量是多少升?图①图②24.(10分)解不等式组:2(3)47{22x xxx+≤++>并写出它的所有整数解.25.(10分)如图,△ABC中,CD是边AB上的高,且AD CD CD BD=.求证:△ACD∽△CBD;求∠ACB的大小.26.(12分)如图,甲、乙为两座建筑物,它们之间的水平距离BC为30m,在A点测得D点的仰角∠EAD 为45°,在B点测得D点的仰角∠CBD为60°.求这两座建筑物的高度(结果保留根号).27.(12分)﹣(﹣1)20184﹣(13)﹣1参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】画树状图列出所有等可能结果,从中确定出甲、乙两位游客恰好从同一个入口进入公园的结果数,再利用概率公式计算可得.【详解】画树状图如下:由树状图知共有16种等可能结果,其中甲、乙两位游客恰好从同一个入口进入公园的结果有4种,所以甲、乙两位游客恰好从同一个入口进入公园的概率为416=14,故选B.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A 或B的结果数目m,然后利用概率公式求事件A或B的概率.2.D【解析】【详解】解:如图:利用顶点式及取值范围,可画出函数图象会发现:当x=3时,y=k成立的x值恰好有三个.故选:D.3.D【解析】【分析】根据合并同类项法则判断A、C;根据积的乘方法则判断B;根据幂的乘方法判断D,由此即可得答案. 【详解】A、2a2﹣a2=a2,故A错误;B、(ab)2=a2b2,故B错误;C、a2与a3不是同类项,不能合并,故C错误;D、(a2)3=a6,故D正确,故选D.【点睛】本题考查幂的乘方与积的乘方,合并同类项,熟练掌握各运算的运算性质和运算法则是解题的关键.4.B【解析】【分析】根据二次根式的运算法则即可求出答案.【详解】A选项:原式=3×2=6,故A不是无理数;B,故B是无理数;C6,故C不是无理数;D=12,故D不是无理数故选B.【点睛】考查二次根式的运算,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.5.B【解析】【分析】设y=-(x﹣3)(x+2),y1=1﹣(x﹣3)(x+2)根据二次函数的图像性质可知y1=1﹣(x﹣3)(x+2)的图像可看做y=-(x﹣3)(x+2)的图像向上平移1个单位长度,根据图像的开口方向即可得出答案.【详解】设y=-(x﹣3)(x+2),y1=1﹣(x﹣3)(x+2)∵y=0时,x=-2或x=3,∴y=-(x﹣3)(x+2)的图像与x轴的交点为(-2,0)(3,0),∵1﹣(x﹣3)(x+2)=0,∴y1=1﹣(x﹣3)(x+2)的图像可看做y=-(x﹣3)(x+2)的图像向上平移1,与x轴的交点的横坐标为x1、x2,∵-1<0,∴两个抛物线的开口向下,∴x1<﹣2<3<x2,故选B.【点睛】本题考查二次函数图像性质及平移的特点,根据开口方向确定函数的增减性是解题关键.6.D【解析】【分析】首先可判断重叠部分为平行四边形,且两条纸条宽度相同;再由平行四边形的等积转换可得邻边相等,则四边形ABCD 为菱形.所以根据菱形的性质进行判断.【详解】解:Q 四边形ABCD 是用两张等宽的纸条交叉重叠地放在一起而组成的图形,//AB CD ∴,//AD BC ,∴四边形ABCD 是平行四边形(对边相互平行的四边形是平行四边形);过点D 分别作BC ,CD 边上的高为AE ,AF .则AE AF =(两纸条相同,纸条宽度相同); Q 平行四边形ABCD 中,ABC ACD S S ∆∆=,即⨯=⨯BC AE CD AF ,BC CD ∴=,即AB BC =.故B 正确;∴平行四边形ABCD 为菱形(邻边相等的平行四边形是菱形).ABC ADC ∠=∠∴,BAD BCD ∠=∠(菱形的对角相等),故A 正确; AB CD =,AD BC =(平行四边形的对边相等),故C 正确; 如果四边形ABCD 是矩形时,该等式成立.故D 不一定正确.故选:D .【点睛】本题考查了菱形的判定与性质.注意:“邻边相等的平行四边形是菱形”,而非“邻边相等的四边形是菱形”.7.C【解析】【分析】由OP 平分∠AOB ,∠AOB=60°,CP=2,CP ∥OA ,易得△OCP 是等腰三角形,∠COP=30°,又由含30°角的直角三角形的性质,即可求得PE 的值,继而求得OP 的长,然后由直角三角形斜边上的中线等于斜边的一半,即可求得DM 的长.【详解】解:∵OP 平分∠AOB ,∠AOB=60°,∴∠AOP=∠COP=30°,∵CP ∥OA ,∴∠AOP=∠CPO ,∴∠COP=∠CPO ,∴OC=CP=2,∵∠PCE=∠AOB=60°,PE ⊥OB ,∴∠CPE=30°,∴CE=12CP=1,∴=,∴∵PD ⊥OA ,点M 是OP 的中点,∴DM=12 故选C .考点:角平分线的性质;含30度角的直角三角形;直角三角形斜边上的中线;勾股定理.8.D【解析】分析:根据平移变换只改变图形的位置不改变图形的形状与大小对各选项分析判断后利用排除法求解: A 、y=3x 2的图象向上平移2个单位得到y=3x 2+2,故本选项错误;B 、y=3x 2的图象向右平移1个单位得到y=3(x ﹣1)2,故本选项错误;C 、y=3x 2的图象向右平移1个单位,向上平移2个单位得到y=3(x ﹣1)2+2,故本选项错误;D 、y=3x 2的图象平移不能得到y=2x 2,故本选项正确.故选D .9.C【解析】试题分析:如图所示:∠NOQ=138°,选项A 错误;∠NOP=48°,选项B 错误;如图可得∠PON=48°,∠MOQ=42°,所以∠PON 比∠MOQ 大,选项C 正确;由以上可得,∠MOQ 与∠MOP 不互补,选项D 错误.故答案选C .考点:角的度量.10.D【解析】【分析】根据平行线的性质以及角平分线的定义,即可得到正确的结论.【详解】解:AB CD EFB 58∠︒Q P ,=,EGD 58=∠∴︒,故A 选项正确;FH BFG ∠Q 平分,BFH GFH ∠∠∴=,又AB CD Q PBFH GHF ∠∠∴=,GFH GHF ∠∠∴=,GF GH =,∴故B 选项正确; BFE 58FH ∠︒Q =,平分BFG ∠, ()118058612BFH ︒︒︒∴∠=-=, AB CD Q PBFH GHF 61∠∠∴︒==,故C 选项正确;FGH FHG ∠∠≠Q ,FG FH ∴≠,故D 选项错误;故选D .【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等;两直线平行,内错角相等. 11.B【解析】【分析】根据已知方程得到y=-1x+6,将其代入所求的代数式后得到:xy=-1x 2+6x ,利用配方法求该式的最值.【详解】解:∵1x+y=6,∴y=-1x+6,∴xy=-1x 2+6x=-1(x-1)2+1.∵(x-1)2≥0,∴-1(x-1)2+1≤1,即xy的最大值为1.故选B.【点睛】考查了二次函数的最值,解题时,利用配方法和非负数的性质求得xy的最大值.12.D【解析】【分析】A、根据单价=总价÷数量,即可求出一次性购买数量不超过10本时,销售单价,A选项正确;C、根据单价=总价÷数量结合前10本花费200元即可求出超过10本的那部分书的单价,用其÷前十本的单价即可得出C正确;B、根据总价=200+超过10本的那部分书的数量×16即可求出a值,B正确;D,求出一次性购买20本书的总价,将其与400相减即可得出D错误.此题得解.【详解】解:A、∵200÷10=20(元/本),∴一次性购买数量不超过10本时,销售价格为20元/本,A选项正确;C、∵(840﹣200)÷(50﹣10)=16(元/本),16÷20=0.8,∴一次性购买10本以上时,超过10本的那部分书的价格打八折,C选项正确;B、∵200+16×(30﹣10)=520(元),∴a=520,B选项正确;D、∵200×2﹣200﹣16×(20﹣10)=40(元),∴一次性购买20本比分两次购买且每次购买10本少花40元,D选项错误.故选D.【点睛】考查了一次函数的应用,根据一次函数图象结合数量关系逐一分析四个选项的正误是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.(10,3)【解析】【分析】根据折叠的性质得到AF=AD,所以在直角△AOF中,利用勾股定理求得OF=6,然后设EC=x,则EF=DE=8-x,CF=10-6=4,根据勾股定理列方程求出EC可得点E的坐标.【详解】∵四边形AOCD为矩形,D的坐标为(10,8),∴AD=BC=10,DC=AB=8,∵矩形沿AE折叠,使D落在BC上的点F处,∴AD=AF=10,DE=EF,在Rt△AOF中=6,∴FC=10−6=4,设EC=x,则DE=EF=8−x,在Rt△CEF中,EF2=EC2+FC2,即(8−x)2=x2+42,解得x=3,即EC的长为3.∴点E的坐标为(10,3).14.-3x(x-1)【解析】【分析】原式提取公因式即可得到结果.【详解】解:原式=-3x(x-1),故答案为-3x(x-1)【点睛】此题考查了因式分解-提公因式法,熟练掌握提取公因式的方法是解本题的关键.15.(a+b)2﹣(a﹣b)2=4ab【解析】【分析】根据长方形面积公式列①式,根据面积差列②式,得出结论.【详解】S阴影=4S长方形=4ab①,S阴影=S大正方形﹣S空白小正方形=(a+b)2﹣(b﹣a)2②,由①②得:(a+b)2﹣(a﹣b)2=4ab.故答案为(a+b)2﹣(a﹣b)2=4ab.【点睛】本题考查了完全平方公式几何意义的理解,此题有机地把代数与几何图形联系在一起,利用几何图形的面积公式直接得出或由其图形的和或差得出.16.1【解析】分析: 由PD−12PC=PD−PG≤DG,当点P在DG的延长线上时,PD−12PC的值最大,最大值为DG=1.详解: 在BC上取一点G,使得BG=1,如图,∵221PBBG==,422BCPB==,∴PB BC BG PB=,∵∠PBG=∠PBC,∴△PBG∽△CBP,∴12 PG BGPC PB==,∴PG=12 PC,当点P在DG的延长线上时,PD−12PC的值最大,最大值为DG=2243+=1.故答案为1点睛: 本题考查圆综合题、正方形的性质、相似三角形的判定和性质等知识,解题的关键是学会构建相似三角形解决问题,学会用转化的思想思考问题,把问题转化为两点之间线段最短解决,题目比较难,属于中考压轴题.17.1002.【解析】解:如图,连接AN,由题意知,BM⊥AA',BA=BA',∴AN=A'N,∴∠ANB=∠A'NB=45°,∵∠AMB=22.5°,∴∠MAN=∠ANB﹣∠AMB=22.5°=∠AMN,∴AN=MN=200米,在Rt△ABN中,∠ANB=45°,∴AB=2AN=1002(米),故答案为1002.点睛:此题是解直角三角形的应用﹣﹣﹣仰角和俯角,主要考查了垂直平分线的性质,等腰三角形的性质,解本题的关键是求出∠ANB=45°.18.20π【解析】解:1203801π⨯=20πcm.故答案为20πcm.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)y=x2﹣4x+3;(2)(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)E点坐标为(,)时,△CBE的面积最大.【解析】试题分析:(1)由直线解析式可求得B、C坐标,利用待定系数法可求得抛物线解析式;(2)由抛物线解析式可求得P点坐标及对称轴,可设出M点坐标,表示出MC、MP和PC的长,分MC=MP、MC=PC和MP=PC三种情况,可分别得到关于M点坐标的方程,可求得M点的坐标;(3)过E作EF⊥x轴,交直线BC于点F,交x轴于点D,可设出E点坐标,表示出F点的坐标,表示出EF的长,进一步可表示出△CBE的面积,利用二次函数的性质可求得其取得最大值时E点的坐标.试题解析:(1)∵直线y=﹣x+3与x轴、y轴分别交于点B、点C,∴B(3,0),C(0,3),把B、C坐标代入抛物线解析式可得,解得,∴抛物线解析式为y=x2﹣4x+3;(2)∵y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线对称轴为x=2,P(2,﹣1),设M(2,t),且C(0,3),∴MC=,MP=|t+1|,PC=,∵△CPM为等腰三角形,∴有MC=MP、MC=PC和MP=PC三种情况,①当MC=MP时,则有=|t+1|,解得t=,此时M(2,);②当MC=PC时,则有=2,解得t=﹣1(与P点重合,舍去)或t=7,此时M(2,7);③当MP=PC时,则有|t+1|=2,解得t=﹣1+2或t=﹣1﹣2,此时M(2,﹣1+2)或(2,﹣1﹣2);综上可知存在满足条件的点M,其坐标为(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)如图,过E作EF⊥x轴,交BC于点F,交x轴于点D,设E (x ,x 2﹣4x+3),则F (x ,﹣x+3),∵0<x <3,∴EF=﹣x+3﹣(x 2﹣4x+3)=﹣x 2+3x ,∴S △CBE =S △EFC +S △EFB =EF•OD+EF•BD=EF•OB=×3(﹣x 2+3x )=﹣(x ﹣)2+, ∴当x=时,△CBE 的面积最大,此时E 点坐标为(,),即当E 点坐标为(,)时,△CBE 的面积最大.考点:二次函数综合题.20.证明见解析.【解析】【分析】易证△DAC ≌△CEF ,即可得证.【详解】证明:∵∠DCF=∠E=90°,∴∠DCA+∠ECF=90°,∠CFE+∠ECF=90°, ∴∠DCA=∠CFE,在△DAC 和△CEF 中:90DCA CFE A E CD CF ∠=∠⎧⎪∠=∠=⎨⎪=⎩o ,∴△DAC ≌△CEF(AAS),∴AD=CE,AC=EF,∴AE=AD+EF【点睛】此题主要考查全等三角形的判定与性质,解题的关键是熟知全等三角形的判定与性质.21.(1)证明见解析;(2)m 的值为1或﹣2.【解析】【分析】(1)计算根的判别式的值可得(m+1)2≥1,由此即可证得结论;(2)根据题意得到 x=±2 是原方程的根,将其代入列出关于m 新方程,通过解新方程求得m 的值即可.【详解】(1)证明:∵△=[﹣(m+3)]2﹣2(m+2)=(m+1)2≥1,∴无论实数 m 取何值,方程总有两个实数根;(2)解:∵方程有一个根的平方等于 2,∴x=±2 是原方程的根,当 x=2 时,2﹣2(m+3)+m+2=1.解得m=1;当 x=﹣2 时,2+2(m+3)+m+2=1,解得m=﹣2.综上所述,m 的值为 1 或﹣2.【点睛】本题考查了根的判别式及一元二次方程的解的定义,在解答(2)时要分类讨论,这是此题的易错点. 22.(1)④⑤;(2)2(12)2x y x x =<-…;(3)75或54. 【解析】【分析】(1)作BM AC ⊥于M ,交DG 于N ,如图,利用三角函数的定义得到2AM BM=,设BM t =,则2AM t =,利用勾股定理得222(2)t t +=,解得2t =,即2BM =,4AM =,设正方形的边长为x ,则2AE x =,3AF x =,由于1tan 3GF GAF AF ∠==,则可判断GAF ∠为定值;再利用//DG AP 得到BDG BAC ∠=∠,则可判断BDG ∠为定值;在Rt BMP ∆中,利用勾股定理和三角函数可判断PB 在变化,BPM ∠在变化,PF 在变化;(2)易得四边形DEMN 为矩形,则NM DE x ==,证明BDG BAP ∆∆∽,利用相似比可得到y 与x 的关系式;(3)由于90AFG PFG ︒∠=∠=,PFG ∆与AFG ∆相似,且面积不相等,利用相似比得到13PF x =,讨论:当点P 在点F 点右侧时,则103AP x =,所以21023x x x =-,当点P 在点F 点左侧时,则83AP x =,所以2823x x x =-,然后分别解方程即可得到正方形的边长. 【详解】(1)如图,作BM AC ⊥于M ,交DG 于N ,在Rt ABM ∆中,∵cot 2AM BAC BM∠==, 设BM t =,则2AM t =,∵222AM BM AB +=,∴222(2)(25)t t +=,解得2t =,∴2BM =,4AM =,设正方形的边长为x ,在Rt ADE ∆中,∵cot 2AE DAE DE ∠==, ∴2AE x =,∴3AF x =, 在Rt GAF ∆中,1tan 33GF x GAF AF x ∠===, ∴GAF ∠为定值;∵//DG AP ,∴BDG BAC ∠=∠,∴BDG ∠为定值;在Rt BMP ∆中,222PB PM =-,而PM 在变化,∴PB 在变化,BPM ∠在变化,∴PF 在变化,所以BDG ∠和GAC ∠是始终保持不变的量;故答案为:④⑤(2)∵MN ⊥AP ,DEFG 是正方形,∴四边形DEMN 为矩形,∴NM DE x ==,∵//DG AP ,∴BDG BAP ∆∆∽,∴DG BN AP BM=, 即22x x y -=, ∴2(12)2x y x x =<-… (3)∵90AFG PFG ︒∠=∠=,PFG ∆与AFG ∆相似,且面积不相等,∴GF PF AF GF =,即3x PF x x =, ∴13PF x =, 当点P 在点F 点右侧时,AP=AF+PF=133x x +=103x , ∴21023x x x =-, 解得75x =, 当点P 在点F 点左侧时,18333AP AF PF x x x =-=-=, ∴2823x x x =-, 解得54x =,综上所述,正方形的边长为75或54. 【点睛】本题考查了相似形综合题:熟练掌握锐角三角函数的定义、正方形的性质和相似三角形的判定与性质. 23.(1)0.3 L ;(2)在这种滴水状态下一天的滴水量为9.6 L.【解析】【分析】(1)根据点()0,0.3的实际意义可得;(2)设W 与t 之间的函数关系式为W kt b =+,待定系数法求解可得,计算出24t =时W 的值,再减去容器内原有的水量即可.【详解】(1)由图象可知,容器内原有水0.3 L.(2)由图象可知W 与t 之间的函数图象经过点(0,0.3),故设函数关系式为W =kt +0.3.又因为函数图象经过点(1.5,0.9),代入函数关系式,得1.5k +0.3=0.9,解得k =0.4.故W 与t 之间的函数关系式为W =0.4t +0.3.当t =24时,W =0.4×24+0.3=9.9(L ),9.9-0.3=9.6(L ),即在这种滴水状态下一天的滴水量为9.6 L.【点睛】本题考查了一次函数的应用,关键是利用待定系数法正确求出一次函数的解析式.24.原不等式组的解集为122x-≤<,它的所有整数解为0,1.【解析】【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后写出它的所有整数解即可.【详解】解:()2347{22x xxx+≤++>①②,解不等式①,得1-2x≥,解不等式②,得x<2,∴原不等式组的解集为12 2x-≤<,它的所有整数解为0,1.【点睛】本题主要考查了一元一次不等式组解集的求法.解一元一次不等式组的简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).25.(1)证明见试题解析;(2)90°.【解析】试题分析:(1)由两边对应成比例且夹角相等的两个三角形相似,即可证明△ACD∽△CBD;(2)由(1)知△ACD∽△CBD,然后根据相似三角形的对应角相等可得:∠A=∠BCD,然后由∠A+∠ACD=90°,可得:∠BCD+∠ACD=90°,即∠ACB=90°.试题解析:(1)∵CD是边AB上的高,∴∠ADC=∠CDB=90°,∵AD CD CD BD=.∴△ACD∽△CBD;(2)∵△ACD∽△CBD,∴∠A=∠BCD,在△ACD中,∠ADC=90°,∴∠A+∠ACD=90°,∴∠BCD+∠ACD=90°,即∠ACB=90°.考点:相似三角形的判定与性质.26.甲建筑物的高AB为(303-30)m,乙建筑物的高DC为303m 【解析】【详解】如图,过A作AF⊥CD于点F,在Rt△BCD中,∠DBC=60°,BC=30m,∵CDBC=tan∠DBC,∴3,∴乙建筑物的高度为3;在Rt△AFD中,∠DAF=45°,∴DF=AF=BC=30m,∴AB=CF=CD﹣DF=(330)m,∴甲建筑物的高度为(330)m.27.-1.【解析】【分析】直接利用负指数幂的性质以及算术平方根的性质分别化简得出答案.【详解】原式=﹣1+1﹣3=﹣1.【点睛】本题主要考查了实数运算,正确化简各数是解题的关键.。

北京市东城区2023年九年级二诊数学试题及答案

北京市东城区2023年九年级二诊数学试题及答案

北京市东城区2023年九年级二诊数学试
题及答案
以下是北京市东城区2023年九年级数学二诊试题及答案:
选择题
1. 某商场举办了一场打折促销活动,某商品原价500元,现在打6.5折,请计算该商品的促销价是多少?
A. 224元
B. 250元
C. 325元
D. 425元
答案:C. 325元
2. 已知a:b = 3:5,且a+b=64,求a的值。

A. 15
B. 24
C. 27
D. 36
答案:B. 24
3. 如果sinθ = 0.6,求cosθ的值。

A. 0.6
B. 0.4
C. 0.8
D. 0.2
答案:C. 0.8
填空题
1. 已知平行四边形的一条边长为8cm,另一条边长为12cm,求该平行四边形的面积。

答案:96平方厘米
2. 在等腰梯形中,上底边长为10cm,下底边长为16cm,高为8cm,求该等腰梯形的面积。

答案:96平方厘米
解答题
1. 某公园有3个入口,每个入口处有4个出口通向不同的景区。

如果从一个入口处进入公园,再从一个出口处离开公园,一共有多
少种不同的路线?
解答:每个入口有4个出口选择,所以共有3 * 4 = 12种不同
的路线。

2. 某商店的一种商品原价为100元,现在打折促销,促销价为
原价的70%,再打8折,请计算现在该商品的售价。

解答:商品的促销价为100 * 0.7 = 70元,然后打8折,售价为70 * 0.8 = 56元。

以上是北京市东城区2023年九年级数学二诊试题及答案。


您学业顺利!。

北京市东城区2019-2020学年中考二诊数学试题含解析

北京市东城区2019-2020学年中考二诊数学试题含解析

北京市东城区2019-2020学年中考二诊数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图,已知四边形ABCD ,R ,P 分别是DC ,BC 上的点,E ,F 分别是AP ,RP 的中点,当点P 在BC 上从点B 向点C 移动而点R 不动时, 那么下列结论成立的是( ).A .线段EF 的长逐渐增大B .线段EF 的长逐渐减少C .线段EF 的长不变D .线段EF 的长不能确定2.完全相同的6个小矩形如图所示放置,形成了一个长、宽分别为n 、m 的大矩形,则图中阴影部分的周长是( )A .6(m ﹣n )B .3(m+n )C .4nD .4m3.已知二次函数2()y x h =-(h 为常数),当自变量x 的值满足13x -剟时,与其对应的函数值y 的最小值为4,则h 的值为( ) A .1或5 B .5-或3C .3-或1D .3-或54.已知二次函数(m 为常数)的图象与x 轴的一个交点为(1,0),则关于x 的一元二次方程2x 3x m 0-+=的两实数根是 A .x 1=1,x 2=-1 B .x 1=1,x 2=2 C .x 1=1,x 2=0D .x 1=1,x 2=35.有以下图形:平行四边形、矩形、等腰三角形、线段、菱形,其中既是轴对称图形又是中心对称图形的有( )A .5个B .4个C .3个D .2个6.已知一个布袋里装有2个红球,3个白球和a 个黄球,这些球除颜色外其余都相同.若从该布袋里任意摸出1个球,是红球的概率为13,则a 等于( )A.1B.2C.3D.47.七年级1班甲、乙两个小组的14名同学身高(单位:厘米)如下:甲组158 159 160 160 160 161 169乙组158 159 160 161 161 163 165以下叙述错误的是()A.甲组同学身高的众数是160B.乙组同学身高的中位数是161C.甲组同学身高的平均数是161D.两组相比,乙组同学身高的方差大8.如图,已知直线AB、CD被直线AC所截,AB∥CD,E是平面内任意一点(点E不在直线AB、CD、AC上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC的度数可能是()A.①②③B.①②④C.①③④D.①②③④9.如图,点A、B、C在圆O上,若∠OBC=40°,则∠A的度数为()A.40°B.45°C.50°D.55°10.如图,I是∆ABC的内心,AI向延长线和△ABC的外接圆相交于点D,连接BI,BD,DC下列说法中错误的一项是()A.线段DB绕点D顺时针旋转一定能与线段DC重合B.线段DB绕点D顺时针旋转一定能与线段DI熏合C.∠CAD绕点A顺时针旋转一定能与∠DAB重合D.线段ID绕点I顺时针旋转一定能与线段IB重合11.2017上半年,四川货物贸易进出口总值为2 098.7亿元,较去年同期增长59.5%,远高于同期全国19.6%的整体进出口增幅.在“一带一路”倡议下,四川同期对以色列、埃及、罗马尼亚、伊拉克进出口均实现数倍增长.将2098.7亿元用科学记数法表示是( ) A .2.098 7×103B .2.098 7×1010C .2.098 7×1011D .2.098 7×101212.如图,正六边形A 1B 1C 1D 1E 1F 1的边长为2,正六边形A 2B 2C 2D 2E 2F 2的外接圆与正六边形A 1B 1C 1D 1E 1F 1的各边相切,正六边形A 3B 3C 3D 3E 3F 3的外接圆与正六边形A 2B 2C 2D 2E 2F 2的各边相切,…按这样的规律进行下去,A 11B 11C 11D 11E 11F 11的边长为( )A .92432 B .813C .82432 D .813二、填空题:(本大题共6个小题,每小题4分,共24分.)13.一个扇形的圆心角为120°,弧长为2π米,则此扇形的半径是_____米.14.如图,已知正方形边长为4,以A 为圆心,AB 为半径作弧BD ,M 是BC 的中点,过点M 作EM ⊥BC 交弧BD 于点E ,则弧BE 的长为_____.15.现在网购越来越多地成为人们的一种消费方式,天猫和淘宝的支付交易额突破67000000000元,将67000000000元用科学记数法表示为_____.16.图1、图2的位置如图所示,如果将两图进行拼接(无覆盖),可以得到一个矩形,请利用学过的变换(翻折、旋转、轴对称)知识,将图2进行移动,写出一种拼接成矩形的过程______.17.如图,直线l 1∥l 2∥l 3,直线AC 分别交l 1,l 2,l 3于点A ,B ,C ;直线DF 分别交l 1,l 2,l 3于点D ,E ,F .AC 与DF 相交于点H ,且AH=2,HB=1,BC=5,则的值为18.使得分式值242xx-+为零的x的值是_________;三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,抛物线y=﹣x2+bx+c与x轴交于A,B两点(A在B的左侧),其中点B(3,0),与y 轴交于点C(0,3).(1)求抛物线的解析式;(2)将抛物线向下平移h个单位长度,使平移后所得抛物线的顶点落在△OBC内(包括△OBC的边界),求h的取值范围;(3)设点P是抛物线上且在x轴上方的任一点,点Q在直线l:x=﹣3上,△PBQ能否成为以点P为直角顶点的等腰直角三角形?若能,求出符合条件的点P的坐标;若不能,请说明理由.20.(6分)如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,且BF是⊙O 的切线,BF交AC的延长线于F.(1)求证:∠CBF=12∠CAB.(2)若AB=5,sin∠5,求BC和BF的长.21.(6分)如图,已知点D在反比例函数y=mx的图象上,过点D作x轴的平行线交y轴于点B(0,3).过点A(5,0)的直线y=kx+b与y轴于点C,且BD=OC,tan∠OAC=25.(1)求反比例函数y=mx和直线y=kx+b的解析式;(2)连接CD,试判断线段AC与线段CD的关系,并说明理由;(3)点E为x轴上点A右侧的一点,且AE=OC,连接BE交直线CA与点M,求∠BMC的度数.22.(8分)数学活动小组的小颖、小明和小华利用皮尺和自制的两个直角三角板测量学校旗杆MN的高度,如示意图,△ABC和△A′B′C′是他们自制的直角三角板,且△ABC≌△A′B′C′,小颖和小明分别站在旗杆的左右两侧,小颖将△ABC的直角边AC平行于地面,眼睛通过斜边AB观察,一边观察一边走动,使得A、B、M共线,此时,小华测量小颖距离旗杆的距离DN=19米,小明将△A′B′C′的直角边B′C′平行于地面,眼睛通过斜边B′A′观察,一边观察一边走动,使得B′、A′、M共线,此时,小华测量小明距离旗杆的距离EN=5米,经测量,小颖和小明的眼睛与地面的距离AD=1米,B′E=1.5米,(他们的眼睛与直角三角板顶点A,B′的距离均忽略不计),且AD、MN、B′E均与地面垂直,请你根据测量的数据,计算旗杆MN的高度.23.(8分)小丽和哥哥小明分别从家和图书馆同时出发,沿同一条路相向而行,小丽开始跑步,遇到哥哥后改为步行,到达图书馆恰好用35分钟,小明匀速骑自行车直接回家,骑行10分钟后遇到了妹妺,再继续骑行5分钟,到家两人距离家的路程y(m)与各自离开出发的时间x(min)之间的函数图象如图所示:(1)求两人相遇时小明离家的距离;(2)求小丽离距离图书馆500m时所用的时间.24.(10分)下面是小星同学设计的“过直线外一点作已知直线的平行线”的尺规作图过程:已知:如图,直线l和直线l外一点A求作:直线AP ,使得AP ∥l 作法:如图①在直线l 上任取一点B (AB 与l 不垂直),以点A 为圆心,AB 为半径作圆,与直线l 交于点C . ②连接AC ,AB ,延长BA 到点D ; ③作∠DAC 的平分线AP . 所以直线AP 就是所求作的直线根据小星同学设计的尺规作图过程,使用直尺和圆规,补全图形(保留作图痕迹)完成下面的证明证明:∵AB =AC ,∴∠ABC =∠ACB (填推理的依据) ∵∠DAC 是△ABC 的外角,∴∠DAC =∠ABC+∠ACB (填推理的依据) ∴∠DAC =2∠ABC ∵AP 平分∠DAC , ∴∠DAC =2∠DAP ∴∠DAP =∠ABC∴AP ∥l (填推理的依据)25.(10分)如图1,在长方形ABCD 中,12AB cm =,BC 10cm =,点P 从A 出发,沿A B C D →→→的路线运动,到D 停止;点Q 从D 点出发,沿D C B A →→→路线运动,到A 点停止.若P 、Q 两点同时出发,速度分别为每秒lcm 、2cm ,a 秒时P 、Q 两点同时改变速度,分别变为每秒2cm 、54cm (P 、Q 两点速度改变后一直保持此速度,直到停止),如图2是APD ∆的面积2()s cm 和运动时间x (秒)的图象.(1)求出a 值;(2)设点P 已行的路程为1()y cm ,点Q 还剩的路程为2()y cm ,请分别求出改变速度后,12,y y 和运动时间x (秒)的关系式;(3)求P 、Q 两点都在BC 边上,x 为何值时P ,Q 两点相距3cm ?26.(12分)“C919”大型客机首飞成功,激发了同学们对航空科技的兴趣,如图是某校航模兴趣小组获得的一张数据不完整的航模飞机机翼图纸,图中AB∥CD,AM∥BN∥ED,AE⊥DE,请根据图中数据,求出线段BE和CD的长.(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,结果保留小数点后一位)27.(12分)观察下列等式:22﹣2×1=12+1①32﹣2×2=22+1②42﹣2×3=32+1③…第④个等式为;根据上面等式的规律,猜想第n个等式(用含n的式子表示,n是正整数),并说明你猜想的等式正确性.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】因为R不动,所以AR不变.根据三角形中位线定理可得EF= 12AR,因此线段EF的长不变.【详解】如图,连接AR ,∵E 、F 分别是AP 、RP 的中点, ∴EF 为△APR 的中位线, ∴EF=12AR ,为定值. ∴线段EF 的长不改变. 故选:C . 【点睛】本题考查了三角形的中位线定理,只要三角形的边AR 不变,则对应的中位线的长度就不变. 2.D 【解析】 【详解】解:设小长方形的宽为a ,长为b ,则有b=n-3a , 阴影部分的周长:2(m-b)+2(m-3a)+2n=2m-2b+2m-6a+2n=4m-2(n-3a)-6a+2n=4m-2n+6a-6a+2n=4m . 故选D . 3.D 【解析】 【分析】由解析式可知该函数在x h =时取得最小值0,抛物线开口向上,当x h >时,y 随x 的增大而增大;当x h <时,y 随x 的增大而减小;根据13x -≤≤时,函数的最小值为4可分如下三种情况:①若13h x <-≤≤,1x =-时,y 取得最小值4;②若-1<h <3时,当x=h 时,y 取得最小值为0,不是4;③若13x h -≤≤<,当x=3时,y 取得最小值4,分别列出关于h 的方程求解即可. 【详解】解:∵当x >h 时,y 随x 的增大而增大,当x h <时,y 随x 的增大而减小,并且抛物线开口向上, ∴①若13h x <-≤≤,当1x =-时,y 取得最小值4,可得:24(1)h =--4,解得3h =-或1h =(舍去);②若-1<h <3时,当x=h 时,y 取得最小值为0,不是4, ∴此种情况不符合题意,舍去;③若-1≤x≤3<h ,当x=3时,y 取得最小值4, 可得:24(3)h =-, 解得:h=5或h=1(舍). 综上所述,h 的值为-3或5, 故选:D . 【点睛】本题主要考查二次函数的性质和最值,根据二次函数的性质和最值分类讨论是解题的关键. 4.B 【解析】试题分析:∵二次函数2y x 3x m -+=(m 为常数)的图象与x 轴的一个交点为(1,0),∴213m 0m 2-+=⇒=.∴2212x 3x m 0x 3x 20x 1x 2-+=⇒-+=⇒==,.故选B .5.C 【解析】矩形,线段、菱形是轴对称图形,也是中心对称图形,符合题意; 等腰三角形是轴对称图形,不是中心对称图形,不符合题意; 平行四边形不是轴对称图形,是中心对称图形,不符合题意. 共3个既是轴对称图形又是中心对称图形. 故选C . 6.A 【解析】 【分析】 【详解】此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.根据题意得:21233a =++, 解得:a=1, 经检验,a=1是原分式方程的解,故本题选A.7.D 【解析】 【分析】根据众数、中位数和平均数及方差的定义逐一判断可得. 【详解】A .甲组同学身高的众数是160,此选项正确;B .乙组同学身高的中位数是161,此选项正确;C.甲组同学身高的平均数是15815916031611697++⨯++=161,此选项正确;D.甲组的方差为807,乙组的方差为347,甲组的方差大,此选项错误.故选D.【点睛】本题考查了众数、中位数和平均数及方差,掌握众数、中位数和平均数及方差的定义和计算公式是解题的关键.8.D【解析】【分析】根据E点有4中情况,分四种情况讨论分别画出图形,根据平行线的性质与三角形外角定理求解.【详解】E点有4中情况,分四种情况讨论如下:由AB∥CD,可得∠AOC=∠DCE1=β∵∠AOC=∠BAE1+∠AE1C,∴∠AE1C=β-α过点E2作AB的平行线,由AB∥CD,可得∠1=∠BAE2=α,∠2=∠DCE2=β∴∠AE2C=α+β由AB∥CD,可得∠BOE3=∠DCE3=β∵∠BAE3=∠BOE3+∠AE3C,∴∠AE3C=α-β由AB∥CD,可得∠BAE4+∠AE4C+∠DCE4=360°,∴∠AE4C=360°-α-β∴∠AEC的度数可能是①α+β,②α﹣β,③β-α,④360°﹣α﹣β,故选D.此题主要考查平行线的性质与外角定理,解题的关键是根据题意分情况讨论.9.C【解析】【分析】根据等腰三角形的性质和三角形内角和定理求得∠BOC=100°,再利用圆周角定理得到∠A=∠BOC .【详解】∵OB=OC ,∴∠OBC=∠OCB .又∠OBC=40°,∴∠OBC=∠OCB=40°,∴∠BOC=180°-2×40°=100°,∴∠A=∠BOC=50°故选:C .【点睛】考查了圆周角定理.在同圆或等圆中,一条弧所对的圆周角是它所对的圆心角的一半.10.D【解析】解:∵I 是△ABC 的内心,∴AI 平分∠BAC ,BI 平分∠ABC ,∴∠BAD=∠CAD ,∠ABI=∠CBI ,故C 正确,不符合题意;∴¶BD=¶CD ,∴BD=CD ,故A 正确,不符合题意; ∵∠DAC=∠DBC ,∴∠BAD=∠DBC .∵∠IBD=∠IBC+∠DBC ,∠BID=∠ABI+∠BAD ,∴∠DBI=∠DIB ,∴BD=DI ,故B 正确,不符合题意.故选D .点睛:本题考查了三角形的内切圆和内心的,以及等腰三角形的判定与性质,同弧所对的圆周角相等. 11.C【解析】将2098.7亿元用科学记数法表示是2.0987×1011, 故选:C .点睛: 本题考查了正整数指数科学计数法,对于一个绝对值较大的数,用科学记数法写成10n a ⨯ 的形式,其中110a ≤<,n 是比原整数位数少1的数.分析:连接OE1,OD1,OD2,如图,根据正六边形的性质得∠E1OD1=60°,则△E1OD1为等边三角形,再根据切线的性质得OD2⊥E1D1,于是可得OD2=3E1D1=3×2,利用正六边形的边长等于它的半径得到正六边形A2B2C2D2E2F2的边长=3×2,同理可得正六边形A3B3C3D3E3F3的边长=(3)2×2,依此规律可得正六边形A11B11C11D11E11F11的边长=(32)10×2,然后化简即可.详解:连接OE1,OD1,OD2,如图,∵六边形A1B1C1D1E1F1为正六边形,∴∠E1OD1=60°,∴△E1OD1为等边三角形,∵正六边形A2B2C2D2E2F2的外接圆与正六边形A1B1C1D1E1F1的各边相切,∴OD2⊥E1D1,∴OD231D132,∴正六边形A2B2C2D2E2F2的边长32,同理可得正六边形A3B3C3D3E3F3的边长=(32)2×2,则正六边形A11B11C11D11E11F11的边长=(32)10×2=92432.故选A.点睛:本题考查了正多边形与圆的关系:把一个圆分成n(n是大于2的自然数)等份,依次连接各分点所得的多边形是这个圆的内接正多边形,这个圆叫做这个正多边形的外接圆.记住正六边形的边长等于它的半径.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1根据弧长公式l =,可得r =,再将数据代入计算即可.【详解】解:∵l =,∴r ===1.故答案为:1.【点睛】考查了弧长的计算,解答本题的关键是掌握弧长公式:l =(弧长为l ,圆心角度数为n ,圆的半径为r ).14.23π 【解析】【分析】延长ME 交AD 于F ,由M 是BC 的中点,MF ⊥AD ,得到F 点为AD 的中点,即AF=12AD ,则∠AEF=30°,得到∠BAE=30°,再利用弧长公式计算出弧BE 的长.【详解】延长ME 交AD 于F ,如图,∵M 是BC 的中点,MF ⊥AD ,∴F 点为AD 的中点,即AF=12AD . 又∵AE=AD ,∴AE=2AF ,∴∠AEF=30°,∴∠BAE=30°,∴弧BE 的长=304180π⋅⋅=23π. 故答案为23π.【点睛】本题考查了弧长公式:l=180n R π⋅⋅.也考查了在直角三角形中,一直角边是斜边的一半,这条直角边所对的角为30度.15.106.710⨯科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】67000000000的小数点向左移动10位得到6.7,所以67000000000用科学记数法表示为106.710⨯,故答案为:106.710⨯.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.16.先将图2以点A 为旋转中心逆时针旋转90︒,再将旋转后的图形向左平移5个单位.【解析】【分析】变换图形2,可先旋转,然后平移与图2拼成一个矩形.【详解】先将图2以点A 为旋转中心逆时针旋转90°,再将旋转后的图形向左平移5个单位可以与图1拼成一个矩形.故答案为:先将图2以点A 为旋转中心逆时针旋转90°,再将旋转后的图形向左平移5个单位.【点睛】本题考查了平移和旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.17.【解析】试题解析:∵AH=2,HB=1,∴AB=AH+BH=3,∵l 1∥l 2∥l 3, ∴考点:平行线分线段成比例.18.2根据分式的性质,要使分式有意义,则必须分母不能为0,要使分式为零,则只有分子为0,因此计算即可.【详解】解:要使分式有意义则20x +≠ ,即2x ≠-要使分式为零,则240x -= ,即2x =±综上可得2x =故答案为2【点睛】本题主要考查分式的性质,关键在于分式的分母不能为0.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)y=﹣x 2+2x+3(2)2≤h≤4(3)(1,4)或(0,3)【解析】【分析】(1)抛物线的对称轴x=1、B (3,0)、A 在B 的左侧,根据二次函数图象的性质可知A (-1,0); 根据抛物线y=ax 2+bx+c 过点C (0,3),可知c 的值.结合A 、B 两点的坐标,利用待定系数法求出a 、b 的值,可得抛物线L 的表达式;(2)由C 、B 两点的坐标,利用待定系数法可得CB 的直线方程.对抛物线配方,还可进一步确定抛物线的顶点坐标;通过分析h 为何值时抛物线顶点落在BC 上、落在OB 上,就能得到抛物线的顶点落在△OBC 内(包括△OBC 的边界)时h 的取值范围.(3)设P (m ,﹣m 2+2m+3),过P 作MN ∥x 轴,交直线x=﹣3于M ,过B 作BN ⊥MN ,通过证明△BNP ≌△PMQ 求解即可.【详解】(1)把点B (3,0),点C (0,3)代入抛物线y=﹣x 2+bx+c 中得:,9303b c c -++=⎧⎨=⎩解得:23b c =⎧⎨=⎩, ∴抛物线的解析式为:y=﹣x 2+2x+3;(2)y=﹣x 2+2x+3=﹣(x ﹣1)2+4,即抛物线的对称轴是:x=1,设原抛物线的顶点为D ,∵点B (3,0),点C (0,3).易得BC 的解析式为:y=﹣x+3,当x=1时,y=2,如图1,当抛物线的顶点D (1,2),此时点D 在线段BC 上,抛物线的解析式为:y=﹣(x ﹣1)2+2=﹣当抛物线的顶点D (1,0),此时点D 在x 轴上,抛物线的解析式为:y=﹣(x ﹣1)2+0=﹣x 2+2x ﹣1, h=3+1=4,∴h 的取值范围是2≤h≤4;(3)设P (m ,﹣m 2+2m+3),如图2,△PQB 是等腰直角三角形,且PQ=PB ,过P 作MN ∥x 轴,交直线x=﹣3于M ,过B 作BN ⊥MN ,易得△BNP ≌△PMQ ,∴BN=PM ,即﹣m 2+2m+3=m+3,解得:m 1=0(图3)或m 2=1,∴P (1,4)或(0,3).【点睛】本题主要考查了待定系数法求二次函数和一次函数的解析式、二次函数的图象与性质、二次函数与一元二次方程的联系、全等三角形的判定与性质等知识点.解(1)的关键是掌握待定系数法,解(2)的关键是分顶点落在BC 上和落在OB 上求出h 的值,解(3)的关键是证明△BNP ≌△PMQ.20.(1)证明略;(2)BC=52,BF=320. 【解析】试题分析:(1)连结AE.有AB 是⊙O 的直径可得∠AEB=90°再有BF 是⊙O 的切线可得BF ⊥AB ,利用同角的余角相等即可证明;(2)在Rt △ABE 中有三角函数可以求出BE ,又有等腰三角形的三线合一可得BC=2BE,过点C 作CG ⊥AB 于点G .可求出AE,再在Rt △ABE 中,求出sin ∠2,cos ∠2.然后再在Rt △CGB 中求出CG ,最后证出△AGC ∽△ABF 有相似的性质求出BF 即可.试题解析:(1)证明:连结AE.∵AB 是⊙O 的直径, ∴∠AEB=90°,∴∠1+∠2=90°.∵BF 是⊙O 的切线,∴BF ⊥AB , ∴∠CBF +∠2=90°.∴∠CBF =∠1.∵AB=AC ,∠AEB=90°, ∴∠1=21∠CAB. ∴∠CBF=21∠CAB.(2)解:过点C 作CG ⊥AB 于点G .∵sin ∠CBF=55,∠1=∠CBF , ∴sin ∠1=55. ∵∠AEB=90°,AB=5. ∴BE=AB·sin ∠1=5.∵AB=AC ,∠AEB=90°, ∴BC=2BE=52.在Rt △ABE 中,由勾股定理得5222=-=BE AB AE .∴sin ∠2=552,cos ∠2=55. 在Rt △CBG 中,可求得GC=4,GB=2. ∴AG=3.∵GC ∥BF , ∴△AGC ∽△ABF. ∴ABAG BF GC =, ∴320=⋅=AG AB GC BF . 考点:切线的性质,相似的性质,勾股定理.21.(1)6y x -=,2y x 25=-(2)AC ⊥CD (3)∠BMC=41° 【解析】分析:(1)由A 点坐标可求得OA 的长,再利用三角函数的定义可求得OC 的长,可求得C 、D 点坐标,再利用待定系数法可求得直线AC 的解析式;(2)由条件可证明△OAC ≌△BCD ,再由角的和差可求得∠OAC+∠BCA=90°,可证得AC ⊥CD ;(3)连接AD ,可证得四边形AEBD 为平行四边形,可得出△ACD 为等腰直角三角形,则可求得答案. 本题解析:(1)∵A(1,0),∴OA=1.∵tan∠OAC=2 5,∴25OCOA=,解得OC=2,∴C(0,﹣2),∴BD=OC=2,∵B(0,3),BD∥x轴,∴D(﹣2,3),∴m=﹣2×3=﹣6,∴y=﹣6x,设直线AC关系式为y=kx+b,∵过A(1,0),C(0,﹣2),∴052k bb=+⎧⎨-=⎩,解得252kb⎧=⎪⎨⎪=-⎩,∴y=25x﹣2;(2)∵B(0,3),C(0,﹣2),∴BC=1=OA,在△OAC和△BCD中OA BCAOC DBCOC BD=⎧⎪∠=∠⎨⎪=⎩,∴△OAC≌△BCD(SAS),∴AC=CD,∴∠OAC=∠BCD,∴∠BCD+∠BCA=∠OAC+∠BCA=90°,∴AC⊥CD;(3)∠BMC=41°.如图,连接AD,∵AE=OC,BD=OC,AE=BD,∴BD∥x轴,∴四边形AEBD为平行四边形,∴AD∥BM,∴∠BMC=∠DAC,∵△OAC≌△BCD,∴AC=CD,∵AC⊥CD,∴△ACD为等腰直角三角形,∴∠BMC=∠DAC=41°.22.11米【解析】【分析】过点C作CE⊥MN于E,过点C′作C′F⊥MN于F,则EF=B′E−AD=1.5−1=0.5(m),AE=DN=19,B′F=EN=5,根据相似三角形的性质即可得到结论.【详解】解:过点C作CE⊥MN于E,过点C′作C′F⊥MN于F,则EF=B′E−AD=1.5−1=0.5(m),AE=DN=19,B′F=EN=5,∵△ABC≌△A′B′C′,∴∠MAE=∠B′MF,∵∠AEM=∠B′FM=90°,∴△AMF∽△MB′F,∴,∴∴MF=,∵∴答:旗杆MN的高度约为11米.【点睛】本题考查了相似三角形的应用,正确的作出辅助线是解题的关键.23.(1)两人相遇时小明离家的距离为1500米;(2)小丽离距离图书馆500m时所用的时间为1856分.【解析】【分析】(1)根据题意得出小明的速度,进而得出得出小明离家的距离;(2)由(1)的结论得出小丽步行的速度,再列方程解答即可.【详解】解:(1)根据题意可得小明的速度为:4500÷(10+5)=300(米/分),300×5=1500(米),∴两人相遇时小明离家的距离为1500米;(2)小丽步行的速度为:(4500﹣1500)÷(35﹣10)=120(米/分),设小丽离距离图书馆500m时所用的时间为x分,根据题意得,1500+120(x ﹣10)=4500﹣500,解得x =1856. 答:小丽离距离图书馆500m 时所用的时间为1856分. 【点睛】本题由函数图像获取信息,以及一元一次方程的应用,由函数图像正确获取信息是解答本题的关键. 24. (1)详见解析;(2)(等边对等角),(三角形外角性质),(同位角相等,两直线平行).【解析】【分析】(1)根据角平分线的尺规作图即可得;(2)分别根据等腰三角形的性质、三角形外角的性质和平行线的判定求解可得.【详解】解:(1)如图所示,直线AP 即为所求.(2)证明:∵AB =AC ,∴∠ABC =∠ACB (等边对等角),∵∠DAC 是△ABC 的外角,∴∠DAC =∠ABC+∠ACB (三角形外角性质),∴∠DAC =2∠ABC ,∵AP 平分∠DAC ,∴∠DAC =2∠DAP ,∴∠DAP =∠ABC ,∴AP ∥l (同位角相等,两直线平行),故答案为(等边对等角),(三角形外角性质),(同位角相等,两直线平行).【点睛】本题主要考查作图能力,解题的关键是掌握角平分线的尺规作图、等腰三角形的性质、三角形外角的性质和平行线的判定.25.(1)6;(2)126y x =-;259524y x =-;(3)10或15413; 【解析】【分析】(1)根据图象变化确定a 秒时,P 点位置,利用面积求a ;(2)P 、Q 两点的函数关系式都是在运动6秒的基础上得到的,因此注意在总时间内减去6秒; (3)以(2)为基础可知,两个点相距3cm 分为相遇前相距或相遇后相距,因此由(2)可列方程.【详解】(1)由图象可知,当点P 在BC 上运动时,△APD 的面积保持不变,则a 秒时,点P 在AB 上. 110302AP ⨯=, ∴AP=6,则a=6;(2)由(1)6秒后点P 变速,则点P 已行的路程为y 1=6+2(x ﹣6)=2x ﹣6,∵Q 点路程总长为34cm ,第6秒时已经走12cm ,故点Q 还剩的路程为y 2=34﹣12﹣5595(6)424x x -=-; (3)当P 、Q 两点相遇前相距3cm 时,59524x -﹣(2x ﹣6)=3,解得x=10, 当P 、Q 两点相遇后相距3cm 时,(2x ﹣6)﹣(59524x -)=3,解得x=15413, ∴当x=10或15413时,P 、Q 两点相距3cm 【点睛】本题是双动点问题,解答时应注意分析图象的变化与动点运动位置之间的关系.列函数关系式时,要考虑到时间x 的连续性才能直接列出函数关系式.26.线段BE 的长约等于18.8cm ,线段CD 的长约等于10.8cm .【解析】试题分析:在Rt △BED 中可先求得BE 的长,过C 作CF ⊥AE 于点F ,则可求得AF 的长,从而可求得EF 的长,即可求得CD 的长.试题解析:∵BN ∥ED ,∴∠NBD=∠BDE=37°,∵AE ⊥DE ,∴∠E=90°,∴BE=DE•tan ∠BDE≈18.75(cm ),如图,过C 作AE 的垂线,垂足为F ,∵∠FCA=∠CAM=45°,∴AF=FC=25cm,∵CD∥AE,∴四边形CDEF为矩形,∴CD=EF,∵AE=AB+EB=35.75(cm),∴CD=EF=AE-AF≈10.8(cm),答:线段BE的长约等于18.8cm,线段CD的长约等于10.8cm.【点睛】本题考查了解直角三角形的应用,正确地添加辅助线构造直角三角形是解题的关键.27.(1)52﹣2×4=42+1;(2)(n+1)2﹣2n=n2+1,证明详见解析.【解析】【分析】(1)根据①②③的规律即可得出第④个等式;(2)第n个等式为(n+1)2﹣2n=n2+1,把等式左边的完全平方公式展开后再合并同类项即可得出右边.【详解】(1)∵22﹣2×1=12+1①32﹣2×2=22+1②42﹣2×3=32+1③∴第④个等式为52﹣2×4=42+1,故答案为:52﹣2×4=42+1,(2)第n个等式为(n+1)2﹣2n=n2+1.(n+1)2﹣2n=n2+2n+1﹣2n=n2+1.【点睛】本题主要考查了整式的运算,熟练掌握完全平方公式是解答本题的关键.。

北京市东城区初三数学第二次模拟练习参考答案

北京市东城区初三数学第二次模拟练习参考答案

北京市东城区2010--2011学年第二学期初三综合练习(二)数学试卷参考答案二、填空题(本题共16分,每小题4分)三、解答题:(本题共30分,每小题5分) 13.(本小题满分5分)解: 原式222441444x x x x x =+++--- ………………3分23x =- . ………………4分当x =,原式2271533244⎛=-=-= ⎝⎭. ………………5分 14.(本小题满分5分) 解:32121=-+--x x x ………………1分 去分母得 x-1+1=3(x-2)解得 x=3. ………………4分 经检验:x=3是原方程的根.所以原方程的根为x=3. ………………5分15.(本小题满分5分) 解:(1)A 1 点的坐标为(3,-1),B 1点的坐标为(2,-3),C 1点的坐标为(5,-3);A 2 点的坐标为(-3,-1),B 2点的坐标为(-2,-3),C 2点的坐标为(-5,-3).图略,每正确画出一个三角形给2分.(2)利用勾股定理可求B 2C ………………5分16.(本小题满分5分) 证明:∵ CF AB ∥,∴ ∠A =∠ACF , ∠ADE =∠CFE . -------2分在△ADE 和△CFE 中, ∠A =∠ACF ,∠ADE =∠CFE ,AE EC =,∴ △ADE ≌△CFE . --------4分 ∴ AD CF =. ------5分17.(本小题满分5分)解:设小刚家4、5两月各行驶了x 、y 千米. --------------------------1分依题意,得 ⎪⎩⎪⎨⎧=+-=.2601.01.0,10054y x x y ----------------------------3分 解得 ⎩⎨⎧==.1100,1500y x -------------------------------4分答:小刚家4月份行驶1500千米,5月份行驶了1100千米. -----------5分18.(本小题满分5分)解:(1)由题意可知 点C 的坐标为(1,1).…………………………………1分设直线QC 的解析式为y kx b =+. ∵ 点Q 的坐标为(0,2),∴ 可求直线QC 的解析式为2y x =-+.…………………………………2分 (2)如图,当点P 在OB 上时,设PQ 交CD 于点E ,可求点E 的坐标为(2a,1). 则522AP AD DE a ++=+,332CE BC BP a ++=-. 由题意可得 5323(3)22a a +=-.∴ 1a =. …………………………………4分 由对称性可求当点P 在OA 上时,1a =-∴ 满足题意的a 的值为1或-1. …………………………………5分四、解答题(本题共20分,每小题5分) 19.(本小题满分5分)ABCDE解:(1)证明:∵BD 是∠ABC 的平分线,∴ ∠1=∠2.∵ AD //BC ,∴∠2=∠3. ∴ ∠1=∠3.∴AB=AD . ---------------------2分(2)作AE ⊥BC 于E ,DF ⊥BC 于F .∴ EF=AD=AB .∵ ∠ABC =60°,BC =3AB , ∴ ∠BAE =30°.∴ BE =21AB . ∴ BF =23AB=21BC .∴ BD=DC .∴ ∠C =∠2.∵ BD 是∠ABD 的平分线, ∴ ∠1=∠2=30°.∴ ∠C =30°. -------------------------5分20.(本小题满分5分)解:(1)CD 与圆O 相切. …………………1分 证明:连接OD ,则∠AOD =2∠AED =2⨯45︒=90︒. …………………2分 ∵四边形ABCD 是平行四边形,∴AB //DC .∴∠CDO =∠AOD =90︒.∴OD ⊥CD . …………………3分 ∴CD 与圆O 相切.(2)连接BE ,则∠ADE =∠ABE .∴sin ∠ADE =sin ∠ABE =65. …………………4分 ∵AB 是圆O 的直径,∴∠AEB =90︒,AB =2⨯3=6. 在Rt △ABE 中,sin ∠ABE =AB AE =65. ∴AE =5 .21.(本小题满分5分)解:(1)30%; ……………………2分 (2)如图所示. ……………………4分ABCD123E FF E D C BA(3)由于月销量的平均水平相同,从折线的走势看,A 品牌的月销量呈下降趋势,而B 品牌的月销量呈上升趋势.所以该商店应经销B 品牌电视机. …………………5分 22.(本小题满分5分)解:(1)将图4中的△ABE 向左平移30cm ,△CDF 向右平移30cm ,拼成如图下中的平行四边形,此平行四边形即为图2中的□ABCD .…………………2分(2)由图2的包贴方法知:AB 的长等于三棱柱的底边周长,∴AB =30.∵ 纸带宽为15,∴ sin ∠ABM =151302AM AB==.∴∠AMB =30°. …………………5分五、解答题:(本题共22分,第23题7分,第24题7分,第25题8分) 23.(本小题满分7分) 解:(1) ∵ 关于x 的一元二次方程2220x ax b ++=有实数根,∴ Δ=,04)2(22≥-b a 有a 2-b 2≥0,(a+b )(a-b )≥0. ∵ 0,0>>b a ,∴ a+b >0,a-b ≥0.∴ b a ≥. …………………………2分 (2) ∵ a ∶b =23∴ 设2,3a k b k ==.解关于x 的一元二次方程22430x kx k ++=,321GRQPOEDC BA得 -3x k k =-或.当12,= -3x k x k =-时,由1222x x -=得2k =. 当123,= -x k x k =-时,由1222x x -=得25k =-(不合题意,舍去). ∴4,a b ==…………………………5分(3)当4,a b ==2812y x x =++与x 轴的交点为、C 的交点坐标分别为A (-6,0)、(-2,0),与y 轴交点坐标为(0,12),顶点坐标D 为(-4,-4).设z =3x -y ,则3y x z =-.画出函数2812y x x =++和3y x =的图象,若直线3y x =平行移动时,可以发现当直线经过点C 时符合题意,此时最大z 的值等于-6 ……………7分24. (本小题满分7分)解:(1)四边形ABCE 是菱形.证明:∵ △ECD 是△ABC 沿BC 方向平移得到的,∴ EC ∥AB ,EC =AB . ∴ 四边形ABCE 是平行四边形. 又∵ AB =BC ,∴四边形ABCE 是菱形. ……………2分 (2)①四边形PQED 的面积不发生变化,理由如下: 由菱形的对称性知,△PBO ≌△QEO , ∴ S △PBO = S △QEO∵ △ECD 是由△ABC 平移得到的, ∴ ED ∥AC ,ED =AC =6. 又∵ BE ⊥AC , ∴BE ⊥ED∴S 四边形PQED =S △QEO +S 四边形POED =S △PBO +S 四边形POED =S △BED=12×BE ×ED =12×8×6=24. ……………4分②如图,当点P 在BC 上运动,使以点P 、Q 、R 为顶点的三角形与△COB 相似. ∵∠2是△OBP 的外角, ∴∠2>∠3. ∴∠2不与∠3对应 . ∴∠2与∠1对应 .即∠2=∠1,∴OP =OC =3 .过O 作OG ⊥BC 于G ,则G 为PC 的中点 . 可证 △OGC ∽△BOC . ∴ CG :CO =CO :BC . 即 CG :3=3:5 .∴ CG =95.∴ PB =BC -PC =BC -2CG =5-2×95=75 .∴ BD =PB +PR +RF +DF =x +185+x +185=10.∴ x =75∴ BP =75. ……………7分25.(本小题满分8分) 解:(1)由题意得A (0,2)、B (2,2)、C (3,0).设经过A ,B ,C 三点的抛物线的解析式为y=ax 2+bx +2.则⎩⎨⎧=++=++02390224b a b a解得 ⎪⎪⎩⎪⎪⎨⎧=-=3432b aH∴ 224233y x x =-++.……………2分 (2)由224233y x x =-++=228(1)33x --+.∴ 顶点坐标为G (1,83).过G 作GH ⊥AB ,垂足为H .则AH =BH =1,GH =83-2=23.∵EA⊥AB,GH⊥AB,∴EA∥GH.∴GH是△BEA的中位线.∴EA=3GH=43.过B作BM⊥OC,垂足为M.则MB=OA=AB.∵∠EBF=∠ABM=90°,∴∠EBA=∠FBM=90°-∠ABF.∴R t△EBA≌R t△FBM.∴FM=EA=43.∵CM=OC-OM=3-2=1,∴CF=FM+CM=73.……………5分(3)要使四边形BCGH的周长最小,可将点C向上平移一个单位,再做关于对称轴对称的对称点C1,得点C1的坐标为(-1,1).可求出直线BC1的解析式为1433y x=+.直线1433y x=+与对称轴x=1的交点即为点H,坐标为(1,53).点G的坐标为(1,23).……………8分。

2018-2019学年北京市东城区九年级二模数学试卷(含答案)

2018-2019学年北京市东城区九年级二模数学试卷(含答案)

东城区2018-2019学年度第二学期初三年级统一测试(二)数学试卷 2019.6一、选择题(本题共16分,每小题2分) 第1-8题均有四个选项,符合题意的选项只有..一个 1.若分式31-x 有意义,则x 的取值范围是 A .3≠xB .3<xC . 3>xD .3=x2.若a= ,则实数a 在数轴上对应的点P 的大致位置是 A. B. C. D.3.下图是某几何体的三视图,该几何体是A .棱柱B .圆柱C .棱锥D .圆锥4. 二元一次方程组⎩⎨⎧-=-=+22y x y x 的解为A.B.C.D.⎩⎨⎧=-=02y x5.下列图形中,是中心对称图形但不是..轴对称图形的是A. B., C. D.6.如图,在平面直角坐标系xOy中,点A的坐标为(1,3),点B的坐标为(2,1).将线段AB沿某一方向平移后,若点A的对应点A'的坐标为(-2,0).则点B的对应点B'的坐标为A.(5,2)B.(-1,-2)C.(-1,-3)D.(0,-2)7.如图,某地修建高速公路,要从A地向B地修一条隧道(点A、B在同一水平面上).为了测量A、B两地之间的距离,一架直升飞机从A地起飞,垂直上升1000米到达C处,在C处观察B地的俯角为α,则A、B两地之间的距离约为A.1000sinα米B.1000tanα米C.1000tanα米D.1000sinα米8.如图1,动点P从菱形ABCD的顶点A出发,沿A→C→D以1cm/s的速度运动到点D.设点P的运动时间为x(s),△PAB的面积为y(cm2).表示y与x的函数关系的图象如图2所示,则a的值为图1 图2 A .5B .52C . 2D .25二、填空题(本题共16分,每小题2分) 9.分解因式:= .10.某校准备从甲、乙、丙、丁四个科创小组中选出一组,参加东城区青少年科技创新大赛,表格反映的是各组平时成绩的平均数x (单位:分)及方差s 2,如果要选出一个成绩较好且状态稳定的组去参赛,那么应选的组是 .甲 乙 丙 丁 x7 8 8 7 s 211.20.91.811. 如果2x y -=,那么代数式2(2)4(2)x x y y x +-+-的值是 .12. 如图所示的网格是正方形网格,点A ,B ,C ,D 均落在格点上,则∠BAC+∠ACD=________°.13. 如图,在平面直角坐标系xOy 中,若直线y 1=-x+a 与直线y 2=bx -4相交于点P (1,-3),则关于x 的不等式-x+a <bx -4的解集是 .14.用一组,k b 的值说明命题“若0k >,则一次函数y kx b =+的图象经过第一、二、三象限”是错误的,这组值可以是k =____________,b =____________.15. 如图,B ,C ,D ,E 为⊙A 上的点,DE =5,∠BAC +∠DAE =180°,则圆心A 到弦BC的距离为.16.运算能力是一项重要的数学能力。

2023北京东城区初三二模数学试卷及答案

2023北京东城区初三二模数学试卷及答案

东城区2022-2023学年度第二学期初三年级统一测试(二)数学试卷 2023.5学校 班级 姓名 教育 ID 号 l .本试卷共8页,共三道大题,28道小题,满分100分,考试时间120分钟。

2.在试卷和答题卡上准确填写学校、班级、姓名和教育 I D 号。

3.试题答案 一 律填涂或书写在答题卡上,在试卷上作答无效。

考 生 须 知 4.在答题卡上,选择题、作图题用铅笔作答,其他试题用黑色字迹签字笔作答。

2B 5.考 交回。

试结束后,将本试卷、答题卡和草稿纸一并 16 2 一 、选择题(本题共 分,每小题 分)第 1-8题均有四个选项,符合题意的选项 只. 有. 一个.l .据报道:中国铁路营业里程从2012年的9. 8万公里增长到2022年的15.5万公里, 其中高铁从0.9万公里增长到4. 2万公里,稳居世界第一. 将数字155 000用科学记 数法表示应为A. 0.155X 106 C.1.55X l06B.1.55X l05D.155X 1032. 如 图是某几何体的展开图,该几何体是A .三棱柱 B.四棱柱D. 圆锥C. 圆柱 3. 在平面直角坐标系中,已知点A(3,2),B(5,2),将线段A B 平移得到线段C D ,若点A的对应点C 的坐标是( — 1,2),则点 B 的对应点 的坐标是 D A. 0,2) B.(2, -1) C. (9,2) D. (2,1) 4.下列正多边形中,一 个内角为 120°的是□ u 。

(/ A B C D数学试卷 笫 1 页(共 8 页)v.如因,1ꢀꢀꢀ L,'1 ꢀ ꢀꢀr ꢀ U ꢀꢀ,E ꢀA H 平点ꢅꢅB D 和C ꢀ交于ꢅO ,则下列 D D 几丁点 A结论不正确的是. . . A .乙1 =乙2°B.乙l +乙5 = 90C.乙3=乙4 cB D .乙5=乙3+乙46. 下列运贷结果i l ·:确的足—a) 2 =a 2A. B.u ,6十矿=矿( a 2) 2 =a - ꢀ C. ( - 2 D. 3a ꢀa = 17. 小红参加 “ 处团百仆,我为 旗添光彩 主题油讲比赛,形象 表达 内容三项得分分别 1�·1 ” 、 、 是8分、8分、9分.若将 项得ꢀ依次按2 : 4 : 4的比例确定最终成绩,则小红的最 终比赛成绩为A. 8. 3分B. 8. �C. 8. 5D. 8. 6分ꢀ ꢀ 8.两个变量满足的函数关系如图所示.y900。

北京市东城区2019-2020学年中考数学二模试卷含解析

北京市东城区2019-2020学年中考数学二模试卷含解析

北京市东城区2019-2020学年中考数学二模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,在正方形ABCD中,AB=9,点E在CD边上,且DE=2CE,点P是对角线AC上的一个动点,则PE+PD的最小值是()A.310B.103C.9 D.922.点A(x1,y1)、B(x2,y2)、C(x3,y3)都在反比例函数3y=x-的图象上,且x1<x2<0<x3,则y1、y2、y3的大小关系是()A.y3<y1<y2B.y1<y2<y3C.y3<y2<y1D.y2<y1<y33.夏新同学上午卖废品收入13元,记为+13元,下午买旧书支出9元,记为()元.A.+4 B.﹣9 C.﹣4 D.+94.如图,由两个相同的正方体和一个圆锥体组成一个立体图形,其俯视图是A.B.C.D.5.中华人民共和国国家统计局网站公布,2016年国内生产总值约为74300亿元,将74300亿用科学计数法可以表示为( )A.1074310⨯B.1174.310⨯C.107.4310⨯D.127.4310⨯6.如图,小正方形边长均为1,则下列图形中三角形(阴影部分)与△ABC相似的是A.B.C.D.7.一个不透明的布袋里装有5个只有颜色不同的球,其中2个红球、3个白球.从布袋中一次性摸出两个球,则摸出的两个球中至少有一个红球的概率是()A.12B.23C.25D.7108.如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=40°,则∠2的度数为()A.50°B.40°C.30°D.25°9.如图,将矩形ABCD沿EM折叠,使顶点B恰好落在CD边的中点N上.若AB=6,AD=9,则五边形ABMND的周长为()A.28 B.26 C.25 D.2210.如图是由若干个相同的小正方体搭成的一个几何体的主视图和俯视图,则所需的小正方体的个数最少是()A.6B.5C.4D.311.如图,在△ABC中,DE∥BC交AB于D,交AC于E,错误的结论是().A.AD AEDB EC=B.AB ACAD AE=C.AC ECAB DB=D.AD DEDB BC=12.如图,直线m∥n,∠1=70°,∠2=30°,则∠A等于()A.30°B.35°C.40°D.50°二、填空题:(本大题共6个小题,每小题4分,共24分.)13.点A (a ,3)与点B (﹣4,b )关于原点对称,则a+b =( ) A .﹣1B .4C .﹣4D .114.某一时刻,测得一根高1.5m 的竹竿在阳光下的影长为2.5m .同时测得旗杆在阳光下的影长为30m ,则旗杆的高为__________m .15.如图,⊙O 的外切正六边形ABCDEF 的边长为2,则图中阴影部分的面积为_____.16.一个两位数,个位数字比十位数字大4,且个位数字与十位数字的和为10,则这个两位数为_______. 17.分解因式:22a 4a 2-+=_____.18.观察下列图形,若第1个图形中阴影部分的面积为1,第2个图形中阴影部分的面积为34,第3个图形中阴影部分的面积为916,第4个图形中阴影部分的面积为2764,…则第n 个图形中阴影部分的面积为_____.(用字母n 表示)三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)校园空地上有一面墙,长度为20m ,用长为32m 的篱笆和这面墙围成一个矩形花圃,如图所示.能围成面积是126m 2的矩形花圃吗?若能,请举例说明;若不能,请说明理由.若篱笆再增加4m ,围成的矩形花圃面积能达到170m 2吗?请说明理由.20.(6分)二次函数y=x 2﹣2mx+5m 的图象经过点(1,﹣2). (1)求二次函数图象的对称轴; (2)当﹣4≤x≤1时,求y 的取值范围.21.(6分)已知y 关于x 的二次函数22(0).y ax bx a =--≠(1)当2,4a b ==时,求该函数图像的顶点坐标.(2)在(1)条件下,(,)P m t 为该函数图像上的一点,若p 关于原点的对称点p '也落在该函数图像上,求m 的值(3)当函数的图像经过点(1,0)时,若12113(,),(,)22A y B y a是该函数图像上的两点,试比较1y 与2y 的大小.22.(8分)如图,已知Rt △ABC 中,∠C=90°,D 为BC 的中点,以AC 为直径的⊙O 交AB 于点E . (1)求证:DE 是⊙O 的切线;(2)若AE :EB=1:2,BC=6,求⊙O 的半径.23.(8分)如图,点D 是AB 上一点,E 是AC 的中点,连接DE 并延长到F ,使得DE=EF ,连接CF . 求证:FC ∥AB .24.(10分)为了丰富校园文化,促进学生全面发展.我市某区教育局在全区中小学开展“书法、武术、黄梅戏进校园”活动.今年3月份,该区某校举行了“黄梅戏”演唱比赛,比赛成绩评定为A ,B ,C ,D ,E 五个等级,该校部分学生参加了学校的比赛,并将比赛结果绘制成如下两幅不完整的统计图,请根据图中信息,解答下列问题.(1)求该校参加本次“黄梅戏”演唱比赛的学生人数; (2)求扇形统计图B 等级所对应扇形的圆心角度数;(3)已知A 等级的4名学生中有1名男生,3名女生,现从中任意选取2名学生作为全校训练的示范者,请你用列表法或画树状图的方法,求出恰好选1名男生和1名女生的概率.25.(10分)如图,AB ∥CD ,△EFG 的顶点F ,G 分别落在直线AB ,CD 上,GE 交AB 于点H ,GE 平分∠FGD .若∠EFG=90°,∠E=35°,求∠EFB 的度数.26.(12分)矩形AOBC中,OB=4,OA=1.分别以OB,OA所在直线为x轴,y轴,建立如图1所示的平面直角坐标系.F是BC边上一个动点(不与B,C重合),过点F的反比例函数y=kx(k>0)的图象与边AC交于点E。

东城区初三二模数学试卷及答案.doc

东城区初三二模数学试卷及答案.doc

北京市东城区2012--2013学年第二学期初三综合练习(二) 数 学 试 卷 2013.6学校 班级 姓名 考号一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的. 1. 3的相反数是 A . 3-B .3C .13 D . 13-2. 太阳的半径大约是696 000千米,用科学记数法可表示为A .696×103千米 B .6.96×105千米 C .6.96×106千米 D .0.696×106千米 3.下列四个立体图形中,主视图为圆的是A B C D 4.已知在Rt △ABC 中,∠C =90°,∠A =α,AC =3,那么AB 的长为 A.3sin α B.3cos αC.αsin 3D.αcos 35. 抛掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷得朝上一面的点数为3的倍数的概率为 A .16B .14C .13D .126. 若一个多边形的内角和等于720︒,则这个多边形的边数是 A .5B .6C .7D .87. 在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:这些运动员跳高成绩的中位数和众数分别是 A .1.65,1.70 B .1.70,1.70C .1.70,1.65D .3,48. 如图,在平面直角坐标系中,已知⊙O 的半径为1,动直线AB 与x 轴交于点(,0)P x ,直线AB 与x 轴正方向夹角为45︒,若直线AB 与⊙O 有公共点,则x 的取值范围是A .11x -≤≤B .x <<C .0x ≤≤D .x ≤≤二、填空题(本题共16分,每小题4分) 9. 在函数23-=x y 中,自变量x 的取值范围是 . 10. 分解因式:244mn mn m ++= .11. 如图,已知正方形ABCD 的对角线长为形ABCD 沿直线EF 折叠,则图中折成的4个阴影三 角形的周长之和为 .12. 如图,∠ACD 是△ABC 的外角,ABC ∠的平分线与ACD ∠的平分线交于点1A ,1A BC ∠的平分线与1A CD ∠的平分线交于点2A ,…,1n A BC -∠的平分线与1n A CD -∠的平分线交于点n A . 设A θ∠=, 则1A ∠= ;n A ∠= . 三、解答题(本题共30分,每小题5分)13. 计算:1012cos 45()(4-︒--π. 14. 解分式方程:211322x x x--=--. 15. 已知:如图,点E ,F 分别为□ABCD 的边BC ,AD 上的点,且12∠=∠. 求证:AE=CF .16. 已知2410x x -+=,求2(1)64x x x x-+--的值.17. 列方程或方程组解应用题:我国是一个淡水资源严重缺乏的国家,有关数据显示,中国人均淡水资源占有量仅为美国人均淡水资源占有量的15,中、美两国人均淡水资源占有量之和为 13 800m 3,问中、美两国人均淡水资源占有量各为多少(单位:m 3)?18. 如图,一次函数1y x =--的图象与x 轴交于点A , 与y 轴交于点B ,与反比例函数ky x=图象的一个 交点为M (﹣2,m ). (1)求反比例函数的解析式; (2)若点P 是反比例函数ky x=图象上一点, 且2BOP AOB S S =△△,求点P 的坐标.四、解答题(本题共20分,每小题5分)19.某中学九(1)班同学为了解2013年某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据进行如下整理.请解答以下问题:(1)把上面的频数分布表和频数分布直方图补充完整;(2)求该小区用水量不超过15吨的家庭占被调查家庭总数的百分比;(3)若该小区有1000户家庭,根据调查数据估计,该小区月均用水量超过20吨的家庭大约有多少户?20. 已知:如图,在菱形ABCD 中,F 为边BC 的中点,DF 与对角线AC 交于点M ,过M 作ME ⊥CD 于点E .(1)求证:AM =2CM ;(2)若12∠=∠,CD =ME 的值.21.如图,点A ,B ,C 分别是⊙O 上的点,∠B =60°,AC =3,CD是⊙O 的直径,P 是CD 延长线上的一点,且AP =AC . (1)求证:AP 是⊙O 的切线; (2)求PD 的长.22. 阅读并回答问题:数学课上,探讨角平分线的作法时,李老师用直尺和圆规作角平分线,方法如下:小聪只带了直角三角板,他发现利用三角板也可以作角平分线,方法如下:小颖的身边只有刻度尺,经过尝试,她发现利用刻度尺也可以作角平分线.根据以上情境,解决下列问题:(1) 小聪的作法正确吗?请说明理由;(2) 请你帮小颖设计用刻度尺作AOB ∠平分线的方法.(要求:不与小聪方法相同,请画出图形,并写出画图的方法,不必证明).五.解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23. 已知:关于x 的一元二次方程01)2()1(2=--+-x m x m (m 为实数). (1)若方程有两个不相等的实数根,求m 的取值范围;(2)求证:抛物线1)2()1(2--+-=x m x m y 总过x 轴上的一个定点;(3)若m 是整数,且关于x 的一元二次方程01)2()1(2=--+-x m x m 有两个不相等的整数根时,把抛物线1)2()1(2--+-=x m x m y 向右平移3个单位长度,求平移后的解析式.24. 在矩形ABCD 中,4AB =,3BC =,E 是AB 边上一点,EF CE ⊥交AD 于点F ,过点E 作AEH BEC ∠=∠,交射线FD 于点H ,交射线CD 于点N . (1)如图1,当点H 与点F 重合时,求BE 的长;(2)如图2,当点H 在线段FD 上时,设BE x =,DN y =,求y 与x 之间的函数关系式,并写出自变量x 的取值范围;(3)连结AC ,当以点E ,F ,H 为顶点的三角形与△AEC 相似时,求线段DN 的长.25.定义:P,Q分别是两条线段a和b上任意一点,线段PQ长度的最小值叫做线段a 与线段b的距离. 已知O(0,0),A(4,0),B(m,n),C(m+4,n)是平面直角坐标系中的四点.(1)根据上述定义,当m=2,n=2时,如图1,线段BC与线段OA的距离是_____;当m=5,n=2时,如图2,线段BC与线段OA的距离是______ .(2)如图3,若点B落在圆心为A,半径为2的圆上,求线段BC与线段OA的距离d.(3)当m的值变化时,动线段BC与线段OA的距离始终为2,若线段BC的中点为M,直接写出点M随线段BC运动所形成的图形的周长.北京市东城区2012--2013学年第二学期初三综合练习(二)数学试卷参考答案一、选择题(本题共32分,每小题4分)二、填空题(本题共16分,每小题4分)三、解答题:(本题共30分,每小题5分) 13. 解:1012cos 45()(4π-︒--=2(4)214---分3=. ………5分14. 解:211322x x x -+=-- ………………1分 去分母得2113(2)x x -+=-解得6x =. ………………4分 经检验:6x =是原方程的根.所以原方程的根为6x =. ………………5分 15. 证明:∵四边形ABCD 是平行四边形,∴AB=CD ,∠B=∠D .…………………………2分 在△ABE 与△CDF 中,12.AB CD B D ∠=∠⎧⎪=⎨⎪∠=∠⎩,,∴△ABE ≌△CDF .…………………………4分 ∴AE=CF .………………………………5分16. 解:2(1)64x x x x-+-- 2(1)(4)(6)=(4)x x x x x x ---+-22424=4x x x x-+-2410x x -+=,24=1x x ∴-- .22424124==23.41x x x x -+-+=---原式 ………………………………………5分17. 解:设中国人均淡水资源占有量为x m 3,美国人均淡水资源占有量为y m 3. 根据题意得:5,13800.y x x y =⎧⎨+=⎩……………………………………………2分解得:2300,11500.x y =⎧⎨=⎩ ……………………………………………4分答:中、美两国人均淡水资源占有量各为2 300m 3,11 500m 3.………………………5分 18.解: (1) ∵M (﹣2,m )在一次函数1y x =--的图象上,∴ 211m =-=.∴ M (﹣2,1).又M (﹣2,1)在反比例函数ky x=图象上, ∴2k =-. ∴2y x-=. ……........................3分 (2)由一次函数1y x =--可求(10)A -,,(0,1)B -.∴11122112AOB S OB OA ∆=⨯⨯⨯=⨯=. ∴21=BOP AOB S ∆∆=.设BOP ∆边OB 上的高位h ,则=2h . 则P 点的横坐标为2±. 把P 点的横坐标为2±代入2y x-=可得P 点的纵坐标为1. (2,1)P ∴-或(2,1)P -. ……5分四、解答题(本题共20分,每小题5分)19.解:(1) 表格:从上往下依次是:12,0.08;图略; ……3分(2)68%;……4分 (3)120户. ……5分20.解:(1)∵四边形ABCD 是菱形.∴BC//AD .∴△∽△CFM ADM . ∴CF CMAD AM=. ∵F 为边BC 的中点,∴1122CF BC AD ==. ∴12CF CM AD AM ==. ∴2AM MC =. ……………………2分 (2)∵A B//DC , ∴ 1=4∠∠. ∵1=2∠∠, ∴ 2=4∠∠. ∵ME ⊥CD , ∴12CE CD =. ∵四边形ABCD 是菱形, ∴ 3=4∠∠. ∵F 为边BC 的中点, ∴12CF BC =. CF CE ∴=.在△CMF 和△CME 中,3=4∠∠,CF =CE ,CM 为公共边,∴△CMF ≌△CME . ∴ =90CFM CEM ∠∠=︒. ∵2=34∠∠=∠, ∴2=3430∠∠=∠=︒.∴ME CE =.∵2CD CE ==,∴CE = ∴1ME =. ……………………………5分 21.解:(1)证明:连接OA . ∵∠B =60°,∴∠AOC =2∠B =120°.又∵OA=OC ,∴∠ACP =∠CAO =30°.∴∠AOP =60°. ∵AP=AC ,∴∠P =∠ACP =30°. ∴∠OAP=90°,∴OA ⊥A P .∴ AP 是⊙O 的切线. …………………2分 (2)解:连接AD .∵CD 是⊙O 的直径,∴∠CAD =90°.∴AD =AC •tan30°=3. ∵∠ADC =∠B =60°,∴∠P AD =∠ADC ﹣∠P =60°﹣30°=30°.∴∠P =∠P AD .∴PD=AD …………………5分22.解:(1)小聪的作法正确. …………………1分∵PM ⊥OM , PN ⊥ON , OMP =∠ONP =90°.Rt △OMP 和Rt △ONP 中, ∵OP=OP ,OM=ON ,∴Rt △OMP ≌R t △ONP (HL ).∴MOP NOP ∠=∠.OP 平分∠AOB . …………………2分 2)解:如图所示. …………………3分作法:①利用刻度尺在OA ,OB 上分别截取OG=OH .②连结GH ,利用刻度尺作出GH 的中点Q .③作射线OQ ,则OQ 为∠AOB 的平分线. …5分五.解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.解:(1)22(2)4(1)m m m ∆=-+-=.∵方程有两个不相等的实数根,∴0≠m .……………………………………………………………………………1分 ∵01≠-m ,∴m 的取值范围是01m m ≠≠且.………………………………………………………2分(2)证明:令0=y 得,01)2()1(2=--+-x m x m . ∴)1(2)2()1(2)2(2-±--=-±--=m m m m m m x . ∴1)1(221-=--+-=m m m x ,11)1(222-=-++-=m m m m x . …………………………………4分 ∴抛物线与x 轴的交点坐标为(0,1-),(0,11-m ).∴无论m 取何值,抛物线1)2()1(2--+-=x m x m y 总过定点(1,0-).……5分(3)∵1-=x 是整数 ∴只需11-m 是整数. ∵m 是整数,且01m m ≠≠且,∴2=m .…………………………………………………………………………6分 当2=m 时,抛物线为12-=x y .把它的图象向右平移3个单位长度,得到的抛物线解析式为 861)3(22+-=--=x x x y .…………………………………………………7分24.解:(1)∵EF EC ⊥,∴90AEF BEC ∠+∠=︒.∵AEF BEC ∠=∠,∴45BEC ∠=︒.∵90B ∠=︒,∴BE BC =.∵3BC =,∴3BE =.…………………2分(2)过点E 作EG CN ⊥,垂足为点G .∴BE CG =.∵AB ∥CN ,∴AEH N ∠=∠,BEC ECN ∠=∠.∵AEH BEC ∠=∠,∴N ECN ∠=∠.∴EN EC =.∴22CN CG BE ==.∵BE x =,DN y =,4CD AB ==,∴()2423y x x =-≤≤.…………………4分(3)∵矩形ABCD ,∴90BAD ∠=︒.∴90AFE AEF ∠+∠=︒.∵EF EC ⊥ ,∴90AEF CEB ∠+∠=︒.∴AFE CEB ∠=∠.∴HFE AEC ∠=∠.当以点E ,F ,H 为顶点的三角形与AEC ∆相似时,ⅰ)若FHE EAC ∠=∠,∵BAD B ∠=∠,AEH BEC ∠=∠,∴FHE ECB ∠=∠ .∴EAC ECB ∠=∠.∴tan tan EAC ECB ∠=∠,∴BC BE AB BC =.∴94BE =.∴12DN =. ⅱ)若FHE ECA ∠=∠,如图所示,记EG 与AC 交于点O .∵AEH BEC ∠=∠,∴AHE BCE ∠=∠.∴ENC ECN ∠=∠.∵EN EC =,EG CN ⊥, ∴12∠=∠.∵AH ∥EG ,∴1FHE ∠=∠.∴2FHE ∠=∠.∴2ECA ∠=∠. ∴EO CO =.设3EO CO k ==,则4,5AE k AO k ==,∴85AO CO k +==. ∴58k =. ∴52AE =,32BE =. ∴1DN =. 综上所述,线段DN 的长为12或1. ………………7分25.解:(1)2 ………………4分(2)当24m ≤≤时,(22)d n n =-≤≤;当46m ≤≤时,2d =. ………………6分(3)16+4π. ………………8分。

2022北京东城区初三二模数学试卷及答案

2022北京东城区初三二模数学试卷及答案
x B(2, −2) .
(1)求 k, b 的值;
(2)过点 P(n, 0) (n 0) 作垂直于 x 轴 直线,与双曲线 y = k (k 0) 交于点 C ,与直线 l 交于点 D .
x
的 ①当n = 2 时,判断CD 与CP 的数量关系;
②当 CD CP 时,结合图象,直接写出 n 的取值范围. 23. 如图,在 ABC 中, AB AC , BAC = 90 ,在 CB 上截取 CD = CA ,过点 D 作 DE ⊥ AB 于点 E ,连接 AD,以点 A 为圆心、 AE 的长为半径作 A .
2 ③画直线 AD . 直线 AD 即为所求,
(1)使用直尺和圆规,依作法补全图形(保留作图痕迹); (2)完成下面的证明。
证明:由作法可知: AD 平分 EAC . ∴ EAD = DAC (______________).(填推理的依据) ∵ AB = AC , ∴ B = C ∵ EAC = B + C ,
2022 北京东城初三二模
数学
一、选择题(本题共 16 分,每小题 2 分)第 1-8 题均有四个选项,符合题意的选项只.有.一个. 1. 国家速滑馆是 2022 年北京冬奥会北京主赛区标志性场馆,是唯一新建的冰上竞赛场馆.国家速滑馆拥有亚洲最 大的全冰面设计,冰面面积达 12000 平方米.将 12000 用科学记数法表示应为( )
5 / 33
(数据来源于网络《2021 年中国城市科技创新指数报告》) 根据以上信息,回答下列问题:
(1)综合指数得分的频数分布表中, m = ______________;
(2)40 个城市综合指数得分的中位数为____________; (3)以下说法正确的是____________. ①某城市创新效率指数得分排名第 1,该城市的总量指数得分大约是 86.2 分; ②大多数城市效率指数高于总量指数,可以通过提升这些城市的总量指数来提升城市的综合指数.

2024年北京东城区初三二模数学试卷和答案

2024年北京东城区初三二模数学试卷和答案

东城区2023—2024学年度第二学期初三年级统一测试(二)数 学 试 卷 2024.5一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个1.下列图形中,是轴对称图形但不是中心对称图形的是2. 4月18日是国际古迹遗址日.在国家考古遗址公园联盟联席会上发布的《2023年度国家考古遗址公园运营报告》显示,圆明园等全国55家国家考古遗址公园2023年接待游客总量超6700万人次,同比增长135%.其中,将67 000 000用科学记数法表示应为A . 86.710⨯B . 76.710⨯C . 66710⨯D . 80.6710⨯3.在下列各式中,从左到右计算结果正确的是A .=B . ()2211x x -=-C. 2=- D . 12111x x x -+=++4. 若实数x 的取值范围在数轴上的表示如图所示, 在下列结论中,正确的是A . x x =B . 1x +0<≤3C . 24x -≤2≤D . 2x 1<≤45. 若一个多边形的内角和是外角和的3倍,则这个多边形的边数是A . 5B . 6C . 8D . 106. 一个圆锥的底面半径的长为3,母线的长为15,则侧面展开图的面积是A . 6πB . 9πC . 45πD . 54π7. 在一个不透明的盒子中装有3个小球,其中2个红球,1个绿球,除颜色不同外,其它 没有任何差异.小明将小球摇匀,从中随机摸出2个小球恰好是1个红球和1个绿球的概率是 A.13 B. 49 C ,12D. 238.如图,在△ABC 中,AD ⊥BC 于点D ,点E 是BC 的中点. 设AB =c ,AC =b ,AD =h ,BD =m ,CD =n , m <n ,且2h mn =,有以下三个结论:①22c m mn =+;② 点A,B,C 在以点E 为圆心,()12m n +为半径的圆上;③ 2223b m h +>.上述结论中,所有正确结论的序号是A .① ② B, ① ③ C. ② ③ D. ① ② ③二、填空题(本题共16分,每小题2分)9. 若分式21x -有意义,则实数x 的取值范围是 .10. 因式分解:244ma ma m ++= .11.当a = ,b = 时,可以说明“若,a b >则22a b >”是假命题(写出一组a ,b 的值即可).12. 在平面直角坐标系xOy 中,若点()2,4是函数()110y k x k =≠和()220k y k x =≠的图象的一个交点,则这两个函数图象的另一个交点坐标是 .13.若250m m +-=,则代数式2211110m m m m -⎛⎫-÷ ⎪⎝⎭的值为 .14.若关于x 的一元二次方程()210x m x m -++=的两个实数根的差等于2,,则实数m 的值是 .15. 下图是2015-2023年我国主要可再生能源发电装机容量(亿千瓦)统计图.根据上述信息,下列推断合理的是(填写序号).①2015-2023年,我国主要可再生能源发电中,太阳能发电装机容量增幅最大;②2015-2023年,相对于风电和太阳能发电,我国水电发电装机容量比较稳定;③2015-2023年,我国水电发电装机容量一直高于风电发电装机容量.16.现有一半径10米的圆形场地,建立如图所示的平面直角坐标系xOy,场地圆心A的坐标为().机器人在该场地中(含边界),根据指令[s,α](s≥0,0º<α<180º)完成下列动作:先朝其面对的方向沿直线行走距离s,再在原地逆时针旋转角度α,执行任务.机器人在坐标原点处,且面对x轴正方向,(1)若给机器人下达指令[4,90º],则机器人至少重复执行________次该指令能回到原点O 处;(2)若给机器人下达指令[s,α],使机器人重复执行该指令回到原点.且s最大,则应给机器人下达的指令是________.三、解答题(本题共68分,第17-22题,每题5分,第23-26题,每题6分,27-28题,每题7分) 解答应写出文字说明、演算步骤或证明过程.17.()131tan 602.2-︒⎛⎫-+--- ⎪⎝⎭18.解不等式组:()21461 1.3x x x x ⎧+-⎪⎨+-⎪⎩<5,≥ 19.如图,已知⊙O 及⊙O 外一点P .求作:⊙O 的切线PA ,PC .作法:①连接OP ;②分别以点O ,P 为圆心,大于12OP 的长为半径画弧,两弧分别交于点M ,N ,作直线MN 交OP 于点B ;③以点B 为圆心,OB 的长为半径画圆,交⊙O 于点A ,C (点A 位于OP 的上方);④作直线PA ,PC ;则直线PA ,PC 就是所求作的直线.(1)利用直尺和圆规,补全图形(保留作图痕迹);(2)设线段OP 交⊙O 于点E ,连接OA ,AC ,CE .若∠ACE =34°,则∠AOP=°,∠APC = °.20. 如图,在四边形ABCD 中,点E 在BC 上,AE ∥CD ,∠ACB =∠DAC ,EF ⊥AB 于点F ,EG ⊥AC 于点G ,EF=EG.(1)求证:四边形AECD 是平行四边形;(2)若CD=4,∠B =45°,∠CEG =15°,求AB 的长.21.列方程或方程组解应用题如图1,正方形ABCD 是一块边长为30 cm 的灰色地砖,在A ,B ,C ,D 四个顶点处截去四个全等的等腰直角三角形后,得到一块八边形地砖.用四块相同的该八边形地砖和一块黑色正方形地砖拼成如图2所示的图案,该图案的面积为3 0002cm (不考虑接缝),求一块八边形地砖和黑色正方形地砖的面积.22. 在平面直角坐标系xOy 中,函数y =kx +b (k ≠0)的图象经过点A (1,0)和B (2,1).(1)求该函数的解析式;(2)当x >3时,对于x 的每一个值,函数y =mx +12的值小于函数y =kx +b (k ≠0)的值,当x <1 时,对于x 的每一个值,函数y =mx +12的值小于0,直接写出m 的值.23. 某校举办“学生讲堂”,1班为了选出一位同学代表班级参赛,先后进行了笔试和面试.在笔试中,甲、乙、丙三位同学脱颖而出,他们的笔试成绩(满分100)分别是95,94,88.在面试中,十位评委对甲、乙、丙三位同学的表现进行打分,每位评委最高打10分,面试成绩等于各位评委打分之和.对甲、乙、丙三位同学的面试的数据进行整理、描述和分析,下面给出了部分信息.a . 评委给甲同学打分如下:10,10,9,8,8,8,7,7,6,5b.评委给乙、丙两位同学打分的折线图:c.甲、乙、丙三位同学面试情况统计表:根据以上信息,回答下列问题:(1)直接写出表中m,n的值;(2)在面试中,如果评委给某个同学的打分的方差越小,则认为评委对该同学面试的评价越一致.据此推断:甲、乙、丙三位同学中,评委对_________的评价更一致(填“甲”、“乙”或“丙”);(3)在笔试和面试两项成绩中,按笔试成绩占40%,面试成绩占60%,计算甲、乙、丙的综合成绩,综合成绩最高的是______(填“甲”、“乙”或“丙”).24.如图,在△ABC中, AB = AC,CD⊥BC于点C,交△ABC的外接圆于点D.连接BD,AE⊥BD于点E,交BC的延长线于点F.(1)求证:∠BAF=∠ABF;(2)当AE=1,BE=2时,求线段EF的长及△ABC的外接圆的半径长.25.如图,在等边△ABC中,AB=5cm,点D是BC的中点,点E是AB上一个动点,连接CE,DE.设B,E两点间的距离为x cm,CE+DE CD =y cm.小明根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小明的探究过程,请补充完整:(1)按照下表中自变量x的值进行取点、画图、测量,得到了y与x的几组对应值:m的值为________(保留一位小数);(2)在平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y),并画出函数y的图象;(3)结合函数图象,解决问题(保留一位小数):①当y =5时, B ,E 两点间的距离约为 cm ;②当y =4x 时,B ,E 两点间的距离约为 cm .26.在平面直角坐标系xOy 中,已知抛物线2224y ax amx am =-+-(0a >).(1)求该抛物线的顶点坐标(用含m 的式子表示);(2)若对于该抛物线上的三个点1(2,)A m y -,2(2,)B m y ,3(22,)C m y -,总有321y y y >>,求实数m 的取值范围.27.如图,在△ABC 中,AB=BC ,∠ABC =90°.点D 是AC 边上的动点,DBA α=∠()045α︒<<,点C 关于直线BD 的对称点为E ,连接AE . 直线AE 与直线BD 交于点F .(1)补全图形;∠的大小;(2)求EFB(3)用等式表示线段FA,FB,FE之间的数量关系,并证明.28.在平面直角坐标系xOy中,对于线段PQ和直线l,称线段PQ的中点到直线l的距离为线段PQ关于直线l的平均距离,记为t.已知点A(3,0),B(0,3).(1)线段AB关于x轴的平均距离t为________;(2)若点M在x轴正半轴上,点N在y轴正半轴上,且MN=2,则线段MN关于直线AB的平均距离t的最小值为________;(3)已知点P是半径为1的⊙O上的动点,过点P作x轴的垂线交直线AB于点Q,直接写出线段PQ关于x轴的平均距离t的取值范围.东城区2023—2024学年度第二学期初三年级统一测试(二) 数 学 答 案 2024.5一、选择题(每题2分,共16分)题号12345678答案A B D B C C D D二、填空题(每题2分,共16分)9.1x ≠10.()2+2m a 11.答案不唯一,如0,1ab ==- 12.(-2,-4)13. 2 14.13-或 15.①② 16.(1)4 (2)[120º]三、解答题(共68分,17-22题,每题5分,第23-26题,每题6分,27-28题,每题7分)17.()131tan 602.2-︒⎛⎫-+--- ⎪⎝⎭28=--+ ——————————————————————————4分6.=+ ———————————————————— 5分18. 解:()21461 1.3x x x x ⎧+-⎪⎨+-⎪⎩<5,①≥②解不等式①,得.x >2 —————————————————————————2分解不等式②,得43x ≥-—————————————————————————4分∴原不等式组的解集为.x >2 ——————————————————— 5分19. 解:(1)补全图形如下:------------------3分(2) 68, 44. ----------------------------------5分20. (1)证明:∵∠ACB =∠DAC ,∴AD ∥BC .∵AE ∥CD ,∴四边形AECD 是平行四边形.------------------------2分(2) ∵四边形AECD 是平行四边形,CD=4,∴AE=C D=4.----------------------------------------------3分∵EF ⊥AB 于点F ,EG ⊥AC 于点G ,EF=EG ,∴∠BAE =∠CAE ,∠BFE =∠CGE =90°.∵∠B =45°,∠CEG =15°,∴∠BEF =45°, ∠ECA=75°.∴∠BAC =60°,BF =EF . ----------------------------4分∴∠BAE =∠CAE=30°.在Rt △AFE 中,122EF AE ==,根据勾股定理,得AF =.∴2BF EF ==.∴2AB =+------------------5分21. 解:设一块八边形地砖和黑色正方形地砖的面积分别为2cm x ,2cm y .根据题意列方程组,得43000,900.x y x y +=⎧⎨+=⎩解方程组,得700,200.x y =⎧⎨=⎩答:一块八边形地砖和黑色正方形地砖的面积分别为7002cm ,2002cm .-----5分22. 解:(1) 将点A (1,0)和B (2,1)代入()0y kx b k =+≠,得0,2 1.k b k b +=⎧⎨+=⎩解得1,1.k b =⎧⎨=-⎩∴该函数的解析式为1y x =-.-------------3分(2)m =12.------------------------------------5分23. 解:(1)m =78,n=8.5. -------------2分(2)丙.-------------4分(3)乙.-------------6分24. 解:(1)∵CD ⊥BC ,∴∠BCD =∠ACB +∠ACD =90°.∵AE ⊥BD ,∴∠AEB =90°.∴∠BAF +∠ABD =90°.∵»»AD AD =,∴∠ACD =∠ABD .∴∠ACB =∠BAF .∵AB =AC ,∴∠ABF =∠ACB .∴∠BAF =∠ABF. -----------------------------------------------------------------------3分(2)∵∠BAF =∠ABF ,∴BF =AF.设EF =x ,则BF =1x +.在Rt △BEF 中,∠BEF =90°,由勾股定理,得222+=BE EF BF ,即 2222+=(1)x x +.解得32x =. ∴3=2EF . 在Rt △AEB 中,∠AEB =90°,AE =1,BE =2,∴AB .∵∠BCD =90°,∴BD 是圆的直径.----------------------------------------------------------------------------5分连接AD ,则∠DAB =90°.由cos ∠ABD ==AB BE BD AB ,得52BD =.∴△ABC 的外接圆的半径长为54.-----------------------------------------------------------6分25.解:(1)m = 4.3 .------------------1分(2)图象如下,--------------------3分(3)①0,3.4 . -------------------------5分②1.1 .-----------------------------6分26. 解:(1)∵()222244y ax amx am a x m =-+-=--,∴该抛物线的顶点坐标为(m , -4). ------------------------------------------------2分 (2)由(1)可知,抛物线的对称轴为直线x m =.∵0a >,∴抛物线的开口向上.∴当x m <时,y 随着x 的增大而减小,当x m ≥时,y 随着x 的增大而增大,-------3分设12x m =-,22x m =,322x m =-,①当m ≤-2时,321x x x m <≤<.321y y y ∴>≥,不符合题意,舍去; ②当m -2<≤0时,312x x x m ≤<<.312y y y ∴≥>,不符合题意,舍去;③当0m <<2时,132x x m x <<<.设点2(2,)B m y 关于对称轴x m =的对称点为22(,)B x y ',则20x '=.(i )当0m <≤1时,132x x x m '<≤<.132y y y ∴>≥,不符合题意,舍去;(ii )当m 1<<2时,123x x x m '<<<.123y y y ∴>>,符合题意; 当m ≥2时,132x m x x <≤<.设点1(2,)A m y -关于对称轴x m =的对称点为11(,)A x y ',则12x m '=+,22x m =.∴'2122x m x m ==+≥∴21y y ≥,不符合题意,舍去.综上所述,实数m 的取值范围是1 2.m << ---------------------------------------6分27.解 :1()补全图形如下,…………………………………………………………………1分(2)如图,连接BE .FBC ABC DBA ∠=∠-∠∵,90.FBC α∴∠=- ,C BDE ∵点关于直线的对称点为.BE BC ∴=90.EBF FBC α∴∠=∠=-902.ABE EBF DBA α∴∠=∠-∠=- ∵,BA BC =.BE BA ∴=18045.2EBA EAB α-∠∴∠==+ 45.EFB EAB DBA ∴∠=∠-∠=o …………………………4分3.FE FA +=()猜想:,.FE G EG FA BG 证明:延长至使得=,连接.,AEB EAB ∠∠∵=AEB EAB ∴-∠=-∠ 180180..GEB FAB ∴∠∠=,,GE FA EB AB ∵==.GEB FAB ∴∆≅∆45.G EFB ∴∠=∠=o.GBF ∴∠ =90cos FB EFB FG ∠==∴.FG ∴=,FG EG FE FA =+=+∵FE FA ∴+=.………………………7分28. 解:(1)32.------------------2分.-----------------4分≤t .---------------7分。

2023北京东城区初三二模数学试题及参考答案

2023北京东城区初三二模数学试题及参考答案

2023北京东城初三二模数 学2023.5学校_________ 班级_________ 姓名_________ 教育ID 号_________考生须知1.本试卷共8页,共三道大题,28道小题,满分100分,考试时间120分钟.2.在试卷和答题卡上准确填写学校、班级、姓名和教育ID 号.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答.5.考试结束后,将本试卷、答题卡和草稿纸一并交回.一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1. 据报道:中国铁路营业里程从2012年的9.8万公里增长到2022年的15.5万公里,其中高铁从0.9万公里增长到4.2万公里,稳居世界第一.将数字155000用科学记数法表示应为( )A. 60.15510⨯ B. 51.5510⨯ C. 61.5510⨯ D. 315510⨯2. 如图是某几何体的展开图,该几何体是( )A. 三棱柱B. 四棱柱C. 圆柱D. 圆锥3. 在平面直角坐标系中,已知点()()3,2,5,2A B ,将线段AB 平移得到线段CD ,若点A 的对应点C 的坐标是()1,2-,则点B 的对应点D 的坐标是( )A. ()1,2 B. ()2,1- C. ()9,2 D. ()2,14. 下列正多边形中,一个内角为120︒的是( )A. B. C. D.5. 如图,在ABC 中,BD AC ⊥于点D ,CE AB ⊥于点,E BD 和CE 交于点O ,则下列结论不正确的是( )A. 12∠=∠B. 1590∠+∠=︒C. 34∠∠=D. 534∠=∠+∠6. 下列运算结果正确的是( )A. 22()a a -= B. 623a a a ÷= C. 22(2)4a a -=- D. 34a a +=7. 小红参加“建团百年,我为团旗添光彩”主题演讲比赛,形象、表达、内容三项得分分别是8分、8分、9分.若将三项得分依次按2:4:4的比例确定最终成绩,则小红的最终比赛成绩为( )A. 8.3分B. 8.4分C. 8.5分D. 8.6分8. 两个变量满足的函数关系如图所示.①某人从家出发,沿一条笔直的马路以每分钟45米的速度到离家900米的报亭,在报亭看报10分钟,然后以每分钟60米的速度原路返回家.设所用时间为x 分钟,离家的距离为y 米;②有一个容积为900毫升的空瓶,小张以45毫升/秒的速度向这个空瓶注水,注满后停止,10秒后,再以60毫升/秒的速度倒空瓶中的水.设所用时间为x 秒,瓶内水的体积为y 毫升;③某工程队接到一项修路的工程,最初以每天修路45米的速度工作了20天,随后因为天气原因停工了10天,为能尽快完成工作,后期以每天修路60米的速度进行工作,这样又经过了15天完成了整个工程.设所用时间为x 天,完成的修路长度为y 米.在以上实际情境中,符合图中函数关系的是( )A. ①②B. ①③C. ②③D. ①②③二、填空题(本题共16分,每小题2分)9. 有意义,则x 的取值范围是___.10. 分解因式:2x 2﹣8=_______11. 的整数:________.12. 如图,AB 是O 的直径,弦CD 交AB 于点E ,连接AC ,AD .若28BAC ∠=︒,则D ∠=______°13. 如图,在ABC 和DEF 中,点A ,E ,B ,D 在同一直线上,AC DF ∥,AC DF ,只添加一个条件:____________能判定ABC DEF ≌△△.14. 质检部门对某批产品的质量进行随机抽检,结果如下表所示:抽检产品数n 1001502002503005001000合格产品数m89134179226271451904合格率m n0.8900.8930.8950.9040.9030.9020.904在这批产品中任取一件,恰好是合格产品的概率约是(结果保留一位小数)_____________.15. 古希腊数学家泰勒斯曾利用立杆测影的方法,在金字塔影子的顶部直立一根木杆,借助太阳光测金字塔的高度.如图,木杆EF 长2米,它的影长FD 是4米,同一时刻测得OA 是268米,则金字塔的高度BO 是________米.16. 将15个编号为1~15的小球全部放人甲、乙、丙三个盘子内,每个盘子里的小球不少于4个,甲盘中小球编号的平均值为3.(1)写出一种甲盘中小球的编号是_________;(2)若乙、丙盘中小球编号的平均值分别为8,13,则乙盘中小球的个数可以是_________.三、解答题(本题共68分,第17-21题,每小题5分,第22-23题,每小题6分,第24题5分,第25-26题,每小题6分,第27-28题,每小题7分)解答应写出文字说明、演算步骤或证明过程.17. 111452-⎛⎫+-- ⎪⎝⎭︒.18. 解方程组:225x y x y -=⎧⎨+=⎩.19. 已知:如图,点P 和O .求作:直线PA ,使得PA 与O 相切于点A .作法:(1)连接OP ,分别以点O 和点P 为圆心,大于12OP 的长为半径作弧,两弧交于,C D 两点;(2)作直线CD ,交OP 于点B ;(3)以点B 为圆心,以OB 长为半径作B ,与O 相交,其中一个交点为点A ;(4)作直线PA .直线PA 即为所求作.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明.证明:由作法可知,点B 为线段OP 的中点.连接OA .∵OP 为B 的直径,∴OAP ∠=_________︒(_________)(填推理的依据).∴OA PA ⊥.∵点A 在O 上,∵PA 是O 的切线(_________)(填推理的依据).20. 先化简,再求值:2241244a a a a a -⎛⎫-÷ ⎪+++⎝⎭,其中4a =.21. 如图,在ABC 中,AB AC =,点D 为BC 中点,过点,A C 分别作,BC AD 的平行线,相交于点E .(1)求证:四边形ADCE 为矩形;(2)连接,BE DE ,若4tan ,33CBE CD ∠==,求AB 的长.22. 如图,函数(0)m y x x=>的图像G 与直线112y x =+交于点P ,点P 的纵坐标为4,PA x ⊥轴,垂足为点A .(1)求m 的值;(2)点M 是图像G 上一点,过点M 作MB AP ⊥于点B ,若12PB BM =,求点M 的坐标.23. 如图,O 的直径AB 与弦CD 相交于点E ,且CE DE =,点F 在AB 的延长线上,连接,,OC DF F C ∠=∠.(1)求证:DF 是O 的切线;(2)若2,2OE BE BF ==,求O 半径的长.24. 2022年10月16日,中国共产党第二十次全国代表大会在北京人民大会堂开幕,习近平代表第十九届中央委员会向大会作报告,报告提出要加快建设农业强国.某农业学家在光照、降水量等条件接kg/hm)如下表.近的不同地区对几种不同的玉米进行产量实验,得出的部分数据(单位:2 1hm表示10000平方米,即1公顷.注:2品种A品种B品种C品种D品种E品种F品种G品种H低海拔区98438650799677057506743765175398高海拔区78007267753378676333640058745201(1)请补全条形统计图:(2)8个品种的玉米在低海拔区产量的中位数为_________,不同品种的玉米产量总体趋势在_________(填“低”或“高”)海拔区更加稳定;(3)已知气温和含氧量都会影响玉米的产量,下列三种方案中,选择哪两种方案进行组合可以判断哪一种因素对玉米产量的影响较大,a.将两个不同品种的玉米分别种植在两个温室中,两个温室气温相同,氧气浓度不同,在其他条件相同的情况下记录每个温室的玉米产量,重复多次实验,求出每个温室玉米产量的平均值,并比较;b.将同一品种玉米种植在气温相同,氧气浓度不同的两个温室中,在其他条件相同的情况下记录每个温室的玉米产量,重复多次实验,求出每个温室玉米产量的平均值,并比较;c.将同一品种玉米种植在气温不同,氧气浓度相同的两个温室中,在其他条件相同的情况下记录每个温室的玉米产量,重复多次实验,求出每个温室玉米产量的平均值,并比较.25. 某校学生参加学农实践活动时,计划围一个面积为4平方米的矩形围栏.设矩形围栏周长为m 米,对于m的最小值问题,小明尝试从“函数图象”的角度进行探究,过程如下.请你补全探究过程.(1)建立函数模型:设矩形相邻两边的长分别为,x y .由矩形的面积为4,得4xy =,即4y x=;由周长为m ,得()2x y m +=,即2my x =-+.满足要求的(),x y 应是两个函数图象在第_________象限内交点的坐标;(2)画出函数图象:函数4(0)y x x =>的图象如图所示,而函数2m y x =-+的图象可由直线y x =-平移得到.请在同一平面直角坐标系xOy 中画出直线y x =-;(3)平移直线y x =-,观察函数图象:当直线平移到与函数4(0)y x x =>的图象有唯一交点()2,2时,直线2m y x =-+与y 轴交点的纵坐标为_________;(4)得出结论:若围出面积为4平方米的矩形围栏,则周长m 的最小值为_________米,此时矩形相邻两边的长分别为_________米、_________米.26. 在平面直角坐标系xOy 中,抛物线()210y ax bx a =++≠的对称轴是直线3x =.(1)求出该抛物线的顶点坐标(用含a 的式子表示);(2)当0a >时,对于任意的正数t ,若点()()123,,32,t y t y -+在该抛物线上,则1y _________2y (填“>”“<”或“=”);(3)已知点()()0,3,7,3A B .若该抛物线与线段AB 恰有一个公共点,求a 的取值范围.27. 如图,在菱形ABCD 中,60BAD ∠=︒,E 是AB 边上一点(不与A ,B 重合),点F 与点A 关于直线DE 对称,连接DF .作射线CF ,交直线DE 于点P ,设ADP α∠=.(1)用含α的代数式表示DCP ∠;(2)连接AP AF ,.求证:APF 是等边三角形;(3)过点B 作BG DP ⊥于点G ,过点G 作CD 的平行线,交CP 于点H .补全图形,猜想线段CH 与PH 之间的数量关系,并加以证明.28. 已知线段PQ 是G 的弦,点K 在直线PQ 上.对于弦PQ 和点K ,给出如下定义:若将弦PQ 绕点K 逆时针旋转()0180αα︒<<︒得到线段P Q '',恰好也是G 的弦,则称弦PQ 关于点K 中心映射,点K 叫做映射中心,α叫做映射角度.(1)如图1,点G 是等边ABC 的中心,作G 交AB 于点,P Q .在,,A B C 三点中,弦PQ 关于点_________中心胦射;(2)如图2,在平面直角坐标系xOy 中,直线334y x =-+与x 轴交于点E ,与y 轴交于点F ,OEF ∠的角平分线交y 轴于点D .若D 与线段EF 相交所得的弦关于点E 中心映射,直接写出D 的半径r 的取值范围;(3)在平面直角坐标系xOy 中,O 的半径为2,线段MN 是O 的弦.对于每一条弦MN ,都有相应的点H ,使得弦MN 关于点H 中心映射,且映射角度为60︒.设点H 到点O 的距离为d ,直接写出d 的取值范围.参考答案一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.题号12345678答案B D A C C A B A 二、填空题(本题共16分,每小题2分)题号910111213141516答案2x≥2(x+2)(x﹣2)2(或3)(答案不唯一,写出一个即可)62答案不唯一,如AB DE=0.9134(1)(1,2,3,4,5),(1,2,4,5)或(1,2,3,6)(2)7或5(答案不唯一)三、解答题(本题共68分,第17-21题,每小题5分,第22-23题,每小题6分,第24题5分,第25-26题,每小题6分,第27-28题,每小题7分)解答应写出文字说明、演算步骤或证明过程.17.11145 2-⎛⎫+--⎪⎝⎭︒.=2211 ++--=218. 解方程组:225 x yx y-=⎧⎨+=⎩.②-①得:3y=3,解得:y=1,把y=1代入①得:x=3,则方程组的解为31 xy=⎧⎨=⎩19. (1)解:如图所示,即为所求;(2)90;直径所对的圆周角是直角;经过半径的外端并且垂直于这条半径的直线是圆的切线.20. ()()()2222222a a a a a a a ++⎛⎫=-⋅ ⎪+++-⎝⎭()()()222222a a a a +=⨯++-22a =-;当4a =时,原式2142==-.21. (1)证明:∵,AE BC AD CE ∥∥,四边形ADCE 是平行四边形,∵AB AC =,点D 为BC 中点,AD BC ∴⊥,∴90ADC ∠=︒,四边形ADCE 为矩形;(2)解:∵四边形ADCE 为矩形,90BCE ADB ∴∠=∠=︒,DE AC=∵点D 为BC 中点,26,BC CD ∴==在Rt BCE 中,4tan 63CE CE CBE BC ∠===,解得:8,CE =在Rt CDE 中,222CD CE DE +=,∴DE =.∴AC =.故AB 22. (1)∵点P 的纵坐标为4,∴1412x =+,解得6x =,∴()6,4P ,∴46m=∴24m =.(2)∵12PB BM =,∴设PB n =,则2BM n =,∵M 点的坐标为()6+2,4M n n -∴()6+2)(424n n -=,解得11n =,20n =(舍去),∴点M 的坐标为()8,323. (1)证明:连接OD ,如图所示:∵O 的直径AB 与弦CD 相交于点E ,且CE DE=∴AB CD ⊥,∴90F EDF ∠+∠=︒,∵OC OD =,∴ODC C F ∠=∠=∠,∴90ODC EDF ∠+∠=︒.∴OD DF⊥∴DF 是O 的切线;(2)解∵2,OE BE =∴3OD OC BE ==.∴在Rt OCE △中,2sin 3OE C OC ==,∵F C ∠=∠,解得:43x =,∴4OD =,∴2sin sin 3F C ==设,BE x =则2,3,3 2.OE x OD x OF x ===+在Rt ODF △中,2sin 3OD F OF ==∴32.323x x =+∴43x =.∴4OD =即O 的半径为4.24. (1)根据表格中F 品种在高海拔地区的产量为64002kg /hm ,补全条形统计图,如图所示:(2)将8个不同品种的玉米在低海拔区产量从大到小排序:9843,8650,7996,7705,7506,7437,6517,5398,中位数为770575067605.52+=;根据条形统计图中高低海拔区的变化趋势可以判断在高海拔地区更加稳定;故答案为:7605.5,高;(3)a 选用了两个不同品种的玉米,没有控制变量,故a 不选,b 、c 选用了相同品种的玉米,而且改变了气温和含氧量,故可以选;故选用b 、c 两种方案.25. (1)解:∵x ,y 是矩形的边长,都是正数,所以点(),x y 在第一象限;(2)图像如图所示:(3)解:将点()2,2代入2my x =-+得:222m=-+,解得:8m =,即4y x =-+,当0x =时,4y =,∴直线2my x =-+与y 轴交点的纵坐标为4y =;(4)解:联立4y x =和2m y x =-+并整理得:21+402x mx -=,∴221441402b ac m ⎛⎫∆---⨯⨯≥ ⎪⎝⎭==时,两个函数有交点,解得:8m ≥,∴周长m 的最小值为8米,可得4+4xy x y =⎧⎨=⎩,解得22x y =⎧⎨=⎩,∴矩形相邻两边的长分别为2米、2米;26. (1)∵抛物线()210y ax bx a =++≠的对称轴是直线3x =,∴32ba -=,∴6b a =-,当3x =时,931y a b =++()9361a x a =+-+91a =-+,∴抛物线()210y ax bx a =++≠的顶点坐标是()3,91a -+;(2)∵()210y ax bx a =++>,∴抛物线开口向上,∴距离抛物线对称轴越远,函数值越大,点()3,t y -距离对称轴3x =的距离为:33t t --=,点()232,t y -距离对称轴3x =的距离为:32322t t t --=-=,∵0t >,∴2t t >,∴()232,t y -距离对称轴3x =比()3,t y -距离对称轴3x =更远,∴12y y <,故填:<;(3)当0a >时,抛物线开口向上.∵抛物线与线段AB 恰有一个公共点,∴当7x =时的函数值大于或等于3.∴494213a a -+≥,∴27a ≥;当0a <时,抛物线开口向下当抛物线的顶点在线段AB 上时,抛物线与线段AB 有唯一公共点.∴913y a =-+=顶点∴29a =-综上所述:29a =-或27a ≥.27. (1)解:∵点F 与点A 关于直线DE 对称,∴DA DF =,PA PF =FDP ADP α∠=∠=,APD FPD∠=∠∵菱形ABCD 中,60BAD ∠=︒,∴AD AB CD ==,120ADC ∠=︒,∴1202CDF α∠=︒-∵DF AD CD ==,∴()1180302DCP CDF α∠=︒-∠=︒+,(2)证明:∵DFC DPF FDP∠=∠+∠∴DPF DFC FDP∠=∠-∠∵DF DC=∴30DFC DCF α∠=∠=︒+∴3030DPF αα∠=︒+-=︒∴260APF DPA ∠=∠=︒∵,60PA PF APF =∠=︒∴APF 是等边三角形;(3)解:CH PH =,证明如下:连接,PB BD ,∵APF 是等边三角形,∴,60AD AB DAB =∠=︒,∴ABD △是等边三角形,∴PAF FAB DAB FAB∠+∠=∠+∠∴PAB FAD ∠=∠,在APB △和AFD △中,,,,AP AF PAB FAD AB AD =⎧⎪∠=∠⎨⎪=⎩∴.APB AFD ≌,∴PB FD BD ==,∵BG DP⊥∴点G 为PD 中点∵CD GH ∥,∴CH PH=28.(1)根据中心映射的定义, 若将弦PQ 绕点K 逆时针旋转()0180αα︒<<︒得到线段P Q '',恰好也是G 的弦,则称弦PQ 关于点K 中心映射,点K 叫做映射中心.由于ABC 是等边三角形,因此直线PQ 绕A 点逆时针旋转60α=︒()0180α︒<<︒,可使弦PQ 落在弦P Q ''上.但直线PQ 绕B 点、C 点逆时针旋转α ()0180α︒<<︒后,弦PQ 无法与G 再相交成弦.故只有点A 符合映射中心的条件,如下图.(2)如下图, OEF ∠的角平分线交y 轴于点D ,过D 作DG EF ⊥,垂足为G .则D 与线段EF 相交所得的弦关于点E 中心映射,此时D 的半径r 的取值范围是DF r DG ≥>.在OEF 中,EF 平分OEF ∠,过D 作x 轴的平行线,与EF 交于H ,则HDE DEO ∠∠=,又HED DEO ∠∠=,所以HDE HED ∠∠=,则HD HE =.由DH OE ∥得,FDH △∽△FO E ,所以DFFHFH FEDO HE HD OE===即DF FE DO EO =,DF FEOF DF OE =-。

中考二模数学试卷含答案解析

中考二模数学试卷含答案解析

北京市东城区中考二模数学试卷一、单选题(共10小题)1.我国最大的领海是南海,总面积有3 500 000平方公里,将数3 500 000用科学记数法表示应为()A.B.C.D.考点:科学记数法和近似数、有效数字答案:A试题解析:科学记数法是把一个数表示成a×的形式,其中1≤|a|<10,n为整数.所以3500000=3.5.2.如图,已知数轴上的点A,O,B,C,D分别表示数﹣2,0,1,2,3,则表示数的点P应落在线段()A.AO上B.OB上C.BC上D.CD上考点:实数大小比较答案:B试题解析: , 则表示数的点P应落在线段OB上3.一个不透明的盒子中装有6个除颜色外完全相同的乒乓球,其中4个是黄球,2个是白球.从该盒子中任意摸出一个球,摸到黄球的概率是()A.B.C.D.考点:概率及计算答案:D试题解析:摸到黄球的概率= .4.下列图案中,既是中心对称又是轴对称图形的是()A.B.C.D.考点:轴对称与轴对称图形中心对称与中心对称图形答案:A试题解析:B,是轴对称图形不是中心对称图形,C,D是中心对称图形不是轴对称图形。

而A 即是中心对称图形又是轴对称图形。

5.如图所示的几何体是由一些正方体组合而成的立体图形,则这个几何体的俯视图是()A.B.C.D.考点:几何体的三视图答案:A试题解析:这个几何体的俯视图是,6.如图,在等腰△ABC中,AB=AC,BD⊥AC,∠ABC=72°,则∠ABD等于()A.18°B.36°C.54°D.64°考点:等腰三角形答案:C试题解析:在等腰△ABC中,AB=AC,所以,因为BD⊥AC,所以,所以,则。

7.某小组5名同学在一周内参加家务劳动的时间如下表所示,关于“劳动时间”的这组数据,以下说法正确的是()A.中位数是4,平均数是3.75B.众数是4,平均数是3.75C.中位数是4,平均数是3.8D.众数是2,平均数是3.8考点:平均数、众数、中位数答案:C试题解析:众数就是在一组数据中,出现次数最多的数据叫做这组数据的众数。

52022年初3年级数学二模考试题答案-东城

52022年初3年级数学二模考试题答案-东城

北京市东城区2022-2022学年第二学期统一练习〔二〕初三数学参考答案及评分标准 2022.6题号 1 2 3 4 5 6 7 8 9 10 答案 A BD AAC CCBB二、填空题〔此题共18分,每题3分〕题号111213141516答案22(1)a x -1k >-且0k ≠ABD C∠=∠答案不唯一92%11(9,2);(2016,672)三、解答题〔此题共72分,第17—26题,每题5分,第27题7分,第28题7分,第29题8分〕 17.计算:0112sin 6012(3π)()4-︒-+. 解:原式32314+…………4分 =33…………5分18.解:22422a b a b a ab -++=224(2)(2)a b a a b a a b -++=2a ba-…………3分 ∴设2,3.a k b k ==…………4分∴ 原式=-2.…………5分 19. 证明:△ABD 和△BCE 为等边三角形,∴∠ABD =∠CBE =60°,BA=BD ,BC=BE.…………2分∴∠ABD+∠ABC =∠CBE+∠ABC ,即∠CBD =∠ABE.…………3分∴△CBD ≌△EBA.〔SAS 〕 …………4分∴AE=CD. …………5分20.解:设打折前一件商品A 的价格为x 元,一件商品B 的价格为y 元.…………1分依据题意,得631083494x y x y +=⎧⎨+=⎩.…………3分 解得:1016x y =⎧⎨=⎩.…………4分所以5×10+4×16-86=28〔元〕 答:比打折前节省了28元. …………5分 21.满足条件的所有图形如下列图:…………5分注意:画出一个给2分,二个给4分,三个给5分. 22.解:〔1〕∵矩形ABCD ,∴∠B =∠BAC =90°. ∵EF ⊥AM ,∴∠AFE =∠B =∠BAD =90°.∴∠BAM +∠EAF =∠AEF+∠EAF =90°. ∴∠BAM =∠AEF .…………2分〔2〕在Rt △ABM 中,∠B =90°,AB =4,cos ∠BAM =45, ∴AM =5.∵F 为AM 中点, ∴AF =52. ∵∠BAM =∠AEF , ∴cos ∠BAM =cos ∠AEF =45. ∴sin ∠AEF =35. 在Rt △AEF 中, ∠AFE =90°,AF =52,sin ∠AEF =35, ∴AE =256. ∴DE=AC-AE =6-256=116.…………5分 23.解:〔1〕∵四边形ABCD 是平行四边形,点(10)(31)(33)A B C ,,,,,,∴BC =2.∴D 〔1,2〕.∵反比例函数my x=的图象经过点D , ∴21m =. ∴2m =.∴2y x=.…………3分〔2〕233p x <<.…………5分 24.解:〔1〕172;133.…………2分 〔2〕PM2.5的年均浓度〔单位:微克/立方米〕PM2.5的优良天数2022年 89.5 204 2022年 85.9 204 2022年80.622325.〔1〕证明:连结BD .∵AB 是O 的直径, ∴90ADB ∠=︒.∴90DAB DBA ∠+∠=︒. ∵AB AC =,∴2ABD ABC ∠=∠,12AD AC =. ∵AF 为⊙O 的切线, ∴∠F AB =90°.∴90FAC CAB ∠+∠=︒. ∴FAC ABD ∠=∠.∴2.ABC CAF ∠=∠…………2分⑵解:连接AE.∴∠AEB =∠AEC =90°.∵10sin CAF ABD CAF CBD CAE ∠=∠=∠=∠=∠,∴10sin sin ABD CAF ∠=∠.∵90210ABD AC ∠=︒=,∴10AD 10sin ADAB ABD==∠=BC .∵90210AEC AC ∠=︒=, ∴sin 2CE AC CAE =⋅∠=.∴1028BE BC CE =-=-=.…………5分 26.解:〔1〕sin α=13,sin2α=29. …………2分〔2〕∵AC =cos α,BC =sin α,∴CD =AC BCAB⨯=sin cos αα⋅.∵∠DCB =∠A ,∴在Rt △BCD 中,BD =sin 2α.∴OD =12-sin 2α. ∴tan2α=CD OD =22sin cos 2sin cos 112sin sin 2αααααα⋅⋅=--.…………5分 27.解:〔1〕∵21:C y x bx c =++的图象过点A 〔-1,2〕,B 〔4,7〕,∴217164.b c b c =-+⎧⎨=++⎩,∴21.b c =-⎧⎨=-⎩,∴221y x x =--.…………2分〔2〕∵二次函数2C 与1C 的图象关于x 轴对称,∴22:21C y x x =-++.∴2C 的顶点为〔1,2〕. ∵A 〔-1,2〕,B 〔4,7〕,∴过A 、B 两点的直线的解析式:3y x =+. 令x =1,那么y =4.∴2C 的顶点不在直线AB 上.…………4分〔3〕414m <≤或4m =-. …………7分 28.解:【探究发现】:相等.…………1分 【数学思考】证明:在AC 上截取CG=CE ,连接GE. ∵∠ACB =90°, ∴∠CGE =∠CEG =45°.∵AE ⊥EF ,AB ⊥BF ,∴∠AEF =∠ABF =∠ACB =90°,∴∠FEB +∠AEF =∠AEB =∠EAC +∠ACB. ∴∠FEB =∠EAC.∵CA=CB ,∴AG=BE ,∠CBA =∠CAB =45°.∴△AGE ≌△EBF .∴AE=EF .…………5分 【拓展应用】ABC S △:AEF S △=1:〔222n n ++〕…………7分29.解:〔1〕图象略;是.…………2分 〔2〕①2.…………4分②M 〔3,3〕.…………6分…………8分。

东城区二模数学初三试卷

东城区二模数学初三试卷

一、选择题(本大题共10小题,每小题3分,共30分)1. 下列选项中,不属于一元二次方程的是()A. x^2 - 5x + 6 = 0B. 2x^2 - 3x + 1 = 0C. 3x^2 + 2x - 5 = 0D. 2x + 3 = 02. 下列函数中,有最小值的是()A. y = x^2B. y = -x^2C. y = x^2 + 1D. y = -x^2 + 13. 在直角坐标系中,点A(2,3)关于原点对称的点是()A. (-2,-3)B. (-2,3)C. (2,-3)D. (2,3)4. 下列各数中,不是有理数的是()A. √2B. -πC. 1/2D. 0.1010010001...5. 若a、b、c是等差数列的前三项,且a + b + c = 15,则a^2 + b^2 + c^2的值为()A. 45B. 50C. 55D. 606. 下列方程中,解为x = 3的是()A. x - 3 = 0B. x^2 - 9 = 0C. x^2 - 3x + 9 = 0D. x^2 + 3x - 9 = 07. 在△ABC中,若∠A = 60°,∠B = 45°,则∠C的度数为()A. 45°B. 60°C. 75°D. 90°8. 若函数f(x) = x^3 - 3x + 1在区间[0,1]上的最大值为1,则f(x)在区间[1,2]上的最小值为()A. -1B. 0C. 1D. 29. 下列命题中,正确的是()A. 若a > b,则a^2 > b^2B. 若a > b,则|a| > |b|C. 若a > b,则a + c > b + cD. 若a > b,则ac > bc10. 已知等比数列{an}的公比为q,且a1 = 2,a3 = 8,则q的值为()A. 2B. 4C. 8D. 16二、填空题(本大题共5小题,每小题5分,共25分)11. 若x + y = 5,xy = 6,则x^2 + y^2的值为______。

14九年级数学二模

14九年级数学二模

东城区2021—2022学年度第二学期初三年级统一测试(二)数学试卷参考答案及评分标准2022.6一、选择题(本题共16分,每小题2分)9.0x = 10.223)x -( 11.2(y x =答案不唯一) 12. 113.4 14.12 15.3516.10和5 三、解答题(本题共68分,第17—21题,每小题5分,第22—23题,每小题6分,第24题5分,第25—26题,每小题6分,第27—28题,每小题7分)解答应写出文字说明、演算步骤或证明过程.17.解:202211(1)()453--+︒=1+2-3+1……………………………………………………………4分=1………………………………………………………………………………5分 18.解:6-4x ≥3x -8-7x ≥-14………………………………………………………………………………2分x ≤2………………………………………………………………………………3分 ∵x 是正整数∴x =1,2…………………………………………………………………………5分19.解:图略;角平分线的定义;∠B ;同位角相等,两直线平行.……………………………5分 20.解:(1)∵Δ=22(2)4(1)k k --- =4>0,∴方程有两个不相等的实数根.………………2分 (2)将x =2代入方程,得24410k k -+-=. 即243k k -=-.………………4分则2285k k -++=22(4)5k k --+=11.………………5分21.(1)证明:∵四边形ABCD 是平行四边形,∴AD ∥CE . ∴∠DAF =∠EBF . ∵F 是AB 的中点,∴AF =BF . 在△AFD 和△BFE 中 ,,,AFD BFE AF BF DAF EBF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△AFD ≌△BFE (ASA ). ∴AD =EB . ∵AD ∥EB .∴四边形AEBD 是平行四边形. ∵BD =AD ,∴四边形AEBD 是菱形.………………2分 (2)∵四边形ABCD 是平行四边形, ∴AB =CD=AB ∥CD .∴∠ABE =∠DCB . ∴tan ∠ABE =tan ∠DCB . ∵四边形AEBD 是菱形, ∴AB ⊥DE ,AF =FB ,EF =DF . ∴tan ∠ABE =3EFBF=. ∴EF =3BF . ∵DC =AB∴BF =,EF = 由勾股定理,得EB =5.∴菱形AEBD 的边长为5.………………5分22.(1)∵双曲线(0)ky k x=≠经过点(2,1)A -,∴2k =-.∵直线2y x b =-+过点(22)B -,,∴b =2..………………………………………………………………………………2分 (2)①当n =2时,CD =1,CP =1,∴CD =CP .② 12n ≤≤..……………………………………………………………6分23.(1)证明:如图,过点A 作AF ⊥BC 于F .∵DE ⊥AB , ∴∠BED =90°. ∵∠BAC =90°,∴∠BED =∠BAC =90°. ∴AC ∥ED . ∴∠ADE =∠DAC . ∵CD =CA ,∴∠ADC =∠DAC . ∴∠ADC =∠ADE . ∵DE ⊥AB , AF ⊥BC , ∴AF =AE .∵AF ⊥BC ,AF 为半径,∴BC 是A 的切线.---------------- 3分(2)解:∵AC =5,CD =CA , ∴CD =5. ∵BD =3, ∴BC =8. ∵AC ∥ED .∴△EBD ∽△ABC .∴ED BDAC BC =. ∴358ED =.∴158ED =.------------------6分24.(1)5.------------------1分(2)73.9;------------------3分 (3)②.------------------5分 25.(1)94x;92(0)2y x x x =+>.-----------------2分(2)a =254;b =10.-----------------4分 (3)图略.-----------------5分 (4)32;6.-----------------6分26. (1)(0,1);-----------------1分(2)∵抛物线2+1y ax bx =+的对称轴是直线3x =,∴ 3.2ba-=∴6b a =-.∴抛物线的解析式为26+1y ax ax =-. 当x =3时,y =9a -18a +1=-9a +1.∴顶点坐标为(3,-9a +1)-----------------3分 (3)①当a <0时,抛物线开口向下.不妨设点A 在点B 的左侧.∵抛物线与y 轴交于(0,1),且A 、B 两点关于抛物线的对称轴直线3x =对称, ∴0,6A B x x <>. ∴AB >4.不符合题意.②当0a >时,抛物线开口向上.在x 轴上关于直线3x =对称且距离为4的两点的坐标为(1,0)(5,0). ∵AB ≤4,∴当1x =时,26+10y ax ax =-≥. 即6+10a a -≥. ∴15a ≤. 又∵抛物线与x 轴相交于A 、B 两点, ∴910y a =-+<顶点. ∴19a >. 综上所述,a 的取值范围为1195a <≤.-----------------6分 27.证明:(1)补全图形如下:------------------1分(2)证明:∵点D 与点C 关于AP 对称,∴AD =AC ,ED =EC . 在△ADE 和△ACE 中DPAD AC DE EC EA EA =⎧⎪=⎨⎪=⎩∴△ADE ≌△ACE (SSS ). ∴∠ADE =∠ACE . ∵AB =AC , ∴∠AD =AB .∴∠ADB =∠ABD .∴∠ABE =∠ACE .------------------3分 (3)结论:EC =BE +2EF .证明:如图,在CE 上取一点G ,使CG =BE . 在△ABE 和△ACG 中 ,,.AB AC ABE ACG BE CG =⎧⎪∠=∠⎨⎪=⎩∴△ABE ≌△ACG (SAS ). ∴AE =AG . ∵AF ⊥EC , ∴EF =FG .∴EC =BE +2EF .∴DE =BE +2EF .------------------7分28.(1)3. ------------------2分(2)d =4,Q 1(2,3)或Q 2(4,3).------------------5分 (3)------------------7分DP。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京市东城区 2014--2015 学年第二学期综合练习(二)数学试卷 2015.6学校班级姓名考号考生须知1.本试卷共 8 页,共五道大题,29道小题,满分 120分.考试时间 120分钟.2.在试卷和答题卡上认真填写学校、班级、姓名和考号.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.在答题卡上,选择题、作图题用 2B铅笔作答,其他试题用黑色字迹签字笔作答.5.考试结束,请将本试卷、答题卡一并交回.一、选择题(本题共30 分,每小题 3 分)下面各题均有四个选项,其中只有一个是符合题意的. 1.如图,数轴上有A,B,C,D四个点,其中到原点距离相等的两个点是A.点B与点D B.点A与点C C.点A与点D D.点B与点C2.据统计,中国每年浪费的食物总量折合粮食约为50 000 000 吨,将50 000 000用科学记数法表示为A.5×107B.50×106C.5×106D.0.5×1083. 下列运算正确的是A.a a =a B.a +a =a C.- a= - a D.(-a)=a 4.甲、乙、丙、丁四名运动员参加了射击预选赛,他们射击的平均环数-x及其方差s2如下表所示.如果选出一个成绩较好且状态稳定的人去参赛,应选运动员甲乙丙丁-x7887s2111.2 1.8A.甲B.乙C.丙D.丁5. 如图,已知⊙O的半径为13,弦AB长为24,则点O到AB的距离是A.6B.5D.36.已知一个布袋里装有2个红球,3个白球和a个黄球,这些球除颜色外其余都相同.若从此布袋里任意摸出1个球,该球是红球的概率为1,则a等于3A .1 B.2 C.3 D.47. 如图,将△ABC沿BC方向向右平移2cm得到△DEF,若△ABC的周长为16cm,则四边形ABFD的周长为A.16cm B.18cm C.20cm8.如图,在已知的△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于12BC的长为半径作弧,两弧相交于点M,N;②作直线MN交AB于点D,连接CD.若CD=AC,∠B=25°,则∠ACB的度数为A.90°B.95°C.100°D.105°9.如果三角形的一个角是另一个角的3 倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组是A.1,2,3 B.1,1,C.1,1,D.1,,210. 如图,矩形ABCD中,AB=3,BC=4,动点P从A点出发,按A→B→C的方向在AB 和BC上移动,记PA=x,点D到直线PA的距离为y,则y关于x的函数图象大致是AD二、填空题(本题共18分,每小题 3 分)11.使 x - 2有意义的 x 的取值范围是 12.如图,AB //CD ,∠D = 27°,∠E =36°.则∠ABE 的度数是 13.一次函数y = kx + b 的图象经过第一、二、三象限且经过(0,2)点.任写一个满足上述条件的一次函数的表达式是 _________________ .14.小刚用一张半径为 24cm 的扇形纸板做一个如图所示的圆锥形小丑帽子侧面(接缝忽略 不计),如果做成的圆锥形小丑帽子的底面半径为 10cm ,那么这张扇形纸板的面积是______________ cm 2 .15. 如图,菱形 ABCD 的对角线 AC ,BD 相交于点 O ,AC =8,BD =6,以 AB 为直径作一 个半圆,则图中阴影部分的面积为 .16.如图,已知 A 1,A 2,……,A n ,A n +1 在 x 轴上,且 OA 1=A 1A 2=A 2A 3=……=A n A n +1=1, 分别过点A 1,A 2,……,A n ,A n +1作x 轴的垂线交直线y =x 于点B 1,B 2,……,B n ,B n +1, 连接 A 1B 2,B 1A 2,A 2B 3,B 2A 3,……,A n B n +1,B n A n +1,依次相交于点 P 1,P 2,P 3,……,第 12 题图A .B .第 14 题图S 1=,S n =.三、解答题(本题共30分,每小题 5 分) 17. 计算:(π- 3) + 32 -8sin 450 -118.如图,点A ,F ,C ,D 在同一直线上,点B 和点E 分别 在直线AD 的两侧,且AB = DE ,BC ∥EF ,∠A =∠D . 求证:AF =DC .19.若实数a 满足a 2-2a -1=0,计算4(a +1)(a -1)-2a (a +2)的值.20. 已知关于x 的方程(k -1)x 2-(k -1)x +1 = 0有两个相等的实数根,求实数k 的值.21. A ,B 两个火车站相距 360km .一列快车与一列普通列车分别从 A ,B 两站同时出发相向而行,快车的速度比普通列车的速度快 54km/h ,当快车到达B 站时,普通列车距离A 站还有135km .求快车和普通列车的速度各是多少?k 22.如图,一次函数y = k x + b 的图象经过A (0, ﹣ 2), B (1,0)两点,与反比例函数y = k 2 1x的图象在第一象限内的交点为 M (m ,4). (1)求一次函数和反比例函数的表达式;2)在x 轴上是否存在点P ,使AM ⊥MP ?若存在,求出点P 的坐标;若不存在,说 明理由.四、解答题(本题共20分,每小题 5 分)23.如图,矩形 ABCD 中,点 O 为 AC 的中点,过点 O 的直线分别与 AB ,CD 交于点 E ,F ,连接 BF 交 AC 于点 M ,连接 DE ,BO.若∠COB =60°,FO =FC . 求证:(1)四边形 EBFD 是菱形;P n ,△A 1B 1P 1 ,△A 2B 2P 2 ,△ A n B n P n 的面 积依次为 S 1, S 2 ,S n ,则2)MB : OE=3:2 .24.以下是根据全国人力资源和社会保障部公布的相关数据绘制的统计图的一部分,请你根 据图中信息解答下列问题:1)2015 年全国普通高校毕业生人数年增长率约是多少?(精确到 0.1%) 2)2013 年全国普通高校毕业生人数约是多少万人?(精确到万位) 3)补全折线统计图和条形统计图.25.如图,已知 AB 是⊙O 的直径,C 是⊙O 上一点,∠BAC 的平分线交⊙O 于点 D ,交⊙O 的切线 BE 于点 E ,过点 D 作 DF ⊥AC ,交 AC 的延长线于点 F . 1)求证:DF 是⊙O 的切线;BE2)若DF =3,DE =2.①求 A B D E 值;②求FAB 的度数.26 .阅读材料如图 1,若点 P 是⊙O 外的一点,线段 PO 交⊙O 于点 A,则 PA 长是点P 与⊙O 上各点之间 的最短距离.图 1 图 2证明:延长PO 交⊙O 于点B ,显然PB>PA .如图2,在⊙O上任取一点C(与点A,B不重合),连结PC,OC.Q PO PC +OC, 且PO= PA+OA,OA=OC , PA PC,∴PA长是点P与⊙O上各点之间的最短距离.由此可以得到真命题:圆外一点与圆上各点之间的最短距离是这点到圆心的距离与半径的差.请用上述真命题解决下列问题.(1)如图3,在Rt△ABC中,∠ACB=90°,AC=BC=2,以BC为直径的半圆交AB于D,P是上的一个动点,连接AP,则AP长的最小值是.图4(2)如图4,在边长为2的菱形ABCD中,∠ A =60°,M是AD边的中点,点N是AB边上一动点,将△AMN沿MN所在的直线翻折得到△A'MN,连接A'C,①求线段A'M的长度; ②求线段A'C长的最小值.五.解答题(本题共22分,第 27 题 7 分,第 28 题7 分,第 29 题 8 分) 27.在平面直角坐标系中,抛物线y=ax2+ bx+3 (a 0)与x轴交于点A(-3,0)、B(1,0) 两点,D是抛物线顶点,E是对称轴与x轴的交点.(1)求抛物线的解析式;(2)若点F和点D关于x轴对称, 点P是x轴上的一个动点,过点P作PQ∥OF交抛物线于点Q,是否存在以点O,F,P,Q为顶点的平行四边形?若存在,求出点P坐标;若不存在,请说明理由.28. 如图1,在Rt△ABC中,ACB = 90,E是边AC上任意一点(点E与点A,C不重合),以CE为一直角边作Rt△ECD ,ECD = 90,连接BE,AD.(1) 若CA =CB CE =CD①猜想线段BE , AD 之间的数量关系及所在直线的位置关系,直接写出结论; ②现将图1 中的Rt△ECD绕着点C 顺时针旋转锐角,得到图2,请判断①中的结论 是否仍然成立,若成立,请证明;若不成立,请说明理由;(2)若CA = 8,CB = 6 ,CE = 3 ,CD = 4,Rt△ECD 绕着点C 顺时针旋转锐角,如图3,连接BD , AE ,计算BD 2 +AE 2的值.29.定义:如果一条直线能够将一个封闭图形的周长和面积平分,那么就把这条直线称作这 个封闭图形的等分线。

1)请在如下的三个图形中,分别作一条等分线.(2)请在图中用尺.规.作.图.作一条直线l ,使它即是矩形的等分线,也是圆的等分线.(保留作 图痕迹,不写作法)平行四边形等腰三角形D=-3 ……………………………………5 分 18.证明:∵ BC ∥EF ,3)如图,在RtV ABC 中,A =90o ,AB =3,AC = 4,点P 是边AB 上的动点,问是否存在过 点P 的等分线?若存在,求出AP 的长,若不存在,请说出理由.北京市东城区2014--2015 学年第二学期初三综合练习(二)数学试卷参考答案题号1 2 3 4 5 6 7 8 9 10 答案CADBBACDDB题号11 12 13 14 15 16答案x263y =x +2 等240π25-6 81 n 26 4n +217.原式=1+ 4 2 -8•-4………………4 分BC一、选择题(本题共30分,每小题3 分) 二、填空题(本题共18分,每小题3 分) 三、解答题:(本题共30分,每小题5 分)∴∠ACB=∠DFE............................................................2分在△ABC和DEF中,AB= DE,A = D,........................................................... 3分ACB = DFE,△ABC≌△DEF.···················································································· 4分AC =DF.AF = DC. ···································································································· 5 分19.4(a + 1)(a - 1) - 2a(a + 2)=4a2- 4- 2a2- 4a= 2a2-4a-4LL3分= 2(a2-2a) -4Q a2-2a=1, 原式=2-4=-2.L L 5分20 . ∵关于x的方程(k-1)x2-(k-1)x+1= 0有两个相等的实数根,=-(k-1)2-4(k-1)14=0,┉┉4分k-10.解得:k =2.∴当关于x的方程(k -1)x2-(k -1)x+ = 0有两个相等的实数根时,k=2.┉┉5 分21.解:设普通列车的速度为x km/h,则快车的速度为(x+54)km/h……1分360 360 - 135 由题意,得:= LL 2分x+54 x解得:x=90……3分经检验得:x=90 是这个分式方程的解.……4 分x+54=144.……5 分答:普通列车的速度为90km/h,快车的速度为144km/h.b =-2,22.解:(1)把A(0,﹣2) ,B(1,0)代入y = k x+b,得,1k+b=0.k1= 2,b = -2.所以一次函数解析式为y = 2x - 2.……2分把M(m,4)代入y=2 x-2.解得m=3,则M 点坐标为( 3 ,4),k把M(3,4)代入y = k2得k2=12,x12 所以反比例函数解析式为y =12……3分x (2)存在.Q A(0,-2),B(1,0),M(3,4)AB = 5,BM = 22+ 42= 2 5.Q PM⊥AM, BMP = 900. Q OBA = MBP,∴Rt△OBA∽Rt△MBP……4 分AB OB 51 PB=BM.即PB=25. PB = 10.OP =11.∴P 点坐标为(11,0).……5 分四、解答题(本题共20分,每小题5 分)23.证明:(1)连接BD.∵点O为矩形ABCD的对角线AC的中点,∴BD必过点O且BO= DO=CO= DO .………1分∵矩形ABCD,∴ AB∥DC ,AB = DC∴FCO = EAO. 在△CFO和△AEO中,FCO = EAO,CO= AO,COF = AOE,∴ △CFO≌△AEO.∴ FO = EO∵ BO = DO∴四边形EBFD是平行四边形.………2分∵ BO = CO,COB =60,∴△COB是等边三角形.=60.∴OCB= DCB - OCB =30. ∵FO= FC,∴FCO=FCO=30.∴FOC= FOC + COB =90.∴FOB∴EF ⊥ BD .∴平行四边形EBFD 是菱形.┉┉3分 (2)∵ FO = FC ,∴点F 在线段OC 的垂直平分线上. ∵ BO = BC ,∴点B 在线段OC 的垂直平分线上. ∴ BF 是线段OC 的垂直平分线.………4分 ∴FMO =OMB =90.∴OBM = 30.∴OF = 1 BF . ∴2 .∵FOC =30,∴FM = 1 OF . ∴2 .13∴ BM = BF - MF = 2OF - 1OF = 3OF ∴ 22BM = 3OF2∵FO= EO,∴BM:OE =3:2.┉┉5 分24.(1)(749-727)727 3.0%L L 2分答:2015 年全国普通高校毕业生数增长率为 3.0%(2)680(1+2.8%)699(万)L L 3分(3) 每图各1 分┉┉5 分答:2013 年全国普通高校毕业生数约699 万人.25. (1)连结OD,∵AD平分∠BAC ∴∠DAF=∠DAO ∵OA=OD∴∠OAD=∠ODA ∴∠ DAF=∠ODA ∴AF∥OD.┉┉1 分∵DF⊥AC ∴OD⊥DF ∴DF是⊙O的切线┉┉2 分(2)①连接BD ∵直径AB,∴∠ADB=90°∵圆O与BE相切∴∠ABE=90°∵∠DAB+∠DBA=∠DBA+∠DBE=90°∴∠DAB=∠DBE∴∠DBE=∠FAD ∵∠BDE=∠AFD=90°∴△BDE∽△AFDBE DE 2∴ = = ┉┉3分AD DF 3 ②连接OC ,交AD 于G 由①,设 BE =2x ,则 AD =3x解得:x 1=2,x 2= - 12 (不合题意,舍去) ∴AD =3x =6,BE =2x =4,AE =AD +DE =8sinEAB = 1.2EAB = 300.FAB = 600.L L 5分26(.1)AP = 5-1.L 2分(2)①QV AMN 沿MN 所在的直线翻折得到V A 'MN , A 'M =AM =1.L 3分②由①知,点A'在以点M 为圆心,1为半径的圆上……4分 连接CM 交圆M 于点A',过点M 向CD 的延长线作垂线,垂足为点H. 在R tV MHD中,A 'C = 7-1LL5分四、解答题(本题共20分,每小题5 分)∵△BDE ∽△ABE ∴ AEDE 2 x BE 3x + 2 22xDH =DM COS HDM = 12, MH = DMsinHDM在R tV CHM 中, CM= MH 2+CH 2∴解析式为 y = -x 2 -2x +3 ……3 分(2)当 x = -= -1 时,y =42a∴顶点 D (-1,4)∴F (-1,-4)… 4 分 若以点 O 、F 、P 、Q 为顶点的平行四边形 存在,则点 Q (x ,y )满足 y =EF =4 ①当 y = - 4 时,-x 2-2x +3= -4 解得,x =-12 2∴Q 1(-1-2 2, -4),Q 2(-1+ 2 2,-4) ∴P 1(-2 2,0),P 2 (2 2,0) ……6分 ②当 y = 4 时,-x 2-2x +3= 4 解得,x = - 1 ∴Q 3(-1,4)∴P 3(-2,0)……7分 综上所述,符合条件的点有三个即:P 1(-2 2,0),P 2(2 2,0), P 3(- 2,0)28.(1)①解: BE = AD ,BE ⊥ AD ;……2 分② BE = AD , BE ⊥ AD 仍然成立; 证明:设BE 与AC 的交点为点F, BE 与AD 的交点为点G ,如图1.∵ACB = ECD = 90,∴ACD = BCE . 在△ACD 和△BCE 中, AC = BC ,ACD = BCE ,CD =CE ,∴△ACD ≌△BCE ∴ AD = BE ,CAD =CBE .……3 分27.解:(1)据题意得9a -3b+3=0, a+b+3=0.a =-1,b =- 2OS :::Ssvsqdkv ...• ∞ 181B :小——已——SI ∙ 寸HQ U √H δ √H δ^∞H δ...du m 7u a u v 7...J 06 = Q u 5z ...∙e s吕 *°旺、^^-,"sQ Y ^^^^s H 4* 工旺、只旺、-,"s 0γ^怒“毋白(0) 0 0:::∙ακτgg.. o∙06u⅛o κz ..O O6=QK?'+迄©... 。

相关文档
最新文档