数学最全公式

合集下载

数学公式大全

数学公式大全

一、质点的运动(1)------直线运动1)匀变速直线运动1.平均速度V平=s/t(定义式)2.有用推论Vt2-Vo2=2as3.中间时刻速度Vt/2=V平=(Vt+Vo)/24.末速度Vt=Vo+at5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/26.位移s=V平t=Vot+at2/2=Vt/2t7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0}8.实验用推论Δs=aT2 {Δs为连续相邻相等时间(T)内位移之差}9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=h。

注:(1)平均速度是矢量;(2)物体速度大,加速度不一定大;(3)a=(Vt-Vo)/t只是量度式,不是决定式;(4)其它相关内容:质点、位移和路程、参考系、时间与时刻〔见第一册P19〕/s--t图、v--t图/速度与速率、瞬时速度〔见第一册P24〕。

2)自由落体运动1.初速度Vo=02.末速度Vt=gt3.下落高度h=gt2/2(从Vo位置向下计算)4.推论Vt2=2gh注:(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律;(2)a=g=s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。

(3)竖直上抛运动1.位移s=Vot-gt2/22.末速度Vt=Vo-gt (g=s2≈10m/s2)3.有用推论Vt2-Vo2=-2gs4.上升最大高度Hm=Vo2/2g(抛出点算起)5.往返时间t=2Vo/g (从抛出落回原位置的时间)注:(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值;(2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性;(3)上升与下落过程具有对称性,如在同点速度等值反向等。

大学数学公式总结(全)

大学数学公式总结(全)

大学数学公式总结(全) 1. 代数1.1 代数运算公式- 加法:- $a + b = b + a$- $(a + b) + c = a + (b + c)$- 减法:- $a - b = -(b - a)$- $(a - b) - c = a - (b + c)$- 乘法:- $a \times b = b \times a$- $(a \times b) \times c = a \times (b \times c)$- 除法:- $\frac{a}{b} = \frac{1}{b} \times a$- $\frac{a}{b} \div c = \frac{a}{b \times c}$- 幂运算:- $a^m \times a^n = a^{m + n}$- $(a^m)^n = a^{m \times n}$1.2 二项式定理二项式定理是代数中常用的公式,用于展开一个二项式的幂:$(a + b)^n = C_n^0 \cdot a^n \cdot b^0 + C_n^1 \cdot a^{n-1}\cdot b^1 + C_n^2 \cdot a^{n-2} \cdot b^2 + \ldots + C_n^n \cdot a^0\cdot b^n$其中 $C_n^k$ 是从 $n$ 个不同元素中选取 $k$ 个元素的组合数。

2. 几何2.1 平面几何公式- 长方形:- 周长:$P = 2 \times (l + w)$- 面积:$A = l \times w$- 正方形:- 周长:$P = 4 \times a$- 面积:$A = a^2$- 圆:- 周长:$C = 2 \times \pi \times r$- 面积:$A = \pi \times r^2$2.2 三角形- 直角三角形:- 斜边长度:$c = \sqrt{a^2 + b^2}$- 面积:$A = \frac{1}{2} \times a \times b$- 等边三角形:- 周长:$P = 3 \times a$- 面积:$A = \frac{\sqrt{3}}{4} \times a^2$- 一般三角形:- 周长:$P = a + b + c$- 海伦公式求面积:$A = \sqrt{s \times (s - a) \times (s - b) \times (s - c)}$- 其中 $s = \frac{a + b + c}{2}$3. 微积分3.1 导数- 基本导数公式:- $(c)' = 0$(常数的导数)- $(x^n)' = n \times x^{n-1}$(幂函数的导数)- $(e^x)' = e^x$(指数函数的导数)- $(\ln(x))' = \frac{1}{x}$(对数函数的导数)- $(\sin(x))' = \cos(x)$(正弦函数的导数)- $(\cos(x))' = -\sin(x)$(余弦函数的导数)3.2 积分- 基本积分公式:- $\int{k} \, dx = kx$(常数的不定积分)- $\int{x^n} \, dx = \frac{1}{n+1}x^{n+1}$(幂函数的不定积分)- $\int{e^x} \, dx = e^x$(指数函数的不定积分)- $\int{\frac{1}{x}} \, dx = \ln|x|$(对数函数的不定积分)- $\int{\sin(x)} \, dx = -\cos(x)$(正弦函数的不定积分)- $\int{\cos(x)} \, dx = \sin(x)$(余弦函数的不定积分)以上仅是大学数学公式的一小部分总结,还有很多未列出的公式和定理。

数学公式大全(数学)

数学公式大全(数学)

数学公式大全(数学)数学公式大全数学是一门关于数量、结构、空间以及变化的学科,它是科学和工程中必不可少的基础。

数学公式是数学思想的精华所在,它们可以用来解决各种数学问题,并在实际应用中发挥重要作用。

本文将为您提供一份数学公式大全,涵盖了数学的各个领域。

一、代数和方程1. 一次方程式:ax + b = 0其中,a和b是已知常数,x是未知数。

2. 二次方程式:ax^2 + bx + c = 0其中,a、b、c是已知常数,x是未知数。

3. 四则运算:- 加法:a + b = c- 减法:a - b = c- 乘法:a × b = c- 除法:a ÷ b = c4. 幂运算:a^n表示将a自乘n次,其中a是底数,n是指数。

5. 开平方:√a表示寻找b,使得b^2 = a,其中a是要开方的数。

6. 排列和组合:- 排列:P(n, k) = n! / (n-k)!- 组合:C(n, k) = n! / (k!(n-k)!)其中,n为元素个数,k为要选择的元素个数,"!"表示阶乘运算。

二、几何和三角学1. 直角三角形:- 勾股定理:a^2 + b^2 = c^2- 正弦定理:sin(A) / a = sin(B) / b = sin(C) / c- 余弦定理:c^2 = a^2 + b^2 - 2abcos(C)2. 圆:- 圆的面积:A = πr^2- 圆的周长:C = 2πr其中,r为圆的半径,π是一个数学常数,近似值为3.14159。

3. 三角函数:- 正弦函数:sin(x)- 余弦函数:cos(x)- 正切函数:tan(x)其中,x为角度。

4. 三角恒等式:- 和差公式:sin(A ± B) = sin(A)cos(B) ± cos(A)sin(B)- 二倍角公式:sin(2A) = 2sin(A)cos(A)三、微积分1. 导数:f'(x)表示函数f(x)对x的变化率。

全部高等数学计算公式

全部高等数学计算公式

全部高等数学计算公式高等数学是数学的一个分支,包括微积分、线性代数、数理方程、概率论、复分析等多个内容。

每个分支都有大量的计算公式,下面将分别介绍这些分支中一些经典的计算公式。

一、微积分公式1.极限公式:(1)函数极限公式:$lim(f(x)±g(x))=limf(x)±limg(x)$$lim(f(x)g(x))=limf(x)·limg(x)$$lim\frac{{f(x)}}{{g(x)}}=\frac{{limf(x)}}{{limg(x)}}$(2)常见函数极限:$lim\frac{{sinx}}{{x}}=1$$lim(1+\frac{1}{{n}})^n=e$$lim(1+\frac{1}{{n}})^{n(p-q)}=e^{(p-q)}$2.导数公式:(1)基本导数公式:$(c)'=0$$(x^n)'=nx^{n-1}$$(e^x)'=e^x$$(a^x)'=a^xlna$$(lnx)'=\frac{1}{{x}}$$(sinx)'=cosx$$(cosx)'=-sinx$$(tanx)'=sec^2x$(2)导数的四则运算:$(f(x)\pm g(x))'=f'(x)\pm g'(x)$$(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)$$(\frac{{f(x)}}{{g(x)}})'=\frac{{f'(x)g(x)-f(x)g'(x)}}{{g^2(x)}}$(3)链式法则:$(f(g(x)))'=f'(g(x))g'(x)$3.积分公式:(1)基本积分公式:$\int{cx^n}dx=\frac{{cx^{n+1}}}{{n+1}}+C$$\int{e^x}dx=e^x+C$$\int{a^x}dx=\frac{{a^x}}{{lna}}+C$$\int{\frac{{1}}{{x}}}dx=ln,x,+C$$\int{sinx}dx=-cosx+C$$\int{cosx}dx=sinx+C$$\int{sec^2x}dx=tanx+C$(2)常用积分公式:$\int{u}dv=uv-\int{v}du$$\int{sin^2x}dx=\frac{{x}}{2}-\frac{{sin2x}}{4}+C$$\int{cos^2x}dx=\frac{{x}}{2}+\frac{{sin2x}}{4}+C$4.泰勒展开公式:$f(x)=f(a)+f'(a)(x-a)+\frac{{f''(a)}}{{2!}}(x-a)^2+...+\frac{{f^{(n)}}}{{n!}}(x-a)^n+R_n(x)$二、线性代数公式1.行列式公式:(1)二阶行列式:$D=\begin{vmatrix}a&b\\c&d\end{vmatrix}=ad-bc$(2)三阶行列式:$D=\begin{vmatrix}a&b&c\\d&e&f\\g&h&i\end{vmatrix}=aei+bfg+c dh-ceg-afh-bdi$2.矩阵运算公式:(1)两个矩阵的和:$A+B=\begin{bmatrix}a_{11}&a_{12}\\a_{21}&a_{22}\end{bmatrix }+\begin{bmatrix}b_{11}&b_{12}\\b_{21}&b_{22}\end{bmatrix}=\begin{bmatrix}a_{11}+b_{11}&a_{12}+b_{12}\\a_{21}+b_{21}&a_{22}+b_{2 2}\end{bmatrix}$(2)两个矩阵的乘积:$AB=\begin{bmatrix}a_{11}&a_{12}\\a_{21}&a_{22}\end{bmatrix} \begin{bmatrix}b_{11}&b_{12}\\b_{21}&b_{22}\end{bmatrix}=\begin{ bmatrix}a_{11}b_{11}+a_{12}b_{21}&a_{11}b_{12}+a_{12}b_{22}\\a_{ 21}b_{11}+a_{22}b_{21}&a_{21}b_{12}+a_{22}b_{22}\end{bmatrix}$3.特征值与特征向量公式:$A-\lambda I=0$其中,A为矩阵,$\lambda$为特征值,I为单位矩阵。

数学的全部公式

数学的全部公式

数学的全部公式数学是一门自然科学,其研究对象是数量、结构、变化等数学概念和数学对象。

数学中有许多公式,这些公式可以帮助我们解决各种数学问题。

本文将介绍数学中的全部公式,包括代数、几何、微积分、概率等各个方面。

一、代数公式1. 二次方程公式:对于二次方程ax+bx+c=0,其解为x=[-b±√(b-4ac)]/2a。

2. 因式分解公式:对于多项式a-b,其可以因式分解为(a+b)(a-b)。

3. 平方差公式:对于(a+b),其可以展开为a+2ab+b。

4. 一次方程公式:对于一次方程ax+b=c,其解为x=(c-b)/a。

5. 乘法公式:对于两个数a和b,其乘积可以表示为(a+b)=a+2ab+b和(a-b)=a-2ab+b。

二、几何公式1. 三角形面积公式:对于三角形,其面积可以表示为S=1/2bh,其中b为底边长,h为高。

2. 圆周长公式:对于半径为r的圆,其周长可以表示为C=2πr,其中π为圆周率。

3. 球体积公式:对于半径为r的球体,其体积可以表示为V=4/3πr。

4. 直角三角形勾股定理:对于直角三角形,其直角边长分别为a和b,斜边长为c,有a+b=c。

5. 正弦定理:对于任意三角形ABC,其三条边分别为a、b、c,对应的角分别为A、B、C,则有a/sinA=b/sinB=c/sinC。

三、微积分公式1. 导数公式:对于函数f(x),其导数可以表示为f'(x)=lim(h →0)(f(x+h)-f(x))/h。

2. 积分公式:对于函数f(x),其积分可以表示为∫f(x)dx=F(x)+C,其中C为常数。

3. 洛必达法则:对于函数f(x)/g(x),如果在x=a处f(x)和g(x)的导数都存在且g'(a)≠0,则有lim(x→a)(f(x)/g(x))=lim(x→a)(f'(x)/g'(x))。

4. 牛顿-莱布尼茨公式:对于函数f(x),其在区间[a,b]上的定积分可以表示为∫a~bf(x)dx=F(b)-F(a),其中F(x)为f(x)的一个原函数。

数学公式大全

数学公式大全

代数部分一、数1、正数和负数:正数大于0;负数小于0;2、0既不是正数,也不是负数;正数大于负数;3、整数包括:正整数,0和负整数;4、分数包括:正分数和负分数;5、有理数包括:整数和分数(有限小数,无限循环小数);6、数轴:在直线上取一点表示0(原点),选取单位长度,规定直线上向右的方向为正方向,这样的一条直线叫数轴;7、任何一个有理数(实数)都可以用数轴上的一个点表示,数轴上的每一个点都表示一个实数,即数轴上的点和实数是一一对应的;8、相反数:两个数只有符号不同,则其中一个数是另一个的相反数;两个互为相反数的数相加得0;0的相反数是09、在数轴上,表示互为相反数的两个点,位于原点两侧,且与原点距离相等;10、数轴上的两个点表示的数,右边的总比左边的大;11、绝对值:数轴上,所对应的点与原点的距离;12、正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0;13、两个负数比较大小,绝对值大的反而小;14、有理数加法法则:同号相加,符号不变,绝对值相加;异号相加,绝对值相等的得0;绝对值不等的,符号和绝对值大的相同,然后绝对值相减;15、一个数加0,仍是这个数;16、加法交换律:A+B=B+A17、加法结合律:(A+B)+C=A + (B+C)18、有理数减法法则:减去一个数,等于加上这个数的相反数;19、有理数乘法法则:两数相乘,同号得正,异号得负,绝对值相乘;任何数与0相乘,积为0;20、乘积为1的两个有理数互为倒数;0没有倒数21、乘法交换律:AB=BA22、乘法结合律:(AB)C=A (BC)23、乘法分配律:A (B+C) =AB+AC24、有理数除法法则:两个有理数相除,同号得正,异号得负,绝对值相除;25、0除以任何非0的数都得0;0不能做除数26、乘方:求n个相同因数a的积的运算叫乘方,结果叫幂;a是底数;n是指数;na读作a的n次幂;27、有理数混和运算法则:先乘方,再乘除,后加减;有括号的先算括号里面的;28、无理数:无限不循环小数。

非常全面的数学公式大全

非常全面的数学公式大全

高等数学公式之阿布丰王创作导数公式: 基本积分表:三角函数的有理式积分:ax x aa a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x Cx dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ一些初等函数: 两个重要极限: ·和差化积公式:积化和差公式: ·倍角公式:·半角公式:·正弦定理:R CcB b A a 2sin sin sin ===·余弦定理:C ab b a c cos 2222-+= ·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ 高阶导数公式——莱布尼兹(Leibniz )公式: 中值定理与导数应用: 曲率:定积分的近似计算: 定积分应用相关公式: 空间解析几何和向量代数: 多元函数微分法及应用 微分法在几何上的应用:sin sin 2sincos22sin sin 2sin cos22cos cos 2cos cos22cos cos 2sin sin22αβαβαβαβαβαβαβαβαβαβαβαβ+-+=-+-=+-+=-+-=-[][][]1sin sin cos()cos()21sin cos sin()sin()21cos cos cos()cos()2αβαβαβαβαβαβαβαβαβ=-+--=++-=++-),,(),,(),,(30))(,,())(,,())(,,(2)},,(),,,(),,,({1),,(0),,(},,{,0),,(0),,(0))(())(())(()()()(),,()()()(000000000000000000000000000000000000000000000000000z y x F z z z y x F y y z y x F x x z z z y x F y y z y x F x x z y x F z y x F z y x F z y x F n z y x M z y x F G G F F G G F F G G F F T z y x G z y x F z z t y y t x x t M t z z t y y t x x z y x M t z t y t x z y x z y x z y x yx yx x z x z z y z y -=-=-=-+-+-==⎪⎩⎪⎨⎧====-'+-'+-''-='-='-⎪⎩⎪⎨⎧===、过此点的法线方程::、过此点的切平面方程、过此点的法向量:,则:上一点曲面则切向量若空间曲线方程为:处的法平面方程:在点处的切线方程:在点空间曲线ωψϕωψϕωψϕ方向导数与梯度:多元函数的极值及其求法: 重积分及其应用: 柱面坐标和球面坐标: 曲线积分: 曲面积分: 高斯公式:⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰Ω∑∑∑∑∑Ω∑=++==⋅<∂∂+∂∂+∂∂=++=++=∂∂+∂∂+∂∂dsA dv A ds R Q P ds A ds n A z R y Q x P ds R Q P Rdxdy Qdzdx Pdydz dv z Ry Q x P n ndiv )cos cos cos (...,0div ,div )cos cos cos ()(成:因此,高斯公式又可写,通量:则为消失的流体质量,若即:单位体积内所产生散度:—通量与散度:—高斯公式的物理意义γβαννγβα斯托克斯公式——曲线积分与曲面积分的关系: 常数项级数: 级数审敛法:绝对收敛与条件收敛:幂级数:函数展开成幂级数: 一些函数展开成幂级数: 欧拉公式: 三角级数: 傅立叶级数:周期为l 2的周期函数的傅立叶级数: 微分方程的相关概念: 一阶线性微分方程: 全微分方程: 二阶微分方程:二阶常系数齐次线性微分方程及其解法:二阶常系数非齐次线性微分方程概率公式整理1.随机事件及其概率吸收律:A AB A A A A =⋃=∅⋃Ω=Ω⋃)(AB A A A A A =⋃⋂∅=∅⋂=Ω⋂)(反演律:B A B A =⋃B A AB ⋃= 2.概率的定义及其计算若B A ⊂)()()(A P B P A B P -=-⇒对任意两个事件A , B , 有)()()(AB P B P A B P -=- 加法公式:对任意两个事件A , B , 有 3.条件概率 乘法公式 全概率公式 Bayes 公式4.随机变量及其分布 分布函数计算 5.离散型随机变量 (1) 0 – 1 分布 (2) 二项分布),(p n B 若P ( A ) = p *Possion 定理有,2,1,0!)1(lim ==---∞→k k ep p C kkn n k nk nn λλ(3) Poisson 分布)(λP 6.连续型随机变量 (1) 均匀分布),(b a U (2) 指数分布)(λE(3) 正态分布N (m , s 2 ) *N (0,1) — 尺度正态分布 7.多维随机变量及其分布二维随机变量( X ,Y )的分布函数边沿分布函数与边沿密度函数8.连续型二维随机变量(1) 区域G 上的均匀分布,U ( G )(2)二维正态分布9.二维随机变量的条件分布10.随机变量的数字特征数学期望随机变量函数的数学期望X 的k阶原点矩X 的k阶绝对原点矩X 的k阶中心矩X 的方差X ,Y 的k + l阶混合原点矩X ,Y 的k + l阶混合中心矩X ,Y 的二阶混合原点矩X ,Y 的二阶混合中心矩X ,Y 的协方差X ,Y 的相关系数X 的方差D (X ) =E ((X - E(X))2)协方差相关系数线性代数部分梳理:条理化,给出一个系统的,有内在有机结构的理论体系。

小学数学常用公式大全(数量关系计算公式)

小学数学常用公式大全(数量关系计算公式)

小学数学常用公式大全(数量关系计算公式)1、单价×数量=总价2、单产量×数量=总产量3、速度×时间=路程4、工效×时间=工作总量5、加数+加数=和一个加数=和+另一个加数被减数-减数=差减数=被减数-差被减数=减数+差因数×因数=积一个因数=积÷另一个因数被除数÷除数=商除数=被除数÷商被除数=商×除数有余数的除法:被除数=商×除数+余数一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。

例:90÷5÷6=90÷(5×6)6、1公里=1千米1千米=1000米1米=10分米1分米=10厘米1厘米=10毫米1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米1立方米=1000立方分米1立方分米=1000立方厘米1立方厘米=1000立方毫米1吨=1000千克1千克= 1000克= 1公斤= 1市斤1公顷=10000平方米。

1亩=666.666平方米。

1升=1立方分米=1000毫升1毫升=1立方厘米7、什么叫比:两个数相除就叫做两个数的比。

如:2÷5或3:6或1/3比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。

8、什么叫比例:表示两个比相等的式子叫做比例。

如3:6=9:189、比例的基本性质:在比例里,两外项之积等于两内项之积。

10、解比例:求比例中的未知项,叫做解比例。

如3:χ=9:1811、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。

如:y/x=k( k一定)或kx=y12、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。

(完整版)数学公式大全

(完整版)数学公式大全

知识储备基本知识一、乘法公式与二项式定理(1)222222()2;()2a b a ab b a b a ab b +=++-=-+(2)3322333223()33;()33a b a a b ab b a b a a b ab b +=+++-=-+-(3)01122211()n n n n k n k k n n n n n n n n n n a b C a C a b C a b C a b C ab C b -----+=++++++(4)()abc c b a bc ac ab c b a c b a 3)(333222-++=---++++;(5)()2222222a b c a b c ab ac bc +-=+++--经典习题:1.二、因式分解(1)22()()a b a b a b -=+-(2)()()()()33223322;a b a b a ab b a b a b a ab b +=+-+-=-++; (3)()()121...n nn n n a b a b aa b b ----=-+++三、分式裂项 (1)111(1)1x x x x =-++ (2)1111()()()x a x b b a x a x b=-++-++四、指数运算(1)1(0)nn aa a-=≠ (2)01(1)a a =≠ (3)0)mn a a =≥ (4)mnm na a a+= (5)m n m na a a-÷= (6)()m n mna a=(7)()(0)n n n b b a a a=≠ (8)()n n n ab a b = (9a =五、对数运算(1)log N aaN = (2)log log n b b aan = (3)1log b a a n=(4)log 1a a = (5)1log 0a = (6)log log log MNM Na a a=+ (7)loglog log NMMN a aa =- (8)1log log ba a b=(9)10lg log ,ln log a aea a == 六、函数1、 若集合A 中有n )(N n ∈个元素,则集合A 的所有不同的子集个数为n2,所有非空真子集的个数是22-n。

常用数学公式(大全)

常用数学公式(大全)

常用数学公式大全1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3、速度×时间=路程路程÷速度=时间路程÷时间=速度4、单价×数量=总价总价÷单价=数量总价÷数量=单价5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6、加数+加数=和和-一个加数=另一个加数7、被减数-减数=差被减数-差=减数差+减数=被减数8、因数×因数=积积÷一个因数=另一个因数9、被除数÷除数=商被除数÷商=除数商×除数=被除数小学数学图形计算公式1、正方形C周长S面积a边长周长=边长×4C=4a面积=边长×边长S=a×a2、正方体V:体积a:棱长表面积=棱长×棱长×6S表=a×a×6体积=棱长×棱长×棱长V=a×a×a3、长方形C周长S面积a边长周长=(长+宽)×2C=2(a+b) 面积=长×宽S=ab4、长方体V:体积s:面积a:长b:宽h:高(1)表面积(长×宽+长×高+宽×高)×2S=2(ab+ah+bh)(2)体积=长×宽×高V=abh5三角形s面积a底h高面积=底×高÷2s=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高6平行四边形s面积a底h高面积=底×高s=ah7梯形s面积a上底b下底h高面积=(上底+下底)×高÷2s=(a+b)×h÷28圆形S面积C周长∏d=直径r=半径(1)周长=直径×∏=2×∏×半径C=∏d=2∏r(2)面积=半径×半径×∏9圆柱体v:体积h:高s;底面积r:底面半径c:底面周长(1)侧面积=底面周长×高(2)表面积=侧面积+底面积×2(3)体积=底面积×高(4)体积=侧面积÷2×半径10圆锥体v:体积h:高s;底面积r:底面半径体积=底面积×高÷3总数÷总份数=平均数和差问题的公式(和+差)÷2=大数(和-差)÷2=小数和倍问题和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数)差倍问题差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数)植树问题1非封闭线路上的植树问题主要可分为以下三种情形:⑴如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长÷株距-1全长=株距×(株数-1)株距=全长÷(株数-1)⑵如果在非封闭线路的一端要植树,另一端不要植树,那么: 株数=段数=全长÷株距全长=株距×株数株距=全长÷株数⑶如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1全长=株距×(株数+1)株距=全长÷(株数+1)2封闭线路上的植树问题的数量关系如下株数=段数=全长÷株距全长=株距×株数株距=全长÷株数盈亏问题(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数(大亏-小亏)÷两次分配量之差=参加分配的份数相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间追及问题追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间流水问题顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2水流速度=(顺流速度-逆流速度)÷2浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1)利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)长度单位换算1千米=1000米1米=10分米1分米=10厘米1米=100厘米1厘米=10毫米面积单位换算1平方千米=100公顷1公顷=10000平方米1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米体(容)积单位换算1立方米=1000立方分米1立方分米=1000立方厘米1立方分米=1升1立方厘米=1毫升1立方米=1000升重量单位换算1吨=1000千克1千克=1000克1千克=1公斤人民币单位换算1元=10角1角=10分1元=100分时间单位换算1世纪=100年1年=12月大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月平年2月28天,闰年2月29天平年全年365天,闰年全年366天1日=24小时1时=60分1分=60秒1时=3600秒小学数学几何形体周长面积体积计算公式1、长方形的周长=(长+宽)×2C=(a+b)×22、正方形的周长=边长×4C=4a3、长方形的面积=长×宽S=ab4、正方形的面积=边长×边长S=a.a=a5、三角形的面积=底×高÷2S=ah÷26、平行四边形的面积=底×高S=ah7、梯形的面积=(上底+下底)×高÷2S=(a+b)h÷28、直径=半径×2d=2r半径=直径÷2r=d÷29、圆的周长=圆周率×直径=圆周率×半径×2c=πd=2πr10、圆的面积=圆周率×半径×半径定义定理公式三角形的面积=底×高÷2。

数学常用公式

数学常用公式

一、基础代数公式1. 平方差公式:(a+b)×(a-b)=a2-b22. 完全平方公式:(a±b)2=a2±2ab+b2完全立方公式:(a±b)3=(a±b)(a2 ab+b2)3. 同底数幂相乘: am×an=am+n(m、n为正整数,a≠0)同底数幂相除:am÷an=am-n(m、n为正整数,a≠0)a0=1(a≠0)a-p=(a≠0,p为正整数)4. 等差数列:(1)sn ==na1+ n(n-1)d;(2)an=a1+(n-1)d;(3)n =+1;(4)若a,A,b成等差数列,则:2A=a+b;(5)若m+n=k+i,则:am+an=ak+ai ;(其中:n为项数,a1为首项,an为末项,d为公差,sn为等差数列前n项的和)5. 等比数列:(1)an=a1q-1;(2)sn =(q 1)(3)若a,G,b成等比数列,则:G2=ab;(4)若m+n=k+i,则:am•an=ak•ai ;(5)am-an=(m-n)d(6)=q(m-n)(其中:n为项数,a1为首项,an为末项,q为公比,sn为等比数列前n项的和)6.一元二次方程求根公式:ax2+bx+c=a(x-x1)(x-x2)其中:x1= ;x2= (b2-4ac 0)根与系数的关系:x1+x2=- ,x1•x2=二、基础几何公式1. 三角形:不在同一直线上的三点可以构成一个三角形;三角形内角和等于180°;三角形中任两边之和大于第三边、任两边之差小于第三边;(1)角平分线:三角形一个的角的平分线和这个角的对边相交,这个角的顶点和交点之间的线段,叫做三角形的角的平分线。

(2)三角形的中线:连结三角形一个顶点和它对边中点的线段叫做三角形的中线。

(3)三角形的高:三角形一个顶点到它的对边所在直线的垂线段,叫做三角形的高。

(4)三角形的中位线:连结三角形两边中点的线段,叫做三角形的中位线。

数学的全部公式

数学的全部公式

数学的全部公式数学作为一门科学,是研究数量、结构、变化和空间等概念的学科。

在数学中,公式是一种最基本、最重要的表达方式。

公式可以描述数学概念和规律,是数学中最精确的表达方式之一。

本文将以《数学的全部公式》为主题,探讨数学中的各种公式及其应用。

一、基础数学公式1.1 代数公式代数公式是指代数运算中的基本公式,包括加减乘除、平方、立方等运算。

其中,加减乘除是代数中最基本的运算,它们的公式如下:加法公式:a + b = b + a减法公式:a - b = -(b - a)乘法公式:a × b = b × a除法公式:a ÷ b = a/b平方公式:(a + b) = a + 2ab + b立方公式:(a + b) = a + 3ab + 3ab + b1.2 几何公式几何公式是指几何学中的基本公式,包括各种图形的周长、面积、体积等公式。

其中,最基本的几何公式是直角三角形的勾股定理:勾股定理:a + b = c此外,还有圆的周长和面积公式、长方形的周长和面积公式、正方形的周长和面积公式、三角形的周长和面积公式等。

1.3 微积分公式微积分公式是指微积分学中的基本公式,包括导数、积分、极限等公式。

其中,最基本的微积分公式是导数公式:导数公式:f'(x) = lim (f(x + h) - f(x))/h (h → 0)此外,还有积分公式、微分方程公式、泰勒公式等。

二、高级数学公式2.1 线性代数公式线性代数公式是指线性代数学中的基本公式,包括向量、矩阵、行列式、特征值等公式。

其中,最基本的线性代数公式是向量的内积和外积公式:向量内积公式:a · b = |a| |b| cosθ向量外积公式:|a × b| = |a| |b| sinθ此外,还有矩阵的逆矩阵公式、行列式的展开公式、特征值和特征向量公式等。

2.2 微分几何公式微分几何公式是指微分几何学中的基本公式,包括曲率、切向量、法向量等公式。

最全小学数学公式大全(直接打印)

最全小学数学公式大全(直接打印)

最全小学数学公式大全(直接打印)最全小学数学公式大全(直接打印)以下是小学数学常用的公式大全,可直接打印供学生使用:1. 加法公式:a +b = c2. 减法公式:a -b = c3. 乘法公式:a ×b = c4. 除法公式:a ÷b = c5. 简便乘法公式:(a + b) × c = ac + bc6. 简便除法公式:(a + b) ÷ c = a ÷ c + b ÷ c7. 数轴上的加法和减法公式:a +b =c (c在a和b之间)c - b = a (c在a和b之间)8. 十进制和百分数的转化公式:十进制数 × 100% = 百分数百分数 ÷ 100 = 十进制数9. 分数化简公式:分子与分母同除以同一个数10. 分数的加法:a/b + c/d = (ad + bc)/(bd)11. 分数的减法:a/b - c/d = (ad - bc)/(bd)12. 分数的乘法:a/b × c/d = ac/bd13. 分数的除法:(a/b) ÷ (c/d) = ad/bc14. 最小公倍数公式:a和b的最小公倍数 = a和b的乘积 ÷ a和b的最大公约数15. 最大公约数公式:a和b的最大公约数 = a和b的乘积 ÷ a和b的最小公倍数16. 正整数的整除性规律:个位数是0、2、4、6、8的数能被2整除个位数是0或者5的数能被5整除个位数是0的数能被10整除17. 小数转化为百分数公式:小数 × 100% = 百分数18. 百分数转化为小数公式:百分数 ÷ 100 = 小数19. 简单利息公式:利息 = 本金 ×利率 ×时间20. 速度公式:速度 = 距离 ÷时间21. 面积公式:正方形的面积 = 边长 ×边长长方形的面积 = 长 ×宽三角形的面积 = 底 ×高 ÷ 222. 周长公式:正方形的周长 = 4 ×边长长方形的周长 = 2 × (长 + 宽)三角形的周长 = 边1 + 边2 + 边323. 体积公式:正方体的体积 = 边长 ×边长 ×边长长方体的体积 = 长 ×宽 ×高这些是小学数学中常用的公式,希望对学生们的学习有所帮助。

数学公式大全

数学公式大全

代数部分一、数1、正数和负数:正数大于0;负数小于0;2、0既不是正数,也不是负数;正数大于负数;3、整数包括:正整数,0和负整数;4、分数包括:正分数和负分数;5、有理数包括:整数和分数(有限小数,无限循环小数);6、数轴:在直线上取一点表示0(原点),选取单位长度,规定直线上向右的方向为正方向,这样的一条直线叫数轴;7、任何一个有理数(实数)都可以用数轴上的一个点表示,数轴上的每一个点都表示一个实数,即数轴上的点和实数是一一对应的;8、相反数:两个数只有符号不同,则其中一个数是另一个的相反数;两个互为相反数的数相加得0;0的相反数是09、在数轴上,表示互为相反数的两个点,位于原点两侧,且与原点距离相等;10、数轴上的两个点表示的数,右边的总比左边的大;11、绝对值:数轴上,所对应的点与原点的距离;12、正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0;13、两个负数比较大小,绝对值大的反而小;14、有理数加法法则:同号相加,符号不变,绝对值相加;异号相加,绝对值相等的得0;绝对值不等的,符号和绝对值大的相同,然后绝对值相减;15、一个数加0,仍是这个数;16、加法交换律:A+B=B+A17、加法结合律:(A+B)+C=A + (B+C)18、有理数减法法则:减去一个数,等于加上这个数的相反数;19、有理数乘法法则:两数相乘,同号得正,异号得负,绝对值相乘;任何数与0相乘,积为0;20、乘积为1的两个有理数互为倒数;0没有倒数21、乘法交换律:AB=BA22、乘法结合律:(AB)C=A (BC)23、乘法分配律:A (B+C) =AB+AC24、有理数除法法则:两个有理数相除,同号得正,异号得负,绝对值相除;25、0除以任何非0的数都得0;0不能做除数26、乘方:求n个相同因数a的积的运算叫乘方,结果叫幂;a是底数;n是指数;n a 读作a的n次幂;27、有理数混和运算法则:先乘方,再乘除,后加减;有括号的先算括号里面的;28、无理数:无限不循环小数。

数学公式-数学公式表

数学公式-数学公式表

数学公式-数学公式表一、基本运算符
- 加法:a + b
- 减法:a - b
- 乘法:a * b
- 除法:a / b
- 次方:a^b
二、代数运算
- 开方:√a
- 绝对值:|a|
- 立方:a^3
- 平方:a^2
- 取余:a % b
三、三角函数
- 正弦:sinθ
- 余弦:cosθ
- 正切:tanθ
- 正割:secθ
- 余割:cscθ
- 余切:cotθ
四、微积分
1. 导数
- 函数导数:f'(x)
- 高阶导数:f^(n)(x)
- 一阶偏导数:∂f/∂x
- 二阶偏导数:∂^2f/∂x^2 2. 积分
- 不定积分:∫f(x) dx
- 定积分:∫[a,b] f(x) dx
- 累积积分:∫∫f(x, y) dA
- 弧长积分:∫√(1 + (f'(x))^2) dx 五、向量运算
- 向量加法:a + b
- 向量减法:a - b
- 向量点乘:a · b
- 向量叉乘:a × b
- 向量模长:|a|
- 向量投影:proj_a b
六、矩阵运算
- 矩阵加法:A + B
- 矩阵减法:A - B
- 矩阵乘法:A * B
- 矩阵转置:A^T
- 矩阵行列式:|A|
- 逆矩阵:A^(-1)
七、概率统计
- 期望:E(X)
- 方差:Var(X)
- 标准差:Std(X)
- 协方差:cov(X, Y)
- 相关系数:corr(X, Y)
以上是一些常见的数学公式,可以帮助你学习和应用数学知识。

小学数学公式大全(完全版)

小学数学公式大全(完全版)

小学数学公式大全(完全版)第一部分:概念1、加法交换律:两数相加交换加数的位置,和不变。

2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。

3、乘法交换律:两数相乘,交换因数的位置,积不变.4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。

5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。

如:(2+4)×5=2×5+4×56、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。

O除以任何不是O的数都得O。

简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。

7、什么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式.等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立.8、什么叫方程式?答:含有未知数的等式叫方程式。

9、什么叫一元一次方程式?答:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式.学会一元一次方程式的例法及计算。

即例出代有χ的算式并计算。

10、分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。

11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。

异分母的分数相加减,先通分,然后再加减。

12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。

异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。

13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变.14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。

15、分数除以整数(0除外),等于分数乘以这个整数的倒数.16、真分数:分子比分母小的分数叫做真分数.17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数.假分数大于或等于1。

数学公式大全

数学公式大全

数学公式概述数学公式是人们在研究自然界物与物之间时发现的一些联系,并通过一定的方式表达出来的一种表达方法。

是表征自然界不同事物之数量之间的或等或不等的联系,它确切的反映了事物内部和外部的关系,是我们从一种事物到达另一种事物的依据,使我们更好的理解事物的本质和内涵。

一些基本公式(1)抛物线:y = ax^2 + bx + c (a≠0)就是y等于a乘以x 的平方加上 b乘以x再加上 c置于平面直角坐标系中a > 0时开口向上a < 0时开口向下c = 0时抛物线经过原点b = 0时抛物线对称轴为y轴(当然a=0且b≠0时该函数为一次函数)还有顶点式y = a(x+h)* 2+ k (h,k)=(-b/2a,(4ac-b^2)/4a)就是y等于a乘以(x+h)的平方+k-h是顶点坐标的xk是顶点坐标的y一般用于求最大值与最小值抛物线标准方程:y^2=2px它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2pxx^2=2py x^2=-2py(2)圆:体积=4/3π(r^3)面积=π(r^2)周长=2πr =πd圆的标准方程 (x-a)^2+(y-b)^2=r^2 注:(a,b)是圆心坐标圆的一般方程 x2+y2+Dx+Ey+F=0 注:D^2+E^2-4F>0(一)椭圆周长计算公式椭圆周长公式:L=2πb+4(a-b)椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。

(二)椭圆面积计算公式椭圆面积公式: S=πab椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。

以上椭圆周长、面积公式中虽然没有出现椭圆周率T,但这两个公式都是通过椭圆周率T推导演变而来。

常数为体,公式为用。

椭球物体体积计算公式椭圆的长半径*短半径*π*高(3)三角函数:和差角公式sin(A+B)=sinAcosB+cosAsinB ;sin(A-B)=sinAcosB - sinBcosA ;cos(A+B)=cosAcosB - sinAsinB ;cos(A-B)=cosAcosB + sinAsinB ;tan(A+B)=(tanA+tanB)/(1-tanAtanB);tan(A-B)=(tanA-tanB)/(1+tanAtanB) ;cot(A+B)=(cotAcotB-1)/(cotB+cotA) ;cot(A-B)=(cotAcotB+1)/(cotB-cotA) ;倍角公式tan2A=2tanA/(1-tan^2A) ;cot2A=(cot^2A-1)/2cota ;cos2a=cos^2a-sin^2a=2cos^2a-1=1-2sin^2a ;sin2A=2sinAcosA=2/(tanA+cotA);另:sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*( n-1)/n]=0 ;cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*( n-1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2 ;tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0;四倍角公式:sin4A=-4*(cosA*sinA*(2*sinA^2-1))cos4A=1+(-8*cosA^2+8*cosA^4)tan4A=(4*tanA-4*tanA^3)/(1-6*tanA^2+tanA^4)五倍角公式:sin5A=16sinA^5-20sinA^3+5sinAcos5A=16cosA^5-20cosA^3+5cosAtan5A=tanA*(5-10*tanA^2+tanA^4)/(1-10*tanA^2+5*tanA^4)六倍角公式:sin6A=2*(cosA*sinA*(2*sinA+1)*(2*sinA-1)*(-3+4*sinA^2))cos6A=((-1+2*cosA^2)*(16*cosA^4-16*cosA^2+1))tan6A=(-6*tanA+20*tanA^3-6*tanA^5)/(-1+15*tanA^2-15*tanA^4+tanA^6) 七倍角公式:sin7A=-(sinA*(56*sinA^2-112*sinA^4-7+64*sinA^6))cos7A=(cosA*(56*cosA^2-112*cosA^4+64*cosA^6-7))tan7A=tanA*(-7+35*tanA^2-21*tanA^4+tanA^6)/(-1+21*tanA^2-35*tanA^4+7* tanA^6)八倍角公式:sin8A=-8*(cosA*sinA*(2*sinA^2-1)*(-8*sinA^2+8*sinA^4+1))cos8A=1+(160*cosA^4-256*cosA^6+128*cosA^8-32*cosA^2)tan8A=-8*tanA*(-1+7*tanA^2-7*tanA^4+tanA^6)/(1-28*tanA^2+70*tanA^4-28 *tanA^6+tanA^8)九倍角公式:sin9A=(sinA*(-3+4*sinA^2)*(64*sinA^6-96*sinA^4+36*sinA^2-3))cos9A=(cosA*(-3+4*cosA^2)*(64*cosA^6-96*cosA^4+36*cosA^2-3))tan9A=tanA*(9-84*tanA^2+126*tanA^4-36*tanA^6+tanA^8)/(1-36*tanA^2+126 *tanA^4-84*tanA^6+9*tanA^8)十倍角公式:sin10A=2*(cosA*sinA*(4*sinA^2+2*sinA-1)*(4*sinA^2-2*sinA-1)*(-20*sinA ^2+5+16*sinA^4))cos10A=((-1+2*cosA^2)*(256*cosA^8-512*cosA^6+304*cosA^4-48*cosA^2+1))tan10A=-2*tanA*(5-60*tanA^2+126*tanA^4-60*tanA^6+5*tanA^8)/(-1+45*tan A^2-210*tanA^4+210*tanA^6-45*tanA^8+tanA^10)·万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA)) cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA)) 和差化积2sinAcosB=sin(A+B)+sin(A-B); 2cosAsinB=sin(A+B)-sin(A-B) ;2cosAcosB=cos(A+B)-cos(A-B) ;-2sinAsinB=cos(A+B)-cos(A-B) ;sinA+sinB=2sin((A+B)/2)cos((A-B)/2 ;cosA+cosB=2cos((A+B)/2)sin((A-B)/2) ;tanA+tanB=sin(A+B)/cosAcosB; tanA-tanB=sin(A-B)/cosAcosB ;cotA+cotB=sin(A+B)/sinAsinB; -cotA+cotB=sin(A+B)/sinAsinB ;降幂公式sin&sup2;(A)=(1-cos(2A))/2=versin(2A)/2;cos&sup2;(α)=(1+cos(2A))/2=covers(2A)/2;tan&sup2;(α)=(1-cos(2A))/(1+cos(2A));某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n^22+4+6+8+10+12+14+…+(2n)=n(n+1)1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/61^3+2^3+3^3+4^3+5^3+6^3+…n^3=(n(n+1)/2)^21*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3正弦定理 a/sinA=b/sinB=c/sinC=2R 注:其中 R 表示三角形的外接圆半径余弦定理 b^2=a^2+c^2-2accosB 注:角B是边a和边c的夹角乘法与因式分解 a^2-b^2=(a+b)(a-b)a^3+b^3=(a+b)(a^2-ab+b^2)a^3-b^3=(a-b)(a^2+ab+b^2)三角不等式 -|a|≤a≤|a||a|≤b<=>-b≤a≤b|a|≤b<=>-b≤a≤b|a|-|b|≤|a+b|≤|a|+|b| |a|≤b<=>-b≤a≤b|a|-|b|≤|a-b|≤|a|+|b||z1|-|z2|-...-|zn|≤|z1+z2+...+zn|≤|z1|+|z2|+...+|zn||z1|-|z2|-...-|zn|≤|z1-z2-...-zn|≤|z1|+|z2|+...+|zn||z1|-|z2|-...-|zn|≤|z1±z2±...±zn|≤|z1|+|z2|+...+|zn|一元二次方程的解x1= -b+√(b^2-4ac)/2a x2= -b-√(b^2-4ac)/2a根与系数的关系(韦达定理) x1+x2=-b/a ; x1*x2=c/a判别式△= b^2-4ac=0 则方程有相等的两实根△>0 则方程有两个不相等的个实根△<0 则方程有两共轭复数根公式分类公式表达式圆的标准方程 (x-a)^2+(y-b)^2=r^2 注:(a,b)是圆心坐标圆的一般方程 x^2+y^2+Dx+Ey+F=0 注:△=D^2+E^2-4F>0抛物线标准方程 y^2=2px y^2=-2px x^2=2py x^2=-2py直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c' *h正棱锥侧面积 S=1/2c*h' 正棱台侧面积 S=1/2(c+c')h'圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4π*r2圆柱侧面积 S=c*h=2π*h 圆锥侧面积 S=1/2*c*l=π*r*l弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长柱体体积公式 V=s*h 圆柱体 V=π*r2h图形周长面积体积公式长方形的周长=(长+宽)×2正方形的周长=边长×4长方形的面积=长×宽正方形的面积=边长×边长三角形的面积已知三角形底a,高h,则S=ah/2已知三角形三边a,b,c,半周长p,则S=√[p(p - a)(p - b)(p - c)] (海伦秦九韶公式)(p= (a+b+c)/2)和:(a+b+c)*(a+b-c)*1/4已知三角形两边a,b,这两边夹角C,则S=absinC/2设三角形三边分别为a、b、c,内切圆半径为r则三角形面积=(a+b+c)r/2设三角形三边分别为a、b、c,外接圆半径为r则三角形面积=abc/4r已知三角形三边a、b、c,则S=√{1/4[c^2a^2-((c^2+a^2-b^2)/2)^2]} (“三斜求积” 南宋秦九韶)注:秦九韶公式与海伦公式等价| a b 1 |S△=1/2 * | c d 1 || e f 1 |【| a b 1|| c d 1| 为三阶行列式,此三角形ABC在平面直角坐标系内A(a,b),B(c,d), C(e,f),这里| e f 1 |ABC选区取最好按逆时针顺序从右上角开始取,因为这样取得出的结果一般都为正值,如果不按这个规则取,可能会得到负值,但不要紧,只要取绝对值就可以了,不会影响三角形面积的大小!】秦九韶三角形中线面积公式:S=√[(Ma+Mb+Mc)*(Mb+Mc-Ma)*(Mc+Ma-Mb)*(Ma+Mb-Mc)]/3其中Ma,Mb,Mc为三角形的中线长.平行四边形的面积=底×高梯形的面积=(上底+下底)×高÷2直径=2 r圆的周长=πd= 2πr圆的面积= πr^2长方体的表面积=(长×宽+长×高+宽×高)×2长方体的体积 =长×宽×高正方体的表面积=棱长×棱长×6正方体的体积=棱长×棱长×棱长圆柱的侧面积=底面圆的周长×高圆柱的表面积=上下底面面积+侧面积圆柱的体积=底面积×高圆锥的体积=底面积×高÷3柱体体积=底面积×高平面图形名称符号周长C和面积S正方形 a—边长 C=4a S=a2长方形 a和b-边长 C=2(a+b) S=ab三角形 a,b,c-三边长其中s=(a+b+c)/2 S=ah/2h-a边上的高=ab/2×sin Cs-周长的一半=[s(s-a)(s-b)(s-c)]1/2A,B,C-内角=a^2sinBsinC/(2sinA)几何公理:1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(sas) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( asa)有两角和它们的夹边对应相等的两个三角形全等24 推论(aas) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(sss) 有三边对应相等的两个三角形全等26 斜边、直角边公理(hl) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等 (即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论 2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理 n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即s=(a×b)÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半 l=(a+b)÷2 s=l×h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(asa)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(sas)94 判定定理3 三边对应成比例,两三角形相似(sss)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。

数学公式大全

数学公式大全

数学公式大全数学作为一门科学,有着丰富的理论和方法,其中最为重要的莫过于数学公式。

数学公式通过简洁的符号表示,能够准确表达各种数学关系和定理,是数学研究和应用不可或缺的工具。

下面将介绍一些常用的数学公式,以帮助读者更好地理解和应用数学知识。

一、代数公式1. 一次方程的求解公式:对于方程ax + b = 0,其中a、b为已知常数且a ≠ 0,解x的公式是x = - b / a。

2. 二次方程的求解公式:对于方程ax² + bx + c = 0,其中a、b、c为已知常数且a ≠ 0,解x 的公式是:x = ( -b ± √(b² - 4ac) ) / 2a3. 勾股定理:对于直角三角形,斜边的平方等于两直角边的平方和。

即a² + b²= c²,其中a、b为直角边,c为斜边。

二、几何公式1. 面积公式:- 三角形的面积公式:对于三角形,面积S等于底乘以高的一半。

即S = (1/2) * 底 * 高。

- 矩形的面积公式:对于矩形,面积S等于长乘以宽。

即S = 长 * 宽。

- 正方形的面积公式:对于正方形,面积S等于边长的平方。

即S = 边长²。

- 圆的面积公式:对于圆,面积S等于半径的平方乘以π(圆周率)。

即S = π * 半径²。

2. 体积公式:- 立方体的体积公式:对于立方体,体积V等于边长的立方。

即V = 边长³。

- 圆柱体的体积公式:对于圆柱体,体积V等于底面积乘以高。

即V = 圆的面积 * 高。

- 球体的体积公式:对于球体,体积V等于4/3乘以π乘以半径的立方。

即V = (4/3) * π * 半径³。

三、微积分公式1. 导数公式:- 基本导数公式:- (常数函数导数准则)(k)' = 0,其中k为常数;- (幂函数导数准则)(x^n)' = nx^(n-1),其中n为正整数;- (指数函数导数准则)(a^x)' = ln(a) * a^x,其中a为大于0且不等于1的常数;- (对数函数导数准则)(logₐ(x))' = 1 / (x * ln(a)),其中a为大于0且不等于1的常数。

小学数学公式大全(完全版)

小学数学公式大全(完全版)

小学数学公式大全(完全版)1、长方形的周长=(长+宽)×2 C=(a+b)×22、正方形的周长=边长×4 C=4a3、长方形的面积=长×宽 S=ab4、正方形的面积=边长×边长 S=a.a= a5、三角形的面积=底×高÷2 S=ah÷26、平行四边形的面积=底×高 S=ah7、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷28、直径=半径×2 d=2r 半径=直径÷2 r= d÷29、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr10、圆的面积=圆周率×半径×半径?=πr11、长方体的表面积=(长×宽+长×高+宽×高)×212、长方体的体积 =长×宽×高 V =abh13、正方体的表面积=棱长×棱长×6 S =6a14、正方体的体积=棱长×棱长×棱长 V=a.a.a= a15、圆柱的侧面积=底面圆的周长×高 S=ch16、圆柱的表面积=上下底面面积+侧面积S=2πr +2πrh=2π(d÷2) +2π(d÷2)h=2π(C÷2÷π) +Ch17、圆柱的体积=底面积×高 V=ShV=πr h=π(d÷2) h=π(C÷2÷π) h18、圆锥的体积=底面积×高÷3V=Sh÷3=πr h÷3=π(d÷2) h÷3=π(C÷2÷π) h÷319、长方体(正方体、圆柱体)的体1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3、速度×时间=路程路程÷速度=时间路程÷时间=速度4、单价×数量=总价总价÷单价=数量总价÷数量=单价5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6、加数+加数=和和-一个加数=另一个加数7、被减数-减数=差被减数-差=减数差+减数=被减数8、因数×因数=积积÷一个因数=另一个因数9、被除数÷除数=商被除数÷商=除数商×除数=被除数小学数学图形计算公式1 、正方形 C周长 S面积 a边长周长=边长×4 C=4a 面积=边长×边长S=a×a2 、正方体 V:体积 a:棱长表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长V=a×a×a3 、长方形C周长 S面积 a边长周长=(长+宽)×2C=2(a+b)面积=长×宽S=ab4 、长方体V:体积 s:面积 a:长 b: 宽 h:高(1)表面积(长×宽+长×高+宽×高)×2S=2(ab+ah+bh)(2)体积=长×宽×高V=abh5 三角形s面积 a底 h高面积=底×高÷2s=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高6 平行四边形s面积 a底 h高面积=底×高s=ah7 梯形s面积 a上底 b下底 h高面积=(上底+下底)×高÷2s=(a+b)× h÷28 圆形S面积 C周长∏ d=直径 r=半径(1)周长=直径×∏=2×∏×半径C=∏d=2∏r(2)面积=半径×半径×∏9 圆柱体v:体积 h:高 s;底面积 r:底面半径 c:底面周长(1)侧面积=底面周长×高(2)表面积=侧面积+底面积×2(3)体积=底面积×高(4)体积=侧面积÷2×半径10 圆锥体v:体积 h:高 s;底面积 r:底面半径体积=底面积×高÷3总数÷总份数=平均数和差问题(和+差)÷2=大数(和-差)÷2=小数和倍问题和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数)差倍问题差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数)植树问题1 非封闭线路上的植树问题主要可分为以下三种情形:⑴如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长÷株距-1全长=株距×(株数-1)株距=全长÷(株数-1)⑵如果在非封闭线路的一端要植树,另一端不要植树,那么: 株数=段数=全长÷株距全长=株距×株数株距=全长÷株数⑶如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1全长=株距×(株数+1)株距=全长÷(株数+1)2 封闭线路上的植树问题的数量关系如下株数=段数=全长÷株距全长=株距×株数株距=全长÷株数盈亏问题(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数(大亏-小亏)÷两次分配量之差=参加分配的份数相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间追及问题追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间流水问题顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2水流速度=(顺流速度-逆流速度)÷2浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1)利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)时间单位换算1世纪=100年 1年=12月大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月平年2月28天, 闰年2月29天平年全年365天, 闰年全年366天1日=24小时 1时=60分1分=60秒 1时=3600秒积=底面积×高 V=Sh第一部分:概念1、加法交换律:两数相加交换加数的位置,和不变。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档