2019中考数学试题分类汇编考点平面直角坐标系与函数基础知识含解析

合集下载

中考数学平面直角坐标系和函数复习(知识点归纳+常考题型剖析)

中考数学平面直角坐标系和函数复习(知识点归纳+常考题型剖析)

中考数学平面直角坐标系和函数复习(知识点归纳+常考题型
剖析)
平面直角坐标系和函数相关概念
【基础知识归纳】
归纳一、平面直角坐标系
在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系
把坐标平面被x轴和y轴分割而成的四个部分
分别叫做第一象限、第二象限、第三象限、第四象限
点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开
2. 函数的三种表示法
(1)列表法(2)图像法(3)解析法
3. 由函数解析式画其图像的一般步骤
(1)列表:列表给出自变量与函数的一些对应值
(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点
(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接。

中考数学复习考点知识归类讲解与练习01 平面直角坐标系与函数基本概念

中考数学复习考点知识归类讲解与练习01 平面直角坐标系与函数基本概念

中考数学复习考点知识归类讲解与练习专题01 平面直角坐标系与函数基本概念知识对接考点一、平面直角坐标系1.相关概念(1)平面直角坐标系(2)象限(3)点的坐标2.各象限内点的坐标的符号特征3.特殊位置点的坐标(1)坐标轴上的点(2)一三或二四象限角平分线上的点的坐标(3)平行于坐标轴的直线上的点的坐标(4)关于x轴、y轴、原点对称的点的坐标4.距离(1)平面上一点到x轴、y轴、原点的距离(2)坐标轴或平行于坐标轴的直线上两点间的距离(3)平面上任意两点间的距离5.坐标方法的简单应用(1)利用坐标表示地理位置(2)利用坐标表示平移1 / 27要点补充:点P(x,y)到坐标轴及原点的距离:(1)点P(x,y)到x 轴的距离等于;(2)点P(x,y)到y 轴的距离等于;(3)点P(x,y)到原点的距离等于.考点二、函数及其图象1.变量与常量2.函数的概念3.函数的自变量的取值范围4.函数值5.函数的表示方法(解析法、列表法、图象法)6.函数图象要点补充:由函数解析式画其图像的一般步骤:(1)列表:列表给出自变量与函数的一些对应值;(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点;(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来.专项训练一、单选题1.已知点P (a ,a+3)在第二象限,且点P 到x 轴的距离为2,则a 的值为()A .1-B .5-C .2-D .2y x 22y x +【答案】A【分析】先判断a的取值,进而根据点P到x轴的距离为2得到a+3=2,解得即可.【详解】解:∵点P(a,a+3)在第二象限,∴30aa<⎧⎨+>⎩,∴-3<a<0,∵点P到x轴的距离为2,∴|a+3|=2,∴a+3=2,∴a=-1,故选:A.【点睛】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).2.在平面直角坐标系中,点P(3,4)关于y轴对称点的坐标为()A.(﹣3,4)B.(3,4)C.(﹣3,﹣4)D.(4,﹣3)【答案】A【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.【详解】3 / 27解:点P (3,4)关于y 轴对称点的坐标为(-3,4),故选:A .【点睛】此题主要考查了关于y 轴对称点的坐标,关键是掌握点的坐标的变化规律.3.如图,一个机器人从点O 出发,向正西方向走2m 到达点1A ;再向正北方向走4m 到达点2A ,再向正东方向走6m 到达点3A ,再向正南方向走8m 到达点4A ,再向正西方向走10m 到达点5A ,…按如此规律走下去,当机器人走到点20A 时,点20A 的坐标为()A .(20,20)-B .(20,20)C .(22,20)--D .(22,22)-【答案】A【分析】 先求出A 1,A 2,A 3,…A 8,发现规律,根据规律求出A 20的坐标即可.【详解】解:∵一个机器人从点O 出发,向正西方向走2m 到达点1A ,点A 1在x 轴的负半轴上,∴A 1(-2,0)从点A 2开始,由点1A 再向正北方向走4m 到达点2A ,A 2(-2,4),由点2A 再向正东方向走6m 到达点3A ,A 3(6-2,4)即(4,4),由点3A 再向正南方向走8m 到达点4A ,A 4(4,4-8)即(4,-4),由点A 4再向正西方向走10m 到达点5A ,A 5(4-10,-4)即(-6,-4),由点A 5再向正北方向走12m 到达点A 6,A 6(-6,12-4)即(-6,8),5 / 27由点A 6再向再向正东方向走14m 到达点A 7,A 7(14-6,8)即(8,8),由点A 7再向正南方向走16m 到达点8A ,A 8(8,8-16)即(8,-8),观察图象可知,下标为偶数时在二四象限,下标为奇数时(除1外)在一三象限,下标被4整除在第四象限.且横坐标与下标相同,因为2054=⨯,所以20A 在第四象限,坐标为(20,20)-.故选择A .【点睛】本题考查平面直角坐标系点的坐标规律问题,掌握求点的坐标方法与过程,利用下标与坐标的关系找出规律是解题关键.4.小娜驾车从哈尔滨到大庆.设她出发第x min 时的速度为y km/h ,图中的折线表示她在整个驾车过程中y 与x 之间的函数关系式.下列说法:(1)在77≤x ≤88时,小娜在休息;(2)小娜驾车的最高速度是120km/h ;(3)小娜出发第16.5min 时的速度为48km/h ;(4)如果汽车每行驶100km 耗油10升,那么小娜驾车在33≤x ≤66时耗油6.6升. 其中正确的个数是( )A .1个B .2个C .3个D .4个【答案】C【分析】根据函数图象对每个选项进行分析判断,最后得出结论.①观察图象在77≤x ≤88时,小娜在以时速96千米在行驶;②观察图象小娜的最高时速为120千米;③用待定系数法求出11≤x ≤22时的函数关系式,可求小娜出发第16.5min 时的速度;④小娜驾车在33≤x ≤66时时速为120千米/小时,依次求出小娜驾车在33≤x ≤66时行驶的路程,从而耗油量可求.【详解】解:①观察图象在77≤x ≤88时,小娜在以时速96千米在行驶;故①错误; ②观察图象小娜的最高时速为120千米,故②正确;③在11≤x ≤22时,设y =kx +b .将(11,24)和(22,72)代入上式:11242272k b k b +=⎧⎨+=⎩, 解得:481124k b ⎧=⎪⎨⎪=-⎩. ∴482411y x =-. 当x =16.5min 时,y =48.∴小娜出发第16.5min 时的速度为48km /h .故③正确;④由图象可知:小娜驾车在33≤x ≤66时时速为120千米/小时,∴车在33≤x ≤66时小娜行驶了66331206660-⨯=(千米). ∴耗油为:66×10100=6.6(升).7 / 27故④正确;综上,正确的有②③④共三个.故选:C .【点睛】本题主要考查了一次函数的应用.理解函数图象上的点的实际意义是解题的关键.另外待定系数法是确定函数解析式的重要方法.5.下列不能表示y 是x 的函数的是()A .B .21y x =+C .D .【答案】C【分析】根据函数的定义(给定一个x 值都有唯一确定的y 值与它对应),对选项逐个判断即可.【详解】解:根据函数的定义(给定一个x 值都有唯一确定的y 值与它对应),对选项逐个判断, A :观察列表数据发现,符合函数的定义,不符合题意;B :观察x 与y 的等式发现,符合函数的定义,不符合题意;C :观察函数图像发现,不符合函数的定义,符合题意;D :观察函数图像发现,符合函数的定义,不符合题意;故选:C .【点睛】此题主要考查了函数的定义,涉及到了函数的表示方法(解析法,图像法和列表法),熟练掌握函数的基础知识是解题的关键.x的函数的是()6.下列各图象中,y不是..A.B.C.D.【答案】B【分析】对于自变量x的每一个确定的值y都有唯一的确定值与其对应,则y是x的函数,根据函数的定义解答即可.【详解】根据函数的定义,选项A、C、D图象表示y是x的函数,B图象中对于x的一个值y有两个值对应,故B中y不是x的函数,故选:B.【点睛】此题考查函数的定义,函数图象,结合函数图象正确理解函数的定义是解题的关键.9 / 277.如图,在平面直角坐标系中,//AB DC ,AC BC ⊥,5CD AD ==,6AC =,将四边形ABCD向左平移m 个单位后,点B 恰好和原点O 重合,则m 的值是()A .11.4B .11.6C .12.4D .12.6【答案】A【分析】 由题意可得,m 的值就是线段OB 的长度,过点D 作DE AC ⊥,过点C 作CF OB ⊥,根据勾股定理求得DE 的长度,再根据三角形相似求得BF ,矩形的性质得到OF ,即可求解.【详解】解:由题意可得,m 的值就是线段OB 的长度,过点D 作DE AC ⊥,过点C 作CF OB ⊥,如下图:∵5CD AD ==,DE AC ⊥ ∴132CE AC ==,90DEC ∠=︒由勾股定理得4DE =∵//AB DC∴DCE BAC ∠=∠,90ODC BOD ∠=∠=︒又∵AC BC⊥∴90 ACB CED∠=∠=︒∴DEC BCA△∽△∴DE CE CDBC AC AB==,即4356BC AB==解得8BC=,10AB=∵CF OB⊥∴90 ACB BFC∠=∠=︒∴BCF BAC∽△△∴BC BFAB BC=,即8108BF=解得 6.4BF=由题意可知四边形OFCD为矩形,∴5OF CD==11.4OB BF OF=+=故选A【点睛】此题考查了相似三角形的判定与性质,图形的平移,矩形的判定与性质,勾股定理等,熟练掌握相关基本性质是解题的关键.8.在平面直角坐标系中,已知点A(0,0)、B(2,2)、C(3,0),若以点A、B、C、D为顶点的四边形是平行四边形,则点D的坐标不可能为()A.(﹣1,2) B.(5,2) C.(1,﹣2) D.(2,﹣2)【答案】D【分析】分三种情况:①BC为对角线时,②AB为对角线时,③AC为对角线时;由平行四边形的11 / 27性质容易得出点D 的坐标. 【详解】解:分三种情况:①BC 为对角线时,点D 的坐标为(5,2) ②AB 为对角线时,点D 的坐标为(﹣1,2), ③AC 为对角线时,点D 的坐标为(1,﹣2),综上所述,点D 的坐标可能是(5,2)或(﹣1,2)或(1,﹣2). 故选:D . 【点睛】本题考查了平行四边形的性质、坐标与图形的性质;熟练掌握平行四边形的性质是解决问题的关键.9.半径是R 的圆的周长C 2R π=,下列说法正确的是() A .C ,π,R 是变量,2是常量 B .C 是变量,2,π,R 是常量 C .R 是变量,2,π,C 是常量 D .C ,R 是变量,2π是常量【答案】D 【分析】根据变量和常量的概念解答即可. 【详解】解:在半径是R 的圆的周长2C R π=中,C ,R 是变量,2π是常量. 故选D . 【点睛】本题主要考查了变量和常量,在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量.10.关于变量x ,y 有如下关系:①6-=x y ;②24y x =;③2y x =;④3y x =.其中y 是x 函数的是() A .①③ B .①②③④ C .①③④ D .①②③【答案】C 【分析】根据函数的定义可知,满足对于x 的每一个取值,y 都有唯一确定的值与之对应关系,据此即可确定函数的个数. 【详解】解:y 是x 函数的是①x -y =6;③y =2|x |;④3y x =; ∵x =1时,y =±2,∴对于y 2=4x ,y 不是x 的函数; 故选:C . 【点睛】本题考查了函数的定义,函数的定义:在一个变化过程中,有两个变量x ,y ,对于x 的每一个取值,y 都有唯一确定的值与之对应,则y 是x 的函数,x 叫自变量. 二、填空题11.若点()25,4P a a --到两坐标轴的距离相等,则点P 的坐标是______. 【答案】()1,1或()3,3-; 【分析】根据题意可得关于a 的绝对值方程,解方程可得a 的值,进一步即得答案. 【详解】解:∵P (2a -5,4-a )到两坐标轴的距离相等, ∴254a a -=-.13 / 27∴254a a -=-或25(4)a a -=--, 解得3a =或1a =,当3a =时,P 点坐标为(1,1); 当1a =时,P 点坐标为(-3,3). 故答案为:(1,1)或(-3,3). 【点睛】本题考查了直角坐标系中点的坐标特征,根据题意列出方程是解题的关键.12.在平行四边形ABCD 中,点A 的坐标是(﹣1,0),点B 的坐标是(2,3),点D 的坐标是(3,1),则点C 的坐标是___. 【答案】(6,4). 【分析】根据四边形ABCD 是平行四边形,可得AB∥DC ,且AB =DC ,根据坐标间关系可得2-(-1)=x C -3,3-0=y C -1,解得x C =6,y C =4即可. 【详解】解:∵四边形ABCD 是平行四边形, ∴AB∥DC ,且AB =DC , ∴2-(-1)=x C -3,3-0=y C -1, ∴x C =6,y C =4, 点C (6,4) 故答案为(6,4).【点睛】本题考查平行四边形的性质,点的坐标关系建构方程,掌握平行四边形的性质,点的坐标关系建构方程.13.函数y=182xx+-的自变量的取值范围是______.【答案】x≠4【分析】当表达式的分母中含有自变量时,自变量取值要使分母不为零,据此可得结论.【详解】解:由题可得,8﹣2x为分母,8﹣2x≠0,解得x≠4,∴函数182xyx+=-的自变量的取值范围是x≠4,故答案为:x≠4.【点睛】本题考查的是自变量的取值范围,由于此题表达式为分式,根据分式有意义的条件,分母不为零,得到自变量的取值范围.14.若一个函数图象经过点A(1,3),B(3,1),则关于此函数的说法:①该函数可能是一次函数;②点P(2,2.5),Q(2,3.5)不可能同时在该函数图象上;15 / 27③函数值y 一定随自变量x 的增大而减小;④可能存在自变量x 的某个取值范围,在这个范围内函数值y 随自变量x 增大而增大. 所有正确结论的序号是 ___. 【答案】①②④ 【分析】根据函数的定义,一次函数的图象及函数的性质一一分析即可求解. 【详解】解:①因为一次函数的图象是一条直线,由两点确定一条直线,故该函数可能是一次函数,故正确;②由函数的定义:在一个变化过程中,有两个变量x ,y ,对于x 的每一个取值,y 都有唯一确定的值与之对应,则y 是x 的函数,x 叫自变量,所以点P (2,2.5),Q (2,3.5)不可能同时在该函数图象上,故正确;③因为函数关系不确定,所以函数值y 不一定一直随自变量x 的增大而减小,故错误; ④可能存在自变量x 的某个取值范围,在这个范围内函数值y 随自变量x 增大而增大,故正确; 故答案为①②④. 【点睛】本题主要考查函数的定义及一次函数的图象与性质,熟练掌握函数的定义及一次函数的图象与性质是解题的关键.15.在圆周长公式2C r π=中,常量是__________. 【答案】2π 【分析】根据常量的定义即可解答. 【详解】解:圆周长公式2C r π=中,常量是2π, 故答案为:2π. 【点睛】本题考查了常量的定义,正确理解定义是关键.16.如图,平面直角坐标系中O 是原点,等边△OAB 的顶点A 的坐标是(2,0),点P 以每秒1个单位长度的速度,沿O →A →B →O →A …的路线作循环运动,点P 的坐标是__________________.【答案】12⎛ ⎝⎭【分析】计算前面7秒结束时的各点坐标,得出规律,再按规律进行解答便可. 【详解】解:由题意得,第1秒结束时P 点运动到了线段OA 的中点C 的位置,所以P 1的坐标为P 1(1,0);第2秒结束时P 点运动到了点A 的位置,所以P 2的坐标为P 2(2,0);第3秒结束时P 点运动到了线段AB 的中点D 的位置,如下图所示,过D点作x轴的垂线交于x2处,∵△OAB是等边三角形,且OA=2,∴在Rt△AD x2中,∠DA x2=60°,AD=1,∴21 2Ax=,2Dx=故D点的坐标为32⎛⎝⎭,即P332⎛⎝⎭;第4秒结束时P点运动到了点B的位置,同理过B点向x轴作垂线恰好交于点C,在Rt△OBC中,∠BOC =60°,2OB=,1OC=,BC故B点的坐标为(1,即P4(1;第5秒结束时P点运动到了线段OB的中点E的位置,根据点D即可得出E点的坐标为12⎛⎝⎭,即 P512⎛⎝⎭;第6秒结束时运动到了点O的位置,所以P6的坐标为P6(0,0);第7秒结束时P点的坐标为P7(1,0),与P1相同;……17 / 27由上可知,P 点的坐标按每6秒进行循环, ∵2021÷8=336……5,∴第2021秒结束后,点P 的坐标与P 5相同为12⎛ ⎝⎭,故答案为:12⎛ ⎝⎭.【点睛】本题主要考查了点的坐标特征,等边三角形的性质,数字规律,关键是求出前面几个点坐标,得出规律.17.平面直角坐标系中,点()5,3A -,()0,3B ,()5,0C -,在y 轴左侧一点(),P a b (0b ≠且点P 不在直线AB 上).若40APO ∠=︒,BAP ∠与COP ∠的角平分线所在直线交于D 点.则ADO ∠的度数为______°.【答案】110或70 【分析】分两种情况,①点P 在AO 下方,设AP 与CO 交于点N ,过点N 作//NM AD ,先证明NM 平分PNO ∠,根据“三角形两内角平分线的夹角与第三个角的关系”,可以得出1902NMO P ∠=+∠,即可求解;②点P 在AO 上方,设PO 与AB 交于点M,过点M 作//NM OD ,先证明NM 平分PNA ∠,根据“三角形两内角平分线的夹角与第三个角的关系”,可以得出1902NMA P ∠=+∠,即可求解. 【详解】19 / 27解:分两种情况, ①点P 在AO 下方时,设AP 与CO 交于点N ,过点N 作//NM AD ,PAD PNM ∴∠=∠, //AB NO , BAN ONP ∴∠=∠,AD 平分BAN ∠,12PAD BAN ∴∠=∠,12PNM ONP ∴∠=∠,NM∴平分ONP ∠,OM 平分NOP ∠,111(180)70222MNO NOM ONP PON NPO ∴∠+∠=∠+∠=-∠=︒,110NMO ∴∠=︒, //NM AD ,110ADO NMO ∴∠=∠=︒;①点P 在AO 上方时,设AB 与PO 交于点N ,过点N 作//NM OD ,POD PNM ∴∠=∠,//AB CO ,PNA POC ∴∠=∠,DO 平分POC ∠,12POD POC ∴∠=∠,12PNM PNA ∴∠=∠,NM∴平分ANP ∠,直线CD 平分NAP ∠,111(180)70222MNA NAM PNA PAN NPA ∴∠+∠=∠+∠=-∠=︒,110NMA ∴∠=︒, //NM AD ,18070ADO NMO ∴∠=-∠=, 70ADO ∴∠=︒或110︒.故答案为:70或110.【点睛】本题主要考查了三角形双内角平分线模型,平行线的性质,解题的关键是找基本模型. 18.一个三角形的底边长是3,高x 可以任意伸缩,面积为y ,y 随x 的变化变化,则其中的常量为________,y 随x 变化的解析式为______________. 【答案】3 32y x = 【分析】先根据变量与常量的定义,得到3为常量,x 和y 为变量,再根据三角形面积公式得到21 / 27y =12×3×x =32x (x >0), 【详解】解:数值发生变化的量为变量,数值始终不变的量为常量,因此常量为底边长3,由三角形的面积公式得y 随x 变化的解析式为32y x =. 故答案为:3;32y x =. 【点睛】本题考查主要函数关系式中的变量与常量和列函数关系式解决本题的关键是要理解函数关系中常量和变量. 三、解答题19.已知一个圆柱的底面半径是3cm ,当圆柱的高(cm)h 变化时,圆柱的体积()3cm V 也随之变化.(1)在这个变化过程变量h 、V 中,自变量是______,因变量是______; (2)在这个变化过程中,写出圆柱的体积V 与高h 之间的关系式;(3)当圆柱的高h 由3cm 变化到6cm 时,圆柱的体积V 由______变化到______. 【答案】(1)h ,V ;(2)9V h π=;(3)327cm π,354cm π 【分析】(1)利用函数的概念进行回答;(2)利用圆柱的体积公式求解;(3)分别计算出h =3和6对应的函数值可得到V 的变化情况. 【详解】解:(1)在这个变化过程中,自变量是h ,因变量是V ;故答案为h ,V ;(2)V =π•32•h =9πh ;(3)当h =3cm 时,V =27πcm 3;当h =6cm 时,V =54πcm 3;所以当h 由3cm 变化到6cm 时,V 是由27πcm 3变化到54πcm 3.故答案为:27πcm3;54πcm3.【点睛】本题考查了函数关系式:用来表示函数关系的等式叫做函数解析式,也称为函数关系式.函数解析式是等式.解决此题的关键是圆柱的体积公式.20.一辆大客车和一辆小轿车同时从甲地出发去乙地,匀速而行,大客车到达乙地后停止,小轿车到达乙地后停留4小时,再按照原速从乙地出发返回甲地,小轿车返回甲地后停止,已知两车距甲地的路程s千米与所用的时间t小时的关系如图所示,请结合图象解答下列问题:(1)在上述变化过程中,自变量是________;因变量是________;(2)小轿车的速度是________km/h,大客车的速度是________ km/h;(3)两车出发多少小时后两车相遇,两车相遇时,距离甲地的路程是多少?【答案】(1)t,s;(2)50,30;(3)15小时,450km【分析】(1)根据函数图像可得;(2)根据函数图象中的数据,可以计算出小轿车和大客车的速度;(3)设两车出发xh时,两车相遇,根据题意列出方程,解之可得x,再乘以大客车的速度可得到甲地的距离.【详解】解:(1)自变量是时间t;因变量是路程s;(2)由图象可得,小轿车的速度为:500÷10=50(km/h),大客车的速度为:500÷503=30(km/h),故答案为:50,30;(3)设两车出发x小时,两车相遇,30x+50(x-14)=500,解得,x=15,30x=30×15=450,即两车出发15h后两车相遇,两车相遇时,距离甲地的路程是450km,故答案为:15,450.【点睛】本题考查了从函数图像获取信息,一元一次方程的应用,解答本题的关键是明确题意,结合函数图像得到必要信息.21.在平面直角坐标系中,O为坐标原点,C(4,0),A(a,3),B(a+4,3)(1)求ΔOAC的面积;(2)若aOABC是菱形.【答案】(1)6;(2)见解析【分析】(1)过点A(a,3)作AE⊥x轴于点E,根据A(a,3),C(4,0)求出AE和OC的长度,23 / 27然后根据三角形面积公式求解即可;(2)首先根据点A 和点B 的纵坐标相同得到//AB OC ,然后结合AB OC =得到四边形OABC 是平行四边形,然后根据勾股定理求出OA 的长度,得到OA =OB ,根据菱形的判定定理即可证明. 【详解】解:(1)如图所示,过点A (a ,3)作AE ⊥x 轴于点E ,则AE =3, 又∵C (4,0), ∴OC =4,∴S △OAC =11=43622OC AE ⨯⨯⨯⨯=.(2)若a =)A ,)43B ,, ∵A B y y =, ∴//AB OC , ∵44AB OC ==,, ∴AB OC =.∴四边形OABC 是平行四边形, 过点A 作AE ⊥x 轴,则90AEO ∠=︒,3AE OE ==,∴4OA =,∴OA AB=,∴四边形OABC是菱形.【点睛】此题考查了三角形面积的求法,菱形的判定,解题的关键是根据题意找到坐标和线段的关系.22.定义:平面直角坐标系中,点M(a,b)和点N(m,n)的距离为MN,例如:点(3,2)和(4,0(1)在平面直角坐标系中,点(2,5-)和点(2,1)的距离是,点(72,3)和点(12,1-)的距离是;(2)在平面直角坐标系中,已知点M(2-,4)和N(6,3-),将线段MN平移到M ′ N′,点M的对应点是M′,点N的对应点是N′,若M′的坐标是(8-,m),且MM′=10,求点N′的坐标;(3)在平面直角坐标系中,已知点A在x轴上,点B在y轴上,点C的坐标是(12,5),若BC=13,且△ABC的面积是20,直接写出点A的坐标.【答案】(1)6,5;(2)当M′(-8,12)时,N′(0,5),当M′(-8,-4)时,N′(0,-11);(3)(8,0)或(-8,0)或(16,0)或(32,0)【分析】(1)分别利用两点间距离公式求解即可.(2)构建方程求出m的值,可得结论.(3)设(0,)B t,构建方程求出t的值,可得结论.【详解】解:(1)点(2,5)-和点(2,1)的距离6,25 / 27点7(2,3)和点1(2,1)-的距离5=, 故答案为:6,5. (2)由题意,10MM '=,∴10=,12m =∴或4-,(8,12)M ∴'-或(8,4)--,当(8,12)M '-时,(0,5)N ', 当(8,4)M '--时,(0,11)N '-. (3)设(0,)B t ,(12,5)C ,13BC =,∴13,解得0t =或10,(0,0)B ∴或(0,10),当(0,0)B 时,20ABC S ∆=,∴15202OA ⨯⨯=, 8OA ∴=,(8,0)A ∴或(8,0)-.当(0,10)B 时,20ABC BOC AOC AOB S S S S ∆∆∆∆=+-=或20ABC AOC AOB BOC S S S S ∆∆∆∆=--=,∴111101*********OA OA ⨯⨯+⨯⨯-⨯⨯=或111101012520222OA OA ⨯⨯-⨯⨯-⨯⨯=,16OA ∴=或32,∴或(32,0),A(16,0)综上所述,满足条件的点A的坐标为(8,0)或(8,0)-或(16,0)或(32,0).【点睛】本题属于三角形综合题,考查了两点间距离公式,三角形的面积等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.27 / 27。

中考总复习平面直角坐标系与一次函数反比例函数--知识讲解

中考总复习平面直角坐标系与一次函数反比例函数--知识讲解

中考总复习平面直角坐标系与一次函数反比例函数--知识讲解一、平面直角坐标系:平面直角坐标系是描述平面上点位置的一种工具,它由两条互相垂直的数轴(横轴和纵轴)构成。

横轴通常被称为x轴,纵轴通常被称为y轴。

通常,将x轴和y轴的交点称为坐标原点O。

在平面直角坐标系中,每一个点都可以用一个有序数对(x,y)来表示,其中x表示点在x轴上的位置,y表示点在y轴上的位置。

例如,点A在x轴上的位置是2,在y轴上的位置是3,那么点A的坐标就是(2,3)。

二、一次函数:1.定义:一次函数是指形如y = ax + b的函数,其中a和b是常数,并且a≠0。

其中,a叫做一次函数的斜率,b叫做一次函数的截距。

2.斜率的性质:(1)当a>0时,一次函数是递增的,意味着随着x的增加,y也增加。

(2)当a<0时,一次函数是递减的,意味着随着x的增加,y减少。

3.截距的性质:截距是指一次函数与y轴的交点,在数学上记为点(0,b)。

(1)当b>0时,一次函数与y轴正向相交,函数图像在y轴上方。

(2)当b<0时,一次函数与y轴负向相交,函数图像在y轴下方。

4.一次函数的图像特点:一次函数的图像是一条直线,直线的斜率决定了直线的倾斜程度,而截距决定了直线与y轴的交点位置。

通过改变斜率和截距的值,可以改变直线的位置和倾斜程度。

三、反比例函数:1.定义:反比例函数也称为比例函数的倒数函数,当x≠0时,反比例函数可以表示为y=k/x,其中k≠0。

反比例函数的图像是图象关于坐标原点O对称的两个分离的曲线。

2.反比例函数的性质:(1)当x增大时,y减小;当x减小时,y增大。

(2)反比例函数不存在斜线,是一对曲线对称分离的图象。

四、平面直角坐标系与一次函数反比例函数的应用:平面直角坐标系和一次函数、反比例函数可以应用于很多实际问题中,如图形的绘制、方程的求解等。

1.图形的绘制:- 对于一次函数y = ax + b,通过改变a和b的值,可以得到不同的图形及其特点。

2019中考真题 函数初步(含平面直角坐标系)分类汇编(PDF版含解析)

2019中考真题  函数初步(含平面直角坐标系)分类汇编(PDF版含解析)

【答案】B【解析】根据平面直角坐标系中的点(x,y)关于原点的对称点为(-x,-y),故点(-1,2) 关于原点的
对称点坐标是(1,-2),故选择 B.
.(2019·武汉)“漏壶”是一种这个古代计时器,在它内部盛一定量的水,不考虑水量变化对压力的影响,水从壶底
小孔均匀漏出,壶内壁有刻度.人们根据壶中水面的位置计算时间,用 t 表示漏水时间,y 表示壶底到水面的高度,下
. (2019·岳阳)函数 y
x2
中,自变量 x 的取值范围是(

x
A.x≠0 B.x≥-2 C.x>0 D.x≥-2 且 x≠0 【答案】D【解析】由题意可知:x+2≥0,解得 x≥-2,又因为 x 为分母,故 x≠0,所以 x≥-2 且 x≠0
3
2019 中考试题分类汇编
故选 B.
. (2019·无锡)函数 y = 2x -1 中的自变量 x 的取值范围是
则点 A'的坐标是
A.(-1,1)
B.(-1,-2)
C.(-1,2)
D.(1,2)
【答案】A【解析】根据平面直角坐标系中点的平移与坐标的关系,向上平移 3 个单位长度,则点 A 的纵坐标加 3,
向左平移 2 个单位长度,则点 A 的横坐标减 2,则 A'(1-2,-2+3),即 A'(-1,1),故选 A.
…,根据图象可得移动 4 次图象完成一个循环,从而可得出点 P2019 的坐标. ∵2019÷4=504…3
∴A2019 的坐标是(2019 3 ,-1),∴在第 2019 秒时点 P 的纵坐标为-1.故答案为 B.
2
2019 中考试题分类汇编
.(2019·衡阳)如图,在直角三角形 ABC 中,∠C=90°,AC=BC,E 是 AB 的中点,过点 E 作 AC 和 BC 的 垂线,垂足分别为点 D 和点 F,四边形 CDEF 沿着 CA 方向匀速运动,点 C 与点 A 重合时停止运动,设运动时 间为 t,运动过程中四边形 CDEF 与△ABC 的重叠部分面积为 S,则 S 关于 t 的函数图象大致为( ).

中考复习——平面直角坐标系、一次函数、反比例函数及其图象 知识点汇总及典例分析

中考复习——平面直角坐标系、一次函数、反比例函数及其图象 知识点汇总及典例分析

中考复习——平面直角坐标系、一次函数、反比例函数【知识梳理】一、平面直角坐标系1. 坐标平面上的点与 有序实数对 构成一一对应;2. 各象限点的坐标的符号;3. 坐标轴上的点的坐标特征.4. 点P (a ,b )关于x 轴对称的点的坐标为 ;关于y 轴对称的点的坐标为 ;关于原点对称的点的坐标为5.两点之间的距离二、函数的概念1.概念:在一个变化过程中有两个变量x 与y ,如果对于x 的每一个值,y 都有 的值与它对应,那么就说x 是自变量,y 是x 的函数.2.自变量的取值范围: (1)使解析式 (2)实际问题具有 意义3.函数的表示方法; (1) (2) (3) 三、一次函数的概念、图象、性质1.正比例函数的一般形式是 ( ),一次函数的一般形式是 (k≠0). 2. 一次函数y kx b =+的图象是经过( , )和( , )两点的一条直线.4.若两个一次函数解析式中,k 相等,表示两直线 ;若两直线垂直,则 。

5.的大小决定直线的倾斜程度,越大,直线越 ;四、反比例函数的概念、图象、性质1.反比例函数:一般地,如果两个变量x 、y 之间的关系可以表示成y = 或 或 (k 为常数,k≠0)的形式,那么称y 是x 的反比例函数. 2. 反比例函数的图象和性质k >0,b >0k >0,b <0k <0,b >0k <0,21212211P P )0()0()2(y y y P y P -=, ,,,21212211P P )0()0()1(x x x P x P -=, , ,, 3.k 的几何含义:反比例函数y =k x(k≠0)中比例系数k 的几何意义,即过双曲线y =k x(k≠0)上任意一点P 作x 轴、y 轴垂线,设垂足分别为A 、B ,则所得矩形OAPB 的面积为 。

【例题精讲】 例1.函数22y x =-中自变量x 的取值范围是 ;函数y =x 的取值范围是 .例2.已知点(13)A m -,与点(21)B n +,关于x 轴对称,则m = ,n = . 例3.如图,在平面直角坐标系中,点A 的坐标是(10,0),点B 的 坐标为(8,0),点C 、D 在以OA 为直径的半圆M 上,且四边形OCDB 是平行四边形,点C 的坐标为例4.一次函数y=(3a+2)x -(4-b),求满足下列条件的a 、b 的取值范围。

中考数学专题08平面直角坐标系与一次函数-三年(2019-2021)中考真题数学分项汇编

中考数学专题08平面直角坐标系与一次函数-三年(2019-2021)中考真题数学分项汇编

专题08.平面直角坐标系与一次函数一、单选题1.(2021·四川自贡市·中考真题)如图,()8,0A,()2,0C -,以点A 为圆心,AC 长为半径画弧,交y 轴正半轴于点B ,则点B 的坐标为( )A .()0,5B .()5,0C .()6,0D .()0,62.(2021·湖南邵阳市·中考真题)某天早晨7:00,小明从家骑自行车去上学,途中因自行车发生故障,就地修车耽误了一段时间,修好车后继续骑行,7:30赶到了学校.图所示的函数图象反映了他骑车上学的整个过程.结合图象,判断下列结论正确的是( )A .小明修车花了15minB .小明家距离学校1100mC .小明修好车后花了30min 到达学校D .小明修好车后骑行到学校的平均速度是3m/s3.(2021·重庆中考真题)小明从家出发沿笔直的公路去图书馆,在图书馆阅读书报后按原路回到家.如图,反映了小明离家的距离y (单位:km )与时间t (单位:h )之间的对应关系.下列描述错误..的是( )A .小明家距图书馆3kmB .小明在图书馆阅读时间为2hC .小明在图书馆阅读书报和往返总时间不足4hD .小明去图书馆的速度比回家时的速度快 4.(2021·陕西中考真题)在平面直角坐标系中,若将一次函数21y x m =+-的图象向左平移3个单位后,得到个正比例函数的图象,则m 的值为( )A .-5B .5C .-6D .65.(2021·湖南邵阳市·中考真题)在平面直角坐标系中,若直线y x m =-+不经过第一象限,则关于x 的方程210mx x ++=的实数根的个数为( )A .0个B .1个C .2个D .1或2个6.(2021·江苏苏州市·中考真题)已知点)Am ,3,2B n ⎛⎫ ⎪⎝⎭在一次函数21y x =+的图像上,则m 与n 的大小关系是( )A .m n >B .m n =C .m n <D .无法确定7.(2021·四川乐山市·中考真题)如图,已知直线1:24l y x =-+与坐标轴分别交于A 、B 两点,那么过原点O 且将AOB 的面积平分的直线2l 的解析式为( )A .12y x =B .y x =C .32y x =D .2y x =8.(2021·江苏扬州市·中考真题)如图,一次函数y x =+的图像与x 轴、y 轴分别交于点A 、B ,把直线AB 绕点B 顺时针旋转30交x 轴于点C ,则线段AC 长为( )A B.C .2+D 9.(2021·重庆中考真题)甲无人机从地面起飞,乙无人机从距离地面20m 高的楼顶起飞,两架无人机同时匀速上升10s .甲、乙两架无人机所在的位置距离地面的高度y (单位:m )与无人机上升的时间x (单位:s )之间的关系如图所示.下列说法正确的是( )A .5s 时,两架无人机都上升了40mB .10s 时,两架无人机的高度差为20mC .乙无人机上升的速度为8m /sD .10s 时,甲无人机距离地面的高度是60m10.(2021·甘肃武威市·中考真题)将直线5y x =向下平移2个单位长度,所得直线的表达式为( ) A .52y x =- B .52y x =+ C .()52y x =+ D .()52y x =-11.(2021·安徽中考真题)某品牌鞋子的长度y cm 与鞋子的“码”数x 之间满足一次函数关系.若22码鞋子的长度为16cm ,44码鞋子的长度为27cm ,则38码鞋子的长度为( )A .23cmB .24cmC .25cmD .26cm12.(2021·四川凉山州·中考真题)函数y kx b =+的图象如图所示,则关于x 的一元二次方程210x bx k ++-=的根的情况是( )A .没有实数根B .有两个相等的实数根C .有两个不相等的实数根D .无法确定13.(2021·浙江嘉兴市·中考真题)已知点(),P a b 在直线34y x =--上,且250a b -≤( ) A .52a b ≤ B .52a b ≥ C .25b a ≥ D .25b a ≤ 14.(2020·贵州毕节市·中考真题)在平面直角坐标系中,第二象限内有一点M ,点M 到x 轴的距离为5,到y 轴的距离为4,则点M 的坐标是( )A .()5,4B .()4,5C .()4,5-D .()5,4-15.(2020·浙江嘉兴市·中考真题)一次函数y=-2x -1的图象大致是( )A .B .C .D .16.(2020·四川广安市·中考真题)一次函数7y x =--的图象不经过的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限17.(2020·山东济南市·中考真题)若m <﹣2,则一次函数()11y m x m =++-的图象可能是( ) A . B . C . D .18.(2020·四川中考真题)已知函数1(2)2(2)x x y x x-+<⎧⎪=⎨-≥⎪⎩,当函数值为3时,自变量x 的值为( ) A .﹣2 B .﹣23 C .﹣2或﹣23 D .﹣2或﹣3219.(2020·广西中考真题)直线y =kx +2过点(﹣1,4),则k 的值是( )A .﹣2B .﹣1C .1D .220.(2020·西藏中考真题)如图,一个弹簧不挂重物时长6cm ,挂上重物后,在弹性限度内弹簧伸长的长度与所挂重物的质量成正比.弹簧总长y (单位:cm )关于所挂物体质量x (单位:kg )的函数图象如图所示,则图中a 的值是( )A .3B .4C .5D .621.(2020·辽宁鞍山市·中考真题)如图,在平面直角坐标系中,点1234,,,,A A A A 在x 轴正半轴上,点123,,,B B B在直线(0)3y x x =≥上,若1(1,0)A ,且112223334,,,A B A A B A A B A 均为等边三角形,则线段20192020B B 的长度为( )A.2B.2C.2 D.222.(2020·内蒙古鄂尔多斯市·中考真题)鄂尔多斯动物园内的一段线路如图1所示,动物园内有免费的班车,从入口处出发,沿该线路开往大象馆,途中停靠花鸟馆(上下车时间忽略不计),第一班车上午9:20发车,以后每隔10分钟有一班车从入口处发车,且每一班车速度均相同.小聪周末到动物园游玩,上午9点到达入口处,因还没到班车发车时间,于是从入口处出发,沿该线路步行25分钟后到达花鸟馆,离入口处的路程y (米)与时间x (分)的函数关系如图2所示,下列结论错误的是( )A .第一班车离入口处的距离y (米)与时间x (分)的解析式为y =200x ﹣4000(20≤x≤38)B .第一班车从入口处到达花鸟馆所需的时间为10分钟C .小聪在花鸟馆游玩40分钟后,想坐班车到大象馆,则小聪最早能够坐上第四班车D .小聪在花鸟馆游玩40分钟后,如果坐第五班车到大象馆,那么比他在花鸟馆游玩结束后立即步行到大象馆提前了7分钟(假设小聪步行速度不变)23.(2020·广东广州市·中考真题)一次函数31y x =-+的图象过点()11,x y ,()121,x y +,()132,x y +,则( )A .123y y y <<B .321y y y <<C .213y y y <<D .312y y y <<24.(2020·湖北省直辖县级行政单位·中考真题)对于一次函数2y x =+,下列说法不正确的是( ) A .图象经过点()1,3 B .图象与x 轴交于点()2,0- C .图象不经过第四象限 D .当2x >时,4y < 25.(2020·四川内江市·中考真题)在平面直角坐标系中,横坐标和纵坐标都是整数的点叫做整点,已知直线22y tx t =++(0t >)与两坐标轴围成的三角形区域(不含边界)中有且只有四个整点,则t 的取值范围是( )A .122t ≤<B .112t <≤ C .12t <≤ D .122t ≤≤且1t ≠ 26.(2020·山东潍坊市·中考真题)若定义一种新运算:(2)6(2)a ba b a b a b a b 例如:31312⊗=-=;545463⊗=+-=.则函数(2)(1)y x x =+⊗-的图象大致是( )A .B .C .D .27.(2020·湖南湘潭市·中考真题)如图,直线(0)y kx b k =+<经过点(1,1)P ,当kx b x +≥时,则x 的取值范围为( )A .1x ≤B .1≥xC .1x <D .1x >28.(2020·湖北黄石市·中考真题)函数13y x =+-x 的取值范围是( ) A .2x ≥,且3x ≠ B .2x ≥ C .3x ≠ D .2x >,且3x ≠29.(2020·湖北武汉市·中考真题)一个容器有进水管和出水管,每分钟的进水和出水是两个常数.从某时刻开始4min 内只进水不出水,从第4min 到第24min 内既进水又出水,从第24min 开始只出水不进水,容器内水量y (单位:L )与时间x (单位:min )之间的关系如图所示,则图中a 的值是( ) A .32 B .34 C .36 D .3830.(2020·湖北宜昌市·中考真题)小李、小王、小张、小谢原有位置如图(横为排、竖为列),小李在第2排第4列,小王在第3排第3列,小张在第4排第2列,小谢在第5排第4列.撤走第一排,仍按照原有确定位置的方法确定新的位置,下列说法正确的是( ).A .小李现在位置为第1排第2列B .小张现在位置为第3排第2列C .小王现在位置为第2排第2列D .小谢现在位置为第4排第2列31.(2020·四川凉山彝族自治州·中考真题)点()2,3A 关于x 轴对称的点的坐标是( )A .()2,3--B .()2,3-C .()2,3D .()2,3-32.(2019·山东中考真题)如图,在单位为1的方格纸上,△A 1A 2A 3,△A 3A 4A 5,△A 5A 6A 7,…,都是斜边在x 轴上,斜边长分别为2,4,6,…的等腰直角三角形,若△A 1A 2A 3的顶点坐标分别为A 1(2,0),A 2(1,1),A 3(0,0),则依图中所示规律,A 2019的坐标为( )A .(﹣1008,0)B .(﹣1006,0)C .(2,﹣504)D .(1,505)33.(2019·浙江中考真题)如图是雷达屏幕在一次探测中发现的多个目标,其中对目标A 的位置表述正确的是( )A .在南偏东75º方向处B .在5km 处C .在南偏东15º方向5km 处D .在南偏东75º方向5km 处34.(2019·江苏苏州市·中考真题)若一次函数y kx b =+(k b 、为常数,且0k ≠)的图象经过点()01A -,,()11B ,,则不等式1kx b +>的解为( )A .0x <B .0x >C .1x <D .1x >35.(2019·湖北鄂州市·中考真题)如图,在平面直角坐标系中,点1A 、2A 、3A …n A 在x 轴上,1B 、2B 、3B …n B 在直线3y x =上,若()11,0A ,且112A B A ∆、223A B A ∆…1n n n A B A +∆都是等边三角形,从左到右的小三角形(阴影部分)的面积分别记为1S 、2S 、3S …n S .则n S 可表示为( )A .22nB .22n -C .22n -D .22n -36.(2019·四川眉山市·中考真题)如图,一束光线从点()4,4A 出发,经y 轴上的点C 反射后经过点()10B ,,则点C 的坐标是( )A .10,2⎛⎫ ⎪⎝⎭B .40,5⎛⎫ ⎪⎝⎭C .()0,1D .()0,2 二、填空题目37.(2021·四川成都市·中考真题)在正比例函数y kx =中,y 的值随着x 值的增大而增大,则点()3,P k 在第______象限.38.(2021·上海中考真题)已知6()f x x=,那么f =__________.39.(2021·湖南怀化市·中考真题)在函数 y = 中,自变量x 的取值范围是___________. 40.(2021·四川广安市·中考真题)如图,在平面直角坐标系中,AB y ⊥轴,垂足为B ,将ABO 绕点A 逆时针旋转到11AB O 的位置,使点B 的对应点1B 落在直线34y x =-上,再将11AB O 绕点1B 逆时针旋转到112A B O 的位置,使点1O 的对应点2O 也落在直线34y x =-上,以此进行下去……若点B 的坐标为()0,3,则点21B 的纵坐标...为______.41.(2021·四川眉山市·中考真题)一次函数()232y a x =++的值随x 值的增大而减少,则常数a 的取值范围是______.42.(2021·上海中考真题)某人购进一批苹果到集贸市场零售,已知卖出的苹果数量与售价之间的关系如图所示,成本为5元/千克,现以8元/千克卖出,赚___________元.43.(2021·上海中考真题)已知函数y kx =经过二、四象限,且函数不经过(1,1)-,请写出一个符合条件的函数解析式_________.44.(2021·江苏苏州市·中考真题)若21x y +=,且01y <<,则x 的取值范围为______.45.(2021·四川自贡市·中考真题)当自变量13x -≤≤时,函数y x k =-(k 为常数)的最小值为3k +,则满足条件的k 的值为_________.46.(2020·黑龙江大庆市·中考真题)点(2,3)关于y 轴对称的点的坐标为_____.47.(2020·四川广安市·中考真题)一次函数y=2x +b 的图象过点(0,2),将函数y=2x +b 的图象向上平移5个单位长度,所得函数的解析式为________.48.(2020·贵州黔南布依族苗族自治州·中考真题)如图,在平面直角坐标系中,直线y =﹣43x+4与x 轴、y 轴分别交于A 、B 两点,点C 在第二象限,若BC =OC =OA ,则点C 的坐标为___.49.(2020·贵州黔南布依族苗族自治州·中考真题)函数1y x =-的图象一定不经过第_________象限. 50.(2020·辽宁鞍山市·中考真题)如图,在平面直角坐标系中,已知(3,6),(2,2)A B -,在x 轴上取两点C ,D (点C 在点D 左侧),且始终保持1CD =,线段CD 在x 轴上平移,当AD BC +的值最小时,点C 的坐标为________.51.(2020·江苏宿迁市·中考真题)已知一次函数y =2x ﹣1的图象经过A (x 1,1),B (x 2,3)两点,则x 1_____x 2(填“>”“<”或“=”).52.(2020·湖南益阳市·中考真题)某公司新产品上市30天全部售完,图1表示产品的市场日销售量与上市时间之间的关系,图2表示单件产品的销售利润与上市时间之间的关系,则最大日销售利润是______元.53.(2020·宁夏中考真题)如图,直线542y x =+与x 轴、y 轴分别交于A 、B 两点,把AOB 绕点B 逆时针旋转90°后得到11AO B ,则点1A 的坐标是_____.54.(2020·辽宁营口市·中考真题)如图,∠MON =60°,点A 1在射线ON 上,且OA 1=1,过点A 1作A 1B 1⊥ON 交射线OM 于点B 1,在射线ON 上截取A 1A 2,使得A 1A 2=A 1B 1;过点A 2作A 2B 2⊥ON 交射线OM 于点B 2,在射线ON 上截取A 2A 3,使得A 2A 3=A 2B 2;…;按照此规律进行下去,则A 2020B 2020长为_____.55.(2020·上海中考真题)小明从家步行到学校需走的路程为1800米.图中的折线OAB 反映了小明从家步行到学校所走的路程s (米)与时间t (分钟)的函数关系,根据图象提供的信息,当小明从家出发去学校步行15分钟时,到学校还需步行____米.56.(2020·黑龙江鹤岗市·中考真题)如图,直线AM 的解析式为1y x =+与x 轴交于点M ,与y 轴交于点A ,以OA 为边作正方形ABCO ,点B 坐标为()1,1.过点B 作1EO MA ⊥交MA 于点E ,交x 轴于点1O ,过点1O 作x 轴的垂线交MA 于点1A 以11O A 为边作正方形1111O A B C ,点1B 的坐标为()5,3.过点1B 作12E O MA ⊥交MA 于1E ,交x 轴于点2O ,过点2O 作x 轴的垂线交MA 于点2A ,以22O A 为边作正方形2222O A B C ,,则点2020B 的坐标______.57.(2020·江苏南京市·中考真题)将一次函数24y x =-+的图象绕原点O 逆时针旋转90,所得到的图像对应的函数表达式是__________.58.(2020·山东临沂市·中考真题)点1,2m ⎛⎫-⎪⎝⎭和点(2,)n 在直线2y x b =+上,则m 与n 的大小关系是_________.59.(2020·四川广安市·中考真题)如图,在平面直角坐标系中,边长为2的正方形OA 1B 1C 1的两边在坐标轴上,以它的对角钱OB 1为边作正方形OB 1B 2C 2,再以正方形OB 1B 2C 2的对角线OB 2为边作正方形OB 2B 3C 3……以此类推,则正方形OB 2020B 2021C 2021的顶点B 2021的坐标是________.60.(2019·四川成都市·中考真题)如图,在平面直角坐标系xOy 中,我们把横、纵坐标都是整数的点称为“整点”.已知点A 的坐标为()5,0,点B 在x 轴的上方,OAB ∆的面积为152,则OAB ∆内部(不含边界)的整点的个数为_____.61.(2019·江苏中考真题)如图,将一等边三角形的三条边各8等分,按顺时针方向(图中箭头方向)标注各等分点的序号0、1、2、3、4、5、6、7、8,将不同边上的序号和为8的两点依次连接起来,这样就建立了“三角形”坐标系.在建立的“三角形”坐标系内,每一点的坐标用过这一点且平行(或重合)于原三角形三条边的直线与三边交点的序号来表示(水平方向开始,按顺时针方向),如点A 的坐标可表示为(1,2,5),点B 的坐标可表示为(4,1,3),按此方法,则点C 的坐标可表示为_______.62.(2019·山东济宁市·中考真题)已知点(,)P x y 位于第二象限,并且4y x +≤,,x y 为整数,写出一个符合上述条件的点P 的坐标:______.63.(2019·湖北鄂州市·中考真题)在平面直角坐标系中,点()00,P x y 到直线0Ax By C ++=的距离公式为:d =,则点()3,3P -到直线2533y x =-+的距离为_____.三、解答题64.(2021·浙江绍兴市·中考真题)I号无人机从海拔10m处出发,以10m/min的速度匀速上升,II号无人机从海拔30m处同时出发,以a(m/min)的速度匀速上升,经过5min两架无人机位于同一海拔高度b(m).无人机海拔高度y(m)与时间x(min)的关系如图.两架无人机都上升了15min.(1)求b的值及II号无人机海拔高度y(m)与时间x(min)的关系式.(2)问无人机上升了多少时间,I号无人机比II号无人机高28米.65.(2021·湖北恩施土家族苗族自治州·中考真题)“互联网+”让我国经济更具活力,直播助销就是运用“互联网+”的生机勃勃的销售方式,让大山深处的农产品远销全国各地.甲为当地特色花生与茶叶两种产品助销.已知每千克花生的售价比每千克茶叶的售价低40元,销售50千克花生与销售10千克茶叶的总售价相同.(1)求每千克花生、茶叶的售价;(2)已知花生的成本为6元/千克,茶叶的成本为36元/千克.甲计划两种产品共助销60千克,总成本不高于1260元,且花生的数量不高于茶叶数量的2倍.则花生、茶叶各销售多少千克可获得最大利润?最大利润是多少?66.(2021·湖北宜昌市·中考真题)甲超市在端午节这天进行苹果优惠促销活动,苹果的标价为10元/kg,如果一次购买4kg以上的苹果,超过4kg的部分按标价6折售卖.x(单位:kg)表示购买苹果的重量,y(单位:元)表示付款金额.(1)文文购买3kg苹果需付款________元,购买5kg苹果需付款_______元;(2)求付款金额y关于购买苹果的重量x的函数解析式;(3)当天,隔壁的乙超市也在进行苹果优惠促销活动,同样的苹果的标价也为10元/kg,且全部按标价的8折售卖.文文如果要购买10kg苹果,请问她在哪个超市购买更划算?67.(2021·陕西中考真题)在一次机器“猫”抓机器“鼠”的展演测试中,“鼠”先从起点出发,1min 后,“猫”从同一起点出发去追“鼠”,抓住“鼠”并稍作停留后,“猫”抓着“鼠”沿原路返回“鼠”、“猫”距起点的距离()m y 与时间()min x 之间的关系如图所示.(1)在“猫”追“鼠”的过程中,“猫”的平均速度与“鼠”的平均速度的差是______m /min ;(2)求AB 的函数表达式;(3)求“猫”从起点出发到返回至起点所用的时间.68.(2021·湖南衡阳市·中考真题)如图是一种单肩包,其背带由双层部分、单层部分和调节扣构成.小文购买时,售货员演示通过调节扣加长或缩短单层部分的长度,可以使背带的长度(单层部分与双层部分长度的和,其中调节扣所占长度忽略不计)加长或缩短,设双层部分的长度为cm x ,单层部分的长度为cm y .经测量,得到下表中数据.(1)根据表中数据规律,求出y 与x 的函数关系式;(2)按小文的身高和习惯,背带的长度调为130cm 时为最佳背带长.请计算此时双层部分的长度;(3)设背带长度为cm L ,求L 的取值范围.69.(2021·天津中考真题)在“看图说故事”活动中,某学习小组结合图象设计了一个问题情境.已知学校、书店、陈列馆依次在同一条直线上,书店离学校12km ,陈列馆离学校20km .李华从学校出发,匀速骑行0.6h 到达书店;在书店停留0.4h 后,匀速骑行0.5h 到达陈列馆;在陈列馆参观学习一段时间,然后回学校;回学校途中,匀速骑行0.5h 后减速,继续匀速骑行回到学校.给出的图象反映了这个过程中李华离学校的距离km y 与离开学校的时间h x 之间的对应关系. 请根据相关信息,解答下列问题:(Ⅰ)填表(Ⅱ)填空:①书店到陈列馆的距离为________km ;②李华在陈列馆参观学的时间为_______h ; ③李华从陈列馆回学校途中,减速前的骑行速度为______km/h ;④当李华离学校的距离为4km 时,他离开学校的时间为_______h .(Ⅲ)当0 1.5x ≤≤时,请直接写出y 关于x 的函数解析式.70.(2021·浙江丽水市·中考真题)李师傅将容量为60升的货车油箱加满后,从工厂出发运送一批物资到某地.行驶过程中,货车离目的地的路程s (千米)与行驶时间t (小时)的关系如图所示(中途休息、加油的时间不计.当油箱中剩余油量为10升时,货车会自动显示加油提醒.设货车平均耗油量为0.1升/千米,请根据图象解答下列问题:(1)直接写出工厂离目的地的路程;(2)求s 关于t 的函数表达式;(3)当货车显示加油提醒后,问行驶时间t 在怎样的范围内货车应进站加油?71.(2021·浙江宁波市·中考真题)某通讯公司就手机流量套餐推出三种方案,如下表:A ,B ,C 三种方案每月所需的费用y (元)与每月使用的流量x (兆)之间的函数关系如图所示. (1)请直接写出m ,n 的值.(2)在A 方案中,当每月使用的流量不少于1024兆时,求每月所需的费用y (元)与每月使用的流量x (兆)之间的函数关系式.(3)在这三种方案中,当每月使用的流量超过多少兆时,选择C 方案最划算?72.(2021·甘肃武威市·中考真题)如图1,小刚家,学校、图书馆在同一条直线上,小刚骑自行车匀速从学校到图书馆,到达图书馆还完书后,再以相同的速度原路返回家中(上、下车时间忽略不计).小刚离家的距离()m y 与他所用的时间()min x 的函数关系如图2所示.(1)小刚家与学校的距离为___________m ,小刚骑自行车的速度为________m/min ;(2)求小刚从图书馆返回家的过程中,y 与x 的函数表达式;(3)小刚出发35分钟时,他离家有多远?73.(2021·云南中考真题)某鲜花销售公司每月付给销售人员的工资有两种方案.方案一:没有底薪,只付销售提成;方案二:底薪加销售提成.如图中的射线1l,射线2l分别表示该鲜花销售公司每月按方案一,方案二付给销售人员的工资1y(单位:x )的函数关系.元)和2y(单位:元)与其当月鲜花销售量x(单位:千克)(0(1)分别求1y﹑2y与x的函数解析式(解析式也称表达式);(2)若该公司某销售人员今年3月份的鲜花销售量没有超过70千克,但其3月份的工资超过2000元.这个公司采用了哪种方案给这名销售人员付3月份的工资?74.(2020·辽宁大连市·中考真题)甲、乙两个探测气球分别从海拔5m和15m处同时出发,匀速上升60min.下图是甲、乙两个探测气球所在位置的海拔y(单位:m)与气球上升时间x(单位:min)的函数图象.(1)求这两个气球在上升过程中y关于x的函数解析式;(2)当这两个气球的海拔高度相差15m时,求上升的时间.75.(2020·江苏南通市·中考真题)如图,直线l1:y=x+3与过点A(3,0)的直线l2交于点C(1,m),与x轴交于点B.(1)求直线l2的解析式;(2)点M在直线l1上,MN∥y轴,交直线l2于点N,若MN=AB,求点M的坐标.76.(2020·吉林长春市·中考真题)已知A、B两地之间有一条长240千米的公路.甲车从A地出发匀速开往B地,甲车出发两小时后,乙车从B地出发匀速开往A地,两车同时到达各自的目的地.两车行驶的路程之和y(千米)与甲车行驶的时间x(时)之间的函数关系如图所示.(1)甲车的速度为_________千米/时,a的值为____________.(2)求乙车出发后,y与x之间的函数关系式.(3)当甲、乙两车相距100千米时,求甲车行驶的时间.77.(2020·吉林中考真题)某种机器工作前先将空油箱加满,然后停止加油立即开始工作,当停止工作时,油箱中油量为5L.在整个过程中,油箱里的油量y(单位:L)与时间x(单位:min)之间的关系如图所示.(1)机器每分钟加油量为_____L,机器工作的过程中每分钟耗油量为_____L.(2)求机器工作时y关于x的函数解析式,并写出自变量x的取值范围.(3)直接写出油箱中油量为油箱容积的一半时x的值.78.(2019·江西中考真题)如图,在平面直角坐标系中,点A B ,的坐标分别为(,,连接AB ,以AB 为边向上作等边三角形ABC .(1)求点C 的坐标;(2)求线段BC 所在直线的解析式.79.(2019·重庆中考真题)函数图象在探索函数的性质中有非常重要的作用,下面我们就一类特殊的函数展开探索.画函数2||y x =-的图象,经历分析解析式、列表、描点、连线过程得到函数图象如图所示;经历同样的过程画函数2||2y x =-+和2| 2|y x =-+的图象如图所示.(1)观察发现:三个函数的图象都是由两条射线组成的轴对称图形;三个函数解折式中绝对值前面的系数相同,则图象的开口方向和形状完全相同,只有最高点和对称轴发生了变化.写出点A ,B 的坐标和函数-2|2|y x =+的对称轴.(2)探索思考:平移函数2||y x =-的图象可以得到函数2||2y x =-+和2|2|y x =-+的图象,分别写出平移的方向和距离.(3)拓展应用:在所给的平面直角坐标系内画出函数2|3|1y x =--+的图象.若点()11,x y 和(22,)x y 在该函数图象上,且213x x >>,比较1y ,2y 的大小.80.(2019·江苏淮安市·中考真题)快车从甲地驶向乙地,慢车从乙地驶向甲地,两车同时出发并且在同一条公路上匀速行驶,途中快车休息1.5小时,慢车没有休息.设慢车行驶的时间为x 小时,快车行驶的路程为1y 千米,慢车行驶的路程为2y 千米.如图中折线OAEC 表示1y 与x 之间的函数关系,线段OD 表示2y 与x 之间的函数关系.请解答下列问题:(1)求快车和慢车的速度;(2)求图中线段EC 所表示的1y 与x 之间的函数表达式; (3)线段OD 与线段EC 相交于点F ,直接写出点F 的坐标,并解释点F 的实际意义.祝福语祝你考试成功!祝福语祝你考试成功!。

中考数学考点09平面直角坐标系与函数总复习(解析版)

中考数学考点09平面直角坐标系与函数总复习(解析版)

平面直角坐标系与函数【命题趋势】对于这部分的知识中考主要以选择题和填空题的形式出现.主要考查不同坐标系种点的特点、函数的自变量取值范围.分析函数图像并提取信息解答。

【中考考查重点】一、理解平面直角坐标系的有关概念.能画出直角坐标系; 二、在实际问题种.能建立适当的直角坐标系.描述物体的位置 三、探索简单实例中的数量关系和变化规律.了解常量、变量的意义 四、能结合图像对简单实际问题中的函数关系式进行分析 五、能确定简单实际问题中函数自变量的取值范围.并会求出函数 六、结合实例.了解函数的概念和三种表示法.能举出韩式的实例七、在给定直角坐标系中.能根据坐标轴描出点的位置、由点的位置写出它的坐标 八、能用适当的函数表示法刻画简单实际问题中变量之间的关系 九、结合对函数关系夫人分析.能对变量的变化情况进行初步讨论考点一:平面直角坐标系中点的坐标特征各象限内坐标上1. 点P (x,y )在x 轴上.y=02. 点P (x,y )在y 轴上.x=03. 点P (x,y )为原点.x=y各象限角平分线上1第一、三象限角平分线上的点横、纵坐标相同2.第二、四象限角平分线上的点横、纵坐标相反点的对称点的平移点旋转点P(x,y)绕原点顺时针旋转90°对应的点的坐标为(y,-x),逆时针旋转90°对应点的坐标为(-y.x)1.(2021秋•会宁县期末)点A(x.y)在第四象限.则点B(﹣x.y﹣2)在第几象限()A.第一象限B.第二象限C.第三象限D.第四象限【答案】C【解答】解:由点A(x.y)在第四象限:x>0.y<0.∴﹣x<0.y﹣2<0.则B(﹣x.y﹣2)在第三象限.故选:C.2.(2021•岳麓区校级模拟)对任意实数x.点P(x.x2+2x)一定不在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解答】解:当x>0.则x2+2x>0.故点P(x.x2+2x)可能在第一象限;当x<0.则x2+2x>0或x2+2x<0.故点P(x.x2+2x)可能在第二、三象限;当x=0时.点P(x.x2+2x)在原点.故点P(x.x2+2x)一定不在第四象限.故选:D.3.(2021•茶陵县模拟)在直角坐标系中.点P(m.2﹣2m)的横坐标与纵坐标互为相反数.则P点在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解答】解:∵点P(m.2﹣2m)的横坐标与纵坐标互为相反数.∴m+2﹣2m=0.解得:m=2.故2﹣2m=2﹣4=﹣2.则P点坐标为:(2.﹣2).在第四象限.故选:D.考点二:平面直角坐标系中的距离点到坐标轴及原点距离1.点P(a,b)到x轴的距离是2.点P(a,b)到y轴的距离是3.点P(a,b)到原点的距离是平行与坐标轴的直线上的两点距离1.若PQ∥x轴.=.PQ=2.若PQ∥y轴.,PQ=4.(2021秋•南岗区校级期末)若y轴负半轴上的点P到x轴的距离为2.则点P的坐标为()A.(0.2)B.(2.0)C.(﹣2.0)D.(0.﹣2)【答案】D【解答】解:∵y轴负半轴上的点P到x轴的距离为2.∴点P的坐标为(0.﹣2).故选:D.5.(2021秋•盐田区校级期末)在平面直角坐标系中.点(2.﹣5)到y轴的距离是()A.2B.﹣2C.5D.﹣5【答案】A【解答】解:点(2.﹣5)到y轴的距离为|2|=2.故选:A.6.(2021•罗湖区校级模拟)已知点平面内不同的两点A(a+2.4)和B(3.2a+2)到x 轴的距离相等.则a的值为()A.﹣3B.﹣5C.1或﹣3D.1或﹣5【答案】A【解答】解:∵点A(a+2.4)和B(3.2a+2)到x轴的距离相等.∴4=|2a+2|.a+2≠3解得:a=﹣3.故选:A.考点三:函数的表示方法及其图像相关概念一般地.在一个变化的过程中.如果有两个变量x和y.并且对于x 的每一个确定的值.y都有唯一的值对应。

中考数学专题复习《平面直角坐标系与函数》知识点梳理及典型例题讲解课件

中考数学专题复习《平面直角坐标系与函数》知识点梳理及典型例题讲解课件
对自变量x的不同取值,y的值可以相同.
③在某个变化过程中处于主导地位的变量即为自变量,随之变
化且对应值有唯一确定性的另一个变量即为该自变量的函数.
(4)函数自变量取值范围.
①不同类型的函数关系式中自变量取值范围的求解方法:
函数解析式
整式型(y=ax+b)
自变量的取值范围
全体实数,但在实际问题中要注意限
向上平移b个单位
向下平移b个单位
平移后点P'的坐标
特征
(x-a,y)
左减
(x+a,y)
(x,y+b)
(x,y-b)
右加
上加
下减

⁠(Βιβλιοθήκη )中心对称的坐标特征:两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)
关于原点的对称点为P'(-x,-y).
(8)图形在坐标系中的旋转的坐标特征.
图形(点)的旋转与坐标变化:
① 点 P ( x , y ) 绕 坐 标 原 点 顺 时 针 旋 转 9 0 °, 其 坐 标 变 为
P'(y,-x);
②点P(x,y)绕坐标原点顺时针旋转180°,其坐标变为P'
(-x,-y);
③点P(x,y)绕坐标原点逆时针旋转90°,其坐标变为P’
(-y,x);
④点P(x,y)绕坐标原点逆时针旋转180°,其坐标变为P'
间的距离为|y1-y2|.
任意两点P1(x1,y1),P2(x2,y2),则线段P1P2的中点坐标
1 +2 1 +2
为(

);
2
2
任 意 两 点 P1 ( x1 , y1 ) , P2 ( x2 , y2 ) , 则 线 段 P1P2 =

平面直角坐标系与函数基础知识(解析版)--2024年中考数学真题分类汇编

平面直角坐标系与函数基础知识(解析版)--2024年中考数学真题分类汇编

平面直角坐标系与函数基础知识一、单选题1.(2024·江西·中考真题)将常温中的温度计插入一杯60℃的热水(恒温)中,温度计的读数y℃与时间x min的关系用图象可近似表示为()A. B. C. D.【答案】C【分析】本题考查了函数图象,根据温度计上升到一定的温度后不变,可得答案;注意温度计的温度升高到60℃时温度不变.【详解】解:将常温中的温度计插入一杯60℃(恒温)的热水中,注意温度计的温度升高到60℃时温度不变,故C选项图象符合条件,故选:C.2.(2024·甘肃·中考真题)敦煌文书是华夏民族引以为傲的艺术瑰宝,其中敦煌《算经》中出现的《田积表》部分如图1所示,它以表格形式将矩形土地的面积直观展示,可迅速准确地查出边长10步到60步的矩形田地面积,极大地提高了农田面积的测量效率.如图2是复原的部分《田积表》,表中对田地的长和宽都用步来表示,A区域表示的是长15步,宽16步的田地面积为一亩,用有序数对记为15,16,那么有序数对记为12,17对应的田地面积为()A.一亩八十步B.一亩二十步C.半亩七十八步D.半亩八十四步【答案】D【分析】根据15,16可得,横从上面从右向左看,纵从右边自下而上看,解答即可.本题考查了坐标与位置的应用,熟练掌握坐标与位置的应用是解题的关键.【详解】根据15,16可得,横从上面从右向左看,纵从右边自下而上看,故12,17对应的是半亩八十四步,故选D.3.(2024·山东威海·中考真题)定义新运算:①在平面直角坐标系中,a,b表示动点从原点出发,沿着x轴正方向(a≥0)或负方向(a<0).平移a 个单位长度,再沿着y轴正方向(b≥0)或负方向(b<0)平移b 个单位长度.例如,动点从原点出发,沿着x轴负方向平移2个单位长度,再沿着y轴正方向平移1个单位长度,记作-2,1.②加法运算法则:a,b,其中a,b,c,d为实数.+c,d=a+c,b+d若3,5,则下列结论正确的是()+m,n=-1,2A.m=2,n=7B.m=-4,n=-3C.m=4,n=3D.m=-4,n=3【答案】B【分析】本题考查了新定义运算,平面直角坐标系,根据新定义得出3+m=-1,5+n=2,即可求解.【详解】解:∵a,b=-1,2+m,n,3,5+c,d=a+c,b+d∴3+m=-1,5+n=2解得:m=-4,n=-3故选:B.4.(2024·广西·中考真题)如图,在平面直角坐标系中,点O为坐标原点,点P的坐标为2,1,则点Q的坐标为()A.3,0D.1,2C.3,2B.0,2【答案】C【分析】本题主要考查点的坐标,理解点的坐标意义是关键.根据点P的坐标可得出横、纵轴上一格代表一个单位长度,然后观察坐标系即可得出答案.【详解】解:∵点P的坐标为2,1,∴点Q的坐标为3,2,故选:C.5.(2024·四川广元·中考真题)如果单项式-x2m y3与单项式2x4y2-n的和仍是一个单项式,则在平面直角坐标系中点m,n在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【分析】本题主要考查同类项和确定点的坐标,根据同类项的性质求出m,n的值,再确定点m,n的位置即可【详解】解:∵单项式-x2m y3与单项式2x4y2-n的和仍是一个单项式,∴单项式-x2m y3与单项式2x4y2-n是同类项,∴2m=4,2-n=3,解得,m=2,n=-1,∴点m,n在第四象限,故选:D6.(2024·四川广安·中考真题)向如图所示的空容器内匀速注水,从水刚接触底部时开始计时,直至把容器注满.在注水过程中,设容器内底部所受水的压强为y(单位:帕),时间为x(单位:秒),则y关于x的函数图象大致为()A. B.C. D.【答案】B【分析】此题主要考查了函数图象.由于压强与水面的高度成正比,而上下两个容器粗细不同,那么水面高度h随时间x变化而分两个阶段.【详解】解:最下面的容器较粗,那么第一个阶段的函数图象水面高度h随时间x的增大而增长缓慢,用时较长,即压强y随时间x的增大而增长缓慢,用时较长,最上面容器最小,则压强y随时间x的增大而增长变快,用时最短.故选:B.7.(2024·甘肃·中考真题)如图1,“燕几”即宴几,是世界上最早的一套组合桌,由北宋进士黄伯思设计.全套“燕几”一共有七张桌子,包括两张长桌、两张中桌和三张小桌,每张桌面的宽都相等.七张桌面分开可组合成不同的图形.如图2给出了《燕几图》中名称为“回文”的桌面拼合方式,若设每张桌面的宽为x 尺,长桌的长为y 尺,则y 与x 的关系可以表示为()A.y =3xB.y =4xC.y =3x +1D.y =4x +1【答案】B 【分析】本题主要考查了列函数关系式,观察可知,小桌的长是小桌宽的两倍,则小桌的长是2x ,再根据长桌的长等于小桌的长加上2倍的小桌的宽列出对应的函数关系式即可.【详解】解:由题意可得,小桌的长是小桌宽的两倍,则小桌的长是2x ,∴y =x +x +2x =4x ,故选:B .8.(2024·内蒙古包头·中考真题)如图,在平面直角坐标系中,四边形OABC 各顶点的坐标分别是O 0,0 ,A 1,2 ,B 3,3 ,C 5,0 ,则四边形OABC 的面积为()A.14B.11C.10D.9【答案】D 【分析】本题考查了坐标与图形,过A 作AM ⊥OC 于M ,过B 作BN ⊥OC 于N ,根据A 、B 、C 的坐标可求出OM ,AM ,MN ,BN ,CN ,然后根据S 四边形OABC =S △AOM +S 梯形AMNB +S △BCN 求解即可.【详解】解∶过A 作AM ⊥OC 于M ,过B 作BN ⊥OC 于N ,∵O0,0,A1,2,B3,3,C5,0,∴OM=1,AM=2,ON=BN=3,CO=5,∴MN=ON-OM=2,CN=OC-ON=2,∴四边形OABC的面积为S△AOM+S梯形AMNB+S△BCN=12×1×2+12×2+3×2+12×3×2=9,故选:D.9.(2024·广西·中考真题)激光测距仪L发出的激光束以3×105km s的速度射向目标M,ts后测距仪L收到M反射回的激光束.则L到M的距离dkm与时间ts的关系式为()A.d=3×1052t B.d=3×105t C.d=2×3×105t D.d=3×106t 【答案】A【分析】本题考查列函数关系式,熟练掌握路程=速度×时间是解题的关键.根据路程=速度×时间列式即可.【详解】解:d=12×3×105⋅t=3×1052t,故选:A.10.(2024·湖北武汉·中考真题)如图,一个圆柱体水槽底部叠放两个底面半径不等的实心圆柱体,向水槽匀速注水.下列图象能大致反映水槽中水的深度h与注水时间t的函数关系的是()A. B.C. D.【答案】D【分析】本题考查了函数图象;根据题意,分3段分析,即可求解.【详解】解:下层圆柱底面半径大,水面上升块,上层圆柱底面半径稍小,水面上升稍慢,再往上则水面上升更慢,所以对应图象是第一段比较陡,第二段比第一段缓,第三段比第二段缓.故选:D.11.(2024·青海·中考真题)化学实验小组查阅资料了解到:某种絮凝剂溶于水后能够吸附水中悬浮物并发生沉降,从而达到净水的目的.实验得出加入絮凝剂的体积与净水率之间的关系如图所示,下列说法正确的是()A.加入絮凝剂的体积越大,净水率越高B.未加入絮凝剂时,净水率为0C.絮凝剂的体积每增加0.1mL,净水率的增加量相等D.加入絮凝剂的体积是0.2mL时,净水率达到76.54%【答案】D【分析】本题考查从图像上获取信息,能从图像上获得信息是解题的关键,根据图像信息对选项进行判断即可【详解】A、从图像上可以看到,加入絮凝剂的体积在0.5mL达到最大净水率,之后净水率开始降低,不符合题意,选项错误;B、未加入絮凝剂时,净水率为12.48%,故不符合题意,选项错误;C、当絮凝剂的体积为0.3mL时,净水率增加量为84.60%-76.54%=8.06%,絮凝剂的体积为0.4mL时,净水率增加量为86.02%-84.60%=1.42%;故絮凝剂的体积每增加0.1mL,净水率的增加量不相等,不符合题意,选项错误;D 、根据图像可得,加入絮凝剂的体积是0.2mL 时,净水率达到76.54%,符合题意,选项正确;故选:D12.(2024·湖南·中考真题)在平面直角坐标系xOy 中,对于点P x ,y ,若x ,y 均为整数,则称点P 为“整点”.特别地,当y x(其中xy ≠0)的值为整数时,称“整点”P 为“超整点”,已知点P 2a -4,a +3 在第二象限,下列说法正确的是()A.a <-3B.若点P 为“整点”,则点P 的个数为3个C.若点P 为“超整点”,则点P 的个数为1个D.若点P 为“超整点”,则点P 到两坐标轴的距离之和大于10【答案】C【分析】本题考查了新定义,点到坐标轴的距离,各象限内点的特征等知识,利用各象限内点的特征求出a 的取值范围,即可判断选项A ,利用“整点”定义即可判断选项B ,利用“超整点”定义即可判断选项C ,利用“超整点”和点到坐标轴的距离即可判断选项D .【详解】解:∵点P 2a -4,a +3 在第二象限,∴2a -4<0a +3>0 ,∴-3<a <2,故选项A 错误;∵点P 2a -4,a +3 为“整点”,-3<a <2,∴整数a 为-2,-1,0,1,∴点P 的个数为4个,故选项B 错误;∴“整点”P 为-8,1 ,-6,2 ,-4,3 ,-2,4 ,∵1-8=-18,2-6=-13,3-4=-34,4-2=-2∴“超整点”P 为-2,4 ,故选项C 正确;∵点P 2a -4,a +3 为“超整点”,∴点P 坐标为-2,4 ,∴点P 到两坐标轴的距离之和2+4=6,故选项D 错误,故选:C .13.(2024·湖北武汉·中考真题)如图,小好同学用计算机软件绘制函数y =x 3-3x 2+3x -1的图象,发现它关于点1,0 中心对称.若点A 10.1,y 1 ,A 20.2,y 2 ,A 30.3,y 3 ,⋯⋯,A 191.9,y 19 ,A 202,y 20 都在函数图象上,这20个点的横坐标从0.1开始依次增加0.1,则y 1+y 2+y 3+⋯⋯+y 19+y 20的值是()A.-1B.-0.729C.0D.1【答案】D【分析】本题是坐标规律题,求函数值,中心对称的性质,根据题意得出y1+y2+y3+⋯y9+y11⋯+y19= 0,进而转化为求y10+y20,根据题意可得y10=0,y20=1,即可求解.【详解】解:∵这20个点的横坐标从0.1开始依次增加0.1,∴0.1+1.92=0.2+1.82=⋅⋅⋅0.9+1.12=1,∴y1+y2+y3+⋯y9+y11⋯+y19=0,∴y1+y2+y3+⋯⋯+y19+y20=y10+y20,而A101,0即y10=0,∵y=x3-3x2+3x-1,当x=0时,y=-1,即0,-1,∵0,-1关于点1,0中心对称的点为2,1,即当x=2时,y20=1,∴y1+y2+y3+⋯⋯+y19+y20=y10+y20=0+1=1,故选:D.14.(2024·山东威海·中考真题)同一条公路连接A,B,C三地,B地在A,C两地之间.甲、乙两车分别从A地、B地同时出发前往C地.甲车速度始终保持不变,乙车中途休息一段时间,继续行驶.下图表示甲、乙两车之间的距离y(km)与时间x(h)的函数关系.下列结论正确的是()A.甲车行驶83h与乙车相遇 B.A,C两地相距220kmC.甲车的速度是70km/hD.乙车中途休息36分钟【答案】A【分析】本题考查了函数图象,根据函数图象结合选项,逐项分析判断,即可求解.【详解】解:根据函数图象可得AB 两地之间的距离为40-20=20(km )两车行驶了4小时,同时到达C 地,如图所示,在1-2小时时,两车同向运动,在第2小时,即点D 时,两车距离发生改变,此时乙车休息,E 点的意义是两车相遇,F 点意义是乙车休息后再出发,∴乙车休息了1小时,故D 不正确,设甲车的速度为akm /h ,乙车的速度为bkm /h ,根据题意,乙车休息后两车同时到达C 地,则甲车的速度比乙车的速度慢,a <b∵2b +20-2a =40即b -a =10在DE -EF 时,乙车不动,则甲车的速度是40+201=60km/h ,∴乙车速度为60+10=70km/h ,故C 不正确,∴AC 的距离为4×60=240千米,故B 不正确,设x 小时两辆车相遇,依题意得,60x =2×70+20解得:x =83即83小时时,两车相遇,故A 正确故选:A .15.(2024·四川凉山·中考真题)匀速地向如图所示的容器内注水,直到把容器注满.在注水过程中,容器内水面高度h 随时间t 变化的大致图象是()A. B.C. D.【答案】C【分析】本题考查了函数图象,根据容器最下面圆柱底面积最小,中间圆柱底面积最大,最上面圆柱底面积最较大即可判断求解,正确识图是解题的关键.【详解】解:由容器可知,最下面圆柱底面积最小,中间圆柱底面积最大,最上面圆柱底面积最较大,所以一开始水面高度h上升的很快,然后很慢,最后又上升的更快点,故选:C.16.(2024·河南·中考真题)把多个用电器连接在同一个插线板上,同时使用一段时间后,插线板的电源线会明显发热,存在安全隐患.数学兴趣小组对这种现象进行研究,得到时长一定时,插线板电源线中的电流I与使用电器的总功率P的函数图象(如图1),插线板电源线产生的热量Q与I的函数图象(如图2).下列结论中错误的是()A.当P=440W时,I=2AB.Q随I的增大而增大C.I每增加1A,Q的增加量相同D.P越大,插线板电源线产生的热量Q越多【答案】C【分析】本题考查了函数的图象,准确从图中获取信息,并逐项判定即可.【详解】解∶根据图1知:当P=440W时,I=2A,故选项A正确,但不符合题意;根据图2知:Q随I的增大而增大,故选项B正确,但不符合题意;根据图2知:Q随I的增大而增大,但前小半段增加的幅度小,后面增加的幅度大,故选项C错误,符合题意;根据图1知:I随P的增大而增大,又Q随I的增大而增大,则P越大,插线板电源线产生的热量Q越多,故选项D正确,但不符合题意;故选:C.17.(2024·内蒙古呼伦贝尔·中考真题)已知某同学家、体育场、图书馆在同一条直线上.下面的图象反映的过程是:该同学从家跑步去体育场,在那里锻炼了一阵后又步行回家吃早餐,饭后骑自行车到图书馆.图中用x表示时间,y表示该同学离家的距离.结合图象给出下列结论:(1)体育场离该同学家2.5千米;(2)该同学在体育场锻炼了15分钟;(3)该同学跑步的平均速度是步行平均速度的2倍;(4)若该同学骑行的平均速度是跑步平均速度的1.5倍,则a的值是3.75;其中正确结论的个数是()A.1B.2C.3D.4【答案】C【分析】本题考查利用函数图像解决实际问题,正确的读懂图像给出的信息是解题的关键.利用图象信息解决问题即可.【详解】解:由图象可知:体育场离该同学家2.5千米,故(1)正确;该同学在体育场锻炼了30-15=15(分钟),故(2)正确;该同学的跑步速度为2.5÷15=16(千米/分钟),步行速度为2.5÷65-30=14(千米/分钟),则跑步速度是步行速度的16÷114=73倍,故(3)错误;若该同学骑行的平均速度是跑步平均速度的1.5倍,则该同学骑行的平均速度为1.5×16=14(千米/分钟),所以a=14×103-88=3.75,故(4)正确,故选:C.18.(2024·内蒙古呼伦贝尔·中考真题)点P x,y在直线y=-34x+4上,坐标x,y是二元一次方程5x-6y=33的解,则点P的位置在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【分析】本题考查了一次函数图象上点的特征,解二元一次方程组等知识,联立方程组y=-34x+45x-6y=33 ,求出点P的坐标即可判断.【详解】解∶联立方程组y=-34x+4 5x-6y=33 ,解得x =6y =-12,∴P 的坐标为6,-12,∴点P 在第四象限,故选∶D .19.(2024·河北·中考真题)平面直角坐标系中,我们把横、纵坐标都是整数,且横、纵坐标之和大于0的点称为“和点”.将某“和点”平移,每次平移的方向取决于该点横、纵坐标之和除以3所得的余数(当余数为0时,向右平移;当余数为1时,向上平移;当余数为2时,向左平移),每次平移1个单位长度.例:“和点”P 2,1 按上述规则连续平移3次后,到达点P 32,2 ,其平移过程如下:若“和点”Q 按上述规则连续平移16次后,到达点Q 16-1,9 ,则点Q 的坐标为()A.6,1 或7,1B.15,-7 或8,0C.6,0 或8,0D.5,1 或7,1【答案】D【分析】本题考查了坐标内点的平移运动,熟练掌握知识点,利用反向运动理解是解决本题的关键.先找出规律若“和点”横、纵坐标之和除以3所得的余数为0时,先向右平移1个单位,之后按照向上、向左,向上、向左不断重复的规律平移,按照Q 16的反向运动理解去分类讨论:①Q 16先向右1个单位,不符合题意;②Q 16先向下1个单位,再向右平移,当平移到第15次时,共计向下平移了8次,向右平移了7次,此时坐标为6,1 ,那么最后一次若向右平移则为7,1 ,若向左平移则为5,1 .【详解】解:由点P 32,2 可知横、纵坐标之和除以3所得的余数为1,继而向上平移1个单位得到P 42,3 ,此时横、纵坐标之和除以3所得的余数为2,继而向左平移1个单位得到P 41,3 ,此时横、纵坐标之和除以3所得的余数为1,又要向上平移1个单位⋯⋯,因此发现规律为若“和点”横、纵坐标之和除以3所得的余数为0时,先向右平移1个单位,之后按照向上、向左,向上、向左不断重复的规律平移,若“和点”Q 按上述规则连续平移16次后,到达点Q 16-1,9 ,则按照“和点”Q 16反向运动16次求点Q 坐标理解,可以分为两种情况:①Q 16先向右1个单位得到Q 150,9 ,此时横、纵坐标之和除以3所得的余数为0,应该是Q 15向右平移1个单位得到Q 16,故矛盾,不成立;②Q 16先向下1个单位得到Q 15-1,8 ,此时横、纵坐标之和除以3所得的余数为1,则应该向上平移1个单位得到Q 16,故符合题意,那么点Q 16先向下平移,再向右平移,当平移到第15次时,共计向下平移了8次,向右平移了7次,此时坐标为-1+7,9-8 ,即6,1 ,那么最后一次若向右平移则为7,1 ,若向左平移则为5,1 ,故选:D .二、填空题20.(2024·湖北·中考真题)铁的密度约为7.9 kg/cm3,铁的质量m kg成正比例.与体积V cm3一个体积为10 cm3的铁块,它的质量为kg.【答案】79【分析】本题考查了正比例函数的应用.根据铁的质量m kg成正比例,列式计算与体积V cm3即可求解.【详解】解:∵铁的质量m kg成正比例,与体积V cm3∴m关于V的函数解析式为m=7.9V,当V=10时,m=7.9×10=79kg,故答案为:79.21.(2024·山东·中考真题)任取一个正整数,若是奇数,就将该数乘3再加上1;若是偶数,就将该数除以2.反复进行上述两种运算,经过有限次运算后,必进入循环圈1→4→2→1,这就是“冰雹猜想”.在平面直角坐标系xOy中,将点x,y中的x,y分别按照“冰雹猜想”同步进行运算得到新的点的横、纵坐标,其中x,y均为正整数.例如,点6,3,经过第2次运算得到点10,5,以经过第1次运算得到点3,10此类推.则点1,4经过2024次运算后得到点.【答案】2,1【分析】本题考查了新定义,点的规律,根据新定义依次计算出各点的坐标,然后找出规律,最后应用规律求解即可.【详解】解:点1,4,经过1次运算后得到点为1×3+1,4÷2,即为4,2经过2次运算后得到点为4÷2,2÷1,,即为2,1经过3次运算后得到点为2÷2,1×3+1,,即为1,4⋯⋯,发现规律:点1,4,经过3次运算后还是1,4∵2024÷3=674⋯2,∴点1,4,经过2024次运算后得到点2,1故答案为:2,1.三、解答题22.(2024·浙江·中考真题)小明和小丽在跑步机上慢跑锻炼.小明先跑,10分钟后小丽才开始跑,小丽跑步时中间休息了两次.跑步机上C档比B档快40米/分、B档比A档快40米/分.小明与小丽的跑步相关信息如表所示,跑步累计里程s(米)与小明跑步时间t(分)的函数关系如图所示.时间里程分段速度档跑步里程小明16:00~16:50不分段A档4000米小丽16:10~16:50第一段B档1800米第一次休息第二段B档1200米第二次休息第三段C档1600米(1)求A,B,C各档速度(单位:米/分);(2)求小丽两次休息时间的总和(单位:分);(3)小丽第二次休息后,在a分钟时两人跑步累计里程相等,求a的值.【答案】(1)80米/分,120米/分,160米/分(2)5分(3)42.5【分析】此题考查函数图象获取信息,一元一次方程的应用,读懂图象中的数据是解本题的关键.(1)由小明的跑步里程及时间可得A档速度,再根据C档比B档快40米/分、B档比A档快40米/分可得B,C档速度;(2)结合图象求出小丽每段跑步所用时间,再根据总时间即可求解;(3)由题意可得,此时小丽在跑第三段,所跑时间为a-10-15-10-5=a-40(分),可得方程80a=3000+160a-40,求解即可.【详解】(1)解:由题意可知,A档速度为4000÷50=80米/分,则B档速度为80+40=120米/分,C档速度为120+40=160米/分;(2)小丽第一段跑步时间为1800÷120=15分,小丽第二段跑步时间为3000-1800÷120=10分,小丽第三段跑步时间为4600-3000÷160=10分,则小丽两次休息时间的总和=50-10-15-10-10=5分;(3)由题意可得:小丽第二次休息后,在a分钟时两人跑步累计里程相等,此时小丽在跑第三段,所跑时间为:a-10-15-10-5=a-40(分)可得:80a=3000+160a-40,解得:a=42.5.23.(2024·北京·中考真题)小云有一个圆柱形水杯(记为1号杯),在科技活动中,小云用所学数学知识和人工智能软件设计了一个新水杯,并将其制作出来,新水杯(记为2号杯)示意图如下,当1号杯和2号杯中都有VmL水时,小云分别记录了1号杯的水面高度h1(单位:cm)和2号杯的水面高度h2(单位:cm),部分数据如下:V/mL040100200300400500h1/cm0 2.5 5.07.510.012.5h2/cm0 2.8 4.87.28.910.511.8(1)补全表格(结果保留小数点后一位);(2)通过分析数据,发现可以用函数刻画h1与V,h2与V之间的关系.在给出的平面直角坐标系中,画出这两个函数的图象;(3)根据以上数据与函数图象,解决下列问题:①当1号杯和2号杯中都有320mL水时,2号杯的水面高度与1号杯的水面高度的差约为cm(结果保留小数点后一位);②在①的条件下,将2号杯中的一都分水倒入1号杯中,当两个水杯的水面高度相同时,其水面高度约为cm(结果保留小数点后一位).【答案】(1)1.0(2)见详解(3)1.2,8.5【分析】本题考查了函数的图像与性质,描点法画函数图像,求一次函数解析式,已知函数值求自变量,正确理解题意,熟练掌握知识点是解题的关键.(1)设V与h1的函数关系式为:V=kh1k≠0,由表格数据得:100=2.5k,则可求V=40h1,代入V= 40即可求解;(2)画h2与V之间的关系图象时,描点,连线即可,画h1与V的关系图像时,由于V=40h1是正比例函数,故只需描出两点即可;(3)①当V=320ml时,h1=320=8cm,由图象可知高度差CD≈1.2cm;②在V=320ml左右两侧找40到等距的体积所对应的高度相同,大致为8.5cm.【详解】(1)解:由题意得,设V与h1的函数关系式为:V=kh1k≠0,由表格数据得:100=2.5k,解得:k=40,∴V=40h1,∴当V=40时,40h1=40,∴h1=1.0cm;(2)解:如图所示,即为所画图像,=8cm,由图象可知高度差CD≈1.2cm,(3)解:①当V=320ml时,h1=32040故答案为:1.2;②由图象可知当两个水杯的水面高度相同时,估算高度约为8.5cm,故答案为:8.5.。

【通用版】2019届中考数学:第9讲-平面直角坐标系与函数知识点梳理

【通用版】2019届中考数学:第9讲-平面直角坐标系与函数知识点梳理
读取函数图象增减性的技巧:①当函数图象从左到右呈“上升”(“下降”)状态时,函数y随x的增大而增大(减小);②函数值变化越大,图象越陡峭;③当函数y值始终是同一个常数,那么在这个区间上的函数图象是一条平行于x轴的线段.
第9讲平面直角坐标系与函数
一、知识清单梳理
知识点一:平面直角坐标系
关键点拨及对应举例1.来自关概念(1)定义:在平面内有公共原点且互相垂直的两条数轴构成平面直角坐标系.
(2)几何意义:坐标平面内任意一点M与有序实数对(x,y)的关系是一一对应.
点的坐标先读横坐标(x轴),再读纵坐标(y轴).
2.点的坐标特征
平行于x轴的直线上的点纵坐标相等;平行于y轴的直线上的点的横坐标相等.
知识点二:函数
4.函数的相关概念
(1)常量、变量:在一个变化过程中,数值始终不变的量叫做常量,数值发生变化的量叫做变量.
(2)函数:在一个变化过程中,有两个变量x和y,对于x的每一个值,y都有唯一确定的值与其对应,那么就称x是自变量,y是x的函数.函数的表示方法有:列表法、图像法、解析法.
①找起点:结合题干中所给自变量及因变量的取值范围,对应到图象中找对应点;
②找特殊点:即交点或转折点,说明图象在此点处将发生变化;
③判断图象趋势:判断出函数的增减性,图象的倾斜方向.
(2)以几何图形(动点)为背景判断函数图象的方法:
①设时间为t(或线段长为x),找因变量与t(或x)之间存在的函数关系,用含t(或x)的式子表示,再找相应的函数图象.要注意是否需要分类讨论自变量的取值范围.
(3)函数自变量的取值范围:一般原则为:整式为全体实数;分式的分母不为零;二次根式的被开方数为非负数;使实际问题有意义.
失分点警示
函数解析式,同时有几个代数式,函数自变量的取值范围应是各个代数式中自变量的公共部分.例:函数y= 中自变量的取值范围是x≥-3且x≠5.

第10讲 平面直角坐标系及函数初步 2019各省市中考数学优选知识点题型汇编

第10讲  平面直角坐标系及函数初步 2019各省市中考数学优选知识点题型汇编

第10讲平面直角坐标系及函数初步一、考点知识梳理【考点1 平面直角坐标系及点的坐标】1.有序实数对:坐标平面上任意一点都可以用唯一一对有序实数来表示;反过来,任意一对有序实数都可以表示坐标平面上唯一一个点.2.平面直角坐标系中点的坐标特征(1)各象限点的坐标的符号特征:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)(2)坐标轴上点的坐标特征:x轴上的点的纵坐标为0,y轴上的点的横坐标为0,原点的坐标为(0,0) (3)各象限角平分线上点的坐标特征:第一、三象限角平分线上的横、纵坐标相等;第二、四象限角平分线上的横、纵坐标互为相反数【考点2 函数的表示方法及其图像】1.变量:在一个变化过程中,可以取不同数值的量叫做变量.2.常量:在一个变化过程中,数值保持不变的量叫做常量.3.函数:一般地,在某个变化过程中,有两个变量x和y.如果给定x的一个值,就能相应地确定y的一个值,那么,我们就说y是x的函数.其中,x叫做自变量.4.函数的表示方法:数值表、图像、表达式是函数关系的三种不同表达形式,它们分别表现出具体、形象直观和便于抽象应用的特点.5.图像的画法:知道函数的表达式,一般用描点法按下列步骤画出函数的图像.(1)取值.根据函数的表达式,取自变量的一些值,得出函数的对应值,按这些对应值列表;(2)描点.根据自变量和函数的数值表,在直角坐标系中描点;(3)连线.用平滑的曲线将这些点连接起来,即得到函数的图像.6.已知函数表达式,判断点P(x,y)是否在函数图像上的方法:若点P(x,y)的坐标适合函数表达式,则点P(x,y)在其图像上;若点P(x,y)的坐标不适合函数表达式,则点P(x,y)不在其图像上.二、考点分析【考点1 平面直角坐标系及点的坐标】【解题技巧】1、点到坐标轴的距离与这个点的坐标是有区别的,表现在两个方面:①到x轴的距离与纵坐标有关,到y轴的距离与横坐标有关;②距离都是非负数,而坐标可以是负数,在由距离求坐标时,需要加上恰当的符号.一般地,点P(a,b)到x轴的距离为|b|,到y轴的距离为|a|,到原点的距离为a2+b2.2、由图形中一些点的坐标求面积时,过已知点向坐标轴作垂线,然后求出相关的线段长,是解决这类问题的基本方法和规律.3、若坐标系内的四边形是非规则四边形,通常用平行于坐标轴的辅助线用“割、补”法去解决问题.【例1】(2019 海南中考)如图,在平面直角坐标系中,已知点A(2,1),点B(3,﹣1),平移线段AB,使点A落在点A1(﹣2,2)处,则点B的对应点B1的坐标为()A.(﹣1,﹣1)B.(1,0)C.(﹣1,0)D.(3,0)【答案】C.【分析】由点A(2,1)平移后A1(﹣2,2)可得坐标的变化规律,由此可得点B的对应点B1的坐标.【解答】解:由点A(2,1)平移后A1(﹣2,2)可得坐标的变化规律是:左移4个单位,上移1个单位,∴点B的对应点B1的坐标(﹣1,0).故选:C.【一领三通1-1】(2019 湖北黄石中考)如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x 轴上,AB边的中点是坐标原点O,将正方形绕点C按逆时针方向旋转90°后,点B的对应点B'的坐标是()A.(﹣1,2)B.(1,4)C.(3,2)D.(﹣1,0)【答案】C.【分析】根据旋转可得:CB'=CB=2,∠BCB'=90°,可得B'的坐标.【解答】解:如图所示,由旋转得:CB'=CB=2,∠BCB'=90°,∵四边形ABCD是正方形,且O是AB的中点,∴OB=1,∴B'(2+1,2),即B'(3,2),故选:C.【一领三通1-2】(2019湖北孝感中考)如图,在平面直角坐标系中,将点P(2,3)绕原点O顺时针旋转90°得到点P',则P'的坐标为()A.(3,2)B.(3,﹣1)C.(2,﹣3)D.(3,﹣2)【答案】D.【分析】作PQ⊥y轴于Q,如图,把点P(2,3)绕原点O顺时针旋转90°得到点P'看作把△OPQ绕原点O 顺时针旋转90°得到△OP'Q′,利用旋转的性质得到∠P′Q′O=90°,∠QOQ′=90°,P′Q′=PQ=2,OQ′=OQ=3,从而可确定P′点的坐标.【解答】解:作PQ⊥y轴于Q,如图,∵P(2,3),∴PQ=2,OQ=3,∵点P(2,3)绕原点O顺时针旋转90°得到点P'相当于把△OPQ绕原点O顺时针旋转90°得到△OP'Q′,∴∠P′Q′O=90°,∠QOQ′=90°,P′Q′=PQ=2,OQ′=OQ=3,∴点P′的坐标为(3,﹣2).故选:D.【一领三通1-3】(2019浙江杭州中考)在平面直角坐标系中,点A(m,2)与点B(3,n)关于y轴对称,则()A.m=3,n=2 B.m=﹣3,n=2 C.m=2,n=3 D.m=﹣2,n=﹣3【答案】B.【分析】直接利用关于y轴对称点的性质得出答案.【解答】解:∵点A(m,2)与点B(3,n)关于y轴对称,∴m=﹣3,n=2.故选:B.【考点2 函数的表示方法及其图像】【解题技巧】判断符合题意的函数图像的方法(1)与实际问题结合:判断符合实际问题的函数图像时,需遵循以下几点:①找起点:结合题干中所给自变量及因变量的取值范围,对应到图像中找相对应点;②找特殊点:即指交点或转折点,说明图像在此点处将发生变化;③判断图像趋势:判断出函数的增减性;④看是否与坐标轴相交:即此时另外一个量为0.(2)与几何图形(含动点)结合:以几何图形为背景判断函数图像的题目,一般的解题思路为设时间为t,找因变量与t之间存在的函数关系,用含t的式子表示,再找相对应的函数图像,要注意的是是否需要分类讨论自变量的取值范围.(3)分析函数图像判断结论正误:分清图像的横纵坐标代表的量及函数中自变量的取值范围,同时也要注意:①分段函数要分段讨论;②转折点:判断函数图像的倾斜方向或增减性发生变化的关键点;③平行线:函数值随自变量的增大而保持不变.再结合题干推导出实际问题的运动过程,从而判断结论的正误.【例2】(2019 湖北孝感中考)一个装有进水管和出水管的空容器,从某时刻开始4min内只进水不出水,容器内存水8L;在随后的8min内既进水又出水,容器内存水12L;接着关闭进水管直到容器内的水放完.若每分钟进水量和出水量是两个常数,容器内的水量y(单位:L)与时间x(单位:min)之间的函数关系的图象大致的是()A.B.C.D.【答案】A.【分析】根据实际问题结合四个选项确定正确的答案即可.【解答】解:∵从某时刻开始4min内只进水不出水,容器内存水8L;∴此时容器内的水量随时间的增加而增加,∵随后的8min内既进水又出水,容器内存水12L,∴此时水量继续增加,只是增速放缓,∵接着关闭进水管直到容器内的水放完,∴水量逐渐减少为0,综上,A选项符合,故选:A.【一领三通2-1】(2019 辽宁大连中考)在平面直角坐标系中,将点P(3,1)向下平移2个单位长度,得到的点P′的坐标为()A.(3,﹣1)B.(3,3)C.(1,1)D.(5,1)【答案】A.【分析】根据向下平移,横坐标不变、纵坐标相减列式计算即可得解.【解答】解:将点P(3,1)向下平移2个单位长度,得到的点P′的坐标为(3,1﹣2),即(3,﹣1),故选:A.【一领三通2-2】(2019 上海中考)下列函数中,函数值y随自变量x的值增大而增大的是()A.y=B.y=﹣C.y=D.y=﹣【答案】A.【分析】一次函数当a>0时,函数值y总是随自变量x增大而增大,反比例函数当k<0时,在每一个象限内,y随自变量x增大而增大.【解答】解:A、该函数图象是直线,位于第一、三象限,y随x的增大而增大,故本选项正确.B、该函数图象是直线,位于第二、四象限,y随x的增大而减小,故本选项错误.C、该函数图象是双曲线,位于第一、三象限,在每一象限内,y随x的增大而减小,故本选项错误.D、该函数图象是双曲线,位于第二、四象限,在每一象限内,y随x的增大而增大,故本选项错误.故选:A.【一领三通2-3】(2019 北京中考)如图,P是与弦AB所围成的图形的外部的一定点,C是上一动点,连接PC交弦AB于点D.小腾根据学习函数的经验,对线段PC,PD,AD的长度之间的关系进行了探究.下面是小腾的探究过程,请补充完整:(1)对于点C在上的不同位置,画图、测量,得到了线段PC,PD,AD的长度的几组值,如下表:在PC,PD,AD的长度这三个量中,确定的长度是自变量,的长度和的长度都是这个自变量的函数;(2)在同一平面直角坐标系xOy中,画出(1)中所确定的函数的图象;(3)结合函数图象,解决问题:当PC=2PD时,AD的长度约为cm.【答案】(1)AD、PC、PD;(2)略(3)AD的长度为2.3和4.0.【分析】(1)按照变量的定义,根据函数的定义,PC、PD不可能为自变量,只能是AD为自变量,即可求解;(2)描点画出如图图象;(3)PC=2PD,即PD=PC,画出y=x,交曲线AD的值为所求,即可求解.【解答】解:(1)根据函数的定义,PC、PD不可能为自变量,只能是AD为自变量故答案为:AD、PC、PD;(2)描点画出如图图象;(3)PC=2PD,从图和表格可以看出位置4和位置6符合要求,即AD的长度为2.3和4.0.三、【达标测试】(一)选择题1.(2019•日照)如图,在单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,…,都是斜边在x轴上,斜边长分别为2,4,6,…的等直角三角形,若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,1),A3(0,0),则依图中所示规律,A2019的坐标为()A.(﹣1008,0)B.(﹣1006,0)C.(2,﹣504)D.(1,505)【答案】A.【分析】观察图形可以看出A1﹣﹣A4;A5﹣﹣﹣A8;…每4个为一组,由于2019÷4=504…3,A2019在x轴负半轴上,纵坐标为0,再根据横坐标变化找到规律即可解答.【解答】解:观察图形可以看出A1﹣﹣A4;A5﹣﹣﹣A8;…每4个为一组,∵2019÷4=504 (3)∴A2019在x轴负半轴上,纵坐标为0,∵A3、A7、A11的横坐标分别为0,﹣2,﹣4,∴A2019的横坐标为﹣(2019﹣3)×=﹣1008.∴A2019的坐标为(﹣1008,0).故选:A.2.(2019•青海)大家知道乌鸦喝水的故事,如图,它看到一个水位较低的瓶子,喝不着水,沉思一会后聪明的乌鸦衔来一个个小石子放入瓶中,水位上升后,乌鸦喝到了水.从乌鸦看到瓶子的那刻起开始计时,设时间变量为x,水位高度变量为y,下列图象中最符合故事情景的大致图象是()A.B.C.D.【答案】D.【分析】由于原来水位较低,乌鸦沉思一会后才想出办法,说明将在沉思的这段时间内水位没有变化,乌鸦衔来一个个小石子放入瓶中,水位将会上升,乌鸦喝水后的水位应不低于一开始的水位,由此即可作出判断.【解答】解:∵乌鸦在沉思的这段时间内水位没有变化,∴排除C,∵乌鸦衔来一个个小石子放入瓶中,水位将会上升,∴排除A,∵乌鸦喝水后的水位应不低于一开始的水位,∴排除B,∴D正确.故选:D.3.(2019•呼和浩特)已知正方形的对称中心在坐标原点,顶点A、B、C、D按逆时针依次排列,若A点的坐标为(2,),则B点与D点的坐标分别为()A.(﹣2,),(2,﹣)B.(﹣,2),(,﹣2)C.(﹣,2),(2,﹣)D.(,)()【答案】B.【分析】连接OA、OD,过点A作AF⊥x轴于点F,过点D作DE⊥x轴于点E,易证△AFO≌△OED(AAS),则OE=AF=,DE=OF=2,D(,﹣2),因为B、D关于原点对称,所以B(﹣,2).【解答】解:如图,连接OA、OD,过点A作AF⊥x轴于点F,过点D作DE⊥x轴于点E,易证△AFO≌△OED(AAS),∴OE=AF=,DE=OF=2,∴D(,﹣2),∵B、D关于原点对称,∴B(﹣,2),故选:B.4.(2019•兰州)如图,在平面直角坐标系xOy中,将四边形ABCD先向下平移,再向右平移得到四边形A1B1C1D1,已知A(﹣3,5),B(﹣4,3),A1(3,3),则B1的坐标为()A.(1,2)B.(2,1)C.(1,4)D.(4,1)【答案】B.【分析】根据A和A1的坐标得出四边形ABCD先向下平移2个单位,再向右平移6个单位得到四边形A1B1C1D1,则B的平移方法与A点相同,即可得到答案.【解答】解:由A(﹣3,5),A1(3,3)可知四边形ABCD先向下平移2个单位,再向右平移6个单位得到四边形A1B1C1D1,∵B(﹣4,3),∴B1的坐标为(2,1),故选:B.5.(2019•威海)如图,⊙P与x轴交于点A(﹣5,0),B(1,0),与y轴的正半轴交于点C.若∠ACB=60°,则点C的纵坐标为()A.+B.2+C.4D.2+2【答案】B.【分析】连接PA,PB,PC,过P作PD⊥AB于D,PE⊥OC于E,根据圆周角定理得到∠APB=120°,根据等腰三角形的性质得到∠PAB=∠PBA=30°,由垂径定理得到AD=BD=3,解直角三角形得到PD=,PA=PB=PC=2,根据勾股定理得到CE===2,于是得到结论.【解答】解:连接PA,PB,PC,过P作PD⊥AB于D,PE⊥OC于E,∵∠ACB=60°,∴∠APB=120°,∵PA=PB,∴∠PAB=∠PBA=30°,∵A(﹣5,0),B(1,0),∴AB=6,∴AD=BD=3,∴PD=,PA=PB=PC=2,∵PD⊥AB,PE⊥OC,∠AOC=90°,∴四边形PEOD是矩形,∴OE=PD=,PE=OD=2,∴CE===2,∴OC=CE+OE=2+,∴点C的纵坐标为2+,故选:B.6.(2019•武汉)“漏壶”是一种古代计时器,在它内部盛一定量的水,不考虑水量变化对压力的影响,水从壶底小孔均匀漏出,壶内壁有刻度.人们根据壶中水面的位置计算时间,用x表示漏水时间,y表示壶底到水面的高度,下列图象适合表示y与x的对应关系的是()A.B.C.D.【答案】A.【分析】根据题意,可知y随的增大而减小,符合一次函数图象,从而可以解答本题.【解答】解:∵不考虑水量变化对压力的影响,水从壶底小孔均匀漏出,x表示漏水时间,y表示壶底到水面的高度,∴y随x的增大而减小,符合一次函数图象,故选:A.7.(2019•南通)如图是王阿姨晚饭后步行的路程s(单位:m)与时间t(单位:min)的函数图象,其中曲线段AB是以B为顶点的抛物线一部分.下列说法不正确的是()A.25min~50min,王阿姨步行的路程为800mB.线段CD的函数解析式为s=32t+400(25≤t≤50)C.5min~20min,王阿姨步行速度由慢到快D.曲线段AB的函数解析式为s=﹣3(t﹣20)2+1200(5≤t≤20)【答案】C.【分析】根据函数图象中的信息,利用数形结合及求相关线段的解析式解答即可.【解答】解:A、25min~50min,王阿姨步行的路程为2000﹣1200=800m,故A没错;B、设线段CD的函数解析式为s=kt+b,把(25,1200),(50,2000)代入得,解得:,∴线段CD的函数解析式为s=32t+400(25≤t≤50),故B没错;C、在A点的速度为=105m/min,在B点的速度为==45m/min,故C错误;D、当t=20时,由图象可得s=1200m,将t=20代入s=﹣3(t﹣20)2+1200(5≤t≤20)得s=1200,故D没错.故选:C.8.(2019•台湾)如图的坐标平面上有原点O与A、B、C、D四点.若有一直线L通过点(﹣3,4)且与y 轴垂直,则L也会通过下列哪一点?()A.A B.B C.C D.D【答案】D.【分析】直接利用点的坐标,正确结合坐标系分析即可.【解答】解:如图所示:有一直线L通过点(﹣3,4)且与y轴垂直,故L也会通过D点.故选:D.(二)填空题1.(2019 上海中考)已知f(x)=x2﹣1,那么f(﹣1)=.【答案】0.【分析】根据自变量与函数值的对应关系,可得答案.【解答】解:当x=﹣1时,f(﹣1)=(﹣1)2﹣1=0.故答案为:0.2.(2019•日照)规定:在平面直角坐标系xOy中,如果点P的坐标为(a,b),那么向量可以表示为:=(a,b),如果与互相垂直,=(x1,y1),=(x2,y2),那么x1x2+y1y2=0.若与互相垂直,=(sinα,1),=(2,﹣),则锐角∠α=.【答案】60°.【分析】根据平面向量垂直的判定方法得到:2sinα+1×(﹣)=0,结合特殊角的三角函数值解答.【解答】解:依题意,得2sinα+1×(﹣)=0,解得sinα=.∵α是锐角,∴α=60°.故答案是:60°.3.(2019•哈尔滨)在函数y=中,自变量x的取值范围是.【答案】x≠.【分析】函数中分母不为零是函数y=有意义的条件,因此2x﹣3≠0即可;【解答】解:函数y=中分母2x﹣3≠0,∴x≠;故答案为x≠;4.(2019•成都)如图,在平面直角坐标系xOy中,我们把横、纵坐标都是整数的点为“整点”,已知点A 的坐标为(5,0),点B在x轴的上方,△OAB的面积为,则△OAB内部(不含边界)的整点的个数为.【答案】4或5或6;【分析】根据面积求出B点的纵坐标是3,结合平面直角坐标系,多画些图可以观察到整数点的情况;【解答】解:设B(m,n),∵B在x轴上方,∴n>0,∵点A的坐标为(5,0),∴OA=5,∵△OAB的面积=5•n=,∴n=3,∴B(m,3),由图形的对称性,设m≥,①当m=5时,可得△OAB内部的整数点4个,②当m≥且m≠5时,OB的直线解析式y=x,AB的直线解析式y=x﹣设直线y=2与直线OB与直线AB分别交于点C,D,∴C(,2),D(,2),∴CD=,∴△OAB内部(不含边界)直线y=2上的整点的个数为1或2,同理可得,△OAB内部(不含边界)直线y=1上的整点的个数为3或4,综上所述,△OAB内部(不含边界)的整点的个数为4或5或6.故答案为4或5或6;5.(2019河北石家庄中考模拟)已知点P(0,m)在y轴的负半轴上,则点M(-m,-m+1)在.【答案】第四象限【分析】根据p点坐标的特点确定m的值,由m的值再确定-m和-m+1的符号,从而可以确定M在第几象限。

中考试题 函数初步(含平面直角坐标系)(解析版)2019数学全国中考真题

中考试题  函数初步(含平面直角坐标系)(解析版)2019数学全国中考真题

2019全国中考数学真题知识点15函数初步(含平面直角坐标系)(解析版)一、选择题5.(2019·滨州)在平面直角坐标系中,将点A(1,-2)向上平移3个单位长度,再向左平移2个单位长度,得到点B,则点B的坐标是()A.(-1,1)B.(3,1)C.(4,-4)D.(4,0)【答案】A【解析】点A(1,-2)向上平移3个单位长度,再向左平移2个单位长度,得到(1-2,-2+3),即B(-1,1).故选A.8.(2019·广元)如图,点P是菱形ABCD边上的动点,它从点A出发沿A→B→C→D路径匀速运动到点D,设△PAD 的面积为y,P点的运动时间为x,则y关于x的函数图象大致为( )第8题图【答案】A【解析】点P在整个运动过程中,△PAD的底边AD始终不变,故面积的变化取决于AD边上高线的变化,当点P在AB上运动时,高线均匀变大,故面积也均匀变大,当点P在BC上运动时,由于BC∥AD,平行线间距离处处相等,故高线不变,∴面积也不发生改变,当点P在CD上运动时,高线又会均匀变小,故面积也会均匀变小,故选A.9.(2019·嘉兴)如图,在直角坐标系中,已知菱形OABC的顶点A(1,2),B(3,3).作菱形OABC关于y 轴的对称图形OA'B'C',再作图形OA'B'C'关于点O的中心对称图形OA″B″C″,则点C的对应点C″的坐标是()A.(2,﹣1)B.(1,﹣2)C.(﹣2,1)D.(﹣2,﹣1)【答案】A【解析】∵点C的坐标为(2,1),∴点C′的坐标为(﹣2,1),∴点C″的坐标的坐标为(2,﹣1),故选A.2.(2019·杭州)在平面直角坐标系中,点A(m,2)与点B(3,n)关于y轴对称,则()A.m=3,n=2B.m=-3,n=2C.m=2,n=3D.m=-2,n=3【解析】A,B关于y轴对称,则横坐标互为相反数,纵坐标相同,故选B.6.(2019·株洲)在平面直角坐标系中,点A(2,﹣3)位于哪个象限?()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】根据平面直角坐标系中点的坐标特点可知,第四象限的点的坐标符号为(+,-),所以D。

2019中考数学试题分类汇编考点13平面直角坐标系与函数基础知识含解析.doc

2019中考数学试题分类汇编考点13平面直角坐标系与函数基础知识含解析.doc

2019中考数学试题分类汇编:考点13 平面直角坐标系与函数基础知识一.选择题(共31小题)1.(2019•港南区一模)在平面直角坐标系中,点P(﹣2,x2+1)所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限【分析】根据非负数的性质确定出点P的纵坐标是正数,然后根据各象限内点的坐标特征解答.【解答】解:∵x2≥0,∴x2+1≥1,∴点P(﹣2,x2+1)在第二象限.故选:B.2.(2019•东营)在平面直角坐标系中,若点P(m﹣2,m+1)在第二象限,则m的取值范围是()A.m<﹣1 B.m>2 C.﹣1<m<2 D.m>﹣1【分析】根据第二象限内点的横坐标是负数,纵坐标是正数列出不等式组求解即可.【解答】解:∵点P(m﹣2,m+1)在第二象限,∴,解得﹣1<m<2.故选:C.3.(2019•扬州)在平面直角坐标系的第二象限内有一点M,点M到x轴的距离为3,到y轴的距离为4,则点M的坐标是()A.(3,﹣4)B.(4,﹣3)C.(﹣4,3)D.(﹣3,4)【分析】根据第二象限内点的坐标特征,可得答案.【解答】解:由题意,得x=﹣4,y=3,即M点的坐标是(﹣4,3),故选:C.4.(2019•金华)小明为画一个零件的轴截面,以该轴截面底边所在的直线为x轴,对称轴为y轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm,则图中转折点P的坐标表示正确的是()A.(5,30)B.(8,10)C.(9,10)D.(10,10)【分析】先求得点P的横坐标,结合图形中相关线段的和差关系求得点P的纵坐标.【解答】解:如图,过点C作CD⊥y轴于D,∴BD=5,CD=50÷2﹣16=9,OA=OD﹣AD=40﹣30=10,∴P(9,10);故选:C.5.(2019•呼和浩特)下列运算及判断正确的是()#ERR1A.﹣5×÷(﹣)×5=1B.方程(x2+x﹣1)x+3=1有四个整数解C.若a×5673=103,a÷103=b,则a×b=D.有序数对(m2+1,m)在平面直角坐标系中对应的点一定在第一象限【分析】依据有理数的乘除混合运算法则、零指数幂、同底数幂的乘法法则以及点的坐标,进行判断即可得出结论.【解答】解:A.﹣5×÷(﹣)×5=﹣1×(﹣5)×5=25,故错误;B.方程(x2+x﹣1)x+3=1有四个整数解:x=1,x=﹣2,x=﹣3,x=﹣1,故正确;C.若a×5673=103,a÷103=b,则a×b=×=,故错误;D.有序数对(m2+1,m)在平面直角坐标系中对应的点一定在第一象限或第四象限或x轴正半轴上,故错误;故选:B.6.(2019•广州)在平面直角坐标系中,一个智能机器人接到如下指令:从原点O出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m.其行走路线如图所示,第1次移动到A1,第2次移动到A2,…,第n次移动到A n.则△OA2A2019的面积是()A.504m2B. m2 C. m2 D.1009m2【分析】由OA4n=2n知OA2019=+1=1009,据此得出A2A2019=1009﹣1=1008,据此利用三角形的面积公式计算可得.【解答】解:由题意知OA4n=2n,∵2019÷4=504…2,∴OA2019=+1=1009,∴A2A2019=1009﹣1=1008,则△OA2A2019的面积是×1×1008=504m2,故选:A.7.(2019•北京)如图是老北京城一些地点的分布示意图.在图中,分别以正东、正北方向为x轴、y轴的正方向建立平面直角坐标系,有如下四个结论:①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣6,﹣3)时,表示左安门的点的坐标为(5,﹣6);②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣12,﹣6)时,表示左安门的点的坐标为(10,﹣12);③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(﹣11,﹣5)时,表示左安门的点的坐标为(11,﹣11);④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(﹣16.5,﹣7.5)时,表示左安门的点的坐标为(16.5,﹣16.5).上述结论中,所有正确结论的序号是()A.①②③B.②③④C.①④ D.①②③④【分析】由天安门的位置确定原点,再进一步得出广安门和左安门的坐标即可判断.【解答】解:①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣6,﹣3)时,表示左安门的点的坐标为(5,﹣6),此结论正确;②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣6,﹣3)时,表示左安门的点的坐标为(5,﹣6),此结论错误;③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(﹣5,﹣2)时,表示左安门的点的坐标为(6,﹣5),此结论错误;④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(﹣16.5,﹣7.5)时,表示左安门的点的坐标为(16.5,﹣16.5),此结论正确.故选:C.8.(2019•宿迁)函数y=中,自变量x的取值范围是()A.x≠0 B.x<1 C.x>1 D.x≠1【分析】根据分母不等于零分式有意义,可得答案.【解答】解:由题意,得x﹣1≠0,解得x≠1,故选:D.9.(2019•包头)函数y=中,自变量x的取值范围是()A.x≠1 B.x>0 C.x≥1 D.x>1【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:由题意得,x﹣1≥0且x﹣1≠0,解得x>1.故选:D.10.(2019•重庆)根据如图所示的程序计算函数y的值,若输入的x值是4或7时,输出的y值相等,则b等于()A.9 B.7 C.﹣9 D.﹣7【分析】先求出x=7时y的值,再将x=4、y=﹣1代入y=2x+b可得答案.【解答】解:∵当x=7时,y=6﹣7=﹣1,∴当x=4时,y=2×4+b=﹣1,解得:b=﹣9,故选:C.11.(2019•通辽)小刚从家去学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车匀速行驶一段时后到达学校,小刚从家到学校行驶路程s(单位:m)与时间r(单位:min)之间函数关系的大致图象是()A.B.C.D.【分析】根据小刚行驶的路程与时间的关系,确定出图象即可.【解答】解:根据题意得:小刚从家到学校行驶路程s(单位:m)与时间r(单位:min)之间函数关系的大致图象是故选:B.12.(2019•自贡)回顾初中阶段函数的学习过程,从函数解析式到函数图象,再利用函数图象研究函数的性质,这种研究方法主要体现的数学思想是()A.数形结合 B.类比 C.演绎 D.公理化【分析】从函数解析式到函数图象,再利用函数图象研究函数的性质正是数形结合的数学思想的体现.【解答】解:学习了一次函数、二次函数和反比例函数,都是按照列表、描点、连线得到函数的图象,然后根据函数的图象研究函数的性质,这种研究方法主要体现了数形结合的数学思想.故选:A.13.(2019•随州)“龟兔赛跑”这则寓言故事讲述的是比赛中兔子开始领先,但它因为骄傲在途中睡觉,而乌龟一直坚持爬行最终贏得比赛,下列函数图象可以体现这一故事过程的是()A.B.C.D.【分析】根据兔子的路程在一段时间内保持不变、乌龟比兔子所用时间少逐一判断即可得.【解答】解:由于兔子在图中睡觉,所以兔子的路程在一段时间内保持不变,所以D选项错误;因为乌龟最终赢得比赛,即乌龟比兔子所用时间少,所以A、C均错误;故选:B.14.(2019•金华)某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元)与上网时间x(h)的函数关系如图所示,则下列判断错误的是()A.每月上网时间不足25h时,选择A方式最省钱B.每月上网费用为60元时,B方式可上网的时间比A方式多C.每月上网时间为35h时,选择B方式最省钱D.每月上网时间超过70h时,选择C方式最省钱【分析】A、观察函数图象,可得出:每月上网时间不足25 h时,选择A方式最省钱,结论A正确;B、观察函数图象,可得出:当每月上网费用≥50元时,B方式可上网的时间比A方式多,结论B正确;C、利用待定系数法求出:当x≥25时,y A与x之间的函数关系式,再利用一次函数图象上点的坐标特征可求出当x=35时y A的值,将其与50比较后即可得出结论C正确;D、利用待定系数法求出:当x≥50时,y B与x之间的函数关系式,再利用一次函数图象上点的坐标特征可求出当x=70时y B的值,将其与120比较后即可得出结论D错误.综上即可得出结论.【解答】解:A、观察函数图象,可知:每月上网时间不足25 h时,选择A方式最省钱,结论A正确;B、观察函数图象,可知:当每月上网费用≥50元时,B方式可上网的时间比A方式多,结论B正确;C、设当x≥25时,y A=kx+b,将(25,30)、(55,120)代入y A=kx+b,得:,解得:,∴y A=3x﹣45(x≥25),当x=35时,y A=3x﹣45=60>50,∴每月上网时间为35h时,选择B方式最省钱,结论C正确;D、设当x≥50时,y B=mx+n,将(50,50)、(55,65)代入y B=mx+n,得:,解得:,∴y B=3x﹣100(x≥50),当x=70时,y B=3x﹣100=110<120,∴结论D错误.故选:D.15.(2019•滨州)如果规定[x]表示不大于x的最大整数,例如[2.3]=2,那么函数y=x﹣[x]的图象为()A.B.C.D.【分析】根据定义可将函数进行化简.【解答】解:当﹣1≤x<0,[x]=﹣1,y=x+1当0≤x<1时,[x]=0,y=x当1≤x<2时,[x]=1,y=x﹣1……故选:A.16.(2019•齐齐哈尔)如图是自动测温仪记录的图象,它反映了齐齐哈尔市的春季某天气温T如何随时间t的变化而变化,下列从图象中得到的信息正确的是()A.0点时气温达到最低B.最低气温是零下4℃C.0点到14点之间气温持续上升D.最高气温是8℃【分析】根据齐齐哈尔市某一天内的气温变化图,分析变化趋势和具体数值,即可求出答案.【解答】解:A、由函数图象知4时气温达到最低,此选项错误;B、最低气温是零下3℃,此选项错误;C、4点到14点之间气温持续上升,此选项错误;D、最高气温是8℃,此选项正确;故选:D.17.(2019•绍兴)如图,一个函数的图象由射线BA、线段BC、射线CD组成,其中点A(﹣1,2),B(1,3),C(2,1),D(6,5),则此函数()A.当x<1时,y随x的增大而增大B.当x<1时,y随x的增大而减小C.当x>1时,y随x的增大而增大D.当x>1时,y随x的增大而减小【分析】根据函数图象和题目中的条件,可以写出各段中函数图象的变化情况,从而可以解答本题.【解答】解:由函数图象可得,当x<1时,y随x的增大而增大,故选项A正确,选项B错误,当1<x<2时,y随x的增大而减小,当x>2时,y随x的增大而增大,故选项C、D错误,故选:A.18.(2019•达州)如图,在物理课上,老师将挂在弹簧测力计下端的铁块浸没于水中,然后缓慢匀速向上提起,直至铁块完全露出水面一定高度,则下图能反映弹簧测力计的读数y(单位:N)与铁块被提起的高度x(单位:cm)之间的函数关系的大致图象是()A.B.C.D.【分析】根据题意,利用分类讨论的数学思想可以解答本题.【解答】解:由题意可知,铁块露出水面以前,F拉+F浮=G,浮力不变,故此过程中弹簧的度数不变,当铁块慢慢露出水面开始,浮力减小,则拉力增加,当铁块完全露出水面后,拉力等于重力,故选:D.19.(2019•长沙)小明家、食堂、图书馆在同一条直线上,小明从家去食堂吃早餐,接着去图书馆读报,然后回家,如图反映了这个过程中,小明离家的距离y与时间x之间的对应关系.根据图象,下列说法正确的是()A.小明吃早餐用了25minB.小明读报用了30minC.食堂到图书馆的距离为0.8kmD.小明从图书馆回家的速度为0.8km/min【分析】根据函数图象判断即可.【解答】解:小明吃早餐用了(25﹣8)=17min,A错误;小明读报用了(58﹣28)=30min,B正确;食堂到图书馆的距离为(0.8﹣0.6)=0.2km,C错误;小明从图书馆回家的速度为0.8÷10=0.08km/min,D错误;故选:B.20.(2012•内江)如图,等边△ABC的边长为3cm,动点P从点A出发,以每秒1cm的速度,沿A→B→C的方向运动,到达点C 时停止,设运动时间为x (s ),y=PC 2,则y 关于x 的函数的图象大致为( )A .B .C .D .【分析】需要分类讨论:①当0≤x ≤3,即点P 在线段AB 上时,根据余弦定理知cosA=,所以将相关线段的长度代入该等式,即可求得y 与x 的函数关系式,然后根据函数关系式确定该函数的图象.②当3<x ≤6,即点P 在线段BC 上时,y 与x 的函数关系式是y=(6﹣x )2=(x ﹣6)2(3<x ≤6),根据该函数关系式可以确定该函数的图象.【解答】解:∵正△ABC 的边长为3cm ,∴∠A=∠B=∠C=60°,AC=3cm .①当0≤x ≤3时,即点P 在线段AB 上时,AP=xcm (0≤x ≤3);根据余弦定理知cosA=,即=,解得,y=x 2﹣3x+9(0≤x ≤3);该函数图象是开口向上的抛物线;解法二:过C 作CD ⊥AB ,则AD=1.5cm ,CD=cm ,点P 在AB 上时,AP=x cm ,PD=|1.5﹣x|cm ,∴y=PC 2=()2+(1.5﹣x )2=x 2﹣3x+9(0≤x ≤3)该函数图象是开口向上的抛物线;②当3<x≤6时,即点P在线段BC上时,PC=(6﹣x)cm(3<x≤6);则y=(6﹣x)2=(x﹣6)2(3<x≤6),∴该函数的图象是在3<x≤6上的抛物线;故选:C.21.(2019•潍坊)如图,菱形ABCD的边长是4厘米,∠B=60°,动点P以1厘米秒的速度自A点出发沿AB方向运动至B点停止,动点Q以2厘米/秒的速度自B点出发沿折线BCD运动至D点停止.若点P、Q 同时出发运动了t秒,记△BPQ的面积为S厘米2,下面图象中能表示S与t之间的函数关系的是()A.B.C.D.【分析】应根据0≤t<2和2≤t<4两种情况进行讨论.把t当作已知数值,就可以求出S,从而得到函数的解析式,进一步即可求解.【解答】解:当0≤t<2时,S=2t××(4﹣t)=﹣t2+4t;当2≤t<4时,S=4××(4﹣t)=﹣2t+8;只有选项D的图形符合.故选:D.22.(2019•孝感)如图,在△ABC中,∠B=90°,AB=3cm,BC=6cm,动点P从点A开始沿AB向点B以1cm/s 的速度移动,动点Q从点B开始沿BC向点C以2cm/s的速度移动,若P,Q两点分别从A,B两点同时出发,P点到达B点运动停止,则△PBQ的面积S随出发时间t的函数关系图象大致是()A.B.C.D.【分析】根据题意表示出△PBQ的面积S与t的关系式,进而得出答案.【解答】解:由题意可得:PB=3﹣t,BQ=2t,则△PBQ的面积S=PB•BQ=(3﹣t)×2t=﹣t2+3t,故△PBQ的面积S随出发时间t的函数关系图象大致是二次函数图象,开口向下.故选:C.23.(2019•河南)如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()A.B.2 C.D.2【分析】通过分析图象,点F从点A到D用as,此时,△FBC的面积为a,依此可求菱形的高DE,再由图象可知,BD=,应用两次勾股定理分别求BE和a.【解答】解:过点D作DE⊥BC于点E由图象可知,点F由点A到点D用时为as,△FBC的面积为acm2.∴AD=a∴∴DE=2当点F从D到B时,用s∴BD=Rt△DBE中,BE=∵ABCD是菱形∴EC=a﹣1,DC=aRt△DEC中,a2=22+(a﹣1)2解得a=故选:C.24.(2019•东营)如图所示,已知△ABC中,BC=12,BC边上的高h=6,D为BC上一点,EF∥BC,交AB 于点E,交AC于点F,设点E到边BC的距离为x.则△DEF的面积y关于x的函数图象大致为()A.B.C.D.【分析】可过点A向BC作AH⊥BC于点H,所以根据相似三角形的性质可求出EF,进而求出函数关系式,由此即可求出答案.【解答】解:过点A向BC作AH⊥BC于点H,所以根据相似比可知: =,即EF=2(6﹣x)所以y=×2(6﹣x)x=﹣x2+6x.(0<x<6)该函数图象是抛物线的一部分,故选:D.25.(2019•烟台)如图,矩形ABCD中,AB=8cm,BC=6cm,点P从点A出发,以lcm/s的速度沿A→D→C 方向匀速运动,同时点Q从点A出发,以2cm/s的速度沿A→B→C方向匀速运动,当一个点到达点C时,另一个点也随之停止.设运动时间为t(s),△APQ的面积为S(cm2),下列能大致反映S与t之间函数关系的图象是()A.B.C.D.【分析】先根据动点P和Q的运动时间和速度表示:AP=t,AQ=2t,①当0≤t≤4时,Q在边AB上,P在边AD上,如图1,计算S与t的关系式,发现是开口向上的抛物线,可知:选项C、D不正确;②当4<t≤6时,Q在边BC上,P在边AD上,如图2,计算S与t的关系式,发现是一次函数,是一条直线,可知:选项B不正确,从而得结论.【解答】解:由题意得:AP=t,AQ=2t,①当0≤t≤4时,Q在边AB上,P在边AD上,如图1,S△APQ=AP•AQ==t2,故选项C、D不正确;②当4<t≤6时,Q在边BC上,P在边AD上,如图2,S△APQ=AP•AB==4t,故选项B不正确;故选:A.26.(2019•广东)如图,点P是菱形ABCD边上的一动点,它从点A出发沿在A→B→C→D路径匀速运动到点D,设△PAD的面积为y,P点的运动时间为x,则y关于x的函数图象大致为()A.B.C.D.【分析】设菱形的高为h,即是一个定值,再分点P在AB上,在BC上和在CD上三种情况,利用三角形的面积公式列式求出相应的函数关系式,然后选择答案即可.【解答】解:分三种情况:①当P在AB边上时,如图1,设菱形的高为h,y=AP•h,∵AP随x的增大而增大,h不变,∴y随x的增大而增大,故选项C不正确;②当P在边BC上时,如图2,y=AD•h,AD和h都不变,∴在这个过程中,y不变,故选项A不正确;③当P在边CD上时,如图3,y=PD•h,∵PD随x的增大而减小,h不变,∴y随x的增大而减小,∵P点从点A出发沿在A→B→C→D路径匀速运动到点D,∴P在三条线段上运动的时间相同,故选项D不正确;故选:B.27.(2019•香坊区)如图,平行四边形ABCD的周长为12,∠A=60°,设边AB的长为x,四边形ABCD的面积为y,则下列图象中,能表示y与x函数关系的图象大致是()A. B.C.D.【分析】过点B作BE⊥AD于点E,构建直角△ABE,通过解该直角三角形求得BE的长度,然后利用平行四边形的面积公式列出函数关系式,结合函数关系式找到对应的图象.【解答】解:如图,过点B作BE⊥AD于点E,∵∠A=60°,设边AB的长为x,∴BE=AB•sin60°=x.∵平行四边形ABCD的周长为12,∴AD=(12﹣2x)=6﹣x,∴y=AD•BE=(6﹣x)×x=﹣x2+3x(0≤x≤6).则该函数图象是一开口向下的抛物线的一部分,观察选项,C选项符合题意.故选:C.28.(2019•广安)已知点P为某个封闭图形边界上的一定点,动点M从点P出发,沿其边界顺时针匀速运动一周,设点M的运动时间为x,线段PM的长度为y,表示y与x的函数图象大致如图所示,则该封闭图形可能是()A.B.C.D.【分析】先观察图象得到y与x的函数图象分三个部分,则可对有4边的封闭图形进行淘汰,利用圆的定义,P点在圆上运动时,PM总上等于半径,则可对D进行判断,从而得到正确选项.【解答】解:y与x的函数图象分三个部分,而B选项和C选项中的封闭图形都有4条线段,其图象要分四个部分,所以B、C选项不正确;D选项中的封闭图形为圆,y为定中,所以D选项不正确;A选项为三角形,M点在三边上运动对应三段图象,且M点在P点的对边上运动时,PM的长有最小值.故选:A.29.(2019•安徽)如图,直线l1,l2都与直线l垂直,垂足分别为M,N,MN=1.正方形ABCD的边长为,对角线AC在直线l上,且点C位于点M处.将正方形ABCD沿l向右平移,直到点A与点N重合为止.记点C平移的距离为x,正方形ABCD的边位于l1,l2之间部分的长度和为y,则y关于x的函数图象大致为()A.B.C.D.【分析】当0<x≤1时,y=2x,当1<x≤2时,y=2,当2<x≤3时,y=﹣2x+6,由此即可判断;【解答】解:当0<x≤1时,y=2x,当1<x≤2时,y=2,当2<x≤3时,y=﹣2x+6,∴函数图象是A,故选:A.30.(2019•黄石)如图,在Rt△PMN中,∠P=90°,PM=PN,MN=6cm,矩形ABCD中AB=2cm,BC=10cm,点C和点M重合,点B、C(M)、N在同一直线上,令Rt△PMN不动,矩形ABCD沿MN所在直线以每秒1cm 的速度向右移动,至点C与点N重合为止,设移动x秒后,矩形ABCD与△PMN重叠部分的面积为y,则y 与x的大致图象是()A.B.C.D.【分析】在Rt△PMN中解题,要充分运用好垂直关系和45度角,因为此题也是点的移动问题,可知矩形ABCD以每秒1cm的速度由开始向右移动到停止,和Rt△PMN重叠部分的形状可分为下列三种情况,(1)0≤x≤2;(2)2<x≤4;(3)4<x≤6;根据重叠图形确定面积的求法,作出判断即可.【解答】解:∵∠P=90°,PM=PN,∴∠PMN=∠PNM=45°,由题意得:CM=x,分三种情况:①当0≤x≤2时,如图1,边CD与PM交于点E,∵∠PMN=45°,∴△MEC是等腰直角三角形,此时矩形ABCD与△PMN重叠部分是△EMC,∴y=S△EMC=CM•CE=;故选项B和D不正确;②如图2,当D在边PN上时,过P作PF⊥MN于F,交AD于G,∵∠N=45°,CD=2,∴CN=CD=2,∴CM=6﹣2=4,即此时x=4,当2<x≤4时,如图3,矩形ABCD与△PMN重叠部分是四边形EMCD,过E作EF⊥MN于F,∴EF=MF=2,∴ED=CF=x﹣2,∴y=S梯形EMCD=C D•(DE+CM)==2x﹣2;③当4<x≤6时,如图4,矩形ABCD与△PMN重叠部分是五边形EMCGF,过E作EH⊥MN于H,∴EH=MH=2,DE=CH=x﹣2,∵MN=6,CM=x,∴CG=CN=6﹣x,∴DF=DG=2﹣(6﹣x)=x﹣4,∴y=S梯形EMCD﹣S△FDG=﹣=×2×(x﹣2+x)﹣=﹣+10x﹣18,故选项A正确;故选:A.31.(2019•乌鲁木齐)如图①,在矩形ABCD中,E是AD上一点,点P从点B沿折线BE﹣ED﹣DC运动到点C时停止;点Q从点B沿BC运动到点C时停止,速度均为每秒1个单位长度.如果点P、Q同时开始运动,设运动时间为t,△BPQ的面积为y,已知y与t的函数图象如图②所示.以下结论:①BC=10;②cos∠ABE=;③当0≤t≤10时,y=t2;④当t=12时,△BPQ是等腰三角形;⑤当14≤t≤20时,y=110﹣5t中正确的有()A.2个B.3个C.4个D.5个【分析】根据题意,确定10≤t≤14,PQ的运动状态,得到BE、BC、ED问题可解.【解答】解:由图象可知,当10≤t≤14时,y值不变,则此时,Q点到C,P从E到D.∴BE=BC=10,ED=4故①正确.∴AE=6Rt△ABE中,AB=∴cos∠ABE=;故②错误当0≤t≤10时,△BPQ的面积为∴③正确;t=12时,P在点E右侧2单位,此时BP>BE=BCPC=∴△BPQ不是等腰三角形.④错误;当14≤t≤20时,点P由D向C运动,Q在C点,△BPQ的面积为则⑤正确故选:B.二.填空题(共10小题)32.(2019•柳州)如图,在平面直角坐标系中,点A的坐标是(﹣2,3).【分析】直接利用平面直角坐标系得出A点坐标.【解答】解:由坐标系可得:点A的坐标是(﹣2,3).故答案为:(﹣2,3).33.(2019•临安区)P(3,﹣4)到x轴的距离是 4 .【分析】根据点在坐标系中坐标的几何意义即可解答.【解答】解:根据点在坐标系中坐标的几何意义可知,P(3,﹣4)到x轴的距离是|﹣4|=4.故答案为:4.34.(2019•新疆)点(﹣1,2)所在的象限是第二象限.【分析】根据各象限内点的坐标特征解答.【解答】解:点(﹣1,2)所在的象限是第二象限.故答案为:二.35.(2019•齐齐哈尔)在平面直角坐标系中,点A(,1)在射线OM上,点B(,3)在射线ON上,以AB为直角边作Rt△ABA1,以BA1为直角边作第二个Rt△BA1B1,以A1B1为直角边作第三个Rt△A1B1A2,…,依次规律,得到Rt△B2017A2019B2019,则点B2019的纵坐标为32019.【分析】根据题意,分别找到AB、A1B1、A2B2……及 BA1、B1A2、B2A3……线段长度递增规律即可【解答】解:由已知可知点A、A1、A2、A3……A2019各点在正比例函数y=的图象上点B、B1、B2、B3……B2019各点在正比例函数y=的图象上两个函数相减得到横坐标不变的情况下两个函数图象上点的纵坐标的差为:①由已知,Rt△A1B1A2,…,到Rt△B2017A2019B2019都有一个锐角为30°∴当A(B)点横坐标为时,由①AB=2,则BA1=2,则点A1横坐标为,B1点纵坐标为9=32当A1(B1)点横坐标为3时,由①A1B1=6,则B1A2=6,则点A2横坐标为,B2点纵坐标为27=33当A2(B2)点横坐标为9时,由①A2B2=18,则B2A3=18,则点A3横坐标为,B3点纵坐标为81=34依稀类推点B2019的纵坐标为32019故答案为:3201936.(2019•绵阳)如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是(3,﹣1)和(﹣3,1),那么“卒”的坐标为(﹣2,﹣2).【分析】首先根据“相”和“兵”的坐标确定原点位置,然后建立坐标系,进而可得“卒”的坐标.【解答】解:“卒”的坐标为(﹣2,﹣2),故答案为:(﹣2,﹣2).37.(2019•资阳)如图,在平面直角坐标系中,等腰直角三角形OAA1的直角边OA在x轴上,点A1在第一象限,且OA=1,以点A1为直角顶点,OA1为一直角边作等腰直角三角形OA1A2,再以点A2为直角顶点,OA2为直角边作等腰直角三角形OA2A3…依此规律,则点A2019的坐标是(0,21007).【分析】本题点A坐标变化规律要分别从旋转次数与点A所在象限或坐标轴、点A到原点的距离与旋转次数的对应关系.【解答】解:由已知,点A每次旋转转动45°,则转动一周需转动8次,每次转动点A到原点的距离变为转动前的倍∵2019=252×8+2∴点A2019的在y轴正半轴上,OA2019==21007故答案为:(0,21007)38.(2019•黑龙江)在函数y=中,自变量x的取值范围是x≥﹣2且x≠0 .【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:由题意得,x+2≥0且x≠0,解得x≥﹣2且x≠0.故答案为:x≥﹣2且x≠0.39.(2019•香坊区)函数y=中自变量x的取值范围是x≠﹣3 .【分析】该函数是分式,分式有意义的条件是分母不等于0,故分母x+3≠0,解得x的范围.【解答】解:根据分式有意义的条件得:x+3≠0,解得:x≠﹣3.故答案为:x≠﹣3.40.(2019•大庆)函数y=的自变量x取值范围是x≤3 .【分析】根据二次根式的性质,被开方数大于等于0可知:3﹣x≥0,解得x的范围.【解答】解:根据题意得:3﹣x≥0,解得:x≤3.故答案为:x≤3.41.(2019•枣庄)如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是12 .【分析】根据图象可知点P在BC上运动时,此时BP不断增大,而从C向A运动时,BP先变小后变大,从而可求出BC与AC的长度.【解答】解:根据图象可知点P在BC上运动时,此时BP不断增大,由图象可知:点P从B向C运动时,BP的最大值为5,即BC=5,由于M是曲线部分的最低点,∴此时BP最小,即BP⊥AC,BP=4,∴由勾股定理可知:PC=3,由于图象的曲线部分是轴对称图形,∴PA=3,∴AC=6,∴△ABC的面积为:×4×6=12故答案为:12三.解答题(共1小题)42.(2019•嘉兴)小红帮弟弟荡秋千(如图1),秋千离地面的高度h(m)与摆动时间t(s)之间的关系如图2所示.(1)根据函数的定义,请判断变量h是否为关于t的函数?(2)结合图象回答:①当t=0.7s时,h的值是多少?并说明它的实际意义.②秋千摆动第一个来回需多少时间?【分析】(1)根据图象和函数的定义可以解答本题;(2)①根据函数图象可以解答本题;②根据函数图象中的数据可以解答本题.【解答】解:(1)由图象可知,对于每一个摆动时间t,h都有唯一确定的值与其对应,∴变量h是关于t的函数;(2)①由函数图象可知,当t=0.7s时,h=0.5m,它的实际意义是秋千摆动0.7s时,离地面的高度是0.5m;②由图象可知,秋千摆动第一个来回需2.8s.。

2019中考数学分类汇编汇总知识点15函数初步(含平面直角坐标系)(第二期)解析版

2019中考数学分类汇编汇总知识点15函数初步(含平面直角坐标系)(第二期)解析版

一、选择题1. ( 20佃广西省贵港市,题号 6,分值3分)若点P(m_1,5)与点Q(3,2 一n)关于原点成中心对称,则 m • n 的值是() A . 1B . 3C . 5D . 7【答案】C .【解析】 解:丁点P(m _1,5)与点Q(3,2 _n)关于原点对称,.m-1-~3 , 2-n-_5 ,解得: m-~2 , n=7 ,贝U m ・n --2・7=5 .故选:C . 【知识点】关于原点对称的点的坐标2. (2019海南,8题,3分)如图,在平面直角坐标系中,已知点A(2,1),点B(3, - 1),平移线段AB,使点A 落在点A i (-2,2) 处,则点B 的对应点B i 的坐标为()A.( — 1, - 1)B.(1,0)C.( — 1,0)D.(3,0)p ■ a ■ . > i1…丄 J—L 丄■h =ad aL 丄□第8题图【答案】C【解析】•••点A(2,1)平移后落在 A 1(-2,2), A 是向左平移 4个单位,向上平移1个单位,•••点B(3, - 1)平移后的点 B 1 坐标为(3- 4,- 1+1),即 B 1(- 1,0),故选 C. 【知识点】点的平移3. (2019 •湖南张家界,8, 3)在平面直角坐标系中,将边长为1 到正方形OA 1B 1C 1,依此方式,绕点O 连续旋转2019次得到正方形【答案】2)、……,这些点按 8个不同的坐标为一个周期,而 2019十82=252…3,这样A 2019与A 39相同,故选 A .【知识点】 正方形;旋转;探究规律题;平面直角坐标系4. (2019湖北孝感,9, 3分)一个装有进水管和出水管的空容器,从某时刻开始 4min 内只进水不出水,容器的正方形OABC 绕点O 顺时针旋转45。

后得OA 2019B 2019C 2019,那么点 A 2019 的坐标是()B . (1, 0)C .、.2D . ( 0, -1) 【解42 <2通过旋转可知A 1(「石)、 A 2(1,2 . 2宁、A 4(0,- 1)、A 5(—丐,£、A 6(-1, 0)、A 7(-亍,=、A 8(0 , 1) ; A 9呼,内存水8L;在随后的8min内既进水又出水,容器内存水12L;接着关闭进水管直到容器内的水放完.若每分钟秒时,两队所走路程相等,均无 174米,本选项正确;D 、由函数图象可知,从出发到 13.7秒的时间段内,甲队进水量和出水量是两个常数,容器内的水量 y (单位:L )与时间x (单位:min )之间的函数关系的图象大致的是( )九B C.D”【答案】A【解析】解:•••从某时刻开始 4min 内只进水不出水,容器内存水 8L ;•••此时容器内的水量随时间的增加而增加, •••随后的8min 内既进水又出水,容器内存水 12L ,•此时水量继续增加,只是增速放缓,•••接着关闭进水管直到容器内的水放完, •••水量逐渐减少为 0, 综上,A 选项符合, 故选:A .【知识点】函数的图象【答案】D【解析】解:作PQ 丄y 轴于Q ,如图,得到点P'相当于把厶OPQ 绕原点0顺时针旋转90°得到△ OP'Q '•••/ P ' Q ' 0 = 90°,/ QOQ '= 90°, P ' Q '= PQ = 2, OQ '= OQ = 3, •••点P '的坐标为(3, - 2).5.(3分)如图,在平面直角坐标系中,将点P (2, 3)绕原点0顺时针旋转90°得到点C . ( 2,— 3)D . (3,— 2)(3, — 1)••• P (2, 3),0顺时针旋转90°故选:D.【知识点】坐标与图形变化-旋转6.(2019湖南湘西,14,4分)在平面直角坐标系中,将点(2,l)向右平移3个单位长度,则所得的点的坐标是()A. (0,5)B. (5,1) C .(2,4) D .(4,2)【答案】B【解析】解:将点(2,l)向右平移3个单位长度,则所得的点的坐标是(5,1).故选:B.【知识点】坐标与图形变化-平移7.(2019内蒙古包头市,5题,3分)在函数中,自变量x的取值范围是()A.x > -1B.x> -1C.x > -1 且X M 2D.x > -1 且x丰 2【答案】D.【解析】解:要使函数有意义,需满足x-2工0且x+1 > 0,• x > -1 且X M 2.故选D.【知识点】函数自变量取值范围,分式和二次根式有意义条件8.(20佃山东东营,8,3分)甲、乙两队参加了端午情,龙舟韵”赛龙舟比赛,两队在比赛时的路程s (米)与时间t (秒)之间的函数图象如图所示,请你根据图象判断,下列说法正确的是()A .乙队率先到达终点B .甲队比乙队多走了126米C .在47.8秒时,两队所走路程相等D .从出发到13.7秒的时间段内,乙队的速度慢【答案】C【解析】A、由函数图象可知,甲走完全程需要82.3秒,乙走完全程需要90.2秒,甲队率先到达终点,本选项错误;B、由函数图象可知,甲、乙两队都走了300米,路程相同,本选项错误;C、由函数图象可知,在47.8秒时,两队所走路程相等,均无174米,本选项正确;D 、由函数图象可知,从出发到13.7秒的时间段内,甲队的速度慢,本选项错误;故选 C • 【知识点】函数图象9. (2019年广西柳州市,8, 3分)已知A 、B 两地相距3千米,小黄从 A 地到B 地,平均速度为 4千米/时, 若用x 表示行走的时间(小时),y 表示余下的路程(千米),则y 关于x 的函数解析式是()33A • y=4x (x > 0)B . y=4x — 3(x >) C . y=3 — 4x (x > 0) D • y=3 — 4x (0 < x <)4 4【答案】D【思路分析】 根据实际问题得关系式:余下的路程 =相距的路程一已走的路程写出函数关系式,再求出自变量的取值范围.3 3【解题过程】 函数关系式为y=3 — 4x ,总用时不超过 -小时,•••自变量的取值范围为0w x w -,故选D .44【知识点】函数关系式;自变量的取值范围210. (20佃贵州省安顺市,5, 3分)在平面直角坐标系中,点P (-3, m +1)关于原点的对称点在()A •第一象限B .第二象限C •第三象限D •第四象限【答案】D【解析】m 2是非负数,m 2+i 一定是正数,所以点 P (-3, m 2+1)在第二象限。

平面直角坐标系和函数基础(7大考点)(原卷版)(2022-2024)中考数学真题分类汇编(全国通用)

平面直角坐标系和函数基础(7大考点)(原卷版)(2022-2024)中考数学真题分类汇编(全国通用)

专题09平面直角坐标系和函数基础(7大考点)(原卷版)三年(2022-2024)中考数学真题分类汇编(全国通用)【考点归纳】一、考点01点的坐标 (1)二、考点02点所在的象限 (4)三、考点03坐标与图形 (6)四、考点04点坐标的规律探索 (13)五、考点05函数解析式 (18)六、考点06自变量和函数值 (20)七、考点07函数图像 (26)考点01点的坐标一、考点01点的坐标1.(2024·湖南·中考真题)在平面直角坐标系xOy中,对于点P x,y,若x,y均为整数,则称点P为“整点”.特别地,当y x(其中)的值为整数时,称“整点”P为“超整点”,已知点P2a−4,a+3在第二象限,下列说法正确的是()A.a<−3B.若点P为“整点”,则点P的个数为3个C.若点P为“超整点”,则点P的个数为1个D.若点P为“超整点”,则点P到两坐标轴的距离之和大于102.(2023·山东聊城·中考真题)如图,在直角坐标系中,各点坐标分别为A−2,1,B−1,3,C−4,4.先作关于x轴成轴对称的,再把平移后得到.若B22,1,则点2A坐标为()A.1,5B.1,3C.5,3D.()5,53.(2023·浙江台州·中考真题)如图是中国象棋棋盘的一部分,建立如图所示的平面直角坐标系,已知“车”所在位置的坐标为−2,2,则“炮”所在位置的坐标为().A.3,1B.1,3C.4,1D.3,24.(2022·黑龙江大庆·中考真题)平面直角坐标系中,点M在y轴的非负半轴上运动,点N在x轴上运动,满足OM+ON=8.点Q为线段MN的中点,则点Q运动路径的长为()A.4πB.82C.8蟺D.1625.(2023·浙江衢州·中考真题)在如图所示的方格纸上建立适当的平面直角坐标系,若点A的坐标为()0,1,点B的坐标为2,2,则点C的坐标为.6.(2023·贵州·中考真题)如图,是贵阳市城市轨道交通运营部分示意图,以喷水池为原点,分别以正东、正北方向为x轴、y轴的正方向建立平面直角坐标系,若贵阳北站的坐标是−2,7,则龙洞堡机场的坐标是.7.(2023·山东东营·中考真题)如图,一束光线从点A−2,5出发,经过y轴上的点B0,1反射后经过点C m,n,则2m−n的值是.8.(2023·山东枣庄·中考真题)银杏是著名的活化石植物,其叶有细长的叶柄,呈扇形.如图是一片银杏叶标本,叶片上两点B,C的坐标分别为(−3,2),(4,3),将银杏叶绕原点顺时针旋转90?后,叶柄上点A对应点的坐标为.9.(2022·山东德州·中考真题)如图,线段AB,CD端点的坐标分别为A−1,2,B3,−1,C3,2,D−1,5,且,将CD平移至第一象限内,得到C'D'(C',D'均在格点上).若四边形ABC'D'是菱形,则所有满足条件的点D'的坐标为.10.(2022·山东烟台·中考真题)观察如图所示的象棋棋盘,若“兵”所在的位置用(1,3)表示,“炮”所在的位置用(6,4)表示,那么“帅”所在的位置可表示为.考点02点所在的象限二、考点02点所在的象限11.(2024·内蒙古呼伦贝尔·中考真题)点P x,y在直线y=−34x+4上,坐标x,y是二元一次方程5x−6y= 33的解,则点P的位置在()A.第一象限B.第二象限C.第三象限D.第四象限12.(2024·四川广元·中考真题)如果单项式−x2m y3与单项式2x4y2−n的和仍是一个单项式,则在平面直角坐标系中点m,n在()A.第一象限B.第二象限C.第三象限D.第四象限13.(2024·贵州·中考真题)为培养青少年的科学态度和科学思维,某校创建了“科技创新”社团.小红将“科”“技”“创”“新”写在如图所示的方格纸中,若建立平面直角坐标系,使“创”“新”的坐标分别为−2,0,0,0,则“技”所在的象限为()A.第一象限B.第二象限C.第三象限D.第四象限14.(2023·内蒙古·中考真题)若实数m,n是一元二次方程x2−2x−3=0的两个根,且m<n,则点m,n 所在象限为()A.第一象限B.第二象限C.第三象限D.第四象限15.(2023·辽宁沈阳·中考真题)二次函数y=−(x+1)2+2图象的顶点所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限16.(2023·贵州·中考真题)已知,二次数y=ax2+bx+c的图象如图所示,则点(),P a b所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限17.(2023·湖南永州·中考真题)已知点M2,a在反比例函数y=k x的图象上,其中a,k为常数,且k>0﹐则点M一定在()A.第一象限B.第二象限C.第三象限D.第四象限18.(2023·浙江·中考真题)在平面直角坐标系中,点P−1,m2+1位于()A.第一象限B.第二象限C.第三象限D.第四象限19.(2023·江苏盐城·中考真题)在平面直角坐标系中,点在()A.第一象限B.第二象限C.第三象限D.第四象限20.(2020·湖南邵阳·中考真题)已知a+b>0,ab>0,则在如图所示的平面直角坐标系中,小手盖住的点的坐标可能是()A.a,b B.−a,b C.−a,−b D.a,−b21.(2022·内蒙古包头·中考真题)在一次函数中,y的值随x值的增大而增大,且ab>0,则点A(a,b)在()A.第四象限B.第三象限C.第二象限D.第一象限22.(2024·四川遂宁·中考真题)反比例函数y=k−1x的图象在第一、三象限,则点k,−3在第象限.23.(2023·湖南·中考真题)在平面直角坐标系中,点P−3,−2所在象限是第象限.24.(2023·新疆·中考真题)在平面直角坐标系中有五个点,分别是A1,2,B−3,4,C−2,−3,D4,3,E2,−3,从中任选一个点恰好在第一象限的概率是.25.(2023·山东日照·中考真题)若点M m+3,m−1在第四象限,则m的取值范围是.26.(2022·四川广安·中考真题)若点P(m+1,m)在第四象限,则点Q(﹣3,m+2)在第象限.27.(2023·山东淄博·中考真题)若实数m,n分别满足下列条件:(1)2m−12−7=−5;(2)n−3>0.试判断点P2m−考点03坐标与图形三、考点03坐标与图形28.(2024·内蒙古包头·中考真题)如图,在平面直角坐标系中,四边形OABC各顶点的坐标分别是O0,0,A1,2,B3,3,C5,0,则四边形OABC的面积为()A.14B.11C.10D.929.(2024·山东威海·中考真题)定义新运算:①在平面直角坐标系中,a,b表示动点从原点出发,沿着x轴正方向()或负方向(a<0).平移a 个单位长度,再沿着y轴正方向()或负方向(b<0)平移b个单位长度.例如,动点从原点出发,沿着x轴负方向平移2个单位长度,再沿着y轴正方向平移1个单位长度,记作−2,1.②加法运算法则:a,b+c,d=a+c,b+d,其中a,b,c,d为实数.若3,5+m,n=−1,2,则下列结论正确的是()A.m=2,n=7B.m=−4,n=−3C.m=4,n=3D.m=−4,n=330.(2024·广西·中考真题)如图,在平面直角坐标系中,点O为坐标原点,点P的坐标为2,1,则点Q 的坐标为()A.3,0B.0,2C.3,2D.1,231.(2024·河北·中考真题)在平面直角坐标系中,我们把一个点的纵坐标与横坐标的比值称为该点的“特征值”.如图,矩形ABCD位于第一象限,其四条边分别与坐标轴平行,则该矩形四个顶点中“特征值”最小的是()A.点A B.点B C.点C D.点D32.(2024·甘肃临夏·中考真题)如图,O是坐标原点,菱形ABOC的顶点B在x轴的负半轴上,顶点C的坐标为3,4,则顶点A的坐标为()A.−4,2B.−3,4C.−2,4D.−4,333.(2023·海南·中考真题)如图,在平面直角坐标系中,点A在y轴上,点B的坐标为6,0,将绕着点B顺时针旋转60掳,得到,则点C的坐标是()A.33,3B.3,33C.6,3D.3,634.(2023·湖南益阳·中考真题)如图,在平面直角坐标系xOy 中,有三点A 0,1,B 4,1,C 5,6,则()A .12BCD 35.(2023·山东泰安·中考真题)如图,在平面直角坐标系中,的一条直角边OB 在x 轴上,点A 的坐标为;中,,连接BC ,点M 是BC 中点,连接AM .将以点O 为旋转中心按顺时针方向旋转,在旋转过程中,线段AM 的最小值是()A .3B .62−4C .213−2D .236.(2023·湖北武汉·中考真题)皮克定理是格点几何学中的一个重要定理,它揭示了以格点为顶点的多边形的面积112=+-S N L ,其中N,L 分别表示这个多边形内部与边界上的格点个数.在平面直角坐标系中,横、纵坐标都是整数的点为格点.已知A 0,30,()()20,10,0,0B O ,则内部的格点个数是()A .266B .270C .271D .28537.(2023·山西·中考真题)蜂巢结构精巧,其巢房横截面的形状均为正六边形.如图是部分巢房的横截面图,图中7个全等的正六边形不重叠且无缝隙,将其放在平面直角坐标系中,点P,Q,M 均为正六边形的顶点.若点P,Q 的坐标分别为()(),0,3--,则点M 的坐标为()A .33,−2B .33,2C .(2,33-D .(2,33--38.(2023·江苏苏州·中考真题)如图,在平面直角坐标系中,点A 的坐标为9,0,点C 的坐标为0,3,以,OA OC 为边作矩形OABC .动点E,F 分别从点,O B 同时出发,以每秒1个单位长度的速度沿,OA BC 向终点A,C 移动.当移动时间为4秒时,的值为()A .10B .910C .15D .3039.(2022·青海·中考真题)如图所示,A 22,0,AB =32,以点A 为圆心,AB 长为半径画弧交x 轴负半轴于点C ,则点C 的坐标为()A .()32,0B .2,0C .−2,0D .−32,040.(2022·江苏苏州·中考真题)如图,点A 的坐标为0,2,点B 是x 轴正半轴上的一点,将线段AB 绕点A 按逆时针方向旋转60°得到线段AC .若点C 的坐标为m,3,则m 的值为()A43B.221C.53D.421341.(2024·河南·中考真题)如图,在平面直角坐标系中,正方形ABCD的边AB在x轴上,点A的坐标为,点E在边CD上.将沿BE折叠,点C落在点F处.若点F的坐标为,则点E的坐标为.42.(2024·黑龙江齐齐哈尔·中考真题)如图,在平面直角坐标系中,以点O为圆心,适当长为半径画弧,交x轴正半轴于点M,交y轴正半轴于点N,再分别以点M,N为圆心,大于12MN的长为半径画弧,两弧在第一象限交于点H,画射线OH,若H2a−1,a+1,则a=.43.(2024·四川广元·中考真题)若点Q x,y满足1x+1y=1xy,则称点Q为“美好点”,写出一个“美好点”的坐标.44.(2023·内蒙古·中考真题)如图,在平面直角坐标系中,点B坐标8,4,连接OB,将OB绕点O逆时针旋转90掳,得到OB ',则点B '的坐标为.45.(2023·四川甘孜·中考真题)如图,在平面直角坐标系xOy 中,菱形AOBC 的顶点B 在x 轴的正半轴上,点A 的坐标为(1,,则点C 的坐标为.46.(2023·辽宁鞍山·中考真题)如图,在平面直角坐标系中,矩形AOBC 的边OB ,OA 分别在x 轴、y 轴正半轴上,点D 在BC 边上,将矩形AOBC 沿AD 折叠,点C 恰好落在边OB 上的点E 处.若OA =8,OB =10,则点D 的坐标是.47.(2023·山东·中考真题)如图,在平面直角坐标系中,点A,B 在反比例函数(0)k y x x=>的图象上.点A 的坐标为m,2.连接OA,OB,AB .若OA =AB,鈭燨AB =90掳,则k 的值为.48.(2023·四川·中考真题)如图,在平面直角坐标系中,已知点A 1,0,点B 0,−3,点C 在x 轴上,且点C在点A右方,连接AB,BC,若,则点C的坐标为.49.(2024·安徽·中考真题)如图,在由边长为1个单位长度的小正方形组成的网格中建立平面直角坐标系xOy,格点(网格线的交点)A、B,C、D的坐标分别为7,8,2,8,10,4,5,4.(1)以点D为旋转中心,将旋转得到,画出;(2)直接写出以B,C1,B1,C为顶点的四边形的面积;(3)在所给的网格图中确定一个格点E,使得射线AE平分,写出点E的坐标.50.(2024·江西·中考真题)如图,是等腰直角三角形,,双曲线y=>0,x>0经过点B,过点A4,0作x轴的垂线交双曲线于点C,连接BC.(1)点B的坐标为______;(2)求BC所在直线的解析式.51.(2023·江苏镇江·中考真题)已知,在平面直角坐标系xOy中,点A的坐标为3,0,点B的坐标为m,n,点C与点B关于原点对称,直线分别与y轴交于点E,F,点F在点E的上方,EF=2.(1)分别求点E,F的纵坐标(用含m,n的代数式表示),并写出m的取值范围.(2)求点B的横坐标m,纵坐标n之间的数量关系.(用含m的代数式表示n)(3)将线段EF绕点()0,1顺时针旋转90掳,E,F的对应点分别是E',F'.当线段E'F'与点B所在的某个函数图象有公共点时,求m的取值范围.52.(2023·江苏镇江·中考真题)如图,正比例函数y=−3x与反比例函数的图象交于A,B1,m两点,点C在x轴负半轴上,.(1)m=______,k=______,点C的坐标为______.(2)点P在x轴上,若以B,O,P为顶点的三角形与相似,求点P的坐标.考点04点坐标的规律探索四、考点04点坐标的规律探索53.(2024·湖北武汉·中考真题)如图,小好同学用计算机软件绘制函数y=x3−3x2+3x−1的图象,发现它关于点1,0中心对称.若点A10.1,y1,A20.2,y2,A30.3,y3,……,A191.9,y19,A202,y20都在函数图象上,这20个点的横坐标从0.1开始依次增加0.1,则的值是()A .1-B .−0.729C .0D .154.(2024·河北·中考真题)平面直角坐标系中,我们把横、纵坐标都是整数,且横、纵坐标之和大于0的点称为“和点”.将某“和点”平移,每次平移的方向取决于该点横、纵坐标之和除以3所得的余数(当余数为0时,向右平移;当余数为1时,向上平移;当余数为2时,向左平移),每次平移1个单位长度.例:“和点”P 2,1按上述规则连续平移3次后,到达点P 32,2,其平移过程如下:若“和点”Q 按上述规则连续平移16次后,到达点()161,9Q -,则点Q 的坐标为()A .6,1或7,1B .()15,7-或8,0C .6,0或8,0D .5,1或7,155.(2023·山东烟台·中考真题)如图,在直角坐标系中,每个网格小正方形的边长均为1个单位长度,以点P 为位似中心作正方形123PA A A ,正方形456,PA A A ⋯,按此规律作下去,所作正方形的顶点均在格点上,其中正方形123PA A A 的顶点坐标分别为()()()123,0,2,1,1,0P A A ---,A 3−2,−1,则顶点A 100的坐标为()A .()31.34B .()31,34-C .32,35D .32,056.(2023·山东日照·中考真题)数学家高斯推动了数学科学的发展,被数学界誉为“数学王子”,据传,他在计算时,用到了一种方法,将首尾两个数相加,进而得到.人们借助于这样的方法,得到(n 是正整数).有下列问题,如图,在平面直角坐标系中的一系列格点Ai x i ,y i ,其中,且x i ,y i是整数.记n n n a x y =+,如1(0,0)A ,即a 1=0,A 2(1,0),即a 2=1,A 3(1,−1),即,以此类推.则下列结论正确的是()A .a 2023=40B .a 2024=43C .a (2n−1)2=2n −6D .a (2n−1)2=2n −457.(2023·辽宁阜新·中考真题)如图,四边形OABC 1是正方形,曲线叫作“正方形的渐开线”,其中,,,,…的圆心依次按O ,A ,B ,C 1循环.当OA =1时,点C 2023的坐标是()A.B.C.D.58.(2024·山东·中考真题)任取一个正整数,若是奇数,就将该数乘3再加上1;若是偶数,就将该数除以2.反复进行上述两种运算,经过有限次运算后,必进入循环圈1→4→2→1,这就是“冰雹猜想”.在平面直角坐标系xOy中,将点x,y中的x,y分别按照“冰雹猜想”同步进行运算得到新的点的横、纵坐标,其中x,y均为正整数.例如,点6,3经过第1次运算得到点3,10,经过第2次运算得到点10,5,以此类推.则点1,4经过2024次运算后得到点.59.(2023·湖南怀化·中考真题)在平面直角坐标系中,为等边三角形,点A的坐标为1,0.把按如图所示的方式放置,并将进行变换:第一次变换将绕着原点O顺时针旋转60掳,同时边长扩大为边长的2倍,得到;第二次旋转将绕着原点O顺时针旋转60掳,同时边长扩大为,边长的2倍,得到,….依次类推,得到,则的边长为,点A2023的坐标为.60.(2024·黑龙江绥化·中考真题)如图,已知A11,−3,A23,−3,A34,0,A46,0,A57,3,A69,3,A710,0,A811,−3…,依此规律,则点A2024的坐标为.61.(2024·黑龙江大兴安岭地·中考真题)如图,在平面直角坐标系中,正方形OMNP顶点M的坐标为3,0,是等边三角形,点B坐标是1,0,在正方形OMNP内部紧靠正方形OMNP的边(方向为)做无滑动滚动,第一次滚动后,点A的对应点记为A1,A1的坐标是2,0;第二次滚动后,A 1的对应点记为2A ,2A 的坐标是2,0;第三次滚动后,2A 的对应点记为A 3,A 3的坐标是3−……,则A 2024的坐标是.62.(2023·山东东营·中考真题)如图,在平面直角坐标系中,直线l :y =3x −3与x 轴交于点A 1,以OA 1为边作正方形A 1B 1C 1O 点C 1在y 轴上,延长C 1B 1交直线l 于点2A ,以C 1A 2为边作正方形A 2B 2C 2C 1,点C 2在y轴上,以同样的方式依次作正方形A 3B 3C 3C 2,…,正方形A 2023B 2023C 2023C 2022,则点2023B 的横坐标是.63.(2023·四川广安·中考真题)在平面直角坐标系中,点在x 轴的正半轴上,点在直线y =x??上,若点A 1的坐标为2,0,且112223334A B A A B A A B A △、△、△均为等边三角形.则点2023B 的纵坐标为.64.(2022·江苏南京·中考真题)如图,在平面直角坐标系,横、纵坐标均为整数的点按如下规律依序排列:(0,0),(1,0),(0,1),(2,0),(1,1),(0,2),(3,0),(2,1),(1,2),(0,3),(4,0),(3,1),(2,2),(1,3),…按这个规律,则(6,7)是第个点.考点05函数解析式五、考点05函数解析式65.(2024·甘肃·中考真题)如图1,“燕几”即宴几,是世界上最早的一套组合桌,由北宋进士黄伯思设计.全套“燕几”一共有七张桌子,包括两张长桌、两张中桌和三张小桌,每张桌面的宽都相等.七张桌面分开可组合成不同的图形.如图2给出了《燕几图》中名称为“回文”的桌面拼合方式,若设每张桌面的宽为x尺,长桌的长为y尺,则y与x的关系可以表示为()A.y=3x B.y=4x C.y=3x+1D.y=4x+166.(2024·广西·中考真题)激光测距仪L发出的激光束以的速度射向目标M,ts后测距仪L收到M反射回的激光束.则L到M的距离dkm与时间ts的关系式为()A.B.d=3脳105t C.D.67.(2022·辽宁大连·中考真题)汽车油箱中有汽油30L,如果不再加油,那么油箱中的油量y(单位:L)随行驶路程x(单位:km)的增加而减少,平均耗油量为0.1L/km.当时,y与x的函数解析式是()A.y=0.1x B.y=−0.1x+30C.y=300x D.y=−0.1x2+30x68.(2022·内蒙古呼和浩特·中考真题)某超市糯米的价格为5元/千克,端午节推出促销活动:一次购买的数量不超过2千克时,按原价售出,超过2千克时,超过的部分打8折.若某人付款14元,则他购买了千克糯米;设某人的付款金额为x 元,购买量为y 千克,则购买量y 关于付款金额x(x >10)的函数解析式为.69.(2024·广东深圳·中考真题)背景【缤纷618,优惠送大家】今年618各大电商平台促销火热,线下购物中心也亮出大招,年中大促进入“白热化”.深圳各大购物中心早在5月就开始推出618活动,进入6月更是持续加码,如图,某商场为迎接即将到来的618优惠节,采购了若干辆购物车.素材如图为某商场叠放的购物车,右图为购物车叠放在一起的示意图,若一辆购物车车身长1m ,每增加一辆购物车,车身增加0.2m .问题解决任务1若某商场采购了n 辆购物车,求车身总长L 与购物车辆数n 的表达式;任务2若该商场用直立电梯从一楼运输该批购物车到二楼,已知该商场的直立电梯长为2.6m ,且一次可以运输两列购物车,求直立电梯一次性最多可以运输多少辆购物车?任务3若该商场扶手电梯一次性可以运输24辆购物车,若要运输100辆购物车,且最多只能使用电梯5次,求:共有多少种运输方案?70.(2023·吉林·中考真题)如图,在正方形ABCD中,AB=4cm,点O是对角线AC的中点,动点P,Q 分别从点A,B同时出发,点P以1cm/s的速度沿边AB向终点B匀速运动,点Q以2cm/s的速度沿折线BC−CD向终点D匀速运动.连接PO并延长交边CD于点M,连接QO并延长交折线DA−AB于点N,连接PQ,QM,MN,NP,得到四边形PQMN.设点P的运动时间为x(s)(04x<<),四边形PQMN的面积为y cm)(2(1)BP的长为__________cm,CM的长为_________cm.(用含x的代数式表示)(2)求y关于x的函数解析式,并写出自变量x的取值范围.(3)当四边形PQMN是轴对称图形时,直接写出x的值.考点06自变量和函数值六、考点06自变量和函数值71.(2024·上海·中考真题)函数f(x)=2−x x−3的定义域是()A.2x=B.C.x=3D.72.(2024·四川巴中·中考真题)函数y=x+2自变量的取值范围是()A.x>0B.2x>-C.D.73.(2023·浙江·中考真题)一个球从地面竖直向上弹起时的速度为10米/秒,经过t(秒)时球距离地面的高度h(米)适用公式h=10t−5t2,那么球弹起后又回到地面所花的时间t(秒)是()A.5B.10C.1D.274.(2023·湖北黄石·中考真题)函数y=x的取值范围是()A.B.C.且D.75.(2023·江苏无锡·中考真题)函数y=1x−2中自变量x的取值范围是()A.x>2B.x≥2C.x≠2D.x<276.(2012·浙江衢州·中考真题)函数y=x−1的自变量x的取值范围在数轴上可表示为()A .B .C .D .77.(2024·湖北·中考真题)铁的密度约为7.9kg/cm 3,铁的质量m kg 与体积V cm 3成正比例.一个体积为10cm 3的铁块,它的质量为kg .78.(2024·四川内江·中考真题)在函数y =1x 中,自变量x 的取值范围是;79.(2024·黑龙江大兴安岭地·中考真题)在函数y =x 的取值范围是.80.(2023·黑龙江哈尔滨·中考真题)在函数y =2x−8中,自变量x 的取值范围是.81.(2023·宁夏·中考真题)如图是某种杆秤.在秤杆的点A 处固定提纽,点B 处挂秤盘,点C 为0刻度点.当秤盘不放物品时,提起提纽,秤砣所挂位置移动到点C ,秤杆处于平衡.秤盘放入x 克物品后移动秤砣,当秤砣所挂位置与提扭的距离为y 毫米时秤杆处于平衡.测得x 与y 的几组对应数据如下表:x /克024610y /毫米1014182230由表中数据的规律可知,当x =20克时,y =毫米.82.(2023·上海·中考真题)函数f x =1x−23的定义域为.83.(2023·云南·中考真题)函数110y x =-的自变量x 的取值范围是.84.(2022·上海·中考真题)已知f (x )=3x ,则f (1)=.85.(2024·北京·中考真题)小云有一个圆柱形水杯(记为1号杯),在科技活动中,小云用所学数学知识和人工智能软件设计了一个新水杯,并将其制作出来,新水杯(记为2号杯)示意图如下,当1号杯和2号杯中都有V mL水时,小云分别记录了1号杯的水面高度h1(单位:cm)和2号杯的水面高度h2(单位:cm),部分数据如下:V/mL040100200300400500h1/cm0 2.5 5.07.510.012.5h2/cm0 2.8 4.87.28.910.511.8(1)补全表格(结果保留小数点后一位);(2)通过分析数据,发现可以用函数刻画h1与V,h2与V之间的关系.在给出的平面直角坐标系中,画出这两个函数的图象;(3)根据以上数据与函数图象,解决下列问题:①当1号杯和2号杯中都有320mL水时,2号杯的水面高度与1号杯的水面高度的差约为___________cm (结果保留小数点后一位);②在①的条件下,将2号杯中的一都分水倒入1号杯中,当两个水杯的水面高度相同时,其水面高度约为___________cm(结果保留小数点后一位).86.(2023·辽宁阜新·中考真题)某中学数学兴趣小组的同学们,对函数y=a x−b+c(a,b,c是常数,)的性质进行了初步探究,部分过程如下,请你将其补充完整.(1)当a=1,b=c=0时,即y=x,当时,函数化简为y=x;当x<0时,函数化简为y=______.(2)当a=2,b=1,c=0时,即y=2x−1.①该函数自变量x和函数值y的若干组对应值如下表:…−21 01234……620246…其中m=______.②在图1所示的平面直角坐标系内画出函数y=2x−1的图象.(3)当a=−2,b=1,c=2时,即y=−2x−1+2.①当时,函数化简为y=______.②在图2所示的平面直角坐标系内画出函数y=−2x−1+2的图象.(4)请写出函数y=a x−b+c(a,b,c是常数,)的一条性质:______.(若所列性质多于一条,则仅以第一条为准)87.(2023·湖南郴州·中考真题)在实验课上,小明做了一个试验.如图,在仪器左边托盘A(固定)中放置一个物体,在右边托盘B(可左右移动)中放置一个可以装水的容器,容器的质量为5g.在容器中加入一定质量的水,可以使仪器左右平衡.改变托盘B与点C的距离x(cm)(),记录容器中加入的水的质量,得到下表:托盘B与点C的距离x/cm3025201510容器与水的总质量y1/g1012152030加入的水的质量y2/g5*******把上表中的x与y1各组对应值作为点的坐标,在平面直角坐标系中描出这些点,并用光滑的曲线连接起来,得到如图所示的y1关于x的函数图象.(1)请在该平面直角坐标系中作出y2关于x的函数图象;(2)观察函数图象,并结合表中的数据:①猜测y1与x之间的函数关系,并求y1关于x的函数表达式;②求y2关于x的函数表达式;③当时,y 1随x的增大而___________(填“增大”或“减小”),y2随x的增大而___________(填“增大”或“减小”),y2的图象可以由y1的图象向___________(以“上”或“下”或“左”或“右”)平移得到.(3)若在容器中加入的水的质量y 2(g)满足,求托盘B与点C的距离x(cm)的取值范围.88.(2022·广东深圳·中考真题)二次函数y=12x2,先向上平移6个单位,再向右平移3个单位,用光滑的曲线画在平面直角坐标系上.=122=12−32+60,03,1,124,1322,25,8−1,122,132−2,21,8(1)m 的值为;(2)在坐标系中画出平移后的图象并求出y =−12x 2+5与y =12x 2的交点坐标;(3)点()()1122,,,P x y Q x y 在新的函数图象上,且P,Q 两点均在对称轴的同一侧,若y1>y 2,则x 1x 2(填“>”或“<”或“=”)考点07函数图象七、考点07函数图象89.(2024·安徽·中考真题)如图,在中,,AB=4,BC=2,BD是边AC上的高.点E,F分别在边AB,BC上(不与端点重合),且.设AE=x,四边形DEBF的面积为y,则y关于x的函数图象为()A.B.C.D.90.(2024·湖北武汉·中考真题)如图,一个圆柱体水槽底部叠放两个底面半径不等的实心圆柱体,向水槽匀速注水.下列图象能大致反映水槽中水的深度h与注水时间t的函数关系的是()A.B.C.D.91.(2024·甘肃·中考真题)如图1,动点P从菱形ABCD的点A出发,沿边匀速运动,运动到点C时停止.设点P的运动路程为x,PO的长为y,y与x的函数图象如图2所示,当点P运动到BC中点时,PO的长为()A.2B.3C.5D.2292.(2024·河南·中考真题)把多个用电器连接在同一个插线板上,同时使用一段时间后,插线板的电源线会明显发热,存在安全隐患.数学兴趣小组对这种现象进行研究,得到时长一定时,插线板电源线中的电流I与使用电器的总功率P的函数图象(如图1),插线板电源线产生的热量Q与I的函数图象(如图2).下列结论中错误的是()A.当P=440W时,I=2A B.Q随I的增大而增大C.I每增加1A,Q的增加量相同D.P越大,插线板电源线产生的热量Q越多93.(2024·内蒙古呼伦贝尔·中考真题)已知某同学家、体育场、图书馆在同一条直线上.下面的图象反映的过程是:该同学从家跑步去体育场,在那里锻炼了一阵后又步行回家吃早餐,饭后骑自行车到图书馆.图中用x表示时间,y表示该同学离家的距离.结合图象给出下列结论:(1)体育场离该同学家2.5千米;(2)该同学在体育场锻炼了15分钟;(3)该同学跑步的平均速度是步行平均速度的2倍;(4)若该同学骑行的平均速度是跑步平均速度的1.5倍,则a的值是3.75;其中正确结论的个数是()A.1B.2C.3D.494.(2024·青海·中考真题)化学实验小组查阅资料了解到:某种絮凝剂溶于水后能够吸附水中悬浮物并发生沉降,从而达到净水的目的.实验得出加入絮凝剂的体积与净水率之间的关系如图所示,下列说法正确的是()A.加入絮凝剂的体积越大,净水率越高B.未加入絮凝剂时,净水率为0C.絮凝剂的体积每增加0.1mL,净水率的增加量相等D.加入絮凝剂的体积是0.2mL时,净水率达到76.54%95.(2024·江西·中考真题)将常温中的温度计插入一杯的热水(恒温)中,温度计的读数与时间x min的关系用图象可近似表示为()A.B.C.D.96.(2024·四川广元·中考真题)如图①,在中,,点P从点A出发沿A→C→B以1cm/s 的速度匀速运动至点B,图②是点P运动时,的面积y cm2随时间x(s)变化的函数图象,则该三角形的斜边AB的长为()A.5B.7C.32D.2397.(2024·山东烟台·中考真题)如图,水平放置的矩形ABCD中,AB=6cm,BC=8cm,菱形EFGH的顶点E,G在同一水平线上,点G与AB的中点重合,EF=23cm,,现将菱形EFGH以1cm/s 的速度沿BC方向匀速运动,当点E运动到CD上时停止,在这个运动过程中,菱形EFGH与矩形ABCD重叠部分的面积S cm2与运动时间t s之间的函数关系图象大致是()A.B.C.D.98.(2023·四川攀枝花·中考真题)如图,正方形ABCD的边长为4,动点P从点B出发沿折线BCDA做匀速运动,设点P运动的路程为x,的面积为y,下列图象能表示y与x之间函数关系的是()。

2019年中考数学《平面直角坐标系及函数》专题复习含答案解析

2019年中考数学《平面直角坐标系及函数》专题复习含答案解析

2019年中考数学《平面直角坐标系及函数》专题复习含答案解析一、选择题1.函数y=1x-2中,自变量x的取值范围是( )A.x≠-2 B.x≠2C.x<2 D.x>2解析根据题意得:x-2≠0,解得:x≠2.答案 B2.函数y=1-x的自变量x的取值范围是( ) A.x>1 B.x<1C.x≤1 D.x≥1解析根据题意得:1-x≥0,解得:x≤1.答案 C3.函数y=3-x+1x-4中自变量x的取值范围是( )A.x≤3 B.x=4C.x<3且x≠4 D.x≤3且x≠4解析二次根式的被开方数是非负数,∴3-x≥0,即x≤3;分式的分母不等于0,∴x -4≠0,即x≠4.∴x≤3.故选A.答案 A4.若a >0,则点P (-a ,2)应在( ) A .第一象限内B .第二象限内C .第三象限内D .第四象限内解析 ∵a >0,∴-a <0. ∵点P 的横坐标是负数,纵坐标是正数,∴点P 在平面直角坐标系的第二象限.答案 B5.如图,AB =4,射线BM 和AB 互相垂直,点D 是AB 上的一个动点,点E 在射线BM 上,2BE =DB ,作EF ⊥DE 并截取EF =DE ,连结AF 并延长交射线BM 于点C .设BE =x ,BC =y ,则y 关于x 的函数解析式是( ) A .y =-12x x -4B .y =-2x x -1C .y =-3x x -1D .y =-8x x -4解析 作FG ⊥BC 于G ,∵∠DEB +∠FEC =90°,∠DEB +∠BDE =90°,∴∠BDE =∠FEG .在△DBE 与△EGF 中,⎩⎪⎨⎪⎧∠B =∠FGE ,∠BDE =∠FEG ,DE =EF ,∴△DBE ≌△EGF (AAS),∴EG =DB ,FG =BE =x ,∴EG=DB=2BE=2x,∴GC=y-3x.∵FG⊥BC,AB⊥BC,∴FG∥AB,CG∶BC=FG∶AB,即x4=y-3xy,∴y=-12xx-4.答案 A 二、填空题6.已知函数y=1x-1,则自变量x的取值范围是________.解析由题意得,x-1>0,解得x>1. 答案x>17.函数y=x+1+2x中,自变量x的取值范围是________.解析由题意得,x+1≥0且x≠0,解得x≥-1且x≠0.答案x≥-1且x≠08.如果点P(x,y)关于原点的对称点为(-2,3),则x+y=________.解析关于原点对称的两个点横、纵坐标都互为相反数,则x=2,y=-3,∴x+y =2-3=-1.答案-1三、解答题9.如图1,底面积为30 cm2的空圆柱形容器内水平放置着由两个实心圆柱组成的“几何体”,现向容器内匀速注水,注满为止,在注水过程中,水面高度h(cm)与注水时间t(s)之间的关系如图2所示.请根据图中提供的信息,解答下列问题:(1)圆柱形容器的高为________cm,匀速注水的水流速度为________cm3/s;(2)若“几何体”的下方圆柱的底面积为15 cm2,求“几何体”上方圆柱的高和底面积.解(1)根据函数图象得到圆柱形容器的高为14 cm,两个实心圆柱组成的“几何体”的高度为11 cm,水从刚满过由两个实心圆柱组成的“几何体”到注满用了42 s-24 s =18 s,这段高度为14-11=3 cm,设匀速注水的水流速度为x cm3/s,则18·x=30×3,解得x=5,即匀速注水的水流速度为5 cm3/s;故答案为14 5;(2)“几何体”下方圆柱的高为a,则a·(30-15)=18×5,解得a=6,所以“几何体”上方圆柱的高为11 cm-6 cm=5 cm,设“几何体”上方圆柱的底面积为S cm2,根据题意得5·(30-S)=5·(24-18),解得S =24,即“几何体”上方圆柱的底面积为24 cm2.10.如图,在直角梯形ABCD 中,AB ∥DC ,∠ABC =90°,AB =8cm.BC =4 cm ,CD =5 cm.动点P 从点B 开始沿折线BC -CD -DA 以1 cm/s 的速度运动到点A .设点P 运动的时间为t (s),△PAB 面积为S (cm 2).(1)当t =2时,求S 的值;(2)当点P 在边DA 上运动时,求S 关于t 的函数表达式;(3)当S =12时,求t 的值.解 (1)∵动点P 以1 cm/s 的速度运动,∴当t =2时,BP =2 cm ,∴S 的值=12AB ·BP =12×8×2=8 cm 2;(2)过D 作DH ⊥AB ,过P ′作P ′M ⊥AB ,∴P ′M ∥DH ,∴△AP ′M ∽△ADH ,∴ AP ′AD =P ′M DH .∵AB =8 cm ,CD =5 cm ,∴AH =AB -DC =3 cm.∵BC =4 cm ,∴AD =32+42=5 cm.又∵AP ′=14-t ,∴14-t 5=P ′M 4,∴P ′M =4(14-t )5, ∴S =12AB ·P ′M =16(14-t )5, 即S 关于t 的函数表达式S =16(14-t )5; (3)由题意可知当P 在CD 上运动时,S =12AB ×BC =12×8×4=16 cm 2, 所以当S =12时,P 在BC 或AD 上,当P 在BC 上时,12=12×8·t ,解得:t =3; 当P 在AD 上时,12=16(14-t )5,解得:t =414. ∴当S =12时,t 的值为3或414.。

精选2019年中考数学最全真题分类汇编全集之专题04 平面直角坐标系与函数(第02期)(解析版)

精选2019年中考数学最全真题分类汇编全集之专题04 平面直角坐标系与函数(第02期)(解析版)

专题04 平面直角坐标系与函数1.(2019·贵州安顺)在平面直角坐标系中,点P(﹣3,m2+1)关于原点对称点在A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】∵m2+1>0,∴点P(﹣3,m2+1)在第二象限,∴点P(﹣3,m2+1)关于原点对称点在第四象限,故选D.2.(2019•海南)如图,在平面直角坐标系中,已知点A(2,1),点B(3,﹣1),平移线段AB,使点A 落在点A1(﹣2,2)处,则点B的对应点B1的坐标为A.(﹣1,﹣1)B.(1,0)C.(﹣1,0)D.(3,0)【答案】C【解析】由点A(2,1)平移后A1(﹣2,2)可得坐标的变化规律是:左移4个单位,上移1个单位,∴点B的对应点B1的坐标(﹣1,0).故选C.【名师点睛】本题运用了点的平移的坐标变化规律,关键是由点A(2,1)平移后A1(﹣2,2)可得坐标的变化规律,由此可得点B的对应点B1的坐标.3.(2019•浙江丽水)如图是雷达屏幕在一次探测中发现的多个目标,其中对目标A的位置表述正确的是A.在南偏东75°方向处B.在5km处C.在南偏东15°方向5km处D.在南偏东75°方向5km处【答案】D【解析】由图可得,目标A在南偏东75°方向5km处故选D.【名师点睛】此题主要考查了方向角,正确理解方向角的意义是解题关键.4.(2019·湖南常德)点(﹣1,2)关于原点的对称点坐标是A.(﹣1,﹣2)B.(1,﹣2)C.(1,2)D.(2,﹣1)【答案】B【解析】根据中心对称的性质,得点(﹣1,2)关于原点的对称点的坐标为(1,﹣2).故选B.【名师点睛】本题考查了关于原点对称的点的坐标,关于原点的对称点,横纵坐标都变成相反数.5.(2019·山东枣庄)在平面直角坐标系中,将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′,则点A′的坐标是A.(﹣1,1)B.(﹣1,﹣2)C.(﹣1,2)D.(1,2)【答案】A【解析】∵将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′,∴点A′的横坐标为1﹣2=﹣1,纵坐标为﹣2+3=1,∴A′的坐标为(﹣1,1).故选A.【名师点睛】本题考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.6.(2019·四川巴中)在平面直角坐标系中,已知点A(﹣4,3)与点B关于原点对称,则点B的坐标为A.(﹣4,﹣3)B.(4,3)C.(4,﹣3)D.(﹣4,3)【答案】C【解析】∵点A(﹣4,3),点A与点B关于原点对称,∴点B(4,﹣3).故选C.【名师点睛】本题考查了关于原点对称的点的坐标,熟记“关于原点的对称点,横、纵坐标都变成相反数”是解题的关键.7.(2019•浙江嘉兴)如图,在直角坐标系中,已知菱形OABC的顶点A(1,2),B(3,3).作菱形OABC 关于y轴的对称图形OA'B'C',再作图形OA'B'C'关于点O的中心对称图形OA″B″C″,则点C的对应点C″的坐标是A.(2,﹣1)B.(1,﹣2)C.(﹣2,1)D.(﹣2,﹣1)【答案】A【解析】∵点C的坐标为(2,1),∴点C′的坐标为(﹣2,1),∴点C″的坐标的坐标为(2,﹣1),故选A.【名师点睛】本题考查旋转变化、轴对称变化,解答本题的关键是明确题意,利用数形结合的思想解答.8.(2019•浙江金华)如图是雷达屏幕在一次探测中发现的多个目标,其中对目标A的位置表述正确的是A.在南偏东75°方向处B.在5km处C.在南偏东15°方向5km处D.在南75°方向5km处【答案】D【解析】依题可得:90°÷6=15°,∴15°×5=75°,∴目标A的位置为:南偏东75°方向5km处.故答案为:D.9.(2019•广西贵港)若点P(m﹣1,5)与点Q(3,2﹣n)关于原点成中心对称,则m+n的值是A.1 B.3C.5 D.7【答案】C【解析】∵点P(m﹣1,5)与点Q(3,2﹣n)关于原点对称,∴m﹣1=﹣3,2﹣n=﹣5,解得:m=﹣2,n=7,则m+n=﹣2+7=5.故选C.【名师点睛】本题考查了关于原点对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数.10.(2019·湖北黄石)如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x轴上,AB边的中点是坐标原点O,将正方形绕点C按逆时针方向旋转90°后,点B的对应点B'的坐标是A.(﹣1,2)B.(1,4)C.(3,2)D.(﹣1,0)【答案】C【解析】如图所示,由旋转得:CB'=CB=2,∠BCB'=90°,∵四边形ABCD是正方形,且O是AB的中点,∴OB=1,∴B'(2+1,2),即B'(3,2),故选C.【名师点睛】本题考查了正方形的性质,坐标与图形的性质,旋转的性质,正确的识别图形是解题的关键.11.(2019•湖北武汉)“漏壶”是一种古代计时器,在它内部盛一定量的水,不考虑水量变化对压力的影响,水从壶底小孔均匀漏出,壶内壁有刻度.人们根据壶中水面的位置计算时间,用t表示漏水时间,y表示壶底到水面的高度,下列图象适合表示y与x的对应关系的是A.B.C.D.【答案】A【解析】∵不考虑水量变化对压力的影响,水从壶底小孔均匀漏出,t表示漏水时间,y表示壶底到水面的高度,∴y随t的增大而减小,符合一次函数图象,故选A.【名师点睛】本题考查函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.12.(2019•湖北孝感)一个装有进水管和出水管的空容器,从某时刻开始4min内只进水不出水,容器内存水8L;在随后的8min内既进水又出水,容器内存水12L;接着关闭进水管直到容器内的水放完.若每分钟进水量和出水量是两个常数,容器内的水量y(单位:L)与时间x(单位:min)之间的函数关系的图象大致的是A.B.C.D.【答案】A【解析】∵从某时刻开始4min内只进水不出水,容器内存水8L;∴此时容器内的水量随时间的增加而增加,∵随后的8min内既进水又出水,容器内存水12L,∴此时水量继续增加,只是增速放缓,∵接着关闭进水管直到容器内的水放完,∴水量逐渐减少为0,综上,A选项符合,故选A.【名师点睛】本题考查了函数的图象的知识,解题的关键是能够将实际问题与函数的图象有机的结合起来,难度不大.13.(2019·广西河池)如图,△ABC为等边三角形,点P从A出发,沿A→B→C→A作匀速运动,则线段AP的长度y与运动时间x之间的函数关系大致是A.B.C.D.【答案】B【解析】根据题意得,点P从点A运动到点B时以及从点C运动到点A时是一条线段,故选项C与选项D不合题意;点P从点B运动到点C时,y是x的二次函数,并且有最小值,∴选项B符合题意,选项A不合题意.故选B.【名师点睛】本题考查了动点问题的函数图象:通过分类讨论,利用三角形面积公式得到y与x的函数关系,然后根据二次函数和一次函数图象与性质解决问题.14.(2019•四川自贡)均匀的向一个容器内注水,在注满水的过程中,水面的高度h与时间t的函数关系如图所示,则该容器是下列四个中的A.B.C.D.【答案】D【解析】相比较而言,前一个阶段,用时较少,高度增加较快,那么下面的物体应较细.由图可得上面圆柱的底面半径应大于下面圆柱的底面半径.故选D.【名师点睛】此题主要考查了函数图象,解决本题的关键是根据用的时间长短来判断相应的函数图象.15.(2019•江苏无锡)某个函数具有性质:当x>0时,y随x的增大而增大,这个函数的表达式可以是__________(只要写出一个符合题意的答案即可).【答案】y=x2(答案不唯一)【解析】y=x2中开口向上,对称轴为x=0,当x>0时y随着x的增大而增大,故答案为:y=x2(答案不唯一).【名师点睛】考查了一次函数、二次函数、反比例函数的性质,根据函数的增减性写出答案即可.16.(2019•山东济宁)已知点P(x,y)位于第四象限,并且x≤y+4(x,y为整数),写出一个符合上述条件的点P的坐标__________.【答案】(1,﹣2)(答案不唯一)【解析】∵点P(x,y)位于第四象限,并且x≤y+4(x,y为整数),∴x>0,y<0,∴当x=1时,1≤y+4,解得0>y≥﹣3,∴y可以为:﹣2,故写一个符合上述条件的点P的坐标可以为:(1,﹣2)(答案不唯一).故答案为:(1,﹣2)(答案不唯一).【名师点睛】此题主要考查了点的坐标,正确把握横纵坐标的符号是解题关键.17.(2019·甘肃陇南)中国象棋是中华名族的文化瑰宝,因趣味性强,深受大众喜爱.如图,若在象棋棋盘上建立平面直角坐标系,使“帅”位于点(0,﹣2),“马”位于点(4,﹣2),则“兵”位于点__________.【答案】(﹣1,1)【解析】如图所示:可得原点位置,则“兵”位于(﹣1,1).故答案为:(﹣1,1).【名师点睛】本题考查了直角坐标系、点的坐标,解题的关键是确定坐标系的原点的位置.18.(2019•四川广安)点M(x﹣1,﹣3)在第四象限,则x的取值范围是__________.【答案】x>1【解析】∵点M(x﹣1,﹣3)在第四象限,∴x﹣1>0,解得x>1,即x的取值范围是x>1.故答案为x>1.【名师点睛】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).19.(2019•甘肃庆阳)中国象棋是中华名族的文化瑰宝,因趣味性强,深受大众喜爱.如图,若在象棋棋盘上建立平面直角坐标系,使“帅”位于点(0,﹣2),“马”位于点(4,﹣2),则“兵”位于点__________.【答案】(﹣1,1)【解析】如图所示:可得原点位置,则“兵”位于(﹣1,1).故答案为:(﹣1,1).【名师点睛】本题考查了直角坐标系、点的坐标,解题的关键是确定坐标系的原点的位置.20.(2019·甘肃天水)函数y x的取值范围是__________.【答案】x≥2【解析】依题意,得x–2≥0,解得:x≥2,故答案为:x≥2.21.(2019•山东临沂)汛期到来,山洪暴发.下表记录了某水库20h内水位的变化情况,其中x表示时间(单位:h),y表示水位高度(单位:m),当x=8(h)时,达到警戒水位,开始开闸放水.(1)在给出的平面直角坐标系中,根据表格中的数据描出相应的点.(2)请分别求出开闸放水前和放水后最符合表中数据的函数解析式.(3)据估计,开闸放水后,水位的这种变化规律还会持续一段时间,预测何时水位达到6m.【解析】(1)在平面直角坐标系中,根据表格中的数据描出相应的点,如图所示.s(2)观察图象当0<x<8时,y与x可能是一次函数关系:设y=kx+b,把(0,14),(8,18)代入得,解得:k=,b=14,y与x的关系式为:y=x+14,经验证(2,15),(4,16),(6,17)都满足y=x+14.因此放水前y与x的关系式为:y=x+14(0<x<8).观察图象当x>8时,y与x就不是一次函数关系:通过观察数据发现:8×18=10×10.4=12×12=16×9=1814818bk b=+=⎧⎨⎩12121212×8=144.因此放水后y 与x 的关系最符合反比例函数,关系式为:y =.(x >8) 所以开闸放水前和放水后最符合表中数据的函数解析式为:y =x +14(0<x <8)和y =.(x >8) (3)当y =6时,6=,解得:x =24,因此预计24h 水位达到6m . 【名师点睛】根据图象猜测函数类型,尝试求出,再验证确切性;也可根据自变量和函数的变化关系进行猜测,关系式确定后,可以求自变量函数的对应值.144x12144x144x。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018中考数学试题分类汇编:考点13平面直角坐标系与函数基础知识一.选择题(共31小题)1.(2018•港南区一模)在平面直角坐标系中,点P(﹣2,x2+1)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据非负数的性质确定出点P的纵坐标是正数,然后根据各象限内点的坐标特征解答.【解答】解:∵x2≥0,∴x2+1≥1,∴点P(﹣2,x2+1)在第二象限.故选:B.2.(2018•东营)在平面直角坐标系中,若点P(m﹣2,m+1)在第二象限,则m的取值范围是()A.m<﹣1B.m>2C.﹣1<m<2D.m>﹣1【分析】根据第二象限内点的横坐标是负数,纵坐标是正数列出不等式组求解即可.【解答】解:∵点P(m﹣2,m+1)在第二象限,∴,解得﹣1<m<2.故选:C.3.(2018•扬州)在平面直角坐标系的第二象限内有一点M,点M到x轴的距离为3,到y 轴的距离为4,则点M的坐标是()A.(3,﹣4)B.(4,﹣3)C.(﹣4,3)D.(﹣3,4)【分析】根据第二象限内点的坐标特征,可得答案.【解答】解:由题意,得x=﹣4,y=3,即M点的坐标是(﹣4,3),故选:C.4.(2018•金华)小明为画一个零件的轴截面,以该轴截面底边所在的直线为x轴,对称轴为y轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm,则图中转折点P的坐标表示正确的是()A.(5,30)B.(8,10)C.(9,10)D.(10,10)【分析】先求得点P的横坐标,结合图形中相关线段的和差关系求得点P的纵坐标.【解答】解:如图,过点C作CD⊥y轴于D,∴BD=5,CD=50÷2﹣16=9,OA=OD﹣AD=40﹣30=10,∴P(9,10);故选:C.5.(2018•呼和浩特)下列运算及判断正确的是()#ERR1A.﹣5×÷(﹣)×5=1B.方程(x2+x﹣1)x+3=1有四个整数解C.若a×5673=103,a÷103=b,则a×b=D .有序数对(m 2+1,m )在平面直角坐标系中对应的点一定在第一象限【分析】依据有理数的乘除混合运算法则、零指数幂、同底数幂的乘法法则以及点的坐标,进行判断即可得出结论.【解答】解:A .﹣5× ÷(﹣ )×5=﹣1×(﹣5)×5=25,故错误;B .方程(x 2+x ﹣1)x+3=1 有四个整数解:x=1,x=﹣2,x=﹣3,x=﹣1,故正确;C .若 a ×5673=103,a ÷103=b ,则 a ×b= × = ,故错误;D .有序数对(m 2+1,m )在平面直角坐标系中对应的点一定在第一象限或第四象限或x 轴正半轴上,故错误;故选:B .6.(2018•广州)在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动 1m .其行走路线如图所示,第 1次移动到 A 1,第 2 次移动到 A 2,…,第 n 次移动到 A △n.则 OA 2A 2018 的面积是( )A .504m 2B . m 2C . m 2D .1009m 2【分析】由 OA 4n =2n 知 OA 2018=+1=1009,据此得出 A 2A 2018=1009﹣1=1008,据此利用三角形的面积公式计算可得.【解答】解:由题意知 OA 4n =2n ,∵2018÷4=504…2,∴OA 2018= +1=1009,∴A 2A 2018=1009﹣1=1008,则 △OA 2A 2018 的面积是 ×1×1008=504m 2,故选:A .6 7.(2018•北京)如图是老北京城一些地点的分布示意图.在图中,分别以正东、正北方向为 x 轴、y 轴的正方向建立平面直角坐标系,有如下四个结论:①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣6,﹣3)时,表示左安门的点的坐标为(5,﹣6);②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣12,﹣6)时,表示左安门的点的坐标为(10,﹣12);③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(﹣11,﹣5)时,表示左安门的点的坐标为(11,﹣11);④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(﹣16.5,﹣7.5)时,表示左安门的点的坐标为(16.5,﹣16.5).上述结论中,所有正确结论的序号是()A .①②③B .②③④C .①④D .①②③④ 【分析】由天安门的位置确定原点,再进一步得出广安门和左安门的坐标即可判断.【解答】解:①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣ ,﹣3)时,表示左安门的点的坐标为(5,﹣6),此结论正确;②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣6,﹣3)时,表示左安门的点的坐标为(5,﹣6),此结论错误;③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(﹣5,﹣2)时,表示左安门的点的坐标为(6,﹣5),此结论错误;④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(﹣16.5,﹣7.5)时,表示左安门的点的坐标为(16.5,﹣16.5),此结论正确.故选:C .8.(2018•宿迁)函数y=中,自变量x的取值范围是()A.x≠0B.x<1C.x>1D.x≠1【分析】根据分母不等于零分式有意义,可得答案.【解答】解:由题意,得x﹣1≠0,解得x≠1,故选:D.9.(2018•包头)函数y=中,自变量x的取值范围是()A.x≠1B.x>0C.x≥1D.x>1【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:由题意得,x﹣1≥0且x﹣1≠0,解得x>1.故选:D.10.(2018•重庆)根据如图所示的程序计算函数y的值,若输入的x值是4或7时,输出的y值相等,则b等于()A.9B.7C.﹣9D.﹣7【分析】先求出x=7时y的值,再将x=4、y=﹣1代入y=2x+b可得答案.【解答】解:∵当x=7时,y=6﹣7=﹣1,∴当x=4时,y=2×4+b=﹣1,解得:b=﹣9,故选:C.11.(2018•通辽)小刚从家去学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车匀速行驶一段时后到达学校,小刚从家到学校行驶路程s(单位:m)与时间r(单位:min)之间函数关系的大致图象是()A.B.C.D.【分析】根据小刚行驶的路程与时间的关系,确定出图象即可.【解答】解:根据题意得:小刚从家到学校行驶路程s(单位:m)与时间r(单位:min)之间函数关系的大致图象是故选:B.12.(2018•自贡)回顾初中阶段函数的学习过程,从函数解析式到函数图象,再利用函数图象研究函数的性质,这种研究方法主要体现的数学思想是()A.数形结合B.类比C.演绎D.公理化【分析】从函数解析式到函数图象,再利用函数图象研究函数的性质正是数形结合的数学思想的体现.【解答】解:学习了一次函数、二次函数和反比例函数,都是按照列表、描点、连线得到函数的图象,然后根据函数的图象研究函数的性质,这种研究方法主要体现了数形结合的数学思想.故选:A.13.(2018•随州)“龟兔赛跑”这则寓言故事讲述的是比赛中兔子开始领先,但它因为骄y x傲在途中睡觉,而乌龟一直坚持爬行最终贏得比赛,下列函数图象可以体现这一故事过程的是()A.B.C.D.【分析】根据兔子的路程在一段时间内保持不变、乌龟比兔子所用时间少逐一判断即可得.【解答】解:由于兔子在图中睡觉,所以兔子的路程在一段时间内保持不变,所以D选项错误;因为乌龟最终赢得比赛,即乌龟比兔子所用时间少,所以A、C均错误;故选:B.14.(2018•金华)某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用(元)与上网时间(h)的函数关系如图所示,则下列判断错误的是()A.每月上网时间不足25h时,选择A方式最省钱B.每月上网费用为60元时,B方式可上网的时间比A方式多C.每月上网时间为35h时,选择B方式最省钱D.每月上网时间超过70h时,选择C方式最省钱【分析】A、观察函数图象,可得出:每月上网时间不足25h时,选择A方式最省钱,结论A正确;B、观察函数图象,可得出:当每月上网费用≥50元时,B方式可上网的时间比A方式多,结论B正确;C、利用待定系数法求出:当x≥25时,y与x之间的函数关系式,再利用一次函数图象上A的值,将其与50比较后即可得出结论C正确;点的坐标特征可求出当x=35时yAD、利用待定系数法求出:当x≥50时,y与x之间的函数关系式,再利用一次函数图象上B点的坐标特征可求出当x=70时y的值,将其与120比较后即可得出结论D错误.B综上即可得出结论.【解答】解:A、观察函数图象,可知:每月上网时间不足25h时,选择A方式最省钱,结论A正确;B、观察函数图象,可知:当每月上网费用≥50元时,B方式可上网的时间比A方式多,结论B正确;=kx+b,C、设当x≥25时,yA将(25,30)、(55,120)代入y=kx+b,得:A,解得:,=3x﹣45(x≥25),∴yA当x=35时,y=3x﹣45=60>50,A∴每月上网时间为35h时,选择B方式最省钱,结论C正确;=mx+n,D、设当x≥50时,yB=mx+n,得:将(50,50)、(55,65)代入yB,解得:,∴y=3x﹣100(x≥50),B=3x﹣100=110<120,当x=70时,yB∴结论D错误.故选:D.15.(2018•滨州)如果规定[x]表示不大于x的最大整数,例如[2.3]=2,那么函数y=x﹣[x]的图象为()A.B.C.D.【分析】根据定义可将函数进行化简.【解答】解:当﹣1≤x<0,[x]=﹣1,y=x+1当0≤x<1时,[x]=0,y=x当1≤x<2时,[x]=1,y=x﹣1……故选:A.16.(2018•齐齐哈尔)如图是自动测温仪记录的图象,它反映了齐齐哈尔市的春季某天气温T如何随时间t的变化而变化,下列从图象中得到的信息正确的是()A.0点时气温达到最低B.最低气温是零下4℃C.0点到14点之间气温持续上升D.最高气温是8℃【分析】根据齐齐哈尔市某一天内的气温变化图,分析变化趋势和具体数值,即可求出答案.【解答】解:A、由函数图象知4时气温达到最低,此选项错误;B、最低气温是零下3℃,此选项错误;C、4点到14点之间气温持续上升,此选项错误;D、最高气温是8℃,此选项正确;故选:D.17.(2018•绍兴)如图,一个函数的图象由射线BA、线段BC、射线CD组成,其中点A(﹣1,2),B(1,3),C(2,1),D(6,5),则此函数()A .当 x <1 时,y 随 x 的增大而增大B .当 x <1 时,y 随 x 的增大而减小C .当 x >1 时,y 随 x 的增大而增大D .当 x >1 时,y 随 x 的增大而减小【分析】根据函数图象和题目中的条件,可以写出各段中函数图象的变化情况,从而可以解答本题.【解答】解:由函数图象可得,当 x <1 时,y 随 x 的增大而增大,故选项 A 正确,选项 B 错误,当 1<x <2 时,y 随 x 的增大而减小,当 x >2 时,y 随 x 的增大而增大,故选项 C 、D 错误,故选:A .18.(2018•达州)如图,在物理课上,老师将挂在弹簧测力计下端的铁块浸没于水中,然后缓慢匀速向上提起,直至铁块完全露出水面一定高度,则下图能反映弹簧测力计的读数y(单位:N )与铁块被提起的高度 x (单位:cm )之间的函数关系的大致图象是()A .B .C .D .【分析】根据题意,利用分类讨论的数学思想可以解答本题.【解答】解:由题意可知,铁块露出水面以前,F 拉+F 浮=G ,浮力不变,故此过程中弹簧的度数不变,当铁块慢慢露出水面开始,浮力减小,则拉力增加,当铁块完全露出水面后,拉力等于重力,故选:D .19.(2018•长沙)小明家、食堂、图书馆在同一条直线上,小明从家去食堂吃早餐,接着去图书馆读报,然后回家,如图反映了这个过程中,小明离家的距离y与时间x之间的对应关系.根据图象,下列说法正确的是()A.小明吃早餐用了25minB.小明读报用了30minC.食堂到图书馆的距离为0.8kmD.小明从图书馆回家的速度为0.8km/min【分析】根据函数图象判断即可.【解答】解:小明吃早餐用了(25﹣8)=17min,A错误;小明读报用了(58﹣28)=30min,B正确;食堂到图书馆的距离为(0.8﹣0.6)=0.2km,C错误;小明从图书馆回家的速度为0.8÷10=0.08km/min,D错误;故选:B.20.(2012•内江)如图,等边ABC的边长为3cm,动点P从点A出发,以每秒1cm的速度,△沿A→B→C的方向运动,到达点C时停止,设运动时间为x(s),y=PC2,则y关于x的函数的图象大致为()A.B.C.D.【分析】需要分类讨论:①当0≤x≤3,即点P在线段AB上时,根据余弦定理知cosA=,所以将相关线段的长度代入该等式,即可求得y与x的函数关系式,然后根据函数关系式确定该函数的图象.②当3<x≤6,即点P在线段BC上时,y与x的函数关系式是y=(6﹣x)2=(x﹣6)2(3<x≤6),根据该函数关系式可以确定该函数的图象.【解答】解:∵正△ABC的边长为3cm,∴∠A=∠B=∠C=60°,AC=3cm.①当0≤x≤3时,即点P在线段AB上时,AP=xcm(0≤x≤3);根据余弦定理知cosA=,即=,解得,y=x2﹣3x+9(0≤x≤3);该函数图象是开口向上的抛物线;解法二:过C作CD⊥AB,则AD=1.5cm,CD=cm,点P在AB上时,AP=x cm,PD=|1.5﹣x|cm,∴y=PC2=()2+(1.5﹣x)2=x2﹣3x+9(0≤x≤3)该函数图象是开口向上的抛物线;②当3<x≤6时,即点P在线段BC上时,PC=(6﹣x)cm(3<x≤6);则y=(6﹣x)2=(x﹣6)2(3<x≤6),∴该函数的图象是在3<x≤6上的抛物线;故选:C.21.(2018•潍坊)如图,菱形ABCD的边长是4厘米,∠B=60°,动点P以1厘米秒的速度自A点出发沿AB方向运动至B点停止,动点Q以2厘米/秒的速度自B点出发沿折线BCD 运动至D点停止.若点P、Q同时出发运动了t秒,记△BPQ的面积为S厘米2,下面图象中能表示S与t之间的函数关系的是()A.B.C.D.【分析】应根据0≤t<2和2≤t<4两种情况进行讨论.把t当作已知数值,就可以求出S,从而得到函数的解析式,进一步即可求解.【解答】解:当0≤t<2时,S=2t××(4﹣t)=﹣t2+4t;当2≤t<4时,S=4××(4﹣t)=﹣2t+8;只有选项D的图形符合.故选:D.22.(2018•孝感)如图,在△ABC中,∠B=90°,AB=3cm,BC=6cm,动点P从点A开始沿AB向点B以1cm/s的速度移动,动点Q从点B开始沿BC向点C以2cm/s的速度移动,若P,Q两点分别从A,B两点同时出发,P点到达B点运动停止,则△PBQ的面积S随出发时间t 的函数关系图象大致是()A.B.C.D.【分析】根据题意表示出△PBQ的面积S与t的关系式,进而得出答案.【解答】解:由题意可得:PB=3﹣t,BQ=2t,则△PBQ的面积S=PB•BQ=(3﹣t)×2t=﹣t2+3t,故△PBQ的面积S随出发时间t的函数关系图象大致是二次函数图象,开口向下.故选:C.23.(2018•河南)如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()A.B.2C.D.2【分析】通过分析图象,点F从点A到D用△a s,此时,FBC的面积为a,依此可求菱形的高DE,再由图象可知,BD=,应用两次勾股定理分别求BE和a.【解答】解:过点D作DE⊥BC于点E由图象可知,点F由点A到点D用时为△a s,FBC的面积为acm2.∴AD=a∴∴DE=2当点F从D到B时,用∴BD=△R t DBE中,BE=∵ABCD是菱形∴EC=a﹣1,DC=a△R t DEC中,a2=22+(a﹣1)2解得a=s故选:C.△24.(2018•东营)如图所示,已知ABC中,BC=12,BC边上的高h=6,D为BC上一点,EF ∥BC,交AB于点E,交AC于点F,设点E到边BC的距离为△x.则DEF的面积y关于x的函数图象大致为()A.B.C.D.【分析】可过点A向BC作AH⊥BC于点H,所以根据相似三角形的性质可求出EF,进而求出函数关系式,由此即可求出答案.【解答】解:过点A向BC作AH⊥BC于点H,所以根据相似比可知:即EF=2(6﹣x)所以y=×2(6﹣x)x=﹣x2+6x.(0<x<6)该函数图象是抛物线的一部分,故选:D.=,25.(2018•烟台)如图,矩形ABCD中,AB=8cm,BC=6cm,点P从点A出发,以lcm/s的速度沿A→D→C方向匀速运动,同时点Q从点A出发,以2cm/s的速度沿A→B→C方向匀速运动,当一个点到达点C时,另一个点也随之停止.设运动时间为t(s),△APQ的面积为S (cm2),下列能大致反映S与t之间函数关系的图象是()A.B.C.D.【分析】先根据动点P和Q的运动时间和速度表示:AP=t,AQ=2t,①当0≤t≤4时,Q在边AB上,P在边AD上,如图1,计算S与t的关系式,发现是开口向上的抛物线,可知:选项C、D不正确;②当4<t≤6时,Q在边BC上,P在边AD上,如图2,计算S与t的关系式,发现是一次函数,是一条直线,可知:选项B不正确,从而得结论.【解答】解:由题意得:AP=t,AQ=2t,①当0≤t≤4时,Q在边AB上,P在边AD上,如图1,S△APQ=AP•AQ==t2,故选项C、D不正确;②当4<t≤6时,Q在边BC上,P在边AD上,如图2,S△APQ=AP•AB=故选项B不正确;故选:A.=4t,26.(2018•广东)如图,点P是菱形ABCD边上的一动点,它从点A出发沿在A→B→C→D 路径匀速运动到点△D,设PAD的面积为y,P点的运动时间为x,则y关于x的函数图象大致为()A.B.C.D.【分析】设菱形的高为h,即是一个定值,再分点P在AB上,在BC上和在CD上三种情况,利用三角形的面积公式列式求出相应的函数关系式,然后选择答案即可.【解答】解:分三种情况:①当P在AB边上时,如图1,设菱形的高为h,y=AP•h,∵AP随x的增大而增大,h不变,∴y随x的增大而增大,故选项C不正确;②当P在边BC上时,如图2,y=AD•h,AD和h都不变,∴在这个过程中,y不变,故选项A不正确;③当P在边CD上时,如图3,y=PD•h,∵PD随x的增大而减小,h不变,∴y随x的增大而减小,∵P点从点A出发沿在A→B→C→D路径匀速运动到点D,∴P在三条线段上运动的时间相同,故选项D不正确;故选:B.27.(2018•香坊区)如图,平行四边形ABCD的周长为12,∠A=60°,设边AB的长为x,四边形ABCD的面积为y,则下列图象中,能表示y与x函数关系的图象大致是()A.B.C.D.【分析】过点B作BE⊥AD于点△E,构建直角ABE,通过解该直角三角形求得BE的长度,然后利用平行四边形的面积公式列出函数关系式,结合函数关系式找到对应的图象.【解答】解:如图,过点B作BE⊥AD于点E,∵∠A=60°,设边AB的长为x,∴BE=AB•sin60°=x.∵平行四边形ABCD的周长为12,∴AD=(12﹣2x)=6﹣x,∴y=AD•BE=(6﹣x )× x=﹣ x 2+3 x (0≤x ≤6).则该函数图象是一开口向下的抛物线的一部分,观察选项,C 选项符合题意.故选:C .28.(2018•广安)已知点 P 为某个封闭图形边界上的一定点,动点 M 从点 P 出发,沿其边界顺时针匀速运动一周,设点 M 的运动时间为 x ,线段 PM 的长度为 y ,表示 y 与 x 的函数图象大致如图所示,则该封闭图形可能是()A .B .C .D .【分析】先观察图象得到 y 与 x 的函数图象分三个部分,则可对有 4 边的封闭图形进行淘汰,利用圆的定义,P 点在圆上运动时,PM 总上等于半径,则可对 D 进行判断,从而得到正确选项.【解答】解:y 与 x 的函数图象分三个部分,而 B 选项和 C 选项中的封闭图形都有 4 条线段,其图象要分四个部分,所以 B 、C 选项不正确;D 选项中的封闭图形为圆,y 为定中,所以 D选项不正确;A 选项为三角形,M 点在三边上运动对应三段图象,且 M 点在 P 点的对边上运动时,PM 的长有最小值.故选:A .29.(2018•安徽)如图,直线 l 1,l 2 都与直线 l 垂直,垂足分别为 M ,N ,MN=1.正方形 ABCD的边长为 ,对角线 AC 在直线 l 上,且点 C 位于点 M 处.将正方形 ABCD 沿 l 向右平移,直到点 A 与点 N 重合为止.记点 C 平移的距离为 x ,正方形 ABCD 的边位于 l 1,l 2 之间部分的长度和为 y ,则 y 关于 x 的函数图象大致为( )A.B.C.D.【分析】当0<x≤1时,y=2由此即可判断;x,当1<x≤2时,y=2,当2<x≤3时,y=﹣2x+6,【解答】解:当0<x≤1时,y=2x,当1<x≤2时,y=2当2<x≤3时,y=﹣2,x+6,∴函数图象是A,故选:A.30.(2018•黄石)如图,在△R t PMN中,∠P=90°,PM=PN,MN=6cm,矩形ABCD中AB=2cm,BC=10cm,点C和点M重合,点B、C(M)、N在同一直线上,令△R t PMN不动,矩形ABCD 沿MN所在直线以每秒1cm的速度向右移动,至点C与点N重合为止,设移动x秒后,矩形ABCD与△PMN重叠部分的面积为y,则y与x的大致图象是()A.B.C.D.【分析】在Rt△PMN中解题,要充分运用好垂直关系和45度角,因为此题也是点的移动问题,可知矩形ABCD以每秒1cm的速度由开始向右移动到停止,和△R t PMN重叠部分的形状可分为下列三种情况,(1)0≤x≤2;(2)2<x≤4;(3)4<x≤6;根据重叠图形确定面积的求法,作出判断即可.【解答】解:∵∠P=90°,PM=PN,∴∠PMN=∠PNM=45°,由题意得:CM=x,分三种情况:①当0≤x≤2时,如图1,边CD与PM交于点E,∵∠PMN=45°,∴△MEC是等腰直角三角形,此时矩形ABCD与△PMN重叠部分是△EMC,∴y=S△EMC=CM•CE=;故选项B和D不正确;②如图2,当D在边PN上时,过P作PF⊥MN于F,交AD于G,∵∠N=45°,CD=2,∴CN=CD=2,∴CM=6﹣2=4,即此时x=4,当2<x≤4时,如图3,矩形ABCD与△PMN重叠部分是四边形EMCD,过E作EF⊥MN于F,∴EF=MF=2,∴ED=CF=x﹣2,∴y=S梯形EMCD=C D•(DE+CM)==2x﹣2;③当4<x≤6时,如图4,矩形ABCD与△PMN重叠部分是五边形EMCGF,过E作EH⊥MN于H,∴EH=MH=2,DE=CH=x﹣2,∵MN=6,CM=x,∴CG=CN=6﹣x,∴DF=DG=2﹣(6﹣x)=x﹣4,∴y=S梯形EMCD ﹣S△FDG=﹣=×2×(x﹣2+x)﹣=﹣+10x﹣18,故选项A正确;故选:A.31.(2018•乌鲁木齐)如图①,在矩形ABCD中,E是AD上一点,点P从点B沿折线BE﹣ED﹣DC运动到点C时停止;点Q从点B沿BC运动到点C时停止,速度均为每秒1个单位长度.如果点P、Q同时开始运动,设运动时间为△t,BPQ的面积为y,已知y与t的函数图象如图②所示.以下结论:①BC=10;②cos∠ABE=;③当0≤t≤10时,y=t2;④当t=12时,△BPQ是等腰三角形;⑤当14≤t≤20时,y=110﹣5t中正确的有()A.2个B.3个C.4个D.5个【分析】根据题意,确定10≤t≤14,PQ的运动状态,得到BE、BC、ED问题可解.【解答】解:由图象可知,当10≤t≤14时,y值不变,则此时,Q点到C,P从E到D.∴BE=BC=10,ED=4故①正确.P ∴AE=6△R t ABE 中,AB=∴cos ∠ABE=;故②错误当 0≤t ≤10 时,△BPQ 的面积为∴③正确;t=12 时,P 在点 E 右侧 2 单位,此时 BP >BE=BCPC=∴△BPQ 不是等腰三角形.④错误;当 14≤t ≤20 时,点 P 由 D 向 C 运动,Q 在 C 点,△BPQ 的面积为 则⑤正确故选:B .二.填空题(共 10 小题)32.(2018•柳州)如图,在平面直角坐标系中,点 A 的坐标是(﹣2,3) .【分析】直接利用平面直角坐标系得出 A 点坐标.【解答】解:由坐标系可得:点 A 的坐标是(﹣2,3).故答案为:(﹣2,3).33.(2018•临安区)P (3,﹣4)到 x 轴的距离是4 .【分析】根据点在坐标系中坐标的几何意义即可解答.【解答】解:根据点在坐标系中坐标的几何意义可知, (3,﹣4)到 x 轴的距离是|﹣4|=4.故答案为:4.134.(2018•新疆)点(﹣1,2)所在的象限是第二 象限.【分析】根据各象限内点的坐标特征解答.【解答】解:点(﹣1,2)所在的象限是第二象限.故答案为:二.35.(2018•齐齐哈尔)在平面直角坐标系中,点A (,1)在射线 OM 上,点 B ( ,3)在射线 ON 上,以 AB 为直角边作 △RtABA 1,以 BA 1 为直角边作第二个 △Rt BA 1B 1,以 A 1B 1 为直角边作第三个 △Rt A 1B 1A 2,…,依次规律,得到 △Rt B 2017A 2018B 2018,则点 B 2018 的纵坐标为 32019 .【分析】根据题意,分别找到 AB 、A 1B 1、A 2B 2……及 BA 1、B 1A 2、B 2A 3……线段长度递增规律 即可【解答】解:由已知可知点 A 、A 1、A 2、A 3……A 2018 各点在正比例函数 y=点 B 、B 1、B 2、B 3……B 2018 各点在正比例函数 y=的图象上的图象上两个函数相减得到横坐标不变的情况下两个函数图象上点的纵坐标的差为:由已知,△Rt A 1B 1A 2,…,到 △Rt B 2017A 2018B 2018 都有一个锐角为 30° ①∴当 A (B )点横坐标为B 1 点纵坐标为 9=32时,由①AB=2,则 BA 1=2 ,则点 A 1 横坐标为 ,当 A (B 1)点横坐标为 3B 2 点纵坐标为 27=33时,由①A 1B 1=6,则 B 1A 2=6 ,则点 A 2 横坐标为,当 A 2 ( B 2 ) 点 横 坐 标 为 9时 , 由 ① A 2B 2=18 , 则 B 2A 3=18,B3 点纵坐标为 81=34依稀类推, 则 点 A3 横 坐 标 为点B2018的纵坐标为32019故答案为:3201936.(2018•绵阳)如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是(3,﹣1)和(﹣3,1),那么“卒”的坐标为(﹣2,﹣2).【分析】首先根据“相”和“兵”的坐标确定原点位置,然后建立坐标系,进而可得“卒”的坐标.【解答】解:“卒”的坐标为(﹣2,﹣2),故答案为:(﹣2,﹣2).37.(2018•资阳)如图,在平面直角坐标系中,等腰直角三角形OAA1的直角边OA在x轴上,点A1在第一象限,且OA=1,以点A1为直角顶点,OA1为一直角边作等腰直角三角形OA1A2,再以点A2为直角顶点,OA2为直角边作等腰直角三角形OA2A3…依此规律,则点A2018的坐标是(0,21007).【分析】本题点A坐标变化规律要分别从旋转次数与点A所在象限或坐标轴、点A到原点的距离与旋转次数的对应关系.【解答】解:由已知,点A每次旋转转动45°,则转动一周需转动8次,每次转动点A到原点的距离变为转动前的∵2018=252×8+2倍∴点A2018的在y轴正半轴上,OA2018==21007故答案为:(0,21007)38.(2018•黑龙江)在函数y=中,自变量x的取值范围是x≥﹣2且x≠0.【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:由题意得,x+2≥0且x≠0,解得x≥﹣2且x≠0.故答案为:x≥﹣2且x≠0.39.(2018•香坊区)函数y=中自变量x的取值范围是x≠﹣3.【分析】该函数是分式,分式有意义的条件是分母不等于0,故分母x+3≠0,解得x的范围.【解答】解:根据分式有意义的条件得:x+3≠0,解得:x≠﹣3.故答案为:x≠﹣3.40.(2018•大庆)函数y=的自变量x取值范围是x≤3.【分析】根据二次根式的性质,被开方数大于等于0可知:3﹣x≥0,解得x的范围.【解答】解:根据题意得:3﹣x≥0,解得:x≤3.故答案为:x≤3.41.(2018•枣庄)如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是12.【分析】根据图象可知点P在BC上运动时,此时BP不断增大,而从C向A运动时,BP先变小后变大,从而可求出BC与AC的长度.【解答】解:根据图象可知点P在BC上运动时,此时BP不断增大,由图象可知:点P从B向C运动时,BP的最大值为5,即BC=5,由于M是曲线部分的最低点,∴此时BP最小,即BP⊥AC,BP=4,∴由勾股定理可知:PC=3,由于图象的曲线部分是轴对称图形,∴PA=3,∴AC=6,∴△ABC的面积为:×4×6=12故答案为:12三.解答题(共1小题)42.(2018•嘉兴)小红帮弟弟荡秋千(如图1),秋千离地面的高度h(m)与摆动时间t (s)之间的关系如图2所示.(1)根据函数的定义,请判断变量h是否为关于t的函数?(2)结合图象回答:①当t=0.7s时,h的值是多少?并说明它的实际意义.②秋千摆动第一个来回需多少时间?【分析】(1)根据图象和函数的定义可以解答本题;(2)①根据函数图象可以解答本题;②根据函数图象中的数据可以解答本题.【解答】解:(1)由图象可知,对于每一个摆动时间t,h都有唯一确定的值与其对应,∴变量h是关于t的函数;(2)①由函数图象可知,当t=0.7s时,h=0.5m,它的实际意义是秋千摆动0.7s时,离地面的高度是0.5m;②由图象可知,秋千摆动第一个来回需2.8s.。

相关文档
最新文档