定积分的定义

合集下载

《定积分的定义》课件

《定积分的定义》课件

总结词:定积分具有线性性质、可加性、可减性、可 乘性和可除性。
详细描述:定积分具有一系列的性质,其中最重要的是 线性性质,即两个函数的和或差的积分等于它们各自积 分的和或差;其次,定积分具有可加性和可减性,即函 数在一个区间上的积分等于该区间左端点处的函数值与 区间长度乘积的一半减去右端点处的函数值与区间长度 乘积的一半;此外,定积分还具有可乘性和可除性,即 函数与常数的乘积的积分等于该常数乘以函数的积分, 函数除以常数的积分等于函数乘以该常数的倒数。这些 性质在求解定积分时非常有用。
功的计算
定积分可用于计算力在空间上所做的功,通过将力在空间上进行积 分得到总功。
电磁学中的应用
在电磁学中,电场强度和磁场强度是空间的函数,通过定积分可以 计算电场强度和磁场强度在空间上的分布。
THANKS
感谢观看

微积分基本定理的应用
总结词
微积分基本定理的应用非常广泛,它 为解决各种实际问题提供了重要的数 学工具。
详细描述
通过微积分基本定理,我们可以计算 各种函数的定积分,从而解决诸如面 积、体积、长度、平均值、极值等问 题。此外,它也是微分方程求解的重 要基础。
微积分基本定理的证明
总结词
微积分基本定理的证明涉及到了极限理论、实数性质等深奥的数学知识,是数学严谨性的一个典范。
详细描述
证明微积分基本定理需要利用极限的运算性质和实数完备性等数学知识。其证明过程体现了数学的严 谨性和逻辑性,是数学教学中的重要内容。同时,对于理解微积分的本质和深化数学素养具有重要意 义。
03
定积分的计算方法
直接法
总结词
直接计算定积分的基本方法
详细描述
直接法是计算定积分最基本的方法,它基于定积分的定义,通过将被积函数进行微分和 积分,然后进行计算。这种方法适用于一些简单的定积分计算,但对于一些复杂的定积

定积分的性质

定积分的性质
黎曼和
定积分可以表示为黎曼和的形式,即将区间[a,b]分成若干小区间,每个小区间的长度为$\Delta x$,并取小区间 的左端点$x_{i-1}$和右端点$x_i$作为积分的下限和上限,然后对每个小区间上的函数值$f(x_i)$进行求和,最后 将所有小区间的和再乘以$\Delta x$得到定积分的值。
对于任意实数$k_1, k_2$,有$\int (k_1f(x) + k_2g(x)) dx = k_1 \int f(x) dx + k_2 \int g(x) dx$
常数倍
对于任意实数$k$,有$\int kf(x) dx = k \int f(x) dx$
区间可加性
区间可加
对于任意分割$a = x_0 < x_1 < \ldots < x_n = b$,有$\int_{a}^{b}f(x) dx = \sum_{i=0}^{n-1} \int_{x_{i}}^{x_{i+1}}f(x) dx$
利用定积分的性质
如果$f(x) \geq g(x)$,则 $\int_{a}^{b}f(x)dx \geq
\int_{a}^{b}g(x)dx$。
利用定积分的性质
如果$f(x) = g(x)$,则$\int_{a}^{b}f(x)dx = \int_{a}^{b}g(x)dx$。
04
定积分的极限性质
定积分的性质
线性性质
定积分具有线性性质,即对于常数$c$和$d$,有$\int_{a}^{b} (c\varphi_1(x) + d\varphi_2(x)) dx = c\int_{a}^{b} \varphi_1(x) dx + d\int_{a}^{b} \varphi_2(x) dx$。

定积分的定义

定积分的定义

误差更小
定积分的定义
v 右图是正弦在一个周 期上的积分示意。为 20等分情形,取左端 点处的函数值
左端点型
定积分的定义
v 右图是正弦在一个周 期上的积分示意。为 20等分情形,取右端 点处的函数值
右端点型
定积分的定义
v 右图是正弦在一个周 期上积分梯形公式的 示意。为8个分点情形。
梯形公式
定积分的定义
v 右图是正弦在一个周 期上积分梯形公式的 示意。为15个分点情 形。
v 可以看到,梯形公式 比矩形公式精确度高。
梯形,15个分点
定积分的定义
v 现在看看分成40份的 情形。
v 可以看到误差变小了。
v 有理由相信:随着分 点的增加,的定义
v 当然,小区间上的面 积也可以用其他容易 求出面积的图形的面 积来表示,比如梯形。
v 这就是定积分的梯形 算法。
v 右图是取5等分的情形, 就已经非常精确了。

定积分的定义

定积分的定义

定积分的定义
定积分是积分的一种,是函数f()在区间[a,b]上的积分和的极限。

这里应注意定积分与不定积分之间的关系:若定积分存在,则它是一个具体的数值(曲边梯形的面积),而不定积分是一个函数表达式,它们仅仅在数学上有一个计算关系,一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而不存在不定积分。

定积分的分类
不定积分
即已知导数求原函数。

若F’()=f(),那么[F()+C]'=f(),(C∈R,c属于常数)也就是说,把f()积分,不一定能得到F(),因为F()+C的导数也是f()(C是任意常数)。

所以f()积分的结果有无数个,是不确定的。

所以一律用F()+C代替,这就称为不定积分。

即如果一个导数有原函数,那么它就有无限多个原函数。

定积分
定积分就是求函数f()在区间[a,b]中的图像包围的面积。

即由
y=0,=a,=b,y=f()所围成图形的面积。

这个图形称为曲边梯形,特例是曲边三角形。

定积分的常用积分法
换元积分法
如果f()∈c([a,b]);=ψ(t)在[a,β]上单值可导;当
a≤t≤β时,a≤ψ(t)≤b,且ψ(a)=a,ψ(β)=b,则∫ba f()d=∫βa f(ψ(t))ψ’(t)dt
定积分的分点问题
定积分是把函数在一些区间上的图象[a,b]分成n份,用平行于y轴
的直线把其分割成无数个矩形,再求当n→+∞时所有这些矩形面积的和。

习惯上,人们用等差级数分点,即相邻两端点的间距Δ是相等的。

但是
必须指出,即使Δ不相等,积分值仍然相同。

定积分的概念

定积分的概念

x + 3 dx - x
3 3 0 0
2
- x + 3 dx -x + 3x dx
3 2 0
四、小结
1.定积分的实质:特殊和式的逼近值.
2.定积分的思想和方法:
分割 化整为零
求近似以直(不变)代曲(变)
求和
取逼近
积零为整
取逼近
精确值——定积分
3.定积分的几何意义及简单应用
a f(x)dx - b f (x)dx
a
(2)定积分的几何意义:
当 f(x)0 时,积分 f ( x)dx 在几何上表示由 y=f (x)、 a xa、xb与 x轴所围成的曲边梯形的面积。
y yf (x)
b
a f (x)dx a
O a
b
b
c
f (x)dx
b
c
f (x)dx。
b
lim f (i ) xi
n i 1
n
被 积 函 数
被 积 表 达 式
积 分 变 量
说明:
(1) 定积分是一个数值, 它只与被积函数及积分区间有关, 而与积分变量的记法无关,即
a f(x)dx a
(3)
b
b
b
f (t)dt f(u)du。
a
b
(2)定义中区间的分法和 i 的取法是任意的.
再 见
例 1:利用定积分的定义,计算 x3dx 的值。
0
1
3 取极限
1 1 2 1 0 x dx lim Sn lim 4 (1 n ) 4 n n
1 3
练习:利用定积分计算: x3 dx
0

定积分的基本概念

定积分的基本概念

定积分的基本概念
一、定积分的基本概念
1.定积分的定义
定积分是指在区间[a,b]中,用函数f(x)的值在x处取的积分,其中x取值于a到b之间的某个点,f(x)的积分称为定积分。

也可以表示为
∫a, bf(x)dx=∫f(x)dx
即:将函数f(x)从x=a到x=b的定积分。

2.定积分的性质
(1)定积分是一种积分的形式,它是在定的一段区间内对某个函数f(x)求积分的形式。

(2)定积分可以表示为:∫f(x)dx=F(b)-F(a),其中F(x)是f(x)的积分函数。

(3)定积分可以表示为:∫a, bf(x)dx=∑[f(x1)+f(x2)+…
+f(xn)],其中x1,x2,…,xn为积分区间[a, b]的各个各点。

(4)定积分是一种表示曲线与坐标轴围成的面积的一种数学工具。

二、定积分的计算
1.定积分的数值计算
数值计算定积分,即把范围[a,b]离散成一定的小段,在每个小段上求f(x)的值,再用这些值进行总和,来求出定积分的近似值。

2.定积分的解析计算
解析计算此类定积分,即首先求出f(x)的积分方程,在范围[a,b]内,求得它的解后,再把范围[a,b]的定积分解析成积分函数F(x)的量对应的差值F(b)-F(a)。

三、定积分的应用
定积分的应用主要是用于求出曲线与坐标轴围成的面积,也可以用于求求解线性微分方程,求解有关动力学问题的时候,还有一些物理的和化学的问题,这些问题用的都是定积分的知识。

定积分的定义

定积分的定义

定积分的定义定积分是微积分中的一种重要概念,它广泛应用于物理、计算机科学、经济学、统计学等领域。

在本文中,我们将探讨定积分的定义及其相关概念、定理和应用。

一、定积分的定义定积分的定义是通过限定积分上下限,计算函数在给定区间上的面积的方法。

具体地说,设函数f(x)在区间[a,b]上连续,则在[a,b]上关于x轴的面积为:∫<sub>b</sub><sup>a</sup>f(x)dx其中∫表示积分符号,f(x)dx表示微元,最终结果为面积。

二、交错积分的概念定积分有时会被定义为交错积分的形式,按照这样的定义,定积分是将区间[a,b]分成n等份后,将每等份映射到默区间[a,b],计算总面积面积的方法。

三、定积分的性质定积分具有一个重要的性质,即可加性。

也就是说,如果f(x)连续,则对于[a,b]和[b,c]的任意选取,有:∫<sub>c</sub><sup>b</sup>f(x)dx+∫<sub>b</sub><sup>a</sup>f (x)dx=∫<sub>c</sub><sup>a</sup>f(x)dx这个性质对于求复杂函数的面积非常有用,因为它允许我们将求和区间划分成更小的部分,并在不同部分上执行计算,从而得到总面积。

四、定积分的定理除了性质外,定积分还有一些定理,它们可以更简单地求出某些函数的积分。

其中最著名的是牛顿-莱布尼茨公式,它指出:∫<sub>b</sub><sup>a</sup>f(x)d x=F(b)-F(a)其中F(x)是f(x)的原函数。

另外两个常见的定理是平均值定理和拉格朗日中值定理。

平均值定理指出,如果f(x)在区间[a,b]上连续,则它在[a,b]上的平均值等于1/(b-a)∫<sub>b</sub><sup>a</sup>f(x)dx;拉格朗日中值定理指出,如果f(x)在[a,b]上连续,则在[a,b]上存在一个数c,使得:f(c)=(1/(b-a))∫<sub>b</sub><sup>a</sup>f(x)dx这两个定理为找出区间[a,b]上函数值的平均值或最大值提供了帮助。

定积分的概念及性质

定积分的概念及性质

一、定积分的概念及性质定积分是研究分布在某区间上的非均匀量的求和问题,必须通过“分割、近似、求和、求极限”四个步骤完成,它表示了一个与积分变量无关的常量。

牛顿—莱布尼兹公式揭示了定积分与原函数的关系,提供了解决定积分的一般方法。

要求解定积分,首先要找到被积函数的原函数,而求原函数是不定积分的内容,由此,大家也可以进一步体会上一章内容的重要性。

被积函数在积分区间有界是可积的必要条件,在积分区间连续是可积的充分条件。

定积分具有线性性质、比较性质以及中值定理等,这些性质在定积分的计算和理论研究上具有重要意义,希望大家认真领会。

二、定积分的计算定积分的计算主要依靠牛顿—莱布尼兹公式进行。

在被积函数连续的前提下,要计算定积分一般需要先计算不定积分(因而不定积分的计算方法在定积分的计算中仍然适用),找出被积函数的原函数,但在具体计算时,定积分又有它自身的特点。

定积分计算的特点来自于定积分的性质,来自于被积函数在积分区间上的函数特性,因此有时定积分的计算比不定积分更简洁。

尽管定积分在求原函数的指导思想上与不定积分没有差别,但实际上它们又不完全一样。

例如用换元法来计算定积分⎰22cos sin πxdx x ,如果计算过程中出现了新的变元:x u sin =,则上下限应同时相应改变,微分同样如此,即⎰202cos sin πxdx x x u sin =313110312==⎰u du u 。

可以看出,在进行换元时的同时改变了积分的上下限,这样就无须象不定积分那样回代了。

但如果计算过程中不采用新变元,则无需换限,即=⎰202cos sin πxdx x 31sin 31sin sin 203202==⎰ππx x xd 。

在前一种方法(也称为定积分的第二换元法)中,一定要注意三个相应的变换:积分上、下限、微分,否则必然出现错误。

后一种方法(定积分的第一换元法)可以解决一些相对简单的积分,实际上是换元的过程可以利用凑微分来替代,由于没有出现新的变元,因而也就无须改变积分上下限及微分。

定积分的概念

定积分的概念

定积分与微积分定理1.定积分的概念 一般地,设函数()f x 在区间[,]a b 上连续,用分点 将区间[,]a b 等分成n 个小区间,每个小区间长度为x ∆(b axn-∆=),在每个小区间[]1,i i x x -上取一点()1,2,,ii n ξ=L ,作和式:11()()n nn i i i i b aS f x f nξξ==-=∆=∑∑如果x ∆无限接近于0(亦即n →+∞)时,上述和式n S 无限趋近于常数S ,那么称该常数S 为函数()f x 在区间[,]a b 上的定积分。

记为:()baSf x dx =⎰其中()f x 成为被积函数,x 叫做积分变量,[,]a b 为积分区间,b 积分上限,a 积分下限。

说明:(1)定积分()baf x dx ⎰是一个常数,即n S 无限趋近的常数S (n →+∞时)称为()baf x dx ⎰,而不是n S .(2)用定义求定积分的一般方法是:①分割:n 等分区间[],a b ;②近似代替:取点[]1,i i i x x ξ-∈;③求和:1()ni i b a f n ξ=-∑;④取极限:()1()lim n b i a n i b af x dx f n ξ→∞=-=∑⎰(3)曲边图形面积:()baSf x dx =⎰;变速运动路程21()t t S v t dt =⎰;变力做功 ()b aWF r dr =⎰2.定积分的几何意义 说明:一般情况下,定积分()baf x dx⎰的几何意义是介于x 轴、函数()f x 的图形以及直线,x a x b ==之间各部分面积的代数和,在x 轴上方的面积取正号,在x 轴下方的面积去负号.(可以先不给学生讲).分析:一般的,设被积函数()y f x =,若()y f x =在[,]a b 上可取负值。

考察和式()()()12()i n f x x f x x f x x f x x ∆+∆++∆++∆L L不妨设1(),(),,()0i i n f x f x f x +<L 于是和式即为()()()121(){[()][]}i i n f x x f x x f x x f x x f x x -∆+∆++∆--∆++-∆L L()baf x dx ∴=⎰阴影A 的面积—阴影B 的面积(即x 轴上方面积减x 轴下方的面积)2.定积分的性质根据定积分的定义,不难得出定积分的如下性质: 性质1 a b dx ba-=⎰1性质2 ⎰⎰=baba dx x f k dx x kf )()( (其中k 是不为0的常数) (定积分的线性性质)性质31212[()()]()()bb baaaf x f x dx f x dx f x dx ±=±⎰⎰⎰ (定积分的线性性质)性质4()()()()bcbaacf x dx f x dx f x dxa cb =+<<⎰⎰⎰其中(定积分对积分区间的可加性)说明:①推广:1212[()()()]()()()bb b bm m aaaaf x f x f x dx f x dx f x dx f x ±±±=±±±⎰⎰⎰⎰LL②推广:121()()()()kbc c baac c f x dx f x dx f x dx f x dx =+++⎰⎰⎰⎰L③性质解释:PCN M BAab Oyxy=1yxOba2.微积分基本公式或牛顿—莱布尼兹公式定理:如果函数()F x 是[,]a b 上的连续函数()f x 的任意一个原函数,则该式称之为微积分基本公式或牛顿—莱布尼兹公式。

定积分的概念与性质

定积分的概念与性质

(2)取近似:取每个小区间的右端点i n
为ξi(
i=
1,2,…,n),
作乘积
f
(i )xi
( i )2 n
(3)求和:
n
i 1
f (i )xi
n i2 ()
i1 n
1 n
n i 1
i2 n3
Байду номын сангаас
1 n3
(12
22
n2)
=
1 n3
1 6
n(n
1)(2n
1)
1 6
(1
1 )(2 n
1 n
)
例1.1 用定积分的定义计算 1 x2dx 0
1
2e 4
2 ex2 xdx 2e2
0
证明:
函数在闭区间[0, 2]上的最大值为 e2
最小值为
1
e4
所以由积分估值定理可知
1
性质6(定积分估值定理) 设m, M 是f(x) 在区间 [a,b] 上最 小值和最大值,则
b
m(b a) a f (x)dx M (b a)
性质7(定积分中值定理) 如果函数f(x) 在闭区间 [a,b] 上 连续,则在 [a,b] 上至少存在一点ξ使
b
a f (x)dx f ( )(b a)
b
dx
b1 dx 高为1、底为b a的矩形面积=b a
a
a
a xdx 高为a、底为a的直角三角形面积= 1 a2
0
2
R R2 x2 dx 半径为R的上半圆面积= 1 R2
R
2
2 sin xdx (0 正负面积相消后的代数面积为0) 0
例1.1 用定积分的定义计算 1 x2dx 0

详解定积分的定义

详解定积分的定义

详解定积分的定义
定积分是微积分中的一个重要概念,用于计算在某一区间上函数的面积、体积、平均值等问题。

定积分的定义是通过分割求和来逼近曲线下的面积。

具体的定义如下:
设函数f(x)在区间[a,b]上连续,将[a,b]区间分成n个小区间,每个小区间的宽度为Δx=(ba)/n。

在每个小区间上任意选择一个点xi,构成一个小矩形,其高度为f(xi)。

则每个小矩形的面积为f(xi)Δx。

将所有小矩形的面积相加,得到一个近似的总面积:
S=f(x1)Δx+f(x2)Δx+...+f(xn)Δx
当n趋向于无穷大时,将上面的和记作∑f(xi)Δx。

定义定积分:
若当n趋向于无穷大时,∑f(xi)Δx的极限存在,并且与f(x)的选取和分割方式无关,那么我们称这个极限值为函数f(x)在区间[a,b]上的定积分,记作∫[a,b]f(x)dx。

可以看出,定积分是通过将区间分割成无穷小的小矩形,再将每个小矩形的面积相加求得的。

当分割的越细致,得到的近似值越精确,最终得到的极限值就是定积分的准确值。

定积分的几何意义是曲线和坐标轴之间的有界区域的面积。

定积分还可以表示为反映函数f(x)在区间[a,b]上平均值的量,即∫[a,b]f(x)dx/(ba)。

定积分的概念

定积分的概念
T max Δxi i 1, 2, , n .
则当 T 0 时, 就能保证分割越来越细.
(2) 要刻画 f ( i )xi能无限逼近 S , 需要任意
i 1
n
给定的 0, 能够找到 0, 使得当
对任意 i [xi 1 , xi ], T max xi 时,
都有
f ( )Δx -S
i 1 i i
n
.
对于另外两个实际问题,也可类似地归结为黎曼和 的极限.
总结以上分析,下面给出定积分定义.
定义1
设 f 是定义在 [a , b] 上的函数, J R. 若 0, 0, 对任意分割 T : a0 x0 x1 xn b, 及任意 i [xi 1 , xi ] , i 1,2, , n,
( x ) , x [a , b] , 求线状物体的质量 m .
显然, 当 f ( x ) c 为常值函数时, S ( A) c(b a );
当 v( t ) v0 为匀速运动时, s v0 (b a ); 当质量为
均匀分布时, 即 x 为常数时, m (b a ).
数学分析 第九章 定积分
§1 定积分的概念
在很多数学和物理问题中,经常 需要求一类特殊和式的极限:
lim
T
0
f ( ) x ,
i 1 i i
n
这类特殊极限问题导出了定积分的概念.
三个典型问题
1. 设 y f ( x ) , x [a , b], 求曲边梯形 A 的面积 S (A), 其中
分变量, a , b 分别为积分下限和上限. 由定义, 曲边为 f ( x ) 的曲边梯形的面积为

定积分的定义

定积分的定义


2
0
f
x
dx- 2 0
2xdx
=8-4=4.
答案:4
【技法点拨】利用定积分的性质求定积分的策略 (1)利用性质可把定积分分成几个简单的积分的组合,对于 每一个积分都可以利用定积分的几何意义求出, 从而得到所求 定积分的值. (2)求分段函数的定积分,可先把每一段的定积分求出后再 相加. 提醒:要注意合理利用函数的奇偶性、对称性求解.

2
0 f
x dx

2
20
f

x

dx.
1.若在区间[1,2]上,f(x)>0恒成立,则
2
1 f
xdx 的符号(
)
A.一定为正
B.一定为负
C.可能为正,也可能为负
D.不能判断
【解析】选A.由定积分的概念可知,
2
1
f

x的d值x 为曲边梯形
的面积.而该曲边梯形始终在x轴的上方,故其值为正.
积求定积分的值.
2.弄清被积函数的图象,结合定积分的几何意义作答.
【解析】1.(1)012d表x 示的是图(1)中阴影所示长方形的
面积,由于这个长方形的面积为2,所以
1
0 2dx

2.
答案:2
(2)
2
1
x表dx示的是图(2)中阴影所示梯形的面积,由于这个
梯形的面积为 3所, 以
2
2 xdx 3 .
2
分的形式为_______.

【解析】由定积分的定义和几何意义可知
S

2 0
sin
xdx.

答案: 2 sin xdx 0

定积分的概念

定积分的概念

定积分与微积分定理1.定积分的概念 一般地,设函数()f x 在区间[,]a b 上连续,用分点 将区间[,]a b 等分成n 个小区间,每个小区间长度为x ∆(b ax n-∆=),在每个小区间[]1,i i x x -上取一点()1,2,,i i n ξ=L ,作和式:11()()nnn i i i i b aS f x f nξξ==-=∆=∑∑如果x ∆无限接近于0(亦即n →+∞)时,上述和式n S 无限趋近于常数S ,那么称该常数S 为函数()f x 在区间[,]a b 上的定积分。

记为:()ba S f x dx =⎰其中()f x 成为被积函数,x 叫做积分变量,[,]a b 为积分区间,b 积分上限,a 积分下限。

说明:(1)定积分()b a f x dx ⎰是一个常数,即n S 无限趋近的常数S (n →+∞时)称为()ba f x dx ⎰,而不是n S .(2)用定义求定积分的一般方法是:①分割:n 等分区间[],a b ;②近似代替:取点[]1,i i i x x ξ-∈;③求和:1()ni i b a f n ξ=-∑;④取极限:()1()lim n b i a n i b af x dx f n ξ→∞=-=∑⎰ (3)曲边图形面积:()ba S f x dx =⎰;变速运动路程21()t t S v t dt =⎰;变力做功 ()ba W F r dr =⎰2.定积分的几何意义说明:一般情况下,定积分()ba f x dx ⎰的几何意义是介于x 轴、函数()f x 的图形以及直线,x a x b ==之间各部分面积的代数和,在x 轴上方的面积取正号,在x 轴下方的面积去负号.(可以先不给学生讲).分析:一般的,设被积函数()y f x =,若()y f x =在[,]a b 上可取负值。

考察和式()()()12()i n f x x f x x f x x f x x ∆+∆++∆++∆L L 不妨设1(),(),,()0i i n f x f x f x +<L于是和式即为()()()121(){[()][]}i i n f x x f x x f x x f x x f x x -∆+∆++∆--∆++-∆L L()baf x dx ∴=⎰阴影A 的面积—阴影B 的面积(即x 轴上方面积减x 轴下方的面积)2.定积分的性质根据定积分的定义,不难得出定积分的如下性质: 性质1 a b dx ba -=⎰1性质2 ⎰⎰=ba b a dx x f k dx x kf )()( (其中k 是不为0的常数) (定积分的线性性质) 性质3 1212[()()]()()b b ba a a f x f x dx f x dx f x dx ±=±⎰⎰⎰ (定积分的线性性质)性质4()()()()bcbaacf x dx f x dx f x dxa cb =+<<⎰⎰⎰其中(定积分对积分区间的可加性)说明:①推广:1212[()()()]()()()bbbbm m a a a a f x f x f x dx f x dx f x dx f x ±±±=±±±⎰⎰⎰⎰L L ②推广:121()()()()kbc c baac c f x dx f x dx f x dx f x dx =+++⎰⎰⎰⎰L③性质解释:PCN M BAabOyxy=1yxOba2.微积分基本公式或牛顿—莱布尼兹公式定理:如果函数()F x 是[,]a b 上的连续函数()f x 的任意一个原函数,则该式称之为微积分基本公式或牛顿—莱布尼兹公式。

定积分的概念

定积分的概念

如果当
max{x
1 i n
i
}
0

总有 f ( i ) x i I , 那么称极限 I 为函数 f (x)
i 1
b
在[a, b]上的定积分,记为 f ( x)dx,即 a
b
n
a
f ( x)dx lim 0 i 1
f ( i )xi
19
定积分的定义
积分上限
b a
f ( x)dx
8
引例:求面积
用矩形面积近似取代曲边梯形面积
y
y
oa
b xo a
bx
(四个小矩形)
(九个小矩形)
显然,小矩形越多,矩形总面积越接近 曲边梯形面积.
伯 鹃 讹 辣 霖 囤 肯 府 撬 腹 咳 未 剁 胰 然 尖
引例:求面积
步骤
Step1 大化小(分割)
在 a, b 之间任意插入 n -1个分点
a x0 x1 x2 xn1 xn b,
b
a
f
(
x
)
d
x
在几何上表示相应曲边梯形面
积的相反数,即
b
a
f
(x)dx
=
A

y f ( x)
a
b
定积分的几何意义
当 f (x) 在区间[a, b] 上有正有负时,
b
a
f
(x)dx
在几何上表示 的
x
轴上方图形
面积减去 x 轴下方图形的面积.如图所
示,有
b f (x)dx A1 A2 A3 A4 . a
b f (x)dx =
b f (u)du ,例如:
1 x 2dx

5.1 定积分的定义

5.1 定积分的定义
的一个矩形的面积。
• 可把
a f ( x ) dx
ba
b
f ( )

1 n lim f ( i )ห้องสมุดไป่ตู้n n i 1
故它是有限个数的平均值概念的推广.
例 7 设 f ( x ) 可导,且 lim f ( x ) 1 ,
x
求 lim
x
x
x2
3 t sin f ( t )dt . t
且只有有限个间断点, 则 f ( x ) 在
区间[ a , b ]上可积.
三、定积分的几何意义
f ( x ) 0, f ( x ) 0,
a f ( x )dx A a f ( x )dx A
b
b
曲边梯形的面积
曲边梯形的面积 的负值
A1
A3 A2
A4
a f ( x )dx A1 A2
求在运动时间内物体所经过的路程 s.
3.变力做功
二、定积分定义 (P225 )
积分上限
[a , b] 称为积分区间
a
积分下限
b
f ( x) d x lim f ( i ) xi
0
i 1
n
被 积 函 数
被 积 表 达 式
积 分 变 量
积 分 和
则 f ( x )dx 0 .
a
(a b )

f ( x ) 0, f ( i ) 0 , ( i 1,2, , n )
x i 0,

f ( i ) x i 0,
i 1
n
max{ x1 , x 2 , , x n }

定积分的定义

定积分的定义
b
由 mdx f ( x)dx Mdx可得
a a a
b
b
b
性质6.4 设f (x)在[a, b]可积, 则 f (x) 在[a, b]可积, 且
a f (x)dx a f (x) dx,

b
b
a<b
f ( x) f ( x) f ( x) ,
a f ( x )dx a f ( x )dx a f ( x )dx,
a [ f ( x ) g( x )]dx a f ( x )dx a g( x )dx .
b
b
b
a [ f ( x ) g( x )]dx n lim [ f ( i ) g ( i )]xi 0
lim f ( i )xi lim g( i )xi
即 f ( x )dx f ( x )dx .
a b
b b b
b
a
性质6.5(定积分中值定理)
则 [a, b], 如果函数 f ( x ) 在闭区间[a , b] 上连续,
使 a f ( x )dx f ( )(b a ) .
b
(a b)
积分中值公式

m(b a ) a f ( x )dx M (b a )
第一节 定积分的概念及性质
• • • • 问题的提出 定积分的定义 定积分的性质 小结
一、定积分的定义
1. 问题的提出 实例1 (求曲边梯形的面积)
曲边梯形由连续曲线 y f ( x ) ( f ( x ) 0) 、
x 轴与两条直线 x a 、
y
y f ( x)
A?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
五、88.2(千牛).
例1 利用定义计算定积分 1 x2dx. 0

将[0,1]n 等分,分点为xi
i ,(i n
1,2,, n )
小区间[ xi1 , xi ]的长度xi
1 ,(i n
1,2,, n )
取i xi ,(i 1,2,, n)
n
n
n
f (i )xi i2xi xi2xi ,
i 1
i 1
i 1
(1)分割 T1 t0 t1 t2 tn1 tn T2
ti ti ti1
si v( i )ti
部分路程值
某时刻的速度
n
(2)求和 s v( i )ti
i 1
(3)取极限 max{t1,t2 ,,tn }

0
i 1
v(
i
)ti
二、定积分的定义
定义 设函数 f ( x)在[a, b]上有界,在[a, b]中任意插入
n
i 1
i n
2
1 n
1 n3
n
i 1
i2
1 n3
n(n
1)(2n 6
1)
1 6
1
1 n
2
1 n
,
0 n
1 x2dx
0
n
lim 0 i1
i 2xi
lim 1 1 1 2 1 1 . n 6 n n 3
例2
利用定义计算定积分
2
1
1dx x
.
解 在[1,2]中插入分点 q, q2 ,, qn1 ,
观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系.
播放
曲边梯形如图所示, 在区间[a,b]内插入若干
个分点,a x0 x1 x2 xn1 xn b, 把区间[a,b] 分成 n y
个小区间[ xi1, xi ], 长度为 xi xi xi1;
在每个小区间[ xi1, xi ]
典型小区间为[qi1 , qi ],(i 1,2,, n)
小区间的长度xi qi qi1 qi1(q 1),
取i qi1,(i 1,2,, n)
n
i 1
f (i )xi
i
n 1
1
i
xi
n i 1
q1i1q
i
1
(q
1)
n
1
(q 1) n(q 1) 取qn 2 即q 2n
压力P (见教材图 5-3).
练习题答案
n
一、1、lim 0 i1
f ( i )xi ;
2、被积函数,积分区间,积分变量;
3、介于曲线 y f ( x), x 轴 ,直线x a , x b 之间
各部分面积的代数和;
4、 b dx . a
二、1 (b3 a 3 ) b a. 3
三、1 (b2 a 2 ). 2
A lim 0 i1
f (i )xi
实例2 (求变速直线运动的路程)
设某物体作直线运动,已知速度v v(t )是 时 间 间 隔[T1 ,T2 ] 上t 的 一 个 连 续 函 数 , 且 v(t) 0,求物体在这段时间内所经过的路程.
思路:把整段时间分割成若干小段,每小段上 速度看作不变,求出各小段的路程再相加,便 得到路程的近似值,最后通过对时间的无限细 分过程求得路程的精确值.
2、定 积 分 的 值 只 与 ______ 及 _______ 有 关 , 而 与 _________的记法无关 .
3、定积分的几何意义是_______________________ .
4、区间 a , b 长度的定积分表示是_____________ .
二、利用定积分的定义计算由抛物线y x 2 1 , 两直线 x a , x b ( b a) 及横轴所围成的图形的面积 .
五、小结
1.定积分的实质:特殊和式的极限. 2.定积分的思想和方法:
分割 求和 取极限
化整为零
求近似以直(不变)代曲(变)
积零为整
取极限
精确值——定积分
思考题
将和式极限:
lim
n
1 n
sin
n
sin
2 n
sin
(
n
1) n
表示成定积分.
思考题解答
原式
lim
n
1 n
sin
n
sin
2 n
sin
i 1
n
1
f (i )xi n(2n 1),
i 1
1
lim
x
1
x(2x
1)
lim
x
2x 1
1
ln
2,
1
lim n(2n 1) ln 2,
x
n
2 1dx
1x
lim
0
n i 1
1
i
xi
1
lim n(2n 1) ln 2. n
例 3 设函数 f ( x) 在区间[0,1] 上连续,且取正值.
(n
1) n
sin
n n
lim 1 n sin i n n i1 n
1
lim
n
n i 1
sin
i n
n
1
sin xdx.
0
i xi
练习题
一、填空题:
1、函数 f ( x) 在 a , b 上的定积分是积分和的极限,
即 b f ( x)dx _________________ . a
三、利用定积分的定义计算积分 b xdx ,( a b ) . a
四、利用定积分的几何意义,说明下列等式:
1
1、
1 x2dx ;
0
4
2、
2
cos
xdx
2
2 cos xdx
0
;
2
五、水利工程中要计算拦水闸门所受的水压力,已知 闸门上水的压强 P 是水深 h 的 函数,且有
p 9.8h(千米 米2 ),若闸门高H 3米 ,宽 L 2米 ,求水面与闸门顶相齐时闸门所受的水
lim ln n
f 1 f 2 f n
en
n n n
lim
e e n
1 n ln n i1
f
i n
lim
n
n
ln
i 1
f
i n
n1
指数上可理解为:ln f ( x)在[0,1] 区间
上的一个积分和. 分割是将[0,1]n 等分
分点为 xi
i ,(i n
1,2,, n)
上任取
一点

i
o a x1
b xi1i xi xn1
x
以 [ xi1, xi ]为底,f (i ) 为高的小矩形面积为
Ai f (i )xi
曲边梯形面积的近似值为
n
A f (i )xi
i 1
当分割无限加细,即小区间的最大长度
max{x1, x2 ,xn } 趋近于零 ( 0) 时,
n
曲边梯形面积为
a f ( x)dx A
曲边梯形的面积
b
a f ( x)dx
A
曲边梯形的面积 的负值
A1 A2
A3 A4
b
a f ( x)dx
A1 A2
A3
A4
几何意义:
它是介于 x 轴、函数 f (x)的图形及两条 直线 x a, x b 之间的各部分面积的代数和. 在 x 轴上方的面积取正号;在 x 轴下方的面 积取负号.
若干个分点 a x x x x x b
0
1
2
n1
n
把区间[a, b]分成n 个小区间,各小区间的长度依次为
xi xi xi1,(i 1,2,),在各小区间上任取
一点i (i xi ),作乘积 f (i )xi (i 1,2,)
n
并作和S f (i )xi ,
i 1
记 max{ x1 , x2 ,, xn },如果不论对[a, b]
1
e . 试证 limn f 1 f 2 f n n n n n
ln f ( x )dx
0
证明 利用对数的性质得
lim n f 1 f 2 f n n n n n
eln lim n n
f
1 n
f
2 n
f
n n
极限运算与对数运算换序得
因为 f ( x)在区间[0,1]上连续,且 f ( x) 0 所以ln f ( x)在[0,1]上有意义且可积 ,
n
lim ln
n i1
f
i n
1 n
1
0 ln
f ( x)dx
故 lim n f 1 f 2 f n n n n n
1
e0ln f ( x)dx .

[a,b] 积分区间




达 式

注意:
(1) 积分值仅与被积函数及积分区间有关,
而与积分变量的字母无关.
b
a
f
( x)dx
b
a
f
(t )dt
b
a
f
(u)du
(2)定义中区间的分法和i 的取法是任意的.
(3)当函数 f ( x)在区间[a,b]上的定积分存在时,
称 f ( x)在区间[a, b]上可积.
三、存在定理
定理1 当函数 f ( x)在区间[a, b]上连续时, 称 f ( x)在区间[a, b]上可积.
定理2 设函数 f ( x)在区间[a, b]上有界, 且只有有限个间断点,则 f ( x)在 区间[a, b]上可积.
四、定积分的几何意义
相关文档
最新文档