第2讲空间点线面之间的关系
空间点、直线、平面之间的位置关系-高一数学同步精讲课件(人教A版2019必修第二册)
应用新知
题型三:异面直线的判定(逻辑推理)
例5.如图, ∩ = , ∉ , ⊂ , ∉ .直线与具有怎样的位置关系?
为什么?
解:直线与是异面直线.理由如下.
若直线与直线不是异面直线,则它们相交或平行.
设它们确定的平面为,则 ∈ , ⊂ .
思考:分别在两个平面内的两条直线是否一定异面?
b
a
a
a
b
b
总结新知
空间中直线与直线的位置关系
共面直线
相交直线:在同一平面内,有且只有一个公共点;
平行直线:在同一平面内,没有公共点;
异面直线:不同在任何一个平面内,没有公共点.
平行直线
//
相交直线
∩=
异面直线
与异面
探究新知
A.平行
B.相交
C.异面
解:因为∥,所以与没有公共点,
又 ⊂ , ⊂ ,所以与没有公共点,
则与的关系为平行或异面.
选D
D.平行或异面
)
应用新知
题型二:空间位置关系的判断(直观想象)
关于点、直线、平面位置关系的判断
(1)根据位置关系的分类,利用直观想象判断;
(2)借助熟悉的几何体,如长方体进行判断;
活动. ①一个平面把空间分为几部分?
②二个平面把空间分为几部分?
③三个平面把空间分为几部分?
02
典 型 例 题 分 析
应用新知
题型一:用符号语言描述位置关系(数学抽象)
例1.如图,用符号表示下列图形中直线、平面之间的位置关系.
解:在(1)中, ∩ = , ∩ = , ∩ = .
空间点线面的位置关系PPT课件
β
α
a
//或 平面α与平面β重合
精选PPT课件
1练1 习
3.平面的基本性质
观察下列问题,你能得到什么结论?
B
桌面α
A
直尺落在桌面上(直线AB在平面α内)
精选PPT课件
12
3.平面的基本性质
(1)公理1:若一条直线上的两点在一个平面内,
则这条直线在此平面内.
①图形语言:
Al
B
②符号语言:A l,B l且 A ,B l
作: //或
注2:当平面α上的所有点都在平面β上时,称平面α与平面β重合. (当两个平面有不共线的三个公共点,则两个平面重合)
公理2
β
a
α
α
β
β
α
精选PPT课件
10
小结:用数学符号来表示点、线、面之间的位置关系:
a B
A
Aa
Ba
B
α
A
A
B
b
a
aA
α
α
a a b A 或 a //
β
a
α
α
β
(1)平面与我们学过的点、直线、集合等概念一样都是 最基本的概念,即为不加定义的原始概念.
(2)平面的基本特征是无限延展性.
平面是理想的,绝对的平(平面是处处平直的面); 平面没有大小、没有厚薄和宽窄,是不可度量的.
光滑的桌面、平静的湖面等都是我们熟悉的平面形象,数学中的 平面概念是现实平面加以抽象的结果.
长方体由上下、前后、左右六个面围成,有些面是平行的,有 些面是相交的;有些棱所在的直线与面平行,有些棱所在的直 线与面相交;每条棱所在的直线都可以看作是某个面内的直线 等等.
空间点线面位置关系(复习)-PPT
【知识梳理】 1.平面的性质 填一填
表示 基本性质
文字语言
图形语言
符号语言
公理1
如果一条直线上 的两点在一个平 面内,那么:
这条直线上的所有 点都在这个平面内
Al
Bl A
l
B
表示 基本性质
(√ )
一记
外一点有(
)条直线与已知直线平行.
外一点有(
)个平面与已知直线垂直.
外一点有(
)个平面与已知平面平行.
外一点有(
)条直线与已知平面垂直.
且只有一 且只有一 且只有一 且只有一
真题小试 感悟考题 试一试
(1)(2013·安徽高考)在下列命题中,不是公理的是 ( ) A.平行于同一个平面的两个平面相互平行 B.过不在同一条直线上的三点,有且只有一个平面 C.如果一条直线上的两点在一个平面内,那么这条直线上所有的点都 在此平面内 D.如果两个不重合的平面有一个公共点,那么它们有且只有一条过该 点的公共直线 【解析】选A.因为B,C,D是经过人类长期反复的实践检验是真实的,不 需要由其他判断加以证明的命题和原理,是公理.而A平行于同一个平 面的两个平面平行是性质定理而不是公理.
[提醒]
(1)三点不一定确定一个平面.当三点共线时,可有无数个平
面.
(2)公理与推论中“有且只有”的含义是“存在且唯一”,
“有且只有”有时也说成“确定”.
大家有疑问的,可以询问和交流
可以互相讨论下,但要小声点
(5)异面直线所称的角
(1)定义:设 a,b 是两条异面直线,经过空间中任一点 O 作直 线 a′∥a,b′∥b,把 a′与 b′所成的锐角(或直角)叫做异面直 线 a 与 b 所成的角(或夹角).
立体几何讲空间点线面的位置关系课件
线与面的关系
总结词
线与面的关系是空间几何中 复杂的关系之一
详细描述
线与面的关系有多种形式, 如线在面上、线与面相交、 线与面平行等。这些关系可 以通过几何定理进行证明和 推导,如线面平行的判定定 理和性质定理等。
总结词
线与面的关系是空间几何中 复杂的关系之一
详细描述
线与面的关系有多种形式, 如线在面上、线与面相交、 线与面平行等。这些关系可 以通过几何定理进行证明和 推导,如线面平行的判定定 理和性质定理等。
空间面的定义与性质
总结词
几何中的面是由一组线围成的闭合空间。
详细描述
面是由一组线围成的闭合空间,表示一个二维的空间区域。根据定义,面有一定的厚度和大小。面的性质包括封 闭性和延展性,即面是封闭的边界,可以延展成一定的大小和形状。同时,面也可以由三个不同的点确定一个唯 一的平面。
03
点线面的位置关系
点与面的关系
总结词
详细描述
总结词
详细描述
点与面的关系是决定面形状的 关键
一个点可以确定一个平面,当 这个点位于平面上时,它与平 面的关系是固定的。此外,当 多个点位于同一平面时,它们 共同确定了该平面的形状和大 小。
点与面的关系是决定面形状的 关键
一个点可以确定一个平面,当 这个点位于平面上时,它与平 面的关系是固定的。此外,当 多个点位于同一平面时,它们 共同确定了该平面的形状和大 小。
详细描述
在几何学中,点被视为最基本的元素,表示一个具体的空间 位置。它没有大小和形状,只有位置。点的性质包括唯一性 和无限可重复性,即任意两个不同的点都可以确定一条直线 ,且同一直线上可以有无数个点。
空间线的定义与性质
总结词
几何中的线是点的集合,表示一个连续的空间路径。
数学一轮复习第8章立体几何第2讲空间点线面的位置关系试题1理
第八章立体几何第二讲空间点、直线、平面之间的位置关系练好题·考点自测1。
下列说法正确的是()A.梯形一定是平面图形B.过三点确定一个平面C.三条直线两两相交确定一个平面D。
若两个平面有三个公共点,则这两个平面重合2.[广东高考,5分]若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是平面α与平面β的交线,则下列命题正确的是()A。
l与l1,l2都不相交B。
l与l1,l2都相交C.l至多与l1,l2中的一条相交D。
l至少与l1,l2中的一条相交3.若∠AOB=∠A1O1B1,且OA∥O1A1,OA⃗⃗⃗⃗⃗ 与O1A1⃗⃗⃗⃗⃗⃗⃗⃗⃗ 的方向相同,则下列结论中正确的是()A。
OB∥O1B1且OB⃗⃗⃗⃗⃗ 与O1B1⃗⃗⃗⃗⃗⃗⃗⃗⃗ 的方向相同B。
OB∥O1B1C。
OB与O1B1不平行D.OB与O1B1不一定平行4.[2017全国卷Ⅰ,6,5分]如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是()A B C D5.[2020长春市第四次质量监测]已知正方体ABCD—A1B1C1D1的棱长为2,点N是棱CC1的中点,则异面直线AN与BC所成角的余弦值为。
6.[2016全国卷Ⅱ,14,5分][理]α,β是两个平面,m,n是两条直线,有下列四个命题:①如果m⊥n,m⊥α,n∥β,那么α⊥β。
②如果m⊥α,n∥α,那么m⊥n.③如果α∥β,m⊂α,那么m∥β。
④如果m∥n,α∥β,那么m与α所成的角和n与β所成的角相等。
其中正确的命题有.(填写所有正确命题的编号)拓展变式1。
如图8-2-4所示,E,F分别是正方体ABCD—A1B1C1D1的棱CC1,AA1的中点,试画出平面BED1F与平面ABCD的交线。
2.如图8—2-7为正方体表面的一种展开图,则在原正方体的四条线段AB,CD,EF,GH所在直线中,互为异面直线的有对。
高三数学 空间点线面之间的位置关系
课堂互动讲练
【名师点评】 题中是先说明D1、 E、F确定一平面,再说明B在所确定 的平面内,也可证明D1E∥BF,从而 说明四点共面.
课堂互动讲练
考点四 异面直线的判定
证明两直线为异面直线的方法: 1.定义法(不易操作). 2.反证法:先假设两条直线不 是异面直线,即两直线平行或相交, 由假设的条件出发,经过严密的推理, 导出矛盾,从而否定假设肯定两条直 线异面.此法在异面直线的判定中经 常用到.
A.A∈l,A∈α,B∈l, B∈α⇒l⊂α
B.A∈α,A∈β,B∈α, B∈β⇒a∩β=AB
C.l⊄α,A∈l⇒A∉α D.A∈α,A∈l,l⊄α⇒l∩α=A 答案:C
三基能力强化
4.如图所示,在正方体ABCD-
A1B1C1D1中,异面直线AC与B1C1
所成的角为
.
答案:45°
5.三条直线两两相交,可以确 定3进一步反映了平面的延展 性.其作用是:(1)判定两平面相交;(2) 作两平面相交的交线(当知道两个平面 的两个公共点时,这两点的连线就是交 线);(3)证明多点共线(如果几个点都是 某两个平面的公共点,则这几个点都在 这两个平面的交线上).
随堂即时巩固
点击进入
课时活页训练
PQ、CB的延长线交于M,RQ、DB的延
长线交于N,RP、DC的延长线交于K.求
证:M、N、K三点共线.
课堂互动讲练
【思路点拨】 要证明M、N、K 三点共线,由公理3可知,只要证明M、 N、K都在平面BCD与平面PQR的交 线上即可.
课堂互动讲练
【证明】
PQ∩CB=M
RQ∩DB=N⇒
RP∩DC=K
课堂互动讲练
解:选取平面BCF,该 平面有以下两个特点:①该 平面包含直线CF;②该平面 与DE相交于点E.在平面BCF 中,过点E作CF的平行线交 BF于点N,连结ND,可以看 出:EN与ED所成的角即为 异面直线FC与ED所成的角. 10分
空间点线面之间的关系
(2)∵EF∥CD1,EF<CD1, ∴CE与D1F必相交,设交点为P, 则由P∈CE,CE⊂平面ABCD, 得P∈平面ABCD. 同理P∈平面ADD1A1. 又平面ABCD∩平面ADD1A1=DA, ∴P∈直线DA.∴CE、D1F、DA三线共点.
空间两条直线的位置关系
[例3] 如图,在正方体ABCD-A1B1C1D1中,M,N 分别是BC1,CD1的中点,则下列判断错误的是( )
解析:①中可证四边形PQRS为梯形;②中,如图所示取 A1A与BC的中点为M、N,可证明PMQNRS为平面图形, 且PMQNRS为正六边形.③中可证四边形PQRS为平行四 边形;④中,可证Q点所在棱与面PRS平行,因此,P、Q、 R、S四点不共面.
答案:①②③
[例2] 如图,平面ABEF⊥平面ABCD, 四边形ABEF与ABCD都是直角梯形, ∠BAD=∠FAB=90°,BC∥AD且BC=12 AD,BE∥AF且BE=12AF,G,H分别为FA,FD的中点.
易误警示——求解线线角中忽视隐含条件而致错
[典例] (2013·临沂模拟)过正方体ABCD-A1B1C1D1
的顶点A作直线l,使l与棱AB,AD,AA1所成的角都相等,
这样的直线l可以作
()
A.1条
B.2条
C.3条
D.4条
[解析] 如图,连接体对角线AC1,显然 AC1与棱AB、AD,AA1所成的角都相等,所 成角的正切值都为 2.联想正方体的其他 体对角线,如连接BD1,则BD1与棱BC、 BA、BB1所成的角都相等,
1 个疑难点——对异面直线概念的理解 (1)“不同在任何一个平面内”指这两条直线不能确定任 何一个平面,因此异面直线既不平行,也不相交. (2)不能把异面直线误解为:分别在不同平面内的两条 直线为异面直线. (3)异面直线的公垂线有且仅有一条. 2 种方法——求异面直线所成角的方法 (1)平移法:即选点平移其中一条或两条直线使其转
空间点线面之间位置关系知识点总结
高中空间点线面之间位置关系知识点总结第一章 空间几何体(一)空间几何体的结构特征(1)多面体——由若干个平面多边形围成的几何体.旋转体——把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。
其中,这条定直线称为旋转体的轴。
(2)柱,锥,台,球的结构特征棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。
圆柱——以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱.)棱锥——有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。
圆锥——以直角三角形的一直角边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆锥。
棱台——用一个平行于底面的平面去截棱锥,我们把截面与底面之间的部分称为棱台. 圆台——用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台.球——以半圆的直径所在直线为旋转轴,半圆旋转一周形成的旋转体叫做球体,简称球. (二)空间几何体的三视图与直观图1.投影:区分中心投影与平行投影。
平行投影分为正投影和斜投影。
$2.三视图——正视图;侧视图;俯视图;是观察者从三个不同位置观察同一个空间几何体而画出的图形;画三视图的原则: 长对齐、高对齐、宽相等3.直观图:直观图通常是在平行投影下画出的空间图形。
4.斜二测法:在坐标系'''x o y 中画直观图时,已知图形中平行于坐标轴的线段保持平行性不变,平行于x 轴(或在x 轴上)的线段保持长度不变,平行于y 轴(或在y 轴上)的线段长度减半。
重点记忆:直观图面积=42原图形面积(三)空间几何体的表面积与体积 1、空间几何体的表面积①棱柱、棱锥的表面积: 各个面面积之和②圆柱的表面积 ③圆锥的表面积2S rl r ππ=+·④圆台的表面积22S rl r Rl R ππππ=+++ ⑤球的表面积24S Rπ=⑥扇形的面积公式213602n R S lr π==扇形(其中l 表示弧长,r 表示半径)2、空间几何体的体积①柱体的体积 V S h =⨯底 ②锥体的体积 13V S h =⨯底③台体的体积 1)3V S S S S h =++⨯下下上上( ④球体的体积343V R π=)第二章 直线与平面的位置关系空间点、直线、平面之间的位置关系. 2.1.11 平面含义:平面是无限延展的2 平面的画法及表示(1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长(如图)(2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC 、平面ABCD 等。
空间点线面位置关系整理(ppt)
在二维平面中,一个点可以确定一条 直线,但直线本身不能确定一个具体 的点。同样,在三维空间中,一个点 也可以确定一个平面,但平面本身不 能确定一个具体的点。
点与面之间的关系
总结词
点与面之间的关系是相对复杂的,一个点可以位于一个平面上,但不能确定一个平面。
详细描述
在二维平面中,一个点可以位于一个平面上,但这个平面本身不能被一个单独的点所确 定。在三维空间中,一个点也可以位于一个曲面上,但这个曲面本身不能被一个单独的
详细描述
线在面上的变换通常涉及到直线的平移、旋 转或倾斜等操作。这种变换可以用来描述一 个物体在平面上的运动或变化,例如桥梁的 伸缩、建筑物的旋转等。此外,这种变换还 可以用来研究几何图形在平面上的运动规律 和性质。
06
空间点线面位置关系的证明
点在线上的证明
定义法
根据点的定义,如果一个点在直线上 ,则该点满足直线的方程。通过验证 点的坐标是否满足直线的方程,可以 证明该点在线上。
3
线可以用来确定建筑物的空间形态和方向感。
点线面在建筑学中的应用
01
面在建筑学中的应用
02
面可以表示建筑物的立面、屋顶、地面等。
面可以用来确定建筑物的空间大小、形状和功能分区等。
03
点线面在计算机图形学中的应用
01
02
03
点在计算机图形学中的 应用
点可以表示像素的位置 和颜色信息。
点可以用来实现图像的 缩放、旋转和平移等变
点在面上的变换
总结词
点在面上的变换是指一个点在一个平面 上的位置变化。
VS
详细描述
与点在线上的变换类似,点在面上的变换 也可以通过平移、旋转或缩放等操作来实 现。这种变换可以用来描述一个物体在平 面上的运动或变化,例如飞行器在空中的 飞行轨迹。
点线面空间关系分析
点线面空间关系分析一、课程目标知识目标:1. 学生能理解并掌握点、线、面和空间的基本概念,建立相应的数学模型。
2. 学生能够运用几何知识,分析点线面之间的位置关系和运动变化。
3. 学生能够通过实例,识别并描述日常生活中点线面空间关系的应用。
技能目标:1. 学生能够运用尺规作图等方法,准确绘制点线面关系,并解决相关问题。
2. 学生能够通过实际操作,探究点线面空间关系的特点,培养空间想象能力和逻辑思维能力。
3. 学生能够通过小组合作,有效沟通与合作,共同解决点线面空间关系问题。
情感态度价值观目标:1. 学生能够积极主动参与课堂讨论,敢于提出自己的观点,培养学习几何的兴趣。
2. 学生能够在探索点线面空间关系的过程中,体验数学的奥妙和实际应用,增强对数学学科的价值认同。
3. 学生能够培养勇于挑战、善于思考的良好品质,形成严谨、踏实的学术态度。
本课程旨在帮助学生建立扎实的几何基础知识,发展空间想象和逻辑思维能力,同时注重培养学生的合作意识、实践操作能力和创新精神,使学生在掌握知识的同时,提高综合素养。
二、教学内容本节课依据课程目标,选取以下内容进行教学:1. 点、线、面的基本概念及性质- 理解点的定义,掌握点的表示方法。
- 学习直线的定义,了解直线方程的表示方法。
- 掌握线段的性质,学会计算线段的长度。
- 理解面的概念,学习平面方程的表示方法。
2. 点线面之间的位置关系- 分析点与点、点与线、点与面的位置关系。
- 探究直线与直线、直线与平面、平面与平面的位置关系。
3. 尺规作图- 学习尺规作图的基本方法,掌握作图的步骤和技巧。
- 通过实例,进行尺规作图实践,巩固点线面空间关系。
4. 空间几何体的认识- 认识基本的空间几何体,如立方体、长方体等。
- 分析空间几何体的点线面结构特征。
教学内容按照以下进度安排:第一课时:点、线、面的基本概念及性质。
第二课时:点线面之间的位置关系。
第三课时:尺规作图。
第四课时:空间几何体的认识。
空间点线面的位置关系知识讲解共53页
1、战鼓一响,法律无声。——英国 2、任何法律的根本;不,不成文法本 身就是 讲道理 ……法 律,也 ----即 明示道 理。— —爱·科 克
3、法律是最保险的头盔。——爱·科 克 4、一个国家如果纲纪不正,其国风一 定颓败 。—— 塞内加 5、法律不能使人人平等,但是在法律 面前人 人是平勇猛、大胆和坚定的决心能够抵得上武器的精良。——达·芬奇
▪
30、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本华
谢谢!
53
▪
26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭
▪
27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗曼·罗兰
▪
28、知之者不如好之者,好之者不如乐之者。——孔子
空间点线面的位置关系知识讲解53页PPT
55、 为 中 华 之 崛起而 读书。 ——周 恩来
45、法律的制定是为了保证每一个人 自由发 挥自己 的才能 ,而不 是为了 束缚他 的才能 。—— 罗伯斯 庇尔
谢谢!
51、 天 下 之 事 常成 于困约 ,而败 于奢靡 。——陆 游 52、 生 命 不 等 于是呼 吸,生 命是活 动。——卢 梭
空间点线面的位置关系知识 讲解
41、实际上,我们想要的不是针对犯 罪的法 律,而 是针对 疯狂的 法律。 ——马 克·吐温 42、法律的力量应当跟随着公民,就 像影子 跟随着 身体一 样。— —贝卡 利亚 43、法律和制度必须跟上人类思想进 步。— —杰弗 逊 44、人类受制于法律,法律受制于情 理。— —托·富 勒
点线面之间的位置关系——垂直关系-简单-讲义
点、线、面之间的位置关系——垂直关系知识讲解一、线面垂直1.定义:如果一条直线和一个平面相交于点0,并且和这个平面内过交点的任何直线都垂直,则称这条直线与这个平面互相垂直.1)这条直线叫做平面的垂线,这个平面叫做直线的垂面,交点叫垂足.2)垂线上任意一点到垂足间的线段,叫做这个点到这个平面的垂线段.垂线段的长度叫做这个点到平面的距离.3)如果一条直线垂直于一个平面,那么它就和平面内的任意一条直线垂直.4)画直线与平面垂直时,通常把直线画成和表示平面的平行四边形的一边垂直,如下图.直线l与平面a互相垂直,记作l ±a .2.线面垂直的判定定理:如果一条直线与平面内的两条相交直线垂直,则这条直线与这个平面垂直.符号语言表述:l ±a,l ±b,a,b u a,a p|b = A n l ±a图像语言表述:l la3.线面垂直的性质定理:如果两条直线垂直于同一个平面,那么这两条直线平行.符号语言表述:a±a,b±a n a//b图像语言表述:4.线面垂直的性质(1)一条直线垂直于一个平面,则这条直线垂直于该平面内的所有直线(2 )推论1 :如果在两条平行直线中,有一条垂直于平面,那么另一条直线也垂直于这个平面;(3)推论2 :如果两条直线垂直于同一个平面,那么这两条直线平行;(4)垂直于同一直线的两个平面平行.5.证明线面垂直的方法(1)线面垂直的定义(2)线面垂直的判定定理(a± b, a± c, b u a, c u a, b^c = M n a±a )(3)平行线垂直平面的传递性(a g, b l a n a l a)(4)面面垂直的性质(a l。
, a Qp = l, a u p , a 11 n a l a)(5)面面平行的性质(a l a, a Q p n a 1p)(6)面面垂直的性质(a n P=l,a l y , p l y n l l y)二、面面垂直1.定义:如果两个相交平面的交线与第三个平面垂直,又这两个平面与第三个平面相交所得的两条交线互相垂直,则称这两个平面互相垂直.2.平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.符号语言表述:m l a, m u p n a l p图像语言表述:3.面面垂直的性质定理:如果两个平面垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面.符号语言表述:a l p, aqp=l,m G P,m 11 n m l a图像语言表述:4.面面垂直的性质(1)两相交平面同时垂直于第三个平面,那么两相交平面的交线垂直于第三个平面(2)两平面互相垂直,过公共交线上一点做一个平面的垂线,则这条直线在第二个平面内5.证明面面垂直的方法(1)面面垂直的定义(2)面面垂直的判定定理(a l p, a u a n a l p )三、垂直模型总结1.勾股定理a2 + b2 = C2 n AC 1 CB2.等腰三角形三线合一AB = AC, D为BC重点n AD ± BC3,直径所对的圆周角为直角BD = CD = AD n BA ± AC4.菱形对角线垂直平分在菱形ABCD中n BD ± AC5.正方形、矩形临边垂直AB 1 BC, BC 1 CD6.正方形中点连线垂直在正方形ABCD中,E, F为CD, BC的中点n AE1DF7.直棱柱、正棱柱中侧棱垂直底面在直三棱柱中n AD ± 面ABC, AD 1 AB, AD 1BC, AD 1 AC典型例题一,选择题(共10小题)1 (2018•云南模拟)在正方体ABCD - A1B1c1D1中"点P是线段BC1上任意一点,则下列结论中正确的是()A- AD J DPB- AP±B1C C. AC J DP D• A i P,B i C2 . (2018春•武邑县校级月考)如图,四棱锥P - ABCD中,4PAB与^PBC是正三角形,平面PAB,平面PBC, AC X BD,则下列结论不一定成立的是()AA . PB±ACB . PD,平面ABCDC . AC±PD D .平面PBD,平面ABCDA . AE±CEB . BE±DEC . DE±CED .面ADE±® BCE4 (2016秋•杭州期末)如图所示,四边形ABCD中,AD〃BC ,AD=AB ,N BCD=45°,N BAD=90°,将△ABD沿BD折起,使面ABD,面BCD,连结AC ,则下列命题正确的是()A .面ABD±® ABCB .面ADC±® BDC C .面ABC±® BDCD .面ADC±® ABC 5 . (2017春•昆都仑区校级期中)如图,A ABC是直角三角形,N ABC=90°, PA ,平面ABC ,此图中直角三角形的个数为()BA . 1B . 2C . 3D . 46.( 2017•青州市模拟)如图,在三棱锥A - BCD中,AB,平面BCD , N ACB=45°, N ADB=30°, N BCD=120°, CD=40 视AB=( )A . 10B . 20C . 30D . 407(2017秋•赣州期中)设a邛为不重合的平面,m , n为不重合的直线,则下列命题正确的是()A .若m u a, n u 0, m〃n,则U a〃B B .若n±a , n±P , m,B,则U m±aC .若m〃a,n〃B,m,n,UU a±0D .若a±0 ,n,0,m,n,UU m±a8. (2015秋•临海市校级月考)在三棱锥A - BCD中,若AD±BC , BD1AD , △BCD是锐角三角形,那么必有()A .平面八8口,平面ADCB .平面八8口,平面ABCC .平面ADC,平面BCDD .平面ABC,平面BCD9. (2014秋•兴庆区校级期末)两个平面平行的条件是()A.一个平面内一条直线平行于另一个平面B.一个平面内两条直线平行于另一个平面C.一个平面内的无数条直线平行于另一个平面D.一个平面内的任意一条直线平行于另一个平面10(2015秋•东昌区校级期中)过^ABC所在平面a外一点P ,作PO,a ,垂足为O,若PA±PB,PB±PC,PC L PA,则点O 是 ^ABC 的()A .垂心B .重心C .内心D .外心二,填空题(共4小题)11.过平面外两点,可作个平面与已知平面平行.12. (2015春•上海校级期末)点P为^ABC所在平面外一点,PO,平面ABC , 垂足为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2讲 空间点、线、面的位置关系最新考纲 1.理解空间直线、平面位置关系的定义,并了解有关的可以作为推理依据的公理和定理;2.能运用公理、定理和已获得的结论证明一些空间图形的位置关系的简单命题.知 识 梳 理1.平面的基本性质(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内.(2)公理2:过不在一条直线上的三点,有且只有一个平面.(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.(4)公理2的三个推论推论1:经过一条直线和这条直线外一点有且只有一个平面.推论2:经过两条相交直线有且只有一个平面.推论3:经过两条平行直线有且只有一个平面.2.空间中两直线的位置关系(1)位置关系的分类⎩⎨⎧共面直线⎩⎨⎧平行相交异面直线:不同在任何一个平面内(2)异面直线所成的角①定义:设a ,b 是两条异面直线,经过空间任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角).②范围:⎝⎛⎥⎤0,π2. (3)平行公理和等角定理①平行公理:平行于同一条直线的两条直线互相平行. ②等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.3.空间直线与平面、平面与平面的位置关系(1)直线与平面的位置关系有相交、平行、在平面内三种情况.(2)平面与平面的位置关系有平行、相交两种情况.考点一平面基本性质的应用1. 以下四个命题中,正确命题的个数是()①不共面的四点中,其中任意三点不共线;②若点A,B,C,D共面,点A,B,C,E共面,则A,B,C,D,E共面;③若直线a,b共面,直线a,c共面,则直线b,c共面;④依次首尾相接的四条线段必共面.A.0 B.1 C.2 D.3答案B解析(1)①正确,假设其中有三点共线,则该直线和直线外的另一点确定一个平面,这与四点不共面矛盾,故其中任意三点不共线;②不正确,从条件看出两平面有三个公共点A,B,C,但是若A,B,C共线,则结论不正确;③不正确,共面不具有传递性;④不正确,因为此时所得的四边形四条边可以不在同一个平面上,如空间四边形.2.平面α,β相交,在α,β内各取两点,这四点都不在交线上,这四点能确定________个平面.答案1或4解析若过四点中任意两点的连线与另外两点的连线相交或平行,则确定一个平面;否则确定四个平面.3.下列命题正确的个数为()①经过三点确定一个平面②梯形可以确定一个平面③两两相交的三条直线最多可以确定三个平面④如果两个平面有三个公共点,则这两个平面重合A.0 B.1 C.2 D.3答案 C解析经过不共线的三点可以确定一个平面,∴①不正确;两条平行线可以确定一个平面,∴②正确;两两相交的三条直线可以确定一个或三个平面,∴③正确;命题④中没有说明三个交点是否共线,∴④不正确.4. 在正方体ABCD-A1B1C1D1中,P,Q,R分别是AB,AD,B1C1的中点,那么正方体的过P,Q,R的截面图形是()A.三角形B.四边形C.五边形D.六边形答案D如图所示,作RG∥PQ交CD1于G,连接QP并延长与CB延长线交于M,且QP反向延长线与CD延长线交于N,连接MR交BB1于E,连接PE,则PE,RE为截面与正方体的交线,同理连接NG交DD1于F,连接QF,FG,则QF,FG为截面与正方体的交线,∴截面为六边形PQFGRE.5. 如图所示是正方体和正四面体,P,Q,R,S分别是所在棱的中点,则四个点共面的图形的序号是________.答案①②③解析可证①中的四边形PQRS为梯形;②中,如图所示,取A1A和BC的中点分别为M,N,可证明PMQNRS为平面图形,且PMQNRS为正六边形;③中,可证四边形PQRS为平行四边形;④中,可证Q点所在棱与面PRS平行,因此,P,Q,R,S四点不共面.6.如图,α∩β=l,A、B∈α,C∈β,且C∉l,直线AB∩l=M,过A,B,C三点的平面记作γ,则γ与β的交线必通过( )A.点A B.点BC.点C但不过点MD.点C和点M答案 D解析∵AB⊂γ,M∈AB,∴M∈γ.又α∩β=l,M∈l,∴M∈β.根据公理3可知,M在γ与β的交线上.同理可知,点C也在γ与β的交线上.7.设P表示一个点,a、b表示两条直线,α、β表示两个平面,给出下列四个命题,其中正确的命题是( )①P∈a,P∈α⇒a⊂α②a∩b=P,b⊂β⇒a⊂β③a∥b,a⊂α,P∈b,P∈α⇒b⊂α④α∩β=b,P∈α,P∈β⇒P∈bA.①②B.②③C.①④D.③④答案 D解析当a∩α=P时,P∈a,P∈α,但a⊄α,∴①错;a∩β=P时,②错;如图,∵a∥b,P∈b,∴P∉a,∴由直线a与点P确定唯一平面α,又a∥b,由a与b确定唯一平面β,但β经过直线a与点P,∴β与α重合,∴b⊂α,故③正确;两个平面的公共点必在其交线上,故④正确.8.如图,四边形ABEF 和ABCD 都是直角梯形,∠BAD=∠F AB =90°,BC 綉12AD ,BE 綉12F A ,G ,H 分别为F A ,FD 的中点.(1)证明:四边形BCHG 是平行四边形;(2)C ,D ,F ,E 四点是否共面?为什么?(1)证明 由已知FG =GA ,FH =HD ,可得GH 綉12AD .又BC 綉12AD ,∴GH 綉BC ,∴四边形BCHG 为平行四边形.(2)解 由BE 綉12AF ,G 为F A 中点知,BE 綉FG ,∴四边形BEFG 为平行四边形,∴EF ∥BG .由(1)知BG 綉CH ,∴EF ∥CH ,∴EF 与CH 共面.又D ∈FH ,∴C ,D ,F ,E 四点共面.9.如图所示,正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是AB 和AA 1的中点.求证:(1)E ,C ,D 1,F 四点共面;(2)CE ,D 1F ,DA 三线共点.证明 (1)连接EF ,CD 1,A 1B .∵E ,F 分别是AB ,AA 1的中点,∴EF ∥BA 1.又A 1B ∥D 1C ,∴EF ∥CD 1,∴E ,C ,D 1,F 四点共面.(2)∵EF ∥CD 1,EF <CD 1,∴CE 与D 1F 必相交,设交点为P ,则由P ∈CE ,CE ⊂平面ABCD ,得P∈平面ABCD.同理P∈平面ADD1A1.又平面ABCD∩平面ADD1A1=DA,∴P∈直线DA.∴CE,D1F,DA三线共点.考点二空间两条直线的位置关系1.若空间中有两条直线,则“这两条直线为异面直线”是“这两条直线没有公共点”的( ) A.充分非必要条件 B.必要非充分条件C.充分必要条件D.既非充分又非必要条件答案 A解析“两条直线为异面直线”⇒“两条直线无公共点”.“两直线无公共点”⇒“两直线异面或平行”.故选A.2.已知a,b是异面直线,直线c平行于直线a,那么c与b() A.一定是异面直线B.一定是相交直线C.不可能是平行直线D.不可能是相交直线答案 C解析由已知得直线c与b可能为异面直线也可能为相交直线,但不可能为平行直线,若b∥c,则a∥b,与已知a,b为异面直线相矛盾.3.若空间三条直线a,b,c满足a⊥b,b⊥c,则直线a与c () A.一定平行B.一定相交C.一定是异面直线D.平行、相交、是异面直线都有可能答案 D 解析当a,b,c共面时,a∥c;当a,b,c不共面时,a与c可能异面也可能相交.4.(2014·广东卷)若空间中四条两两不同的直线l1,l2,l3,l4,满足l1⊥l2,l2⊥l3,l3⊥l4,则下列结论一定正确的是() A.l1⊥l4B.l1∥l4C.l1与l4既不垂直也不平行D.l1与l4的位置关系不确定答案 D解析构造如图所示的正方体ABCD-A1B1C1D1,取l1为AD,l2为AA1,l3为A1B1,当取l4为B1C1时,l1∥l4,当取l4为BB1时,l1⊥l4,故排除A,B,C,选D.5.(2014·江西七校联考)已知直线a和平面α,β,α∩β=l,a⊄α,a⊄β,且a在α,β内的射影分别为直线b和c,则直线b和c的位置关系是() A.相交或平行B.相交或异面C.平行或异面D.相交、平行或异面答案 D6.l1,l2,l3是空间三条不同的直线,则下列命题正确的是() A.l1⊥l2,l2⊥l3⇒l1⊥l3B.l1⊥l2,l2∥l3⇒l1⊥l3C.l1∥l2∥l3⇒l1,l2,l3共面D.l1,l2,l3共点⇒l1,l2,l3共面答案B解析当l1⊥l2,l2⊥l3时,l1与l3也可能相交或异面或平行,故A不正确;l1⊥l2,l2∥l3⇒l1⊥l3,故B正确;当l1∥l2∥l3时,l1,l2,l3未必共面,如三棱柱的三条侧棱,故C不正确;l1,l2,l3共点时,l1,l2,l3未必共面,如正方体中从同一顶点出发的三条棱,故D不正确.7.(2014·三亚一模)在空间四边形ABCD中,AB=CD,AD=BC,AB≠AD,M,N分别是对角线AC与BD的中点,则MN与()A.AC,BD之一B.AC,BD都垂直C.AC,BD都不垂直D.AC,BD不一定垂直答案 B解析连接AN,CN,∵AD=BC,AB=CD,BD=BD,∴△ABD≌△CDB,则AN=CN,在等腰△ANC中,由M为AC的中点知MN⊥AC.同理可证MN⊥BD.故选B.8.(2014·深圳调研)两条异面直线在同一个平面上的正投影不可能是() A.两条相交直线B.两条平行直线C.两个点D.一条直线和直线外一点答案 C解析如图,在正方体ABCD-EFGH中,M,N分别为BF,DH的中点,连接MN,DE,CF,EG.当异面直线为EG,MN所在直线时,它们在底面ABCD内的射影为两条相交直线;当异面直线为DE,GF所在直线时,它们在底面ABCD内的射影分别为AD,BC,是两条平行直线;当异面直线为DE,BF所在直线时,它们在底面ABCD内的射影分别为AD和点B,是一条直线和一个点,故选C.9.如果两条异面直线称为“一对”,那么在正方体的十二条棱中共有异面直线________对.答案 24解析 如图所示,与AB 异面的直线有B 1C 1,CC 1,A 1D 1,DD 1四条,因为各棱具有不同的位置,且正方体共有12条棱,排除两棱的重复计算,共有异面直线12×42=24(对).10.如图,在正方体ABCD -A 1B 1C 1D 1中,M ,N 分别为棱C 1D 1,C 1C 的中点,有以下四个结论:①直线AM 与CC 1是相交直线;②直线AM 与BN 是平行直线;③直线BN 与MB 1是异面直线;④直线AM 与DD 1是异面直线.其中正确的结论为________.答案 ③④解析 A ,M ,C 1三点共面,且在平面AD 1C 1B 中,但C ∉平面AD 1C 1B ,因此直线AM 与CC 1是异面直线,同理AM 与BN 也是异面直线,AM 与DD 1也是异面直线,①②错,④正确;M ,B ,B 1三点共面,且在平面MBB 1中,但N ∉平面MBB 1,因此直线BN 与MB 1是异面直线,③正确.11.(2014·北京西城区模拟)如图所示,在空间四边形ABCD中,点E ,H 分别是边AB ,AD 的中点,点F ,G 分别是边BC ,CD 上的点,且CF CB =CG CD =23,则 ( )A .EF 与GH 平行B .EF 与GH 异面C .EF 与GH 的交点M 可能在直线AC 上,也可能不在直线AC 上D.EF与GH的交点M一定在直线AC上答案 D解析依题意,可得EH∥BD,FG∥BD,故EH∥FG,所以E,F,G,H共面.因为EH=12BD,FG=23BD,故EH≠FG,所以EFGH是梯形,EF与GH必相交,设交点为M.因为点M在EF上,故点M在平面ACB上.同理,点M在平面ACD上,即点M是平面ACB与平面ACD的交点,而AC是这两个平面的交线,所以点M一定在直线AC上.12. 在图中,G,H,M,N分别是正三棱柱的顶点或所在棱的中点,则表示直线GH,MN是异面直线的图形有________(填上所有正确答案的序号).答案②④图①中,直线GH∥MN;图②中,G,H,N三点共面,但M∉面GHN,因此直线GH与MN异面;图③中,连接MG,GM∥HN,因此GH 与MN共面;图④中,G,M,N共面,但H∉面GMN,因此GH与MN异面.所以在图②④中GH与MN异面.13.已知空间四边形ABCD中,M、N分别为AB、CD的中点,则下列判断:①MN≥1 2(AC+BD);②MN>12(AC+BD);③MN=12(AC+BD);④MN<12(AC+BD).其中正确的是________.答案 ④解析 如图,取BC 的中点O , 连接MO 、NO , 则OM =12AC ,ON =12BD ,在△MON 中,MN<OM +ON =12(AC +BD),∴④正确.14.设四面体的六条棱的长分别为1,1,1,1,2和a ,且长为a 的棱与长为2的棱异面,则a 的取值范围是( ) A.(0,2) B.(0,3)C.(1,2)D.(1,3)答案 A解析 此题相当于一个正方形沿着对角线折成一个四面体,长为a 的棱长一定大于0且小于 2.选A. 考点三 求异面直线所成的角思路方法;求异面直线所成的角的三步曲:即“一作、二证、三求”.其中空间选点任意,但要灵活,经常选择“端点、中点、等分点”,通过作三角形的中位线,平行四边形等进行平移,作出异面直线所成的角,转化为解三角形问题,进而求解.1.a ,b ,c 是空间中的三条直线,下面给出四个命题:①若a∥b,b∥c,则a∥c;②若a 与b 相交,b 与c 相交,则a 与c 相交; ③若a ⊂平面α,b ⊂平面β,则a ,b 一定是异面直线;④若a ,b 与c 成等角,则a∥b. 上述命题中正确的命题是________(只填序号). 答案 ①解析 由公理4知①正确;当a 与b 相交,b 与c 相交时,a 与c 可以相交、平行,也可以异面,故②不正确;a ⊂α,b ⊂β,并不能说明a 与b“不同在任何一个平面内”,故③不正确;当a ,b 与c 成等角时,a 与b 可以相交、平行,也可以异面,故④不正确.2. (2014·余姚模拟)如图,在正方体ABCD -A 1B 1C 1D 1中,M ,N分别是BC 1,CD 1的中点,则下列说法错误的是( ) A .MN 与CC 1垂直 B .MN 与AC 垂直 C .MN 与BD 平行 D .MN 与A 1B 1平行答案 D 解析 (1)如图,连接C1D ,BD ,AC ,在△C 1DB 中,MN ∥BD ,故C 正确; ∵CC 1⊥平面ABCD ,∴CC 1⊥BD , ∴MN 与CC 1垂直,故A 正确;∵AC ⊥BD ,MN ∥BD ,∴MN 与AC 垂直,故B 正确; ∵A 1B 1与BD 异面,MN ∥BD ,∴MN 与A 1B 1不可能平行,故D 错误,选D.3. 直三棱柱ABC -A 1B 1C 1中,若∠BAC=90°,AB =AC =AA 1,则异面直线BA 1与AC 1所成的角等于( )A.30° B.45°C.60°D.90°答案 C解析 如图,可补成一个正方体, ∴AC1∥BD 1.∴BA 1与AC 1所成角的大小为∠A 1BD 1. 又易知△A 1BD 1为正三角形,∴∠A 1BD 1=60°.即BA 1与AC 1成60°的角.4.四棱锥P -ABCD 的所有侧棱长都为5,底面ABCD 是边长为2的正方形,则CD 与P A 所成角的余弦值为________.答案 55解析 因为四边形ABCD 为正方形,故CD ∥AB ,则CD 与P A 所成的角即为AB 与P A 所成的角,即为∠P AB .在△P AB 内,PB =P A =5,AB =2,利用余弦定理可知cos ∠P AB =P A 2+AB 2-PB 22×P A ×AB =5+4-52×5×2=55.5.(2015·成都诊断)在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是棱A 1B 1,A 1D 1的中点,则A 1B 与EF 所成角的大小为________. 答案 π3解析 如图,连接B1D 1,D 1C ,B 1C .由题意知EF 是△A 1B 1D 1的中位线,所以EF ∥B 1D 1,又A 1B ∥D 1C ,即∠B 1D 1C (或其补角)为异面直线A 1B 与EF 所成的角.因为△D 1B 1C 为正三角形,所以∠B 1D 1C =π3.故A 1B 与EF 所成角的大小为π3.6. (2014·潍坊一模)已知在三棱锥A -BCD 中,AB =CD ,且点M ,N 分别是BC ,AD 的中点.(1)若直线AB 与CD 所成的角为60°,则直线AB 和MN 所成的角为________.(2)若直线AB ⊥CD ,则直线AB 与MN 所成的角为________.答案 (1)60°或30°(2)答案 45°解析 (1)法一 如图,取AC 的中点P ,连接PM ,PN ,则PM ∥AB ,且PM=12AB,PN∥CD,且PN=12CD,所以∠MPN(或其补角)为AB与CD所成的角.则∠MPN=60°或∠MPN=120°,若∠MPN=60°,因为PM∥AB,所以∠PMN(或其补角)是AB与MN所成的角.又因为AB=CD,所以PM=PN,则△PMN是等边三角形,所以∠PMN=60°,即AB与MN所成的角为60°.若∠MPN=120°,则易知△PMN是等腰三角形.所以∠PMN=30°,即AB与MN所成的角为30°.综上直线AB和MN所成的角为60°或30°.法二由AB=CD,可以把该三棱锥放在长方体AA1BB1-C1CD1D中进行考虑,如图,由M,N分别是BC,AD的中点,所以MN∥AA1,即∠BAA1(或其补角)为AB与MN所成的角.连接A1B1交AB于O,所以A1B1∥CD,即∠AOA1(或其补角)为AB与CD所成的角.所以∠AOA1=60°或120°,由矩形AA1BB1的性质可得∠BAA1=60°或30°.所以直线AB和MN所成的角为60°或30°.答案45°取AC的中点P,连接PM,PN,则PM綉12AB,所以∠MPN(或其补角)为AB与CD所成的角,由于AB⊥CD,所以∠MPN=90°.又AB=CD,所以PM=PN,从而∠PMN=45°,即AB与MN所成的角为45°.7. 如图是正四面体的平面展开图,G,H,M,N分别为DE,BE,EF,EC的中点,在这个正四面体中,①GH与EF平行;②BD与MN为异面直线;③GH与MN成60°角;④DE与MN垂直.以上四个命题中,正确命题的序号是________.答案②③④解析把正四面体的平面展开图还原.如图所示,GH与EF为异面直线,BD与MN为异面直线,GH与MN成60°角,DE⊥MN.8.(2015·长春一模)一个正方体的展开图如图所示,A,B,C,D为原正方体的顶点,则在原来的正方体中()A.AB∥CD B.AB与CD相交C.AB⊥CD D.AB与CD所成的角为60°答案 D解析如图,把展开图中的各正方形按图1所示的方式分别作为正方体的前、后、左、右、上、下面还原,得到图2所示的直观图,可见选项A,B,C不正确.图2中,BE∥CD,∠ABE为AB与CD所成的角,△ABE为等边三角形,∴∠ABE=60°,∴正确选项为D.9.若两条异面直线所成的角为60°,则称这对异面直线为“黄金异面直线对”,在连接正方体各顶点的所有直线中,“黄金异面直线对”共有________对.答案 24解析 正方体如图,若要出现所成角为60°的异面直线,则直线为面对角线,以AC 为例,与之构成黄金异面直线对的直线有4条,分别是A′B,BC′,A′D,C′D,正方体的面对角线有12条,所以所求的黄金异面直线对共有12×42=24(对).10.过正方体ABCD -A 1B 1C 1D 1的顶点A 作直线l ,使l 与棱AB ,AD ,AA 1所成的角都相等,这样的直线l 可以作( )A.1条 B.2条 C.3条 D.4条答案 D易错分析 忽视异面直线所成的角,只找两条相交直线所成角,没有充分认识正方体中的平行关系.解析 如图,连接体对角线AC1,显然AC 1与棱AB 、AD 、AA 1所成的角都相等,所成角的正切值都为 2.联想正方体的其他体对角线,如连接BD 1,则BD 1与棱BC 、BA 、BB 1所成的角都相等, ∵BB 1∥AA 1,BC∥AD,∴体对角线BD 1与棱AB 、AD 、AA 1所成的角都相等,同理,体对角线A 1C 、DB 1也与棱AB 、AD 、AA 1所成的角都相等,过A 点分别作BD 1、A 1C 、DB 1的平行线都满足题意,故这样的直线l 可以作4条.11.如图所示,等腰直角三角形ABC 中,∠A=90°,BC =2,DA⊥AC,DA⊥AB, 若DA =1,且E 为DA 的中点.求异面直线BE 与CD 所成角的余弦值.解 取AC 的中点F ,连接EF ,BF , 在△ACD 中,E 、F 分别是AD 、AC 的中点, ∴EF∥CD.∴∠BEF 或其补角即为异面直线BE 与CD 所成的角. 在Rt△EAB 中,AB =AC =1,AE =12AD =12,∴BE=52.在Rt△EAF 中,AF =12AC =12,AE =12,∴EF=22. 在Rt△BAF 中,AB =1,AF =12,∴BF=52.在等腰三角形EBF中,cos∠FEB=12EFBE=2452=1010.∴异面直线BE与CD所成角的余弦值为10 10.12.如图,在四棱锥O-ABCD中,底面ABCD是边长为2的正方形,OA⊥底面ABCD,OA=2,M为OA 的中点.(1)求四棱锥O-ABCD的体积;(2)求异面直线OC与MD所成角的正切值的大小.解(1)由已知可求得,正方形ABCD的面积S=4,所以,四棱锥O-ABCD的体积V=13×4×2=83.(2)如图,连接AC,设线段AC的中点为E,连接ME,DE,则∠EMD(或其补角)为异面直线OC与MD所成的角,由已知,可得DE=2,EM=3,MD=5,∵(2)2+(3)2=(5)2,∴△DEM为直角三角形,∴tan∠EMD=DEEM=23=63.故异面直线OC与MD所成角的正切值为6 3.13. 如图,在四棱锥P-ABCD中,底面是边长为2的菱形,∠DAB=60°,对角线AC与BD交于点O,PO⊥平面ABCD,PB与平面ABCD所成角为60°.(1)求四棱锥的体积;(2)若E 是PB 的中点,求异面直线DE 与P A 所成角的余弦值.解 (1)在四棱锥P -ABCD 中, ∵PO ⊥面ABCD ,∴∠PBO 是PB 与面ABCD 所成的角,即∠PBO =60°, 在Rt △ABO 中,AB =2,∠OAB =30°, ∴BO =AB ·sin 30°=1,∵PO ⊥面ABCD ,OB ⊂面ABCD ,∴PO ⊥OB , ∴在Rt △POB 中,PO =BO ·tan 60°=3, ∵底面菱形的面积S =2×34×22=2 3.∴四棱锥P -ABCD 的体积V P -ABCD =13×23×3=2. (2)取AB 的中点F ,连接EF ,DF , ∵E 为PB 中点,∴EF ∥P A ,∴∠DEF 为异面直线DE 与P A 所成角(或其补角). 在Rt △AOB 中,AO =AB ·cos 30°=3=OP ,∴在Rt △POA 中,P A =6,∴EF =62.在正△ABD 和正△PDB 中,DF =DE =3, 在△DEF 中,由余弦定理, 得cos ∠DEF =DE 2+EF 2-DF 22DE ·EF=(3)2+⎝ ⎛⎭⎪⎫622-(3)22×3×62=6432=24.即异面直线DE 与P A 所成角的余弦值为24.。