与微分中值定理有关的证明题

合集下载

微分中值定理例题

微分中值定理例题

理工大学微积分-微分中值定理费马定理罗尔定理拉格朗日定理柯西定理()()1.()0,(0)0,f x f f f ϕξξξξζξξξ'' <=>><≤[][]''''''[]<<≤1212121212121221112111211221设证明对任何的x 0,x0,有(x+x)(x)+f(x). 解:不妨设xx,(x)=f (x+x)-f(x)-f(x) =f(x+x)-f(x)-f(x)-f(0) =f()x-f()x=xf()-f()=xf-.因为,0xx()ξζϕ''<<<<2112x+x,又f0,所以(x)0,所以原不等式成立。

12n 12n 12n 11221122n 0011000.x b f x .x x x b 1,f )f x f x f x x *,()()()()n n n nni i i i i i i X b b x f x f x f x x x λλλλλλλχλχλχλλλλλ=='' >∀⋯⋯∈<<1++⋯+=++⋯+≤⋯=<=>α.'''=+-+∑∑2设f ()在(a ,)内二阶可导,且()0,,(a ,),0,,,且则,试证明(()+()++(). 解:设同理可证:()20000i 0011110000111()()()()().x 2!()()()()()(()()().)nn ni i i i i i i nni nniiiiiii i i i i i f x x f x f x x x f x f x f x f x x x f x X X x x f x f x λλλλξξλλλ=======⎛⎫''-'-≥+-<<'≥+-===- ⎪⎝⎭∑∑∑∑∑∑∑注:x()3.)tan.2F ,F 2(0)0,(0)0,((cos02F f xf F F f ππξξπξξππππππξ [0]0'∈=[0]0=∴===[0]∈设f(x)在,上连续,在(,)内可导,且f (0)=0,求证:至少存在(0,),使得2f ( 证明:构造辅助函数:(x)=f(x)tan 则(x)在,上连续,在(,)内可导,且))所以(x)在,上满足罗尔定理的条件,故由罗尔定理知:至少存在(0()()()()()()F 011F x cossin F cos sin 0222222cos0)tan22x x x f f f πξξξξξξξξξπξξ'=''''=- =-='∈≠=,),使得,而f(x)f()又(0,),所以,上式变形即得:2f (,证毕。

第三章微分中值定理与导数的应用习题

第三章微分中值定理与导数的应用习题

第三章 微分中值定理与导数的应用习题专业、班级: 学号: 姓名:一、选择题1.罗尔定理中的三个条件:)(x f 在],[b a 上连续,在),(b a 内可导,且)()(b f a f =,是)(x f 在),(b a 内至少存在一点ξ,使0)(='ξf 成立的( )A.必要条件B.充分条件C.充要条件D.既非充分也非必要条件2.下列函数在]1 ,1[-上满足罗尔定理条件的是( )A.x e x f =)(B.||)(x x f =C.21)(x x f -=D.⎪⎩⎪⎨⎧=≠=0,10 ,1sin )(x x xx x f3.在以下各式中,极限存在,但不能用洛必达法则计算的是( ) A.x x x sin lim 20→ B.x x x tan 0)1(lim +→C. x xx x sin lim +∞→ D.x nx e x +∞→lim4.设)12)(1()(+-='x x x f ,则在区间)1,21(内( )A. )(x f y =单调增加,曲线)(x f y =为凹的B. )(x f y =单调减少,曲线)(x f y =为凹的C. )(x f y =单调减少,曲线)(x f y =为凸的D. )(x f y =单调增加,曲线)(x f y =为凸的5.下列函数中,在指定区间内单调减少的函数是( )A.x y -=2 ),(∞+-∞B.x y e = )0,(-∞C.x y ln = ),0(∞+D.x y sin = ),0(π6.若)(x f 在0x 至少二阶可导,且1)()()(lim 2000-=--→x x x f x f x x ,则函数)(x f 在0x处( )A.取得极大值B.取得极小值C.无极值D.不一定有极值二、填空题1. 设函数)5)(3)(2)(1()(----=x x x x x f ,则0)(='x f 有 个实根,分别位于 区间 中.2. 函数12+=ax y 在),0(∞+内单调增加,则a .3. 函数x y sin ln =在[65 ,6 ππ]上的罗尔中值点ξ= . 4. 若点(1,3)为曲线23bx ax y +=的拐点,则=a ,=b .5. 求函数2824+-=x x y 在区间]3,1[-上的最大值为 ,最小值为 .6. 函数)1ln(+-=x x y 在区间 内单调减少,在区间 内单调增加.7. 曲线8 2x ey -=的凸区间是 .三、计算题1.求下列极限 (1)n n m m a x a x a x --→lim (2)20)(arcsin 1sin lim x x e x x --→(3))1 ln 1(lim 1--→x x x x (4)x x x e e x x x sin 2lim 0----→2.求函数133+-=x xy 在区间[-2,0]上的最大值和最小值.3.求函数12-+=x x x y 的拐点及凹或凸的区间.4.求函数496 23-+-=x x x y 的单调区间、极值、凹凸区间和拐点.四、证明题1.求证当0>x 时, )1ln(212x x x +<-.2.求证当1>x 时,1)1(2ln +->x x x .。

考研数学一:微分中值定理(37)(22题)

考研数学一:微分中值定理(37)(22题)
证明: 对于满足 α+ =1 的正数 α , , 在 (0 , 1) 内存在 相异两点 ξ , η , 使 解
f ' () f ' () 1
利用拉格朗日中值定理得
f ( ) f ( ) f (0) f ' ( ) , (0, ) f (1) f ( ) f ' ( )(1 ) , ( ,1) 1 f ( ) f ' ( )
说明:辅助函数导数可以和原方程相差一非零因子
例4 设 f (x) 可导, λ为任意实数, 则 f (x)的任意两个零
点之间, 必有 f ( x ) f ' ( x ) 的零点
解 设 x1< x2 是 f (x) 的任意两个零点,要证:存在
ξ(x1, x2) 使

f ( ) f ' ( ) 0
f ' () 0
y y 说明:
A B
2
1) 几何意义
0 o
a
b xx
2) 罗尔定理涉及了方程根的问题
例2 若 f (x)在 0, 1上连续, 在 (0,1)内可导, 且 f (1)=0 ,
则在 (0,1) 内存在点ξ, 使
f ' ( ) f

f ( ) f ' ( ) f ' ( ) f ( ) 0, (0,1)

[ xf ( x )]' x 0, (0,1)
取辅助函数 F ( x ) xf ( x ) ,则 F(x)在 0, 1上连续, 在 (0,1)内可导,且F(0) = F(1) = 0, 根据罗尔定理, 存在 ξ(0,1) , 使

3微分中值定理与导数的应用习题

3微分中值定理与导数的应用习题

第三章微分中值定理与导数的应用1 •函数y =x2 -1在L 1,1】上满足罗尔定理条件的匕=2、若f(x)=x3在1,2】上满足拉格朗日中值定理,则在(1,2 )内存在的匕=3. f(x)=x2+x-1在区间L1,1】上满足拉格朗日中值定理的中值匕=4•函数y = In(X +1诳区间0,1】上满足拉格朗日中值定理的匕=5•验证罗尔定理对函数y =1 n sin X在区间律—1上的正确性。

T 6」6.验证拉格朗日中值定理对函数y =4x' —5x2 +x-2在区间0,1】上的正确性。

7.对函数f(x) = sinx及F(x)=x+cosx在区间〔0,—1上验证柯西中值定理的正确性。

L 2」&试证明对函数y = px2 +qx + r应用拉格朗日中值定理时的求得的点总是位于区间的正中间。

9.证明下列不得等式: ⑴ arctanx -arctan y < x - y⑶当a汕>«¥<"¥10.用洛必达法则求下列极限:X _x⑵ lim e ~eT sin XIn R +丄]⑷ li%__¥—鈕 1arcta n —x⑸1x m1x1.1 -x1⑹ lim (cot X -一) T x(7)lim (cos X)⑻ ji m^x "(J x2+1 -X) ⑵当X A1时,e x;>e .XIn (1 +x)⑴lim T X⑶ lim 沁—sina X T x-asin X — xcosx2~;x sinx11. 确定下列函数的单调区间。

⑷ y =1 n(x +J 1 + x 212. 求下列函数图形的拐点及凹凸区间:⑷ y = In(x 2+1 )13. 禾U 用函数的单调性证明下列不等式:(11)lim(1-x)ta n 便'(2丿(12)tanx⑽ lim — - x -^l x「1 2 、—2x~e-1丿⑴ y = 2x 3-6x 2-18x -7⑵ y = 2x +8(X A O )x=x 3 -5x 2+3x +5/ \ -x⑵ y = xe= (x +1y +e x⑴当1 ,_______ x>0 时,1+ —x》u1+x2⑵当x>0 时,1+xl n(x+j1+x2)> J1 +x2⑶当兀 1 3 0cx£ —时,tanx〉x + -x2 314.列表讨论下列函数的单调区间,凹性区间,极值点与拐点。

微分中值定理例题

微分中值定理例题

理工大学微积分-微分中值定理费马定理罗尔定理拉格朗日定理柯西定理()()1.()0,(0)0,f x f f f ϕξξξξζξξξ'' <=>><≤[][]''''''[]<<≤1212121212121221112111211221设证明对任何的x 0,x0,有(x+x)(x)+f(x). 解:不妨设xx,(x)=f (x+x)-f(x)-f(x) =f(x+x)-f(x)-f(x)-f(0) =f()x-f()x=xf()-f()=xf-.因为,0xx()ξζϕ''<<<<2112x+x,又f0,所以(x)0,所以原不等式成立。

12n 12n 12n 11221122n 0011000.x b f x .x x x b 1,f )f x f x f x x *,()()()()n n n nni i i i i i i X b b x f x f x f x x x λλλλλλλχλχλχλλλλλ=='' >∀⋯⋯∈<<1++⋯+=++⋯+≤⋯=<=>α.'''=+-+∑∑2设f ()在(a ,)内二阶可导,且()0,,(a ,),0,,,且则,试证明(()+()++(). 解:设同理可证:()20000i 0011110000111()()()()().x 2!()()()()()(()()().)nn ni i i i i i i nni nniiiiiii i i i i i f x x f x f x x x f x f x f x f x x x f x X X x x f x f x λλλλξξλλλ=======⎛⎫''-'-≥+-<<'≥+-===- ⎪⎝⎭∑∑∑∑∑∑∑注:x()3.)tan.2F ,F 2(0)0,(0)0,((cos02F f xf F F f ππξξπξξππππππξ [0]0'∈=[0]0=∴===[0]∈设f(x)在,上连续,在(,)内可导,且f (0)=0,求证:至少存在(0,),使得2f ( 证明:构造辅助函数:(x)=f(x)tan 则(x)在,上连续,在(,)内可导,且))所以(x)在,上满足罗尔定理的条件,故由罗尔定理知:至少存在(0()()()()()()F 011F x cossin F cos sin 0222222cos0)tan22x x x f f f πξξξξξξξξξπξξ'=''''=- =-='∈≠=,),使得,而f(x)f()又(0,),所以,上式变形即得:2f (,证毕。

第03章微分中值定理与导数的应用习题详解

第03章微分中值定理与导数的应用习题详解

M 12丿」I 2丿第三章 微分中值定理与导数的应用习题3-11.解:(1)虽然 f(x)在[—1,1]上连续,f(—1) = f(1),且 f(x)在(—1,1)内可导。

可见,f(x)在[_1,1]上满足罗尔中值定理的条件,因此,必存在一点 匕€(-1,1),使得f 牡)=0,即:f(X)=cosx, F(X)=1 — sin X 且对任一 x 乏0,—】,F'(X)H 0, ”■. f (x),F (x)满足柯西 I 2丿中值定理条件。

—12©宀2=0,满足、; (2)虽然f(x)在[—1,1]上连续,f(_1)= f (1),但 f (x)在(—1,1)内 x = 0点不可导。

可 见,f (x)在[ —1,1]上不满足罗尔中值定理的条件,因此未必存在一点 £ £ (_1,1),使得 f 徉)=0. 2.因为函数是一初等函数,易验证满足条件 3 3 .解:令 y = 3arccos x - arccos(3x - 4x 3), y ‘ = 一 23 —12x 2厂工®®3)2,化简得 y'=0,「. y =c ( C 为常数),又 y(0.5)=兀,故当-0.5<x<0.5,有 y(x)=兀。

「兀f f 兀、 4 .证明:显然f(x), F(x)都满足在'|0,二I 上连续,在10,二 内可导L 2」 I 2丿 c oxsn ——x、、2丿F Q-F(O)12丿兀--1 2F( x) -1 sixn_c O 弓-x厂(X )_F(x) ZL"2 /兀 X ,,即 tan I - -- U--1,此时l 4 2丿 2f JI「兀X = 2 I — -arctan l — -1L 4l 2显然萨〔0,-〕,即丿」 I 2丿5.解:因为f(0) = f (1)= f (2) = f (3) =0,又因为f(x)在任一区间内都连续而且可导, 所以f (X)在任一区间 0,1 ], 1,2], [2,3]内满足罗尔中值定理的条件, 所以由罗尔定理,得:3" -(0,1), "^(1,2), ©-(2,3),使得:f 徉1 )= 0 r =) &:◎(=), 30 因为6.证明:设f(x) =0的n+1个相异实根为X o V X 1 <X 2 <H( <X n则由罗尔中值定理知:存在J (i =1,2,川n):X0 <:勺1cj ■<X2 vill <-1^Xn ,使得再由罗尔中值定理至少存在So =1,2,川n-1):上11 C 巴21 V ©2 吒 W ©3 V i 11 < J n d W G n ,使得7.解:反证法,倘若 p(X)=0有两个实根,设为X^X 2,由于多项式函数 p(x)在[X 1,X 2]上连续且可导,故由罗尔中值定理存在一点E€(X I ,X 2),使得P 徉)=0,而这与所设p'(x)=0没有实根相矛盾,命题得证。

微分中值定理的证明题

微分中值定理的证明题

证:将上等式变形得:
作辅助函数
f
(x)
由拉格朗日定理得:

f
1 eb b

(1) b 1
1
xe x
ba

11
ba
1 a
,则
f (1) a
1
ea
即: aeb bee (1 )e (a,b)


(1
f
1
e
1
1 b
ba
(x)
f
1

(1 )
)e

在[1
1
1
1
e
,
ba
1
f ( ) 1 f ( ) 1
f ()
1
5. 设 f (x) 在[0,2a]上连续, f (0) f (2a) ,证明在[0,a]上存在 使得
f (a ) f ( ) .
【分析】 f (x) 在[0,2a]上连续,条件中没有涉及导数或微分,用介值定理或根 的存在性定理证明。辅助函数可如下得到
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,通系电1,力过根保管据护线生高0不产中仅工资2艺料22高试2可中卷以资配解料置决试技吊卷术顶要是层求指配,机置对组不电在规气进范设行高备继中进电资行保料空护试载高卷与中问带资题负料2荷试2,下卷而高总且中体可资配保料置障试时2卷,32调需3各控要类试在管验最路;大习对限题设度到备内位进来。行确在调保管整机路使组敷其高设在中过正资程常料1工试中况卷,下安要与全加过,强度并看工且25作尽52下可22都能护可地1关以缩于正小管常故路工障高作高中;中资对资料于料试继试卷电卷连保破接护坏管进范口行围处整,理核或高对者中定对资值某料,些试审异卷核常弯与高扁校中度对资固图料定纸试盒,卷位编工置写况.复进保杂行护设自层备动防与处腐装理跨置,接高尤地中其线资要弯料避曲试免半卷错径调误标试高方中等案资,,料要编试求5写、卷技重电保术要气护交设设装底备备置。4高调、动管中试电作线资高气,敷料中课并设3试资件且、技卷料中拒管术试试调绝路中验卷试动敷包方技作设含案术,技线以来术槽及避、系免管统不架启必等动要多方高项案中方;资式对料,整试为套卷解启突决动然高过停中程机语中。文高因电中此气资,课料电件试力中卷高管电中壁气资薄设料、备试接进卷口行保不调护严试装等工置问作调题并试,且技合进术理行,利过要用关求管运电线行力敷高保设中护技资装术料置。试做线卷到缆技准敷术确设指灵原导活则。。:对对在于于分调差线试动盒过保处程护,中装当高置不中高同资中电料资压试料回卷试路技卷交术调叉问试时题技,,术应作是采为指用调发金试电属人机隔员一板,变进需压行要器隔在组开事在处前发理掌生;握内同图部一纸故线资障槽料时内、,设需强备要电制进回造行路厂外须家部同出电时具源切高高断中中习资资题料料电试试源卷卷,试切线验除缆报从敷告而设与采完相用毕关高,技中要术资进资料行料试检,卷查并主和且要检了保测解护处现装理场置。设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

微分中值定理题目

微分中值定理题目

例1设()x f '在[]b a ,上存在,且()()b f a f '<',而r 为()a f '与()b f '之间的任一值,则在()b a ,内存在一点ξ,使得()r f ='ξ[7].例2设()x f 在()+∞,a 内可导,且()()A x f x f x a x ==+∞→→+lim lim ,试证:至少存在一点 ()+∞∈,a ξ,使得()0='ξf [7].例3设函数()x f 在[]b a ,上可导,且()()0_<'⋅'+b f a f ,则在()b a ,内至少存在一个ξ,使得()0='ξf [7].例4()x f 在[]b a ,上连续,在()b a ,内二阶可导,且()()()b f c f a f ==,()b c a <<, 试证:至少存在一个()b a ,∈ξ,使得()0=''ξf [2].例5设()x f 在[]1,0上有三阶导数,()()010==f f ,设()()x f x x F 3=,证明:存在 ()1,0∈ξ使得()0='''ξF .例6设()x f 在[]b a ,上可微,且()x f 在a 点的右导数()0<'+a f ,在b 点的左导数 ()0<'-b f ,()()c b f a f ==,证明:()x f '在()b a ,内至少有两个零点.例7设()x f 在R 上二次可导,()0>''x f ,又存在一点0x ,使()00<x f ,且 ()0lim <='-∞→a x f x ,()0lim >='+∞→b x f x ,证明:()x f 在R 上有且仅有两个零点. 例8()[]1,0在x f 上二次可导,()()010==f f ,试证明:存在()1,0∈ξ,使得()()()ξξξf f '-=''211[4].例9设()[]1,0在x f 上连续,在()1,0上可导, ()()010==f f ,121=⎪⎭⎫ ⎝⎛f .证明: 至少存在一点()1,0∈ξ使得()1='ξf .例10设函数()x f 在闭区间[]b a ,上连续,在开区间()b a ,上二次可微,连结()()a f a ,与()()b f b ,的直线段与曲线()x f y =相交于()()c f c ,,其中b c a <<.证明在()b a ,上至少存在一点ξ,使得()0=''ξf [1].例11设()x f 在[]b a ,上连续,在()b a ,内可导,且()()1==b f a f 试证:存在ξ, ()b a ,∈η使得 ()()[]1='+-ηηξηf f e [1].例12 设函数()x f 在[]b a ,上连续,在()b a ,上二阶可微,并且()()b f a f =,证明:若存在点()b a c ,∈,使得()()a f c f >,则必存在点()b a ,,,∈ζηξ,使得()0>'ξf ,()0<'ηf ,()0<''ζf [6].例13设()x f 定义在[]1,0上,()x f '存在且()x f '单调递减,()00=f ,证明: 对于 10≤+≤≤≤b a b a ,恒有()()()b f a f b a f +≤+.例14 设()x f 在[]b a ,上连续,在()b a ,可导,b a <≤0,()()b f a f ≠.证明:存在η,()b a ,∈ξ,使得()()ηηξf b a f '+='2 [6]. 例15 设()x f 在[]b a ,上连续,在()b a ,可导,且()0≠'x f ,试证:存在η,()b a ,∈ξ,使得()()ηηξ---=''e ab e e f f ab [1]. 例16设函数()x f 在[]b a ,上连续,在()b a ,可导,证明:存在()b a ,∈ξ,使得()()()()ξξξf f ab a af b bf '+=--[1]. 例17设()[]b a x f ,在上连续()0>a ,在()b a ,可导,证明:在()b a ,内存在ξ,η,使()()ab f f ηηξ'='2[1].例18 设()[]b a x f ,在上连续,在()b a ,内可微,0>>a b ,证明:在()b a ,内存在321,,x x x ,使得()()()()33223222211ln42x f x a b a b x x f a b x x f '-='+='. (3) 例19设()x f 在()b a ,内二次可微,试用柯西中值定理证明:任意x ,()b a x ,0∈,存在ξ在x 与0x 之间,使()()()()()()2000021x x f x x x f x f x f -''+-'+=ξ成立[6]. (8)。

数学分析简明教程答案数分5_微分中值定理及其应用

数学分析简明教程答案数分5_微分中值定理及其应用

壹第五章微分中值定理及其应用第一节微分中值定理331231.(1)30()[0,1];(2)0(,,),;(1)[0,1]30[0,1]()3nx x c c x px q n p q n n x x c x x f x x x c证明:方程为常数在区间内不可能有两个不同的实根方程为正整数为实数当为偶数时至多有两个实根当为奇数时,至多有三个实根。

证明:设在区间内方程有两个实根,即有使得函数值为零012023(,)[0,1],'()0.'()33(0,1)(3,0)30()[0,1] (2)2220nx x x f x f x x x x c c n n k x px q x 。

那么由罗尔定理可知存在使得 但是在内的值域为是不可能有零点的,矛盾。

因此有:方程为常数在区间内不可能有两个不同的实根。

当时,方程至多只可能有两个实根,满足所证。

当时,设方程有三个实根,即存在实数1230112022301021010110202()0(,),(,),'()'()0,'()0(*'()0n n n x x f x x px q x x x x x x f x f x f x nx p f x nx p使得函数成立。

那么由罗尔定理可知存在使得即0010220000102),(,),''(0)0,''()(1)0,0,0,0.2(*).212n nx x x f f x n n x x x x n k p n n k x px q 再次利用罗尔定理可以知道,存在使得即显然必有那么就有 那么由于为偶数,可以知道此时不存在满足式的实数因此当为偶数时方程至多有两个实根。

当时,设方程1234111212231334111213111110()0(,),(,),(,)'()0,'()0,'()0,'()0'(nn x x x x f x x px q x x x x x x x x x f x f x f x f x nx p f x 有三个实根,即存在实数使得函数成立。

微分中值定理的证明题660

微分中值定理的证明题660

微分中值定理的证明题1.若在上连续,在上可导,,证明:,使得:。

证:构造函数,则在上连续,在内可导,且,由罗尔中值定理知:,使即:,而,故。

2.设,证明:,使得。

证:将上等式变形得:作辅助函数,则在上连续,在内可导,由拉格朗日定理得:,即,即:。

3.设在内有二阶导数,且,有证明:在内至少存在一点,使得:。

证:显然在上连续,在内可导,又,故由罗尔定理知:,使得又,故,于是在上满足罗尔定理条件,故存在,使得:,而,即证4.设函数在[0,1]上连续,在(0,1)上可导,,.证明:(1)在(0,1)内存在,使得.(2)在(0,1)内存在两个不同的点,【分析】第一部分显然用闭区间上连续函数的介值定理;第二部分为双介值问题,可考虑用拉格朗日中值定理,但应注意利用第一部分已得结论.【证明】(I)令,则F(x)在[0,1]上连续,且F(0)=-1<0, F(1)=1>0,于是由介值定理知,存在存在使得,即.(II)在和上对f(x)分别应用拉格朗日中值定理,知存在两个不同的点,使得,于是5.设在[0,2a]上连续,,证明在[0,a]上存在使得.【分析】在[0,2a]上连续,条件中没有涉及导数或微分,用介值定理或根的存在性定理证明。

辅助函数可如下得到【证明】令,.在[0,a]上连续,且当时,取,即有;当时,,由根的存在性定理知存在使得,,即.6.若在上可导,且当时有,且,证明:在内有且仅有一个点使得证明:存在性构造辅助函数则在上连续,且有,,由零点定理可知:在内至少存在一点,使得,即:唯一性:(反证法)假设有两个点,且,使得在上连续且可导,且在上满足Rolle定理条件必存在一点,使得:即:,这与已知中矛盾假设不成立,即:在内仅有一个根,综上所述:在内有且仅有一个点,使得7.设在[0,1]上连续,在(0,1)内可导,且==0,=1。

试证至少存在一个(0,1),使=1。

分析:=1=1=x=0令()=证明:令F()=()在[0,1]上连续,在(0,1)内可导,(1)=()=由介值定理可知,一个(,1),使()=0又(0)=0=0对()在[0,1]上用Rolle定理,一个(0,)(0,1)使=0即=18.设在上连续,在内可导,且试证存在和.满足,使。

各种中值定理习题

各种中值定理习题

题目1证明题 一般。

使,内至少存在一点上正值,连续,则在在设⎰⎰⎰==bbdx x f dx x f dx x f b a b a x f aa)(21)()( ),( ],[ )(ξξξ解答_从而原式成立。

又即使在一点由根的存在性定理,存时,由于证:令⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰=+=+===∈>=<-=∴>∈-=ξξξξξξξξξ aaaaaaa xa)(2)()()()()()()(0) F(b)(a, 0)()(0)()(0)( ],[)()()(dxx f dxx f dx x f dxx f dx x f dt t f dtt f dt t f dt t f b F dt t f a F x f b a x dtt f dt t f x F bbb bbbbxQ题目2证明题 一般。

证明且上可导在设2)(2)(:,0)(,)(,],[)(a b Mdx x f a f M x f b a x f b a -≤=≤'⎰解答_。

有由定积分的比较定理又则微分中值定理上满足在由假设可知证明2)(2)()( , )()( ),( M ,(x)f x)(a, ))(( )()()( , ],[)(),(,:a b Mdx a x M dx x f a x M x f b a x a x f a f x f x f x a x f b a x b a b a -=-≤-≤∴∈∀≤'∈-'=-=∈∀⎰⎰ ξξ题目16证明题。

证明:上连续,,在设⎰⎰-+=>aadx x a f x f dx x f a a x f 02 0)]2()([)( )0( ]2,0[ )(解答_。

,则令由于⎰⎰⎰⎰⎰⎰⎰-+=-+=-=-=+=a aaaaaaadx x a f x f dtt a f dx x f dx x f dtdx t a x dxx f dx x f dx x f 02 02 02 0)]2()([ )2( )( )(2)()()(题目5证明题。

中值定理与微分方程的联系

中值定理与微分方程的联系

中值定理与微分方程的联系(考研专用小资料)已知,f,g在[a,b]上连续,在(a,b)内二阶可导且存在相等的最大值,f(a)=g(a),f(b)=g(b)证明:存在ξ∈(a,b),使得f"(ξ)-f(ξ)=g"(ξ)-g(ξ).这是07数学一19题的改编,难度增大了不少。

下面我们考虑更一般的情况:一般涉及二阶中值定理的问题都需要某函数的3个零点作为过渡,比如本题。

我曾经考虑过如下形式:f(x)在[a,b]上连续,在(a,b)内2阶可导,f(a)=f(b)=f(c)=0,a<c<b证明:存在ξ∈(a,b),使得f"(ξ)+pf'(ξ)+qf(ξ)=0,其中p,q为常数且(△=p^2-4q≥0-----这是后加的条件,以下都默认这一条件).我试图找出该问题更一般的的证明方法(自然,流畅),但最后都失败了。

直到一次偶然翻到张筑生老师的《数学分析新讲》(我最爱的数分书)第一册高阶常系数微分方程部分,受到启发从而找到了一般的解法。

传统的高数中在二阶常微分方程y"+py'+qy=0(*)部分,通过观察指数函数exp(λx)的求导性质来推断它是(*)的解,从而得到一般解的表达公式。

但这更象逆解法,要求高了点。

能否直接通过直接积分来求解呢?-----当然可以。

对于一阶线性方程已经获解,对于2阶常系数微分方程:记r^2+pr+q=0的两个根为λ1,λ2。

引入微分算子D=d/dx,则(*)等价于(D^2+pD+q)y=0,由此得到(D-λ1)(D-λ2)y=0,令L=(D-λ2)y -----(1),则(D-λ1)L=0 -----(2),从(2)可以解出L,再代入(1)可求出y.*****中值定理与微分方程关系紧密,比如1阶形式f'(ξ)+N(ξ)f(ξ)=0-----(3).可化为微分方程f'(x)+N(x)f(x)=0,分离变量,再积分得,f(x)=exp[-∫N(x)dx]移项得f(x)exp[∫N(x)dx]=1-----(4),对(4)求导可以得到(3),对于多数情况可以直接设辅助函数F(x)=f(x)exp[∫N(x)dx]-----(5),一般只需在验证f(x)有2个零点即可。

数学分析6微分中值定理及其应用总练习题详解

数学分析6微分中值定理及其应用总练习题详解

第六章 微分中值定理及其应用总练习题1、证明:若f(x)在(a,b)内可导,且+→a x lim f(x)=-→b x lim f(x),则至少存在一点ξ∈(a,b),使f ’(ξ)=0.证:定义f(a)=+→a x lim f(x),f(b)=-→b x lim f(x),则f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b),由罗尔中值定理知 至少存在一点ξ∈(a,b),使f ’(ξ)=0.2、证明:若x>0,则 (1)1x +-x =θ(x)x 21+,其中41<θ(x)<21;(2)0x lim →θ(x)=41,+∞→x lim θ(x)=21. 证:(1)由拉格朗日中值定理得:1x +-x =θ(x)x 21+, (0<θ(x)<1),∴θ(x)x 2+=x1x 1-+=1x ++x ,∴θ(x)=41+21[1)x(x +-x].∵1)x(x +-x>2x -x=0,∴41+21[1)x(x +-x]>41; 又1)x(x +-x=x1)x(x x ++<xx x 2+=21,∴41+21[1)x(x +-x] <21.∴41<θ(x)<21.(2)(1)中已证θ(x)=41+21[1)x(x +-x],∴0x lim →θ(x)=0x lim →{41+21[1)x(x +-x]}=41; +∞→x lim θ(x)=+∞→x lim {41+21[1)x(x +-x]}=41+21+∞→x lim 1x111++=21.3、设函数f 在[a,b]上连续,在(a,b)内可导,且ab>0. 证明: 存在ξ∈(a,b),使得f(b)f(a)b ab -a 1=f(ξ)- ξf ’(ξ).证:记F(x)=xf (x),G(x)=x 1,根据柯西中值定理,存在ξ∈(a,b),使得)(G )(F ξξ''=G(a)-G(b)F(a)-F(b),又)(G )(F ξξ''=f(ξ)- ξf ’(ξ),∴f(ξ)- ξf ’(ξ)=G(a)-G(b)F(a)-F(b).又f(b)f(a)b a b -a 1=b -a bf (a)-af (b)=a1-b 1a f(a)-bf(b)=G(a)-G(b)F(a)-F(b), ∴f(b)f(a)b ab -a 1=f(ξ)- ξf ’(ξ).4、设函数f 在[a,b]上三阶可导,证明: 存在ξ∈(a,b),使得f(b)=f(a)+21(b-a)[f ’(a)+f ’(b)]-121(b-a)3f ”’(ξ). 证:记F(x)=f(x)-f(a)-21(x-a)[f ’(x)+f ’(a)],G(x)=(x-a)3,则 F,G 在[a,b]上二阶可导,F ’(x)=f ’(x)-21[f ’(x)+f ’(a)]-21(x-a)f ”(x),G ’(x)=3(x-a)2,F ”(x)=f ”(x)-21f ”(x)-21f ”(x)-21(x-a)f ’”(x)=-21(x-a)f ’”(x);G ”(x)=6(x-a).且F(a)=F ’(a)=0,G(a)=G ’(a)=0.根据柯西中值定理,存在η∈(a,b),使得)(G )(F ηη''=G(a)-G(b)F(a)-F(b)=G(b)F(b)=3a)-(b ](a)f (b)f )[a -b (21-f(a)-f(b)'+', 又根据柯西中值定理,存在ξ∈(a, η),使得)(G )(F ξξ''''=(a)G -)(G (a)F -)(F ''''ηη=)(G )(F ηη'',又)(G )(F ξξ''''=a)-6()(f )a (21-ξξξ'''-=-121f ”’(ξ).∴3a)-(b ](a)f (b)f )[a -b (21-f(a)-f(b)'+'=-121f ”’(ξ). ∴f(b)=f(a)+21(b-a)[f ’(a)+f ’(b)]-121(b-a)3f ”’(ξ).5、对f(x)=ln(1+x)应用拉格朗日中值定理,证明: 对x>0,有0<x)ln(11+-x1<1.证:f ’(x)=x11+. 对f 在区间[0,x]应用拉格朗日中值定理得: f ’(ξ)=0-x f (0)-f (x)=x ln1-x)ln(1+= x x)ln(1+,∴ln(1+x)=xf ’(ξ)=ξ1x+. ∴x)ln(11+=x ξ1+=x 1+x ξ;即x)ln(11+-x 1=xξ.又0<xξ<1,∴0<x)ln(11+-x1<1.6、设a 1,a 2,…,a n 为n 个正实数,且f(x)=(na a a x n x 2x 1+⋯++)x1. 证明:(1)0x lim →f(x)=nx n x 2x 1a ··a ·a ⋯;(2)∞→x lim f(x)=max{a 1,a 2,…,a n }. 证:(1)0x lim →f(x)=e na a a ln x 1lim x n x 2x 10+⋯++→x = exn x 2x 1nx n 2x 21x 10a a a a ln a a ln a a ln a lim+⋯+++⋯++→x= ena ln a ln a ln n21+⋯++=n xn x 2x 1a ··a ·a ⋯. (2)记A=max{a 1,a 2,…,a n },则0<Aa k≤1, (k=1,2,…,n)∵f(x)=A[n)A a()A a ()Aa (x n x 2x 1+⋯++]x 1,∴A(n 1)x 1<f(x)≤A , 又∞→x lim A(n1)x1=A ,∴∞→x lim f(x)=A=max{a 1,a 2,…,a n }.7、求下列极根: (1)=→1x lim (1-x 2)x)-ln(11;(2)2xx x x)ln(1-xe lim+→;(3)sinxx 1sinx lim20x →.解:(1)=→1x lim (1-x 2)x)-ln(11=e)x 1ln()x 1ln(lim21x --=→= e21x x1)x 1(x 2lim--=→=ex 1x 2lim1x +=→=e.(2)2x 0x x x)ln(1-xe lim +→=2xx 11-xe e lim xx0x ++→=2x)(11xe 2e lim 2x x 0x +++→=23. (3)sinxx 1sinx lim20x →=)sinx x ·x 1sin x (lim 0x →=)x 1sin x (lim 0x →·sinx x lim 0x →=0·1=0.8、设h>0,函数f 在U(a,h)内具有n+2阶连续导数,且f (n+2)(a)≠0, f 在U(a,h)内的泰勒公式为:f(a+h)=f(a)+f ’(a)h+…+n!)a (f (n)h n +1)!(n )θh a (f 1)(n +++h n+1, 0<θ<1.证明:θlimh →=2n 1+. 证:f 在U(a,h)内带皮亚诺型余项的n+2阶泰勒公式为:f(a+h)= f(a)+f ’(a)h+…+n!)a (f (n)h n +1)!(n )a (f 1)(n ++h n+1+2)!(n )a (f 2)(n ++h n+2+o(h n+2),与题中所给泰勒公式相减得:1)!(n )a (f )θh a (f 1)(n 1)(n +-+++h n+1=2)!(n )a (f 2)(n ++h n+2+o (h n+2).∴1)!(n θ+·θh )a (f )θh a (f 1)(n 1)(n ++-+=2)!(n )a (f 2)(n +++2n 2n h )h (++o .令h →0两端取极限得:1)!(n )a (f 2)(n ++θlim 0h →=2)!(n )a (f 2)(n ++,∴θlim 0h →=2n 1+.9、设k>0,试问k 为何值时,方程arctanx-kx=0存在正根.解:若方程arctanx-kx=0有正根x 0,∵f(x)=arctanx-kx 在[0,x 0]上可导, 且f(0)=f(x 0)=0,由罗尔中值定理知,存在ξ∈(0,x 0),使得 f ’(ξ)=2ξ11+-k=0. 可见0<k<1. 反之,当0<k<1时,由f ’(x)=2x11+-k 连续,f ’(0)=1-k>0, ∴存在某邻域U(0,δ),使得在U(0,δ)内,f ’(x)>0,f(x)严格递增, 从而存在a>0,使f(a)>f(0)=0. 又+∞→x lim f(x)=-∞,∴存在b>a ,使f(b)<0, 由根的存在定理知,arctanx-kx=0在(a,b)内有正根. ∴当且仅当0<k<1时,原方程存在正根.10、证明:对任一多项式p(x)来说,一定存在点x 1与x 2,使p(x)在(x 1,+∞)与(-∞,x 2)上分别严格单调.证:设p(x)=a 0x n +a 1x n-1+…+ a n-1x+a n ,其中a 0≠0,不妨设a 0>0. 当n=1时,p(x)=a 0x+a 1,p ’(x)=a 0>0,∴p(x)在R 上严格增,结论成立. 当n ≥2时,p ’(x)=na 0x n-1+(n-1)a 1x n-2+…+ a n-1,若n 为奇数,则∞→x lim p ’(x)=+∞,∴对任给的G>0,存在M>0,使 当|x|>M 时,有p ’(x)>G>0,取x 1=M ,x 2=-M ,则 p(x)在(x 1,+∞)与(-∞,x 2)上均严格增.若n 为偶数,则+∞→x lim p ’(x)=+∞,-∞→x lim p ’(x)=-∞, ∴对任给的G>0,存在M>0,使当x>M 时,有p ’(x)>G>0,当x<-M 时,p ’(x)<-G<0,取x 1=M ,x 2=-M , 则p(x)在(x 1,+∞)上严格增,在(-∞,x 2)上严格减. 综上原命题得证。

第三章 微分中值定理和导数的应用习题66道

第三章 微分中值定理和导数的应用习题66道

第三章 微分中值定理和导数的应用3.1 验证罗尔定理对函数21x y -=在区间]1,1[-上的正确性。

3.2 验证罗尔定理对函数x y sin ln =在区间⎥⎦⎤⎢⎣⎡65,6ππ上的正确性。

3.3 不用求函数)4)(3)(2)(1()(----=x x x x x f 的导数,说明0)(/=x f 有几个实根,并指出它们所在的区间。

3.4 试证明对函数r qx px y ++=2应用拉格朗日中值定理时所求得的点ξ总是位于区间的正中间。

3.5 验证担格朗日定理对于函数x x f arctan )(=在区间[0,1]上的正确性。

3.6 对函数3)(x x f =及1)(2+=x x g 在区间[1,2]上验证柯西中值定理的正确性。

3.7 对函数x x f sin )(=,x x g cos )(=在区间⎥⎦⎤⎢⎣⎡2,0π验证柯西中值定理的正确性。

3.8 对函数2)(x x f =,x x g =)(在区间[1,4]上验证柯西中值定理的正确性。

3.9 试证当⎪⎭⎫ ⎝⎛-∈2,2ππx 时,|tan |||x x ≤(等号只有在0=x 时成立)。

3.10 证明下列不等式:(1)b a b a -≤-arctan arctan ;(2)y x y x -≤-sin sin ;(3))()(11y x nx y x y x ny n n n n -<-<--- (y x n >>,1);(4)如果20παβ<≤<,试证:αβαβαββα22cos tan tan cos -≤-≤-; (5)设0>n ,试证:1111arctan 1arctan 1)1(122+<+-<++n n n n 。

3.11 试证:21arctan arcsin xx x -= (11<<-x )。

3.12 若k x f =)(/,k 为常数,试证:b kx x f +=)(。

微分中值定理有关证明

微分中值定理有关证明

☆例1 设)(x f 在[0,3]上连续,在(0,3)内可导,且3)2()1()0(=++f f f ,1)3(=f .试证:必存在)3,0(∈ξ,使()0f ξ'=证:∵ )(x f 在[0,3]上连续,∴ )(x f 在[0,2]上连续,且有最大值和最小值.于是M f m ≤≤)0(;M f m ≤≤)1(;M f m ≤≤)2(,故M f f f m ≤++≤)]2()1()0([31. 由连续函数介值定理可知,至少存在一点[0,2]c ∈使得1)]2()1()0([31)(=++=f f f c f ,因此)3()(f c f =,且)(x f 在[,3]上连续,(,3)内可导,由罗尔定理得出必存在)3,0()3,(⊂∈c ξ使得()0f ξ'=。

☆例2 设)(x f 在[0,1]上连续,(0,1)内可导,且⎰=132)0()(3f dx x f求证:存在)1,0(∈ξ使0)('=ξf证:由积分中值定理可知,存在2[,1]3c ∈,使得⎰-=132)321)(()(c f dx x f得到 ⎰==132)0()(3)(f dx x f c f对)(x f 在[0,c]上用罗尔定理,(三个条件都满足) 故存在)1,0(),0(⊂∈c ξ,使()0f ξ'=☆例3 设)(x f 在[0,1]上连续,(0,1)内可导,对任意1>k ,有⎰-=k x dx x f xe k f 11)()1(,求证存在)1,0(∈ξ使1()(1)()f f ξξξ-'=-证:由积分中值定理可知存在1[0,]c k∈使得)01)(()(1101-=--⎰k c f ce dx x f xe ck x令)()(1x f xex F x-=,可知)1()1(f F =这样1110(1)(1)()()()x c k F f kxe f x dx ce f c F c --====⎰,对)(x F 在]1,[c 上用罗尔定理(三个条件都满足)存在)1,0()1,(⊂∈c ξ,使()0F ξ'= 而111()()()()xx x F x ef x xe f x xe f x ---''=-+∴ 11()[()(1)()]0F ef f ξξξξξξ-''=--=又01≠-ξξe,则1()(1)()f f ξξξ'=-在例3的条件和结论中可以看出不可能对)(x f 用罗尔定理,否则结论只是()0f ξ'=,而且条件也不满足。

微分中值定理与导数的应用练习题

微分中值定理与导数的应用练习题

题型1.利用极限、函数、导数、积分综合性的使用微分中值定理写出证明题2.根据极限,利用洛比达法则,进行计算3.根据函数,计算导数,求函数的单调性以及极值、最值4.根据函数,进行二阶求导,求函数的凹凸区间以及拐点5.根据函数,利用极限的性质,求渐近线的方程内容一.中值定理 1.罗尔定理 2.拉格朗日中值定理 二.洛比达法则一些类型(00、∞∞、∞•0、∞-∞、0∞、00、∞1等) 三.函数的单调性及极值 1.单调性 2.极值四.函数的凹凸性及拐点 1.凹凸性 2.拐点五.函数的渐近线 水平渐近线、垂直渐近线典型例题题型I 方程根的证明题型II 不等式(或等式)的证明题型III 利用导数确定函数的单调区间及极值 题型IV 求函数的凹凸区间及拐点自测题三一.填空题 二.选择题 三.解答题4月13日微分中值定理及导数应用练习题基础题: 一.填空题1.函数12-=x y 在[]1,1-上满足罗尔定理条件的=ξ 。

3.1)(2-+=x x x f 在区间[]1,1-上满足拉格朗日中值定理的中值ξ= 。

4.函数()1ln +=x y 在区间[]1,0上满足拉格朗日中值定理的=ξ 。

5.函数x x f arctan )(=在]1 ,0[上使拉格朗日中值定理结论成立的ξ是 .6.设)5)(3)(2)(1()(----=x x x x x f ,则0)(='x f 有 个实根,分别位于区间 中.7. =→x x x 3cos 5cos lim 2π35-8.=++∞→xx x arctan )11ln(lim0 9.)tan 11(lim 2x x xx -→=3110.0lim(sin )x x x +→=1二. 选择题1.罗尔定理中的三个条件:)(x f 在],[b a 上连续,在),(b a 内可导,且)()(b f a f =,是)(x f 在),(b a 内至少存在一点ξ,使0)(='ξf 成立的( ).A . 必要条件B .充分条件C . 充要条件D . 既非充分也非必要条件2.下列函数在]1 ,1[-上满足罗尔定理条件的是( ).A. x e x f =)(B. ||)(x x f =C. 21)(x x f -=D.⎪⎩⎪⎨⎧=≠=0,00 ,1sin )(x x xx x f 3.若)(x f 在),(b a 内可导,且21x x 、是),(b a 内任意两点,则至少存在一点ξ,使下式成立( ).A . ),()()()()(2112b a f x x x f x f ∈'-=-ξξB . ξξ)()()()(2121f x x x f x f '-=-在12,x x 之间C . 211221)()()()(x x f x x x f x f <<'-=-ξξD . 211212)()()()(x x f x x x f x f <<'-=-ξξ4.下列各式运用洛必达法则正确的是( B )A . ==∞→∞→n n n n n en ln limlim11lim=∞→n n eB . =-+→x x x x x sin sin lim∞=-+→xxx cos 1cos 1lim 0C . x x x x x x x x x cos 1cos1sin 2lim sin 1sinlim020-=→→不存在D . x x e x 0lim →=11lim 0=→xx e5. 在以下各式中,极限存在,但不能用洛必达法则计算的是( C )A .xx x sin lim20→ B .x x xtan 0)1(lim +→ C .x xx x sin lim+∞→ D . xnx e x +∞→lim综合题: 三.证明题1.验证罗尔定理对函数x y sin ln =在区间⎥⎦⎤⎢⎣⎡65,6ππ上的正确性。

与微分中值定理有关的几个问题

与微分中值定理有关的几个问题

与微分中值定理有关的几个问题Intro:有界性,最值定理,介值定理,零点定理,平均值定理。

以下定理(除1外)均需要开区间可导,闭区间连续。

不妨设(a,b)内可导,[a,b]内连续。

1.费马引理(Fermat Lemma):设f(x)在 x_{0} 的某邻域内有定义,且f(x)≥(≤)f( x_{0}),f(x)在 x_{0} 处可导,则 f^{,}(x_{0})=0 (即最值处导函数为0)证: f^{,}(x_{0})=\lim_{x \rightarrow0}{\frac{f(x_{0}+x)-f(x_{0})}{x}}当x从左侧趋近于0,则 f^{,}(x_{0})=f_{-}^{,}(x_{0})≥0;当x从右侧趋近于0,则 f^{,}(x_{0})=f_{-}^{,}(x_{0})\leq0 ;又因为f(x)在 x_{0} 处可导,根据可导的充要条件知:f_{-}^{,}(x_{0}),f_{+}^{,}(x_{0}) 存在且相等,即证。

2.罗尔中值定理(Rolle mean value Theorem):f(a)=f(b),则存在c∈(a,b),使得 f^{,}(c)=0证明:①若最大值M=最小值m,则f(x)为常值函数,即证;②若M≠m,因为f(a)=f(b),所以M,m中至少一个不会等于f(a),不妨设M≠f(a),因为f(c)=M为最大值,c∈(a,b),所以f(x)≤f(c),据费马引理即证。

罗尔定理的推论:若函数n阶导非零,则此函数最多n个零点。

证明:反证法。

3.拉格朗日中值定理(Lagrange's Mean Value Theorem):至少存在一点c∈(a,b),使得 f^{,}(c)=\frac{f(b)-f(a)}{b-a}证:令F(x)=f(x)- \frac{f(b)-f(a)}{b-a}x 或 F(x)=f(x)-f(a)- \frac{f(b)-f(a)}{b-a}(x-a) ,易知F(a)=F(b),且F(x)在(a,b)内可导,[a,b]内连续。

微分中值定理的证明题

微分中值定理的证明题

微分中值定理的证明题1. 若 f(x)在[a,b ]上连续,在(a,b)上可导,f(a)= f(b) = O ,证明:V/I G R,3^e(a,b)使得:f ,(^)+2f(<?) = 0o证:构造函数F(x)= f(x)e ax ,则F(x)在[a,b ]上连续,在(a,b)内可导,且F(a) = F(b) = 0 ,由罗尔中值定理知:3^e(a,b),使F® = 0即:[F©+;lf©]e"=O,而e“H0,故 f'GD+2f(® = 0。

2. 设 a,b >0 ,证明:3^G (a,b),使得 ae b - be* = (1 - (a - b) <»1 1 £ i T , T1 1 1证:将上等式变形得:±e^--e* =(1-^(---) b ab aLi 1 i 1作辅助函数f(x) = xes 则f(x)在[「—]上连续,在(门―)内可导,b a b a由拉格朗H 定理得:即:a 』一be'= (1 — 4)e'(a 、b)^e(a b 严3. 设 f(x)在(0,1)内有二阶导数,且 f(l) = 0,有 F(x) = x 2f(x)证明:在(0,1) 内至少存在一点?,使得:F M(^) = 0« 证:显然F(x)在[0,1]上连续,在(0,1)内可导,乂 F(0) = F(l) = 0,故由罗尔 定理知:Bxo e(0,1),使得F ,(x o ) = O又F ,(x) = 2xf(x) + x 2f ,(x),故F'(0) = 0,于是F'(x)在[0, xj 上满足罗尔 定理条件,故存在矗(0,况),使得:F”GD=O,而兵(0,观)U (0,1),即证4. 设函数f(x)在[0,1]上连续,在(0,1)上可导,f(0) = 0 , f(l) = l.证明:1. _ £ b a b a1 -bG 1 - rs(1)在(0,1)内存在?,使得询=1-歹.(2)在(0, 1)内存在两个不同的点J , H吏得玖6玖〃)=1【分析】第一部分显然用闭区间上连续函数的介值定理:第二部分为双介值问题,可考虑用拉格朗II中值定理,但应注意利用第一部分已得结论.【证明】(I)令F(x)= f(x)-l+x,则F(x)在[0,1]上连续,且F(0)=-l<0, F ⑴=1X),于是由介值定理知,存在存在e (0J),使得F(^) = 0,即f(^) = l-^.(D)在[0,幻和[笄]上对f(x)分别应用拉格朗FI中值定理,知存在两个不同的点血(0,幻,和(舁),使得f'(〃)= 缪,f©=号一¥ 歹一。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

与微分中值定理有关的证明题
一.利用罗尔定理
1.()f x 在[0 ,1]上有二阶导数,且(1)0f = ,又2()()F x x f x = ,
求证:在(0 ,1)内至少存在一点x ,使()0F x ⅱ
= 2.()f x 在[0 ,1]上连续,在(0 ,1)内可导 ,且(1)0f = ,求证:在(0 ,1)内 至少存在一点x ,使()()0f f x x x ¢+=
3.()f x 在[a ,b]上连续,在(a , b )内可导,且()()0f a f b == ,l 为某个常数,
求证:在(a , b )内至少存在一点x ,使()()0f f l x x ¢
+= 4.()f x 在[a ,b]上连续,在(a , b )内可导,且()()0f a f b == ,l 为某个常数, 求证:在(a , b )内至少存在一点x ,使()()0f f x x x ¢+=
5.()f x ,()g x 在[a ,b]上连续,在(a , b )内可导,且()()0f a f b ==
求证:在(a , b )内至少存在一点x ,使()()()()0f g f g x x x x ⅱ
+= 6.()f x ,()g x 在[a ,b]上连续,在(a , b )内可导,且()()0f a f b == , 对于任一点x Î[a , b] ,()0g x ¹ ,求证:在(a , b )内至少存在一点x ,
使()()()()0f g f g x x x x ⅱ
-= 7.()f x ,()g x 在[a ,b]上连续,在(a , b )内可导,且()()0f a f b ==
求证:在(a , b )内至少存在一点x ,使()()()0f f g x x x ⅱ
+= 8.()f x 在[a ,b]上连续,在(a , b )内可导,且()()f a f b = , 求证:在(a , b )内至少存在一点x ,使()()()f a f f x x x ¢-= 9.()f x 在[1 ,2]上连续,在(1 ,2)内可导,且1(1)2
f = ,(2)2f =,
求证:在(1 , 2)内至少存在一点x ,使2()()f f x x x
¢=
二.利用拉格朗日中值定理
1.当1||2x £,证明:2
3arccos arccos(34)x x x p --=
2.02
p a b <<<
时,证明:
2
2
tan tan cos cos b a b a b a a
b
--<-<
3.0x >时,求证:2
arctan 1x x x x
<<+
4.0a b <<,求证:b a
b a
b a
b e e
a
--<
<
5.()f x 在[a ,b]上连续,在(a , b )内可导,()()f a f b =,且()f x 在[a , b]上 不为常数,求证:在(a , b )内至少存在一点x ,使()0f x ¢>
6.()f x 在[a ,b]上连续,在(a , b )内二阶可导,()()f a f b ==0,()0f c >(a c b <<),
求证:在(a , b )内至少存在一点x ,使()0f x ⅱ
<
7.0x >

11()4
2
x q <<

并求0
lim ()x x q +
®与lim ()x x q ?
三.利用柯西中值定理
1.0a b <<,求证:在(a ,b )内至少存在一点x ,使(1)()b
a
ae be e b a x
x -=-- 2.0a b <<,()f x 在[a ,b]上连续,在(a , b )内可导,求证:在(a ,b )内至少 存在一点x ,()()()ln b f b f a f a
x x ¢-=
四.综合题
1.()f x 在[0 ,1]上连续,在(0 ,1)内可导 ,且(0)(1)0f f ==,12
()1f =, 求证:在(0 ,1)内至少存在一点x ,使()1f x ¢=
2.()f x 在[a ,b]上连续,在(a , b )内有二阶导数,连接点(a , ()f a ) 与点(b ,()f b )的直线段交曲线()y f x =于点(c ,()f c ),a c b <<,
求证:在(a ,b )内至少存在一点x ,使()0f x ⅱ
= 3.()f x ¢在[0 , c]上单调减少,且(0)0f =,证明:对于满足0a b a b c <<<+<中 的a 与b ,恒有()()()f a f b f a b +<+
4.()f x 在[0 ,1]上连续,在(0 ,1)内可导 ,且(0)0,(1)1f f ==, 求证:任给正数a 与b ,在(0,1)内必存在1x 与2x ,使
12()
()
a b a b f x f x +
=+ⅱ
5.0a b <<,()f x 在[a ,b]上连续,在(a , b )内可导,证明:在(a ,b )内分别
存在x 和h ,使22
2
()()()
3f f a ab b h x h
¢¢=++
提示:
一 . 1. ()F x 在[0 1]上应用罗尔定理,得()0F η'= ,()F x '在[0 η]上应用罗尔定理
2.()()x x f x ϕ= 3. ()()x x f x e λϕ= 4. 2
2
()()x
x e f x ϕ= 5. ()()()x f x g x ϕ=
6. ()()()
f x x
g x ϕ=
7. ()
()()g x x f x e ϕ= 8. ()[()()]x x f x f a ϕ=- 9. 2
()()f x x x
ϕ=
二. 4. 取对数
ln ln b a b a
b a b
a
--<-<
令()ln f x x = 5. 至少有一点c (a<c<b) , ()()f c f a ≠ 若()()f c f a >, ()f x 在[a c] 应用拉格
朗日中值定理 , 若()()f c f a <, ()f x 在[c b] 应用拉格朗日中值定理 6.()f x 在[]a c 与[]c b 分别应用拉朗日中值定理,得1a c η<<与2c b η<< 且1()0f η'>与2()0f η'<,()f x '在12[]ηη上应用拉格朗日中值定理
7. ()f t =在[x 1x +]上用拉格朗日中值定理得,
得11()]
4
2
x θ=
+
由1022
x x
<=
<=
1111
l i m ()l i m ()4
422
x x x x x θθ+
→+∞→+∞→==+=
三. 1. ()x
e
f x x =
1
()g x x = 2 .
()()
ln ln f b f a b a
--
四. 1. ()()F x f x x =-在[12
1]上应用零点定理 , ()0F η=, ()F x 在[0 η]用罗尔定理 2. ()f x 在[a c]和[c d]上应用拉格朗日中值定理 , 得12()()f x f x ''=
()f x '在[1x 2x ]应用罗尔定理
3. ()()()()()[()(0)]f a b f a f b f a b f b f a f +--=+--- 应用拉格朗日中值定理
2112()()0f a f a
a b a b ξξξξ''=-<<<<<+
21[()()]0a f f ξξ''=-<
4. 由于01a a b
<<+ 介值定理得()a f a b
ξ=+ 01ξ<<
在[0 ξ] 和[ξ 1]上用拉格朗日中值定理 得
11()
0()
a a
b x f x ξξ=+<<' ①
22(1)()1()
b a b
x f x ξξ=-+<<' ② ①+②相加得证
5. 拉格朗日中值定理 ()()()f b f a f b a ξ-'=- ① 柯西定理
3
3
2
()()()3f b f a f b a
ηη
'-=
- ②
②乘2
2
a a
b b ++得
2
2
2
()()
()()
3f b f a f a ab b b a
ηη
'-=++- ③ 比较①③得证。

相关文档
最新文档