初三上学期数学期末试卷

合集下载

九年级数学上册期末考试试卷附答案

九年级数学上册期末考试试卷附答案

九年级数学上册期末考试试卷附答案一、选择题(每小题3分,共36分)1.(3分)一元二次方程:x²-6x-6-0| 配方后化为( )A. (x-3)²-15B. (x-3)²-3C. (x+3)²-15D. (x+3)²-32.(3分) 抛物线y=2(x-3)²+4 顶点坐标是( )A.(3,4)B. (-3, 4)C. (3, -4)D. (2, 4)3.(3分) 如图,⊙O的直径AB=8,点C 在⊙O上, ∠ABC=30°,则 AC 的长是( )A. 2B.2√2C,2√3D.44.(3分) 在 Rt△ABC中,∠C -90°, AB -4, AC-1,则cosB 的值为( )A.√154B.14C.√1515D.4√1717 5.(3分) 下列命题为真命题的是( )A.三点确定一个圆B.度数相等的弧是等弧C.直径是圆中最长的弦D.相等的圆心角所对的弧相等,所对的弦也相等6.(3分)如图所示,为测量出一垂直水平地面的某建筑物AB 的高度, 一测量人员在该建筑物附近C 处,测得建筑物顶端A 处的仰角大小为45°,随后沿直线BC 向前走了 100米后到达 D 处,在D 处测得A 处的仰角大小为30°,则建筑物AB 的高度约为( )米.(注:不计测量人员的身高,结果按四舍五入保留整数,参考数据: √2≈1.41,√3≈1.73)A. 136B. 137C. 138D. 1397.(3分) 反比例函数 y −图象上三个点的坐标为(x ₁,y ₁).(x ₂,y ₂).(x ₂,y ₃).若 x ₁<0<x ₂<x ₃.则 y ₁,y ₂,y ₂的大小关系是( )A. y ₁<y ₂<y ₂B. y ₂<y ₁<y ₂C. y ₂<y ₂<y ₁D. y ₁<y ₂<y ₂8. (3分) 函数 y=ax²+bx+c 的图象如图所示, 那么关于x 的方程ax²+bx+c -3-0| 的根的情况是( )A.有两个不相等的实数根B. 有两个异号实数根C.有两个相等实数根D.无实数根9.(3分) 过三点A (2,2), B(6,2), C (4,5)的圆的圆心坐标为( ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰三角形A.y −3xB.y −4xC.y −5xD.y −6x 12.(3分) 如图所示, 抛物线 y=ax²+bx+c|的顶点为B(-1,3),与x 轴的交点A 在点(-3,0)和(-2,0)之间, 以下结论:①b²-4ac-0: ②a+b+c>0: ③2a -b-0: ④c -a-3A.(4,176)B. (4. 3)C.(5,176)D. (5. 3) 10.(3分)在△ABC中,若 cosA =√22,tanB =√3,则这个三角形一定是( )11.(3分)如图,正方形ABCD 的边长为5.点A 的坐标为(-4.0),点B 在y 轴上,若反比例函数y= k x(k ≠0)的图象过点C ,则该反比例函数的表达式为( )其中正确的有( )个.A. 1B. 2C. 3D. 4二、填空题(每小题4分,共24分)13.(4分)若抛物线y=x²-6x+m 与x轴没有交点,则m的取值范围是 .14.(4分)如图,一个小球由地面沿着坡度i=1:3的坡面向上前进了10m,此时小球距离地面的高度为 m.15.(4分)如图,O 是坐标原点,菱形OABC的顶点A 的坐标为(-3,4),顶点C在x轴的负半轴上,函数y=k(x<x0)的图象经过顶点B,则k的值为 .16.(4分) 将如图所示的抛物线先向右平移1个单位长度,再向上平移3个单位长度后,得到的抛物线解析式是 .17.(4分)如图,点A、B、C是圆 O上的三点,且四边形ABCO 是平行四边形,OF⊥OC 交圆O于点F.则∠BAF= .(1)分别求该化工厂治污期间及改造工程顺利完工后y与x之间对应的函数关系式.(2)治污改造工程顺利完工后经过几个月,该厂利润才能达到200万元?(3)当月利润少于100万元时为该厂资金紧张期,间该厂资金紧张期共有几个月?25.(10分)如图,已知抛物线的顶点为A (1,4),抛物线与y轴交于点B(0,3),与x轴交于C、 D两点,点P是x轴上的一个动点.(1)求此抛物线的解析式:(2)求C、D两点坐标及△BCD的面积:(3)若点P在x轴上方的抛物线上,满足求点P的坐标。

最新初三第一学期数学期末试卷(含答案解析)

最新初三第一学期数学期末试卷(含答案解析)

初三第一学期数学期末试卷一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的。

1.(3分)在下列函数中,y是x的反比例函数的是()A.y=3x B.y=C.y=D.y=【分析】根据反比例函数的定义回答即可.【解答】解:A、该函数是正比例函数,故本选项错误;B、该函数是正比例函数,故本选项错误;C、该函数是符合反比例函数的定义,故本选项正确;D、y是(x﹣1)反比例函数,故本选项错误;故选:C.【点评】本题考查了正比例函数及反比例函数的定义,注意区分:正比例函数的一般形式是y=kx(k≠0),反比例函数的一般形式是(k≠0).2.(3分)下列几何体的左视图和俯视图相同的是()A.B.C.D.【分析】分别画出各种几何体的左视图和俯视图,进而进行判断即可.【解答】解:选项A中的几何体的左视图和俯视图为:选项B中的几何体的左视图和俯视图为:选项C中的几何体的左视图和俯视图为:选项D中的几何体的左视图和俯视图为:因此左视图和俯视图相同的是选项D中的几何体.故选:D.【点评】本题考查简单几何体的三视图,掌握三视图的画法是得出正确结论的前提.3.(3分)二次函数y=2(x﹣1)2+3的图象的顶点坐标是()A.(﹣2,3)B.(2,3)C.(1,﹣3)D.(1,3)【分析】根据二次函数的顶点式解析式写出即可.【解答】解:∵二次函数y=2(x﹣1)2+3,∴顶点坐标是(1,3).故选:D.【点评】本题主要考查了二次函数的性质,二次函数图象的顶点式解析式,如果y=a(x﹣h)2+k,那么函数图象的顶点坐标为(h,k),需要熟记并灵活运用.4.(3分)小明制作了5张卡片,上面分别写了一个条件:①AB=BC;②AB⊥BC;③AD=BC;④AC⊥BD;⑤AC=BD.从中随机抽取一张卡片,能判定▱ABCD是菱形的概率为()A.B.C.D.【分析】根据菱形的判定方法确定能得到菱形的方法,然后利用概率公式求解即可.【解答】解:能判断▱ABCD是菱形的有:①AB=BC、④AC⊥BD,所以从中随机抽取一张卡片,能判定▱ABCD是菱形的概率为,故选:B.【点评】考查了菱形的判定方法及概率公式,能够了解菱形的判定方法是解答本题的关键,难度不大.5.(3分)如图,有一斜坡AB,坡顶B离地面的高度BC为30m,斜坡的倾斜角是∠BAC,若tan∠BAC=,则此斜坡的水平距离AC为()A.75m B.50m C.30m D.12m【分析】根据题目中的条件和图形,利用锐角三角函数即可求得AC的长,本题得以解决.【解答】解:∵∠BCA=90°,tan∠BAC=,BC=30m,∴tan∠BAC=,解得,AC=75,故选:A.【点评】本题考查解直角三角形的应用﹣坡度坡角问题,解答本题的关键是明确题意,利用数形结合的思想解答.6.(3分)已知抛物线y=(x﹣1)2+2上有三点(﹣2,y1),(﹣1,y2),(2,y3),则y1,y2,y3的大小关系为()A.y1>y2>y3B.y3>y2>y1C.y2>y3>y1D.y2>y1>y3【分析】分别把(﹣2,y1),(﹣1,y2),(2,y3)代入解析式求解.【解答】解:把(﹣2,y1),(﹣1,y2),(2,y3)代入y=(x﹣1)2+2得y1=6.5,y2=4,y3=2.5,∴y1>y2>y3,故选:A.【点评】本题考查二次函数图象上点的坐标特征,解题关键是掌握二次函数与方程的关系.7.(3分)如图,AB为⊙O的直径,C,D为⊙O上两点,若∠BCD=40°,则∠ABD的大小为()A.60°B.50°C.40°D.20°【分析】连接AD,先根据圆周角定理得出∠A及∠ADB的度数,再由直角三角形的性质即可得出结论.【解答】解:连接AD,∵AB为⊙O的直径,∴∠ADB=90°.∵∠BCD=40°,∴∠A=∠BCD=40°,∴∠ABD=90°﹣40°=50°.故选:B.【点评】本题考查的是圆周角定理,根据题意作出辅助线,构造出圆周角是解答此题的关键.8.(3分)二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(﹣2,0),对称轴为直线x=1,下列结论:①abc<0;②2a﹣b=0;③b2﹣4ac>0;④无论m为何值时,总有am2+bm≤a+b;⑤9a+c>3b,其中正确的结论序号为()A.①②③B.①③④C.①③④⑤D.②③④【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:①由图象可得c>0,∵x=﹣=1,∴ab<0,∴abc<0,故①正确;②∵抛物线的对称轴为直线x=﹣=1,∴b=﹣2a,即2a+b=0,故②错误;③∵抛物线与x轴有两个不同的交点,∴b2﹣4ac>0,故③正确;④当x=1时,函数有最大值,∴a+b+c≥am2+bm+c,∴am2+bm≤a+b,即无论m为何值时,总有am2+bm≤a+b.故④正确;⑤∵当x=﹣3时,y<0,∴9a﹣3b+c<0,即9a+c<3b,故⑤错误;故选:B.【点评】本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,Δ=b2﹣4ac>0时,抛物线与x轴有2个交点;Δ=b2﹣4ac=0时,抛物线与x 轴有1个交点;Δ=b2﹣4ac<0时,抛物线与x轴没有交点.9.(3分)如图,AB是⊙O的直径,线段BC与⊙O的交点D是BC的中点,DE⊥AC于点E,连接AD,①AD⊥BC;②∠EDA=∠B;③OA=AC;④DE是⊙O的切线,则上述结论中正确的个数是()A.1B.2C.3D.4【分析】根据圆周角定理和切线的判定,采用排除法,逐条分析判断.【解答】解:∵AB是直径,∴∠ADB=90°,∴AD⊥BC,故①正确;连接DO,∵点D是BC的中点,∴CD=BD,又∵∠ADC=∠ADB=90°,AD=AD,∴△ACD≌△ABD(SAS),∴AC=AB,∠C=∠B,∵OD=OB,∴∠B=∠ODB,∴∠ODB=∠C,∴OD∥AC,∵DE⊥AC,∴OD⊥DE,∴DE是圆O的切线,故④正确;∵AB为圆O的直径,∴∠ADB=90°,∵∠EDA+∠ADO=90°,∠BDO+∠ADO=90°,∴∠EDA=∠ODB,∵∠ODB=∠B,∴∠EDA=∠B,选项②正确;由D为BC中点,且AD⊥BC,∴AD垂直平分BC,∴AC=AB,又OA=AB,∴OA=AC,选项③正确;故选:D.【点评】此题考查了切线的判定,证明切线时连接OD是解这类题经常连接的辅助线.10.(3分)如图,正方形ABCD的边长为2cm,动点P,Q同时从点A出发,在正方形的边上,分别按A →D→C,A→B→C的方向,都以1cm/s的速度运动,到达点C运动终止,连接PQ,设运动时间为xs,△APQ的面积为ycm2,则下列图象中能大致表示y与x的函数关系的是()A.B.C.D.【分析】根据题意结合图形,分情况讨论:①0≤x≤2时,根据S△APQ=AQ•AP,列出函数关系式,从而得到函数图象;②2≤x≤4时,根据S△APQ=S正方形ABCD﹣S△CP′Q′﹣S△ABQ′﹣S△AP′D列出函数关系式,从而得到函数图象,再结合四个选项即可得解.【解答】解:①当0≤x≤2时,∵正方形的边长为2cm,∴y=S△APQ=AQ•AP=x2;②当2<x≤4时,y=S△APQ=S正方形ABCD﹣S△CP′Q′﹣S△ABQ′﹣S△AP′D,=2×2﹣(4﹣x)2﹣×2×(x﹣2)﹣×2×(x﹣2)=﹣x2+2x所以,y与x之间的函数关系可以用两段二次函数图象表示,纵观各选项,只有A选项图象符合.故选:A.【点评】本题考查了动点问题的函数图象,根据题意,分别求出两个时间段的函数关系式是解题的关键.二、填空题(每小题3分,共15分)11.(3分)在函数y=中,自变量x的取值范围是x≠2.【分析】求函数自变量的取值范围,就是求函数解析式有意义的条件,分式有意义的条件是:分母不为0.【解答】解:要使分式有意义,即:x﹣2≠0,解得:x≠2.故答案为:x≠2.【点评】本题主要考查函数自变量的取值范围,考查的知识点为:分式有意义,分母不为0.12.(3分)请写出一个函数表达式,使其图象在第一、三象限且关于原点对称:y=.【分析】根据正比例函数和反比例函数的性质可得,所有k>0的正比例函数y=kx和反比例函数y=的图象都符合题意.【解答】解:由题意得,所有k>0的正比例函数y=kx和反比例函数y=的图象都在第一、三象限且关于原点对称,故答案为:y=(答案不唯一).【点评】此题考查了正比例函数和反比例函数图象性质的应用能力,关键是能准确理解以上知识.13.(3分)如图,在△ABC中,∠B=30°,AC=2,cos C=.则AB边的长为.【分析】如图,作AH⊥BC于H.解直角三角形求出AH,再根据AB=2AH即可解决问题.【解答】解:如图,作AH⊥BC于H.在Rt△ACH中,∵∠AHC=90°,AC=2,cos C=,∴=,∴CH=,∴AH===,在Rt△ABH中,∵∠AHB=90°,∠B=30°,∴AB=2AH=,故答案为.【点评】本题考查解直角三角形,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.14.(3分)如图,以BC为直径作⊙O,A,D为圆周上的点,AD∥BC,AB=CD=AD=2.若点P为BC 垂直平分线MN上的一动点,则阴影部分周长的最小值为2+2.【分析】根据对称的性质可知阴影部分的周长的最小值为AC+CD,求出AC的长即可.【解答】解:连接AC,根据对称的意义可知,PD+PC的最小值为AC,∵AD∥BC,AB=CD=AD=2,∴==,∴∠ABC=2∠ACB,∵BC为直径,∴∠BAC=90°,∴∠ACB=30°,∠ABC=60°,∴AC=•AB=2,所以阴影部分周长的最小值为AC+CD=2+2,故答案为:2+2.【点评】本题考查轴对称的性质,圆周角定理,理解轴对称的性质是解决问题的关键.15.(3分)在矩形ABCD中,AB=2,BC=4,点E在边BC上,连接DE,将△CDE沿DE折叠,若点C的对称点C'到AD的距离为1,则CE的长为或2.【分析】当点C'落在矩形ABCD的内部,过点C'作C'M⊥AD于点M,当点C'落在矩形ABCD的外部,过点C'作C'G⊥AD于点G,则C'G=1,由直角三角形的性质可得出答案.【解答】解:如图1,当点C'落在矩形ABCD的内部,过点C'作C'M⊥AD于点M,∵将△CDE沿DE折叠,∴AB=DC=C'D=2,∠CDE=∠C'DE,∵C'M=1,∴,∴∠C'DM=30°,∴∠C'DC=60°,∴∠CDE=∠C'DC=30°,∴CE=CD×tan30°=2×=;如图2,当点C'落在矩形ABCD的外部,过点C'作C'G⊥AD于点G,C'E与AD交于点H,则C'G=1,同理CD=C'D=2,∴∠C'DG=30°,∴∠C'HD=60°,∵矩形ABCD中,AD∥BC,∴∠C'HD=∠HEC=60°,∴∠DEC=∠HEC=30°,∴CE=2.综上可得,CE的长为或2.故答案为:或2.【点评】本题考查了矩形的判定与性质、折叠的性质、三角函数、勾股定理、直角三角形的性质、角平分线的性质等知识,熟练掌握折叠的性质是解题的关键.三、解答题(本题共8个小题,满分75分)16.(8分)计算:(1)2﹣2﹣2cos30°+tan60°+(π﹣3.14)0;(2)2cos245°+tan60°•tan30°﹣cos60°.【分析】(1)分别进行负整数指数幂、特殊角的三角函数值、零指数幂等运算,然后合并;(2)将特殊角的三角函数值代入求解.【解答】解:(1)原式=﹣2×++1==;(2)原式=2×()2+﹣=2×+1﹣=1+1﹣=.【点评】本题考查了实数的运算及特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.17.(9分)随着中央电视台《朗读者》节目的播出,“朗读”被越来越多的同学所喜爱,某中学计划在全校开展“朗读”活动,为了了解同学们对这项活动的参与态度,随机对部分学生进行了一次调查,调查结果整理后,将这部分同学的态度划分为四个类别:A.积极参与;B.一定参与;C.可以参与;D.不参与.根据调查结果制作了如下不完整的统计表和统计图.学生参与“朗读”的态度统计表类别人数所占百分比A18aB2040%C m16%D48%合计b100%请你根据以上信息,解答下列问题:(1)a=36%,b=50;(2)请求出m的值并将条形统计图补充完整;(3)“朗读”活动中,七年级一班比较优秀的四名同学恰好是两男两女,从中随机选取两人在班级进行朗读示范,试用画树状图法或列表法求所选两人都是女生的概率.【分析】(1)“一定参与”的有20人,占调查人数的40%,可求出调查人数b,进而求出“A积极参与”所占的百分比;(2)求出“C组可以参与”的人数,将条形统计图补充完整即可;(3)画树状图,共有12种等可能的结果,其中所选两人都是女生的结果有2种,再由概率公式求解即可.【解答】解:(1)b=20÷40%=50(人),则a=18÷50=36%,故答案为:36%,50;(2)m=50×16%=8,补全条形统计图如图所示;(3)画树状图如下:共有12种等可能的结果,其中所选两人都是女生的结果有2种,∴所选两人都是女生的概率为=.【点评】此题考查的是用树状图法求概率以及条形统计图和统计表.树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.18.(9分)2021年“五一”期间,修复后的安阳老城东南城墙及魁星阁与市民见面,这一始建于北魏天兴元年(公元398年)的建筑,在1600多年后,以崭新的面貌向世人展示历史印记,古代安阳“魁星取水”景观即将重现.某数学学习小组利用卷尺和自制的测角仪测量魁星阁顶端距离地面的高度,如图所示,他们在地面一条水平步道FB上架设测角仪,先在点F处测得魁星阁顶端A的仰角是26°,朝魁星阁方向走20米到达G 处,在G处测得魁星阁顶端A的仰角是45°.若测角仪CF和DG的高度均为1.5米,求魁星阁顶端距离地面的高度(图中AB的值).(参考数据:sin26°≈0.44,cos26°≈0.90,tan26°≈0.49,≈1.41,结果精确到0.1米)【分析】解直角三角形求出AG即可解决问题.【解答】解:由题意知,∠ADE=45°,∠ACE=26°,FG=CD=20米,CF=DG=1.5米,设AE=x米,在Rt△ADE中,∵AE=x米,∠ADE=45°,∴ED=AE=x米,∴CE=CD+ED=(20+x)米,在Rt△ACE中,∵tan26°==,∴tan26°(20+x)=x,即0.49×(20+x)≈x,解得x≈19.22(米),∴AB=AE+BE≈19.22+1.5=20.7(米).答:铁塔的高度AB约为20.7米.【点评】本题考查解直角三角形的应用,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.19.(9分)如图,点D在以AB为直径的⊙O上,AD平分∠BAC,DC⊥AC,过点B作⊙O的切线交AD 的延长线于点E.(1)求证:直线CD是⊙O的切线.(2)求证:CD•BE=AD•DE.【分析】(1)连接OD,由角平分线的定义得到∠CAD=∠BAD,根据等腰三角形的性质得到∠BAD=∠ADO,求得∠CAD=∠ADO,根据平行线的性质得到CD⊥OD,于是得到结论;(2)连接BD,根据切线的性质得到∠ABE=∠BDE=90°,根据相似三角形的性质即可得到结论.【解答】证明:(1)连接OD,∵AD平分∠BAC,∴∠CAD=∠BAD,∵OA=OD,∴∠BAD=∠ADO,∴∠CAD=∠ADO,∴AC∥OD,∵CD⊥AC,∴CD⊥OD,∴直线CD是⊙O的切线;(2)连接BD,∵BE是⊙O的切线,AB为⊙O的直径,∴∠ABE=∠BDE=90°,∵CD⊥AC,∴∠C=∠BDE=90°,∵∠CAD=∠BAE=∠DBE,∴△ACD∽△BDE,∴=,∴CD•BE=AD•DE.【点评】本题考查了相似三角形的判定和性质,角平分线的定义.圆周角定理,切线的判定和性质,正确的作出辅助线是解题的关键.20.(9分)如图,反比例函数y=的图象与一次函数y=kx+b的图象交于A,B两点,点A的坐标为(2,4),点B的坐标为(n,2).(1)求反比例函数和一次函数的解析式;(2)点E为x轴上一个动点,若S△AEB=5,试求点E的坐标.【分析】(1)把点A的坐标代入反比例函数解析式,求出反比例函数的解析式,把点B的坐标代入已求出的反比例函数解析式,得出n的值,然后根据待定系数法求得直线AB的解析式;(2)设点E的坐标为(a,0),则点C(6,0),得出CE=|a﹣6|,根据S△AEB=S△AEC﹣S△BEC=5,求出a的值,从而得出点E的坐标.【解答】解:(1)把点A(2,4)代入y=得4=,解得m=8,∴反比例函数的表达式为y=,点B(n,2)代入y=得2=,解得n=4,∴点B的坐标为(4,2),∵直线y=kx+b过点A(2,4),B(4,2),∴,解得,∴一次函数的表达式为y=﹣x+6;(2)设点E的坐标为(a,0),在y=﹣x+6中,令y=0,则﹣x+6=0,解得x=6,∴点C(6,0),∴CE=|a﹣6|,∵S△AEB=S△AEC﹣S△BEC=5,∴×|a﹣6|×(4﹣2)=5,∴|a﹣6|=5,解得a1=11,a2=1,∴点E的坐标为(11,0)或(1,0).【点评】本题考查了反比例函数和一次函数的交点问题,用待定系数法求一次函数和反比例函数的解析式,三角形的面积,解此题的关键:(1)熟练掌握待定系数法;(2)得到关于a的方程.21.(10分)在平面直角坐标系xOy中,点A的坐标为(0,5),点B的坐标为(5,5),抛物线y=x2﹣4x+a ﹣1的顶点为C.(1)若抛物线经过点B时,求顶点C的坐标.(2)若抛物线与线段AB恰有一个公共点,结合函数图象,求a的取值范围.【分析】(1)将(5,5)代入解析式求出a,然后将抛物线解析式化为顶点式求解.(2)分别求出顶点落在AB上,抛物线经过点A,B时a的值,结合图象求解.【解答】解:(1)将(5,5)代入y=x2﹣4x+a﹣1得5=25﹣20+a﹣1,解得a=1,∴y=x2﹣4x+a﹣1=x2﹣4x=(x﹣2)2﹣4,∴点C坐标为(2,﹣4).(2)∵y=x2﹣4x+a﹣1=(x﹣2)2+a﹣5,∴抛物线开口向上,顶点坐标为(2,a﹣5),当抛物线顶点落在线段AB上时,a﹣5=5,解得a=10,当抛物线经过点A(0,5)时,5=a﹣1,解得a=4,当抛物线经过点B(5,5)时,a=1,∴1≤a<5或a=10满足题意.【点评】本题考查二次函数的性质,解题关键是掌握二次函数图象与系数的关系,掌握二次函数与方程的关系.22.(10分)小爱同学学习二次函数后,对函数y=﹣(|x|﹣1)2进行了探究.在经历列表、描点、连线步骤后,得到如图的函数图象.请根据函数图象,回答下列问题:(1)观察探究:①写出该函数的一条性质:函数图象关于y轴对称;②方程﹣(|x|﹣1)2=﹣1的解为:x=﹣2或x=0或x=2;③若方程﹣(|x|﹣1)2=a有四个实数根,则a的取值范围是﹣1<a<0.(2)延伸思考:将函数y=﹣(|x|﹣1)2的图象经过怎样的平移可得到函数y1=﹣(|x﹣2|﹣1)2+3的图象?写出平移过程,并直接写出当2<y1≤3时,自变量x的取值范围.【分析】(1)根据图象即可求得;(2)根据“上加下减”的平移规律,画出函数y1=﹣(|x﹣2|﹣1)2+3的图象,根据图象即可得到结论.【解答】解:(1)观察探究:①该函数的一条性质为:函数图象关于y轴对称;②方程﹣(|x|﹣1)2=﹣1的解为:x=﹣2或x=0或x=2;③若方程﹣(|x|﹣1)2=a有四个实数根,则a的取值范围是﹣1<a<0.故答案为函数图象关于y轴对称;x=﹣2或x=0或x=2;﹣1<a<0.(2)将函数y=﹣(|x|﹣1)2的图象向右平移2个单位,向上平移3个单位可得到函数y1=﹣(|x﹣2|﹣1)2+3的图象,当2<y1≤3时,自变量x的取值范围是0<x<4且x≠2.【点评】本题主要考查了二次函数图象与几何变换,二次函数图象和性质,数形结合是解题的关键.23.(11分)已知△AOB和△MON都是等腰直角三角形,∠AOB=∠MON=90°.(1)如图1,连接AM,BN,求证:AM=BN;(2)将△MON绕点O顺时针旋转.①如图2,当点M恰好在AB边上时,求证:AM2+BM2=2OM2;②当点A,M,N在同一条直线上时,若OA=4,OM=3,请直接写出线段AM的长.【分析】(1)通过代换得对应角相等,再根据等腰直角三角形的性质得对应边相等,利用“SAS”证明△AOM≌△BON,即可得到AM=BN;(2)①连接BN,根据等腰直角三角形的性质,利用“SAS”证明△AOM≌△BON,得对应角相等,对应边相等,从而可证∠MBN=90°,再根据勾股定理,结合线段相等进行代换,即可证明结论成立;②分点N在线段AM上和点M在线段AN上两种情况讨论,连接BN,设BN=x,根据勾股定理列出方程,求出x的值,即可得到BN的长,BN的长就是AM的长.【解答】(1)证明:∵∠AOB=∠MON=90°,∴∠AOB+∠AON=∠MON+∠AON,即∠AOM=∠BON,∵△AOB和△MON都是等腰直角三角形,∴OA=OB,OM=ON,∴△AOM≌△BON(SAS),∴AM=BN;(2)①证明:连接BN,∵∠AOB=∠MON=90°,∴∠AOB﹣∠BOM=∠MON﹣∠BOM,即∠AOM=∠BON,∵△AOB和△MON都是等腰直角三角形,∴OA=OB,OM=ON,∴△AOM≌△BON(SAS),∴∠MAO=∠NBO=45°,AM=BN,∴∠MBN=90°,∴MB2+BN2=MN2,∵△MON是等腰直角三角形,∴MN2=2ON2,∴AM2+BM2=2OM2;②解:如图3,当点N在线段AM上时,连接BN,设BN=x,由(1)可知△AOM≌△BON,可得AM=BN且AM⊥BN,在Rt△ABN中,AN2+BN2=AB2,∵△AOB和△MON都是等腰直角三角形,OA=4,OM=3,∴MN=6,AB=8,∴(x﹣6)2+x2=82,解得:x=3+(负根已经舍去),∴AM=BN=3+,如图4,当点M在线段AN上时,连接BN,设BN=x,由(1)可知△AOM≌△BON,可得AM=BN且AM⊥BN,在Rt△ABN中,AN2+BN2=AB2,∵△AOB和△MON都是等腰直角三角形,OA=4,OM=3,∴MN=6,AB=8,∴(x+6)2+x2=(8)2,解得:x=﹣3(负根已经舍去),∴AM=BN=﹣3,综上所述,线段AM的长为+3或﹣3.【点评】本题属于几何变换综合题,考查了等腰直角三角形的性质,全等三角形的判定与性质,图形的旋转,勾股定理等知识点,抓住图形旋转中不变的量,巧妙构造直角三角形是解决问题的关键.。

2024年北京密云区初三九年级上学期期末数学试题和答案

2024年北京密云区初三九年级上学期期末数学试题和答案

北京市密云区2023-2024学年第一学期期末考试九年级数学试卷2024.1考生须知1.本试卷共7页,共3道大题,28道小题,满分100分,考试时间120分钟.2.在试卷和答题卡上准确填写学校、班级、姓名和考号.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效,作图必须使用......2.B .铅笔...4.考试结束,请将本试卷和答题纸一并交回.一、选择题(本题共16分,每小题2分)下面各题均有四个选项,其中只有一个..选项是符合题意的.1.二次函数y =3(x +1)2-4的最小值是()A .1B.-1C .4D .-42.已知⊙O 的半径为6,点P 在⊙O 内,则线段OP 的长度可以是()A .5B .6C .7D .83.中国瓷器,积淀了深厚的文化底蕴,是中国传统艺术文化的重要组成部分.瓷器上的图案设计精美,极富变化.下面瓷器图案中,既是轴对称图形又是中心对称图形的是()A .B .C .D .4.下列事件中,为必然事件的是()A .等腰三角形的三条边都相等;B .经过任意三点,可以画一个圆;C .在同圆或等圆中,相等的圆心角所对的弧相等;D .任意画一个三角形,其内角和为360°.5.在下列方程中,有一个方程有两个实数根,且它们互为相反数,这个方程是()A .x +2=0B .x 2-x =0C .x 2-4=0D .x 2+4=06.如图,四边形ABCD 内接于⊙O ,若∠A =60°,⊙O 的半径为3,则的长为()A .πB .2πC.3πD .6π7.如图,在正方形网格中,A ,B 两点在格点上,线段AB 绕某一点逆时针旋转一定角度后得到线段A'B',点A'与点A 对应,其旋转中心是()A .点B B .点GC .点ED .点F8.某种幼树在相同条件下进行移植试验,结果如下:移植总数n 400750150035007000900014000成活数m 364651133031746324807312620成活的频率0.9100.8680.8870.9070.9030.8970.901下列说法正确的是()A .由于移植总数最大时成活的频率是0.901,所以这种条件下幼树成活的概率为0.901;B .由于表格中成活的频率的平均数约为0.90,所以这种条件下幼树成活的概率为0.90;C .由于表格中移植总数为1500时成活数为1330,所以移植总数3000时成活数为2660;D .由于随着移植总数的增大,幼树移植成活的频率越来越稳定在0.90左右,所以估计幼树成活的概率为0.90.二、填空题(本题共16分,每小题2分)9.若关于x 的方程(k +3)x 2-6x +9=0是一元二次方程,则k 的取值范围是.10.将抛物线y=x 2向下平移1个单位长度,再向右平移2个单位长度后,得到抛物线的解析式为.11.用配方法解一元二次方程x 2-4x =1时,将原方程配方成(x -2)2=k 的形式,则k 的值为.12.如图,AB 、AC 为⊙O 的切线,B 、C 为切点,连接OC 并延长到D ,使CD =OC ,连接AD .若∠BAD =75°,则∠AOC 的度数为.mnB D13.若点A (-2,y1),B (-1,y 2),C (3,y 3)三点都在二次函数y =-3x 2的图象上,则y 1、y 2、y 3的大小关系是(按从小到大的顺序,用“<”连接).14.请写出一个常数a 的值,使得二次函数y =x 2+4x +a 的图象与x 轴没有交点,则a 的值可以是.15.如图,正六边形ABCDEF 内接于⊙O ,若⊙O 的半径为4,则正六边形ABCDEF 的面积为_________.16.在平面直角坐标系xOy 中,点A 、点B 的位置如图所示,抛物线y =ax 2-2ax 经过A 、B 两点,下列四个结论中:①抛物线的开口向上②抛物线的对称轴是x =1③A 、B 两点位于对称轴异侧④抛物线的顶点在第四象限所有不.正确..结论的序号是.三、解答题(本题共68分,其中17-22每题5分,23-26每题6分,27、28题每题7分)17.解方程:x 2+8x -20=0.18.下面是小宁设计的“作平行四边形的高”的尺规作图过程.已知:平行四边形ABCD .求作:AE ⊥BC ,垂足为E .作法:如图所示,①连接AC ,分别以点A 和点C 为圆心,大于的长为半径作弧,两弧相交于P ,Q 两点;②作直线PQ ,交AC 于点O ;③以点O 为圆心,OA 长为半径作圆,交线段BC 于点E (点E 不与点C 重合),连接AE .所以线段AE 就是所求作的高.12AC根据小宁设计的尺规作图过程,解决问题:(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵AP=CP,AQ=,∴点P、Q都在线段AC的垂直平分线上,∴直线PQ为线段AC的垂直平分线,∴O为AC中点.∵AC为直径,⊙O与线段BC交于点E,∴∠AEC=°.()(填推理的依据)∴AE⊥BC.19.已知:二次函数y=x2+bx-3的图象经过点A(2,5).(1)求二次函数的解析式;(2)求该函数的顶点坐标.20.二十四节气是中华民族农耕文明的智慧结晶,是专属中国人的独特时间美学,被国际气象界誉为“中国第五大发明”.如图,小文购买了四张形状、大小、质地均相同的“二十四节气”主题邮票,正面分别印有“立春”“立夏”“秋分”“大暑”四种不同的图案,背面完全相同,他将四张邮票洗匀后正面朝下放在桌面上.(1)小文从中随机抽取一张,抽出的邮票恰好是“大暑”的概率是___________;(2)若印有“立春”“立夏”“秋分”“大暑”四种不同图案的邮票分别用A,B,C,D 表示,小文从中随机抽取一张(不放回),再从中随机抽取一张,请用画树状图或列表的方法求小文抽到的两张邮票恰好是“立春”和“立夏”的概率.21.2023年10月,第三届“一带一路”国际合作高峰论坛在北京召开,回顾了十年来共建“一带一路”取得的丰硕成果.为促进经济繁荣,某市大力推动贸易发展,2021年进出口贸易总额为60000亿元,2023年进出口贸易总额为86400亿元.若该市这两年进出口贸易总额的年平均增长率相同,求这两年该市进出口贸易总额的年平均增长率.22.玉环为我国的传统玉器,通常为正中带圆孔的扁圆形器物.据《尔雅·释器》记载:“肉好若一,谓之环”,其中“肉”指玉质部分(边),“好”指中央的孔.结合图1,“肉好若一”的含义可以表示为:中孔直径d=2h.图2是一枚破损的汉代玉环,为修复原貌,需推算出该玉环的孔径尺寸.如图3,文物修复专家将破损玉环的外围边缘表示为弧AB,设弧AB所在圆的圆心为O,测得弧所对的弦长AB为6cm,半径OC⊥AB于点D,测得CD=1cm,连接OB,求该玉环的中孔半径的长.图1图2图323.已知关于x的一元二次方程x2-5x+m=0(m<0).(1)判断方程根的情况,并说明理由;(2)若方程的一个根为6,求m的值和方程的另一个根.24.如图,⊙O是△ABC的外接圆,∠ABC=45°,连接OC交AB于点E,过点A作OC的平行线交BC延长线于点D.(1)求证:AD是⊙O的切线;(2)若⊙O的半径为4,AD=6,求线段CD的长.25.某景观公园计划修建一个人工喷泉,从垂直于地面的喷水枪喷出的水流路径可以看作是抛物线的一部分.记喷出的水流距喷水枪的水平距离为x m,距地面的竖直高度为y m,获得数据如下:x(米)00.5 2.0 3.55y(米) 1.67 2.25 3.00 2.250小华根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小华的探究过程,请补充完整:(1)在平面直角坐标系xOy中,描出以表中各对对应值为坐标的点,并用平滑的曲线画出该函数的图象;(2)直接写出水流最高点距离地面的高度为米;(3)求该抛物线的表达式,并写出自变量的取值范围;(4)结合函数图象,解决问题:该景观公园准备在距喷水枪水平距离3m处修建一个大理石雕塑,使喷水枪喷出的水流刚好落在雕塑顶端,则大理石雕塑的高度约为m(结果精确到0.1m).26.在平面直角坐标系xOy中,点(2,m)和(5,n)在抛物线y=x2+2bx上,设抛物线的对称轴为x=t.(1)若m=0,求b的值;(2)若mn<0,求该抛物线的对称轴t的取值范围.27.如图,在Rt△ABC中,∠ACB=90°,AC=BC.点D为AB边上的一点,将线段CD绕点C逆时针旋转90°得到线段CE,连接AE、BE.(1)依据题意,补全图形;(2)直接写出∠ACE+∠BCD的度数;(3)若点F为BD中点,连接CF交AE于点P,用等式表示线段AE与CF之间的数量关系,并证明.28.在平面直角坐标系xOy中,已知⊙O的半径为1,点A的坐标为(-1,0).点B是⊙O上的一个动点(点B不与点A重合).若点P在射线AB上,且AP=2AB,则称点P 是点A关于⊙O的2倍关联点.(1)若点P是点A关于⊙O的2倍关联点,且点P在x轴上,则点P的坐标为_______;(2)直线l经过点A,与y轴交于点C,∠CAO=30°.点D在直线l上,且点D是点A关于⊙O的2倍关联点,求D点的坐标;(3)直线y=x+b与x轴交于点M,与y轴交于点N,若线段MN上存在点A关于⊙O的2倍关联点,直接写出b的取值范围.北京市密云区2023-2024学年第一学期期末考试九年级数学试卷参考答案及评分标准2024.1一、选择题(本题共16分,每小题2分)题号12345678选项D A B C C B C D二、填空题(本题共16分,每小题2分)9.k≠-3;10.y=(x-2)2-1;11.k=5;12.65°;13.y3<y1<y2;14.6;(答案不唯一,大于4均可)15.16.①④.三、解答题(本题共68分.其中17~22题每题5分,23~26题每题6分,27、28题每题7分)说明:与参考答案不同,但解答正确相应给分.17.解:x2+8x-20=0(x+10)(x-2)=0………………………………2分∴x+10=0或x-2=0………………………………3分∴x=-10或x=2………………………………4分∴x1=-10,x2=2………………………………5分18.(1)………………………………2分(2)CQ………………………………3分90°,直径所对的圆周角是直角.………………………………5分19.(1)解:将点A(2,5)代入y=x2+bx-3解析式4+2b-3=5………………………………1分2b=4b=2………………………………2分∴二次函数的解析式为y=x2+2x-3………………………………3分(2)解:y=x2+2x-3=(x+1)2-4………………………………4分∴该函数的顶点坐标是(-1,-4)………………………………5分20.(1)14………………………………1分(2)根据题意,可以画出如下树状图:………………………………3分由树状图可知,所有可能出现的结果共有12种,即AB,AC,AD,BA,BC,BD,CA,CB,CD,DA,DB,DC,并且它们出现的可能性相等.其中,恰好抽到的两张邮票是“立春”和“立夏”(记为事件A)的结果有2种,即AB或BA.………………………………4分∴()21 126P A==.………………………………5分21.解:设这两年该市进出口贸易总额的年平均增长率为x,则:………………………………1分60000(1+x)2=86400………………………………2分(1+x)2=36251+x=65±解得:x1=0.2,x2=-2.2………………………………4分经检验:x=-2.2不符实际意义,舍去∴x=0.2=20%答:这两年该市进出口贸易总额的年平均增长率为20%.………………………………5分22.解:∵OC是⊙O的半径,且OC⊥AB∴AD=BD∵AB=6∴BD=3………………………………1分设⊙O的半径为x,则OC=OB=x∵CD=1∴OD=x-1………………………………2分在Rt△ODB中∵OD2+BD2=OB2∴(x-1)2+32=x2………………………………3分x=5∴OB=5………………………………4分∵玉环的中孔直径d=2h∴玉环的中孔半径为2.5cm.………………………………5分23.(1)该方程有两个不相等的实数根,理由如下:………………………………1分解:△=(-5)2-4m………………………………2分=25-4m∵m<0∴-4m>0∴25-4m>0即△>0………………………………3分∴方程有两个不相等的实数根(2)解:将x=6代入原方程∴36-30+m=0∴m=-6………………………………4分原方程为x2-5x-6=0(x-6)(x+1)=0解得:x1=6,x2=-1………………………………5分∴方程的另一个根为-1.………………………………6分24.(1)证明:连接OA………………………………1分∵⊙O是△ABC的外接圆,且∠ABC=45°∴∠AOC=90°………………………………2分∵OC//AD∴∠AOC+∠OAD=180°∴∠OAD=90°∴AD是⊙O的切线………………………………3分(2)解:过点C作CF⊥AD于点F,∴∠AFC=90°∴∠AOC=∠OAD=∠AFC=90°∴四边形AOCF是矩形∵OC=OA∴矩形AOCF是正方形∵⊙O的半径为4∴AF=CF=OC=4………………………………4分∵AD=6∴FD=AD-AF=2………………………………5分在Rt△CFD中CD==∴线段CD的长为………………………………6分25.(1)………………………………1分(2)3;………………………………2分(3)解:设y=a(x-2)2+3(a<0)………………………………3分∵将(5,0)代入函数表达式,则9a+3=0a=∴………………………………4分自变量的取值范围为:0≤x≤5.………………………………5分(4)2.7m(误差均可)………………………………6分26.(1)解:当m=0时,将(2,0)代入y=x2+2bx∴4+4b=0………………………………1分4b=-4∴b=-1………………………………2分(2)解:由题意,抛物线经过点(2,m)和(5,n)∵a>0∴抛物线开口向上,且经过坐标原点(0,0)如果t≤0,那么当x≥t时,y随x的增大而增大∴m>0,n>0,与mn<0不符,舍去如果t≥5,那么当x≤t时,y随x的增大而减小∴m<0,n<0,与mn<0不符,舍去∴0<t<5∵mn<0∴函数图象示意图为:图1图213-21(2)33y x=--+0.1±由图1,当0<t <2时作(0,0)关于x=t 的对称点(x 0,0)∵抛物线为轴对称图形∴点(x 0,0)在抛物线上∴x 0=2t∵a >0∴x ≥t 时,y 随x 的增大而增大∵m <0<n ∴2<2t <5………………………………3分∴512t <<∴12t <<………………………………4分由图2,当2≤t <5时作(5,n )关于x=t 的对称点(x 1,n )∵抛物线为轴对称图形∴点(x 1,n )在抛物线上∴x 1=2t -5∵a >0∴x ≤t 时,y 随x 的增大而减小∵m <0<n ∴2t -5<0<2………………………………5分其中0<2恒成立,解2t -5<0得t <52∴522t ≤<综上所述,512t <<………………………………6分27.(1)………………………………1分(2)∠ACE+∠BCD=180°………………………………2分(3)AE与CF之间的数量关系为:AE=2CF………………………………3分证明:延长CF至H,使FH=CF∵点F为BD中点∴DF=BF∵∠DFH=∠CFB∴△DFH≅△CFB………………………………4分∴DH=BC,∠H=∠BCF∵AC=BC∴DH=AC∵∠H=∠BCF∴DH//BC∴∠DCB+∠CDH=180°∵∠DCB+∠ACE=180°∴∠CDH=∠ACE………………………………5分∵CD=CE∴△CDH≅△ECA………………………………6分∴CH=AE∵CH=2CF∴AE=2CF………………………………7分28.(1)(3,0)………………………………1分(2)解:当直线l 与y 轴正半轴交于点C 时∵点D 在直线l 上,且点D 是点A 关于⊙O 的2倍关联点,∴直线l 与⊙O 的另一个交点为点B ,点D 在射线AB 上,满足AD =2AB 过点O 作OE ⊥AB ∴AB =2AE………………………………2分在Rt △AOE 中,∠CAO =30°,OA=1∴OE =12∴2AE ==∴AB =2∵AD =2AB∴AD =………………………………3分过点D 作DF ⊥x 轴,交x 轴于点F ∵在Rt △AOE 中,∠CAO =30°∴DF ,3AF ==∴OF =2∴D (2)………………………………4分同理可证,当直线l 与y 轴负半轴交于点C 时,D (2,……………………5分综上所述,D 点坐标为(2,)或(2,)(3)1b -≤≤或11b <≤………………………………7分。

2024年北京海淀区初三九年级上学期期末数学试题和答案

2024年北京海淀区初三九年级上学期期末数学试题和答案

海淀九年级数学2024.1第一部分选择题一、选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.我国古代典籍《周易》用“卦”描述万物的变化.下图为部分“卦”的符号,其中是中心对称图形的是()A.B. C. D.2.抛物线2(1)2y x =--+的顶点坐标是()A.()1,2- B.()1,2 C.()1,2-- D.()1,2-3.若关于x 的一元二次方程220x x m +-=有一个根为1,则m 的值为()A.3B.0C.2-D.3-4.在平面直角坐标系xOy 中,抛物线2y ax bx c =++如图所示,则关于x 的方程20ax bx c ++=的根的情况为()A.有两个不相等的实数根B.有两个相等的实数根C.有实数根D.没有实数根5.如图,在O 中,AB 为直径,C ,D 为圆上的点,若51CDB ∠=,则CBA ∠的大小为()A.51B.49C.40D.396.如图,O 的半径为2,将O 的内接正六边形ABCDEF 绕点O 顺时针旋转,第一次与自身重合时,点A 经过的路径长为()A.2B.3π C.23π D.4π7.林业部门考察某种幼树在一定条件下的移植成活率,统计数据如下:移植总数m 1027075015003500700014000成活数n 823566213353180629212628成活的频率n m(结果保留小数点后三位)0.8000.8700.8830.8900.9090.8990.902下列说法正确的是()A.若移植10棵幼树,成活数将为8棵B.若移植270棵幼树,成活数不会超过235棵C.移植的幼树越多,成活率越高D.随着移植总数的增加,幼树移植成活的频率总在0.900左右摆动,显示出一定的稳定性,可以估计该幼树在同等条件下移植成活的概率为0.9008.如果一个圆的内接三角形有一边的长度等于半径,那么称其为该圆的“半径三角形”.给出下面四个结论:①一个圆的“半径三角形”有无数个;②一个圆的“半径三角形”可能是锐角三角形、直角三角形或钝角三角形;③当一个圆的“半径三角形”为等腰三角形时,它的顶角可能是30,120或150;④若一个圆的半径为2,则它的“半径三角形”面积最大值为上述结论中,所有正确结论的序号是()A.①②B.②③C.①②③D.①②④第二部分非选择题二、填空题(共16分,每题2分)9.在平面直角坐标系xOy 中,将抛物线23y x =向下平移1个单位,得到的抛物线表达式为________.10.如图,由5个相同的正方形组成的十字形纸片沿直线AB 和EF 前开后重组可得到矩形ABCD ,那么②可看作①通过一次________得到(填“平移”“旋转”或“轴对称”).11.若关于x 的一元二次方程216ax =有整数根,则整数a 的值可以是________(写出一个即可).12.已知y 是x 的二次函数,表中列出了部分y 与x 的对应值:x 012y1-113.“青山绿水,畅享生活”,人们经常将圆柱形竹筒改造成生活用具,图1所示是一个竹筒水容器,图2为该竹筒水容器的截面.已知截面的半径为10cm ,开口AB 宽为12cm ,这个水容器所能装水的最大深度是________cm .图1图214.如图,PA ,PB 是O 的两条切线,切点分别为A ,B ,60P ∠=.若O 的半径为3,则图中阴影部分的面积为________(结果保留π).15.如图,将面积为25的正方形ABCD 的边AD 的长度增加a ,变为面积为22的矩形AEGF .若正方形ABCD 和矩形AEGF 的周长相等,则a 的值是________.16.小云将9张点数分别为19~的扑克牌以某种分配方式全部放入A ,B 两个不透明的袋子中(每个袋子至少放一张扑克牌),从两个袋子中各随机抽取一张扑克牌,将两张扑克牌的点数之和为k 这一事件的概率记为k P .(1)若将点数为1和2的扑克牌放入A 袋,其余扑克牌放入B 袋,则8P =________;(2)对于所有可能的分配方式以及所有的k ,k P 的最大值是________.三、解答题(共68分,第17-19题,每题5分,20题6分,第21-23题,每题5分,第24-26题,每题6分,第27-28题,每题7分)解答写出文字说明、演算步骤或证明过程.17.解方程:21x x +=.18.已知22310a a -+=,求代数式()2(3)3a a a -++的值.19.如图,在ABC △中,45B ∠=,将ABC △绕点A 逆时针旋转得到AB C ''△,使点B '在BC 的延长线上.求证:BB C B '⊥''.20.已知关于x 的方程2220x mx m n -+-=有两个不相等的实数根.(1)求n 的取值范围;(2)若n 为符合条件的最小整数,且该方程的较大根是较小根的2倍,求m 的值.21.如图,P 是O 外一点,PA 与O 相切,切点为A .画出O 的另一条切线PB ,切点为B .小云的画法是:①连接PO ,过点A 画出PO 的垂线交O 于点B ;②画出直线PB .直线PB 即为所求.(1)根据小云的画法,补全图形;(2)补全下面的证明.证明:连接OA ,OB .OA OB = ,AB PO ⊥,PO ∴垂直平分AB ,OAB OBA ∠∠=.PA ∴=①.PAB ∠∴=②.PAO PBO ∠∠∴=.PA 是O 的切线,A 为切点,OA AP ∴⊥.90PAO ∠∴= .90PBO ∠∴= .OB PB ∴⊥于点B .OB 是O 的半径,PB ∴是O 的切线(③)(填推理的依据)。

陕西省西安市交通大学附属中学2023-2024学年九年级上学期期末数学试题(含解析)

陕西省西安市交通大学附属中学2023-2024学年九年级上学期期末数学试题(含解析)

A .B . . . 2.我们常常在建筑中看到四边形的元素.如图,墙面上砌出的菱形窗户的边长为框宽度忽略不计),其中较小的内角为A .4B .3.一元二次方程的根的情况为(A .有两个不相等的实数根D .无法确定3223210x x --=A .25.如图,“凸轮”的外围由以正三角形的顶点为圆心,以正三角形的边长为半径的三段等弧组成.已知正三角形的边长为A .B .13A .10.点在二次函数A .最大值二.填空题(本大题共14.如图,在矩形段上移动,并与意一点,连接90︒(),A m n 4-ABCD EF EF ,AN CM三.解答题(本大题共1115.计算:(1);(2)18.已知:如图,点为对角线点,.求证:.19.为贯彻落实党的二十大精神,全面建设社会主义现代化国家、兴,某校团委举办以“无悔青春献祖国,接力奋斗新时代赛,九年级(2)班的王伟和孙莉两人文采相当,且都想代表班级参赛,于是班长制作了()0π3128-+--2cos30tan60sin45cos45︒-︒+︒O ABCD Y E F DE BF =21.西安丰庆公园是现代生态景观与历史文化景观融为一体的皇家园林,园内的最高建筑.某数学活动小组想测量怡心阁的高度心阁的高度:小明沿后退到F 恰好看到标杆顶端22.类比一次函数的研究思路,九年级“励志”行探究.下面是他们的探究过程,请补充完整:(1)列表:下表是与的几组对应值,则的值为01654210BD x y m x ⋅⋅⋅5-4-3-2-1-y ⋅⋅⋅m(3)函数的图象和直线的交点坐标是______.23.如图,四边形是的内接四边形,为直径,点为弧的中点,延长交于点,为的切线.(1)求证:;(2)若,求的长.24.如图,在平面直角坐标系中,点的坐标为,连接,将线段绕着点逆时针旋转,点的对应点为点.(1)求经过三点的抛物线的表达式;(2)将抛物线沿着轴平移到抛物线,在抛物线上是否存在点,使得以为顶点的四边形为正方形,若存在,求平移的方式.若不存在,说明理由.|1|y x =-2y =ABCD O e BD D AC AD BC 、E DF O e CDF EDF ∠=∠2DF EF ==AD A ()4,2OA OA O 90︒A B ,,B O A L L x L 'L 'D ,,,B O A D图2图3【详解】解:观察图形可得,其主视图是3.A【分析】本题考查了根的判别式,根据题意算出根的判别式即可得;掌握根的判别式即可得.【详解】解:,23210x x --=在Rt ACD中,tan C故选B.【点睛】本题考查了锐角三角比的意义.将角转化到直角三角形中是解答的关键.7.C【分析】根据二次函数的性质判断出【详解】解:∵抛物线开口向下,∴a<0,9.B【分析】本题主要考查了同弧所对的圆周角相等,∠的圆周角相等得到ADC=【点睛】本题主要考查了等边三角形的性质,每个内角都相等.13.48【分析】本题考查了反比例函数与几何的综合.1求得相似比为,利用相似比求得∵平行于轴,∴轴,∴,∵,∴,AC x BAC ∠BD x ⊥BAC BDO ∽△△2OC BC =13BC BA BO BD ==18.详见解析【分析】根据平行四边形的性质得出,再证明线段的差得出,即可得出结论.【详解】证明:∵四边形是平行四边形,OEA OFC ∠=∠AOE ≌△△AD AE BC CF -=-ABCD依题意,∴,∵,∴,∴,设,2, 1.5,EM FD MD EF MN ====3 1.5 1.5CM CD MD =-=-=CM AN ∥CME ANE V V ∽CM EM AN EN=AN x =;(3)解:把代入中得:,解得:或,∴函数的图象和直线的交点坐标是:23.(1)见详解(2)【分析】(1)由“直径所对的圆周角等于”和圆周角定理可得2y =|1|y x =-|1|2x -==1x -3x =|1|y x =-2y =390︒设与交于点,∵是等腰直角三角形,AB OD M (),D m n BOA △(2)如图所示,连接AC、(3)如图所示,过点D作DH⊥。

2024年北京东城区初三上学期期末考数学试卷和答案

2024年北京东城区初三上学期期末考数学试卷和答案

东城区2023—2024学年第一学期期末统一检测初三数学2024.1一、选择题(每题2分,共16分)1.下列四个交通标志图案中,是中心对称图形的是2.若3x =是关于x 的方程22=0x x m --的一个根,则m 的值是A .-15B .-3C .3D .153.关于二次函数22(1)2y x =-+,下列说法正确的是A .当x =1时,有最小值为2B .当x =1时,有最大值为2C .当x =-1时,有最小值为2D .当x =-1时,有最大值为24.在下列事件中,随机事件是A .投掷一枚质地均匀的骰子,向上一面的点数不超过6B .从装满红球的袋子中随机摸出一个球,是白球C .通常情况下,自来水在10℃结冰D .投掷一枚质地均匀的骰子,向上一面的点数为25.如图,正方形ABCD 的边长为6,且顶点A ,B ,C ,D 都在⊙O 上,则⊙O 的半径为A.3B.6C.32D.626.北京2022年冬奥会以后,冰雪运动的热度持续.某地雪场第一周接待游客7000人,第三周接待游客8470人.设该地雪场游客人数的周平均增长率为x ,根据题意,下面所列方程正确的是A .27000(1)8470x +=B .270008470x =C .7000(1+2)8470x =D .37000(1)8470x +=7.如图,某汽车车门的底边长为1m ,车门侧开后的最大角度为72°.若将一扇车门侧开,则这扇车门底边扫过区域的最大面积是A .2πm 10B .2πm5C .22πm5D .24πm58.⊙O 是△ABC 的内切圆,与AB ,BC ,AC 分别相切于点D ,E ,F .若⊙O 的半径为2,△ABC 的周长为26,则△ABC 的面积为A.3B.24C.26D.52二、填空题(每题2分,共16分)9.把抛物线22y x =向下平移3个单位长度,所得到的抛物线的解析式为.10.若一元二次方程261=0x x +-经过配方,变形为()23x n +=的形式,则n 的值为.11.为了解某小麦品种的发芽率,某农业合作小组在相同条件下对该小麦做发芽试验,试验数据如下表:种子个数n 550100200500100020003000发芽种子个数m 4449218947695118982851发芽种子频率m n0.8000.8800.9200.9450.9520.9510.9490.950(1)估计该品种小麦在相同条件下发芽的概率为(结果保留两位小数);(2)若在相同条件下播种该品种小麦种子10000个,则约有个能发芽.12.在平面直角坐标系xOy 中,已知点A 的坐标为(1,2),点B 与点A 关于原点对称,则点B 的坐标为_____________.13.已知二次函数2+8+3y x x =-,当x >m 时,y 随x 的增大而减小,则m 的值可以是____________(写出一个即可).14.如图,A ,B ,C 是⊙O 上的三个点,若∠ACB=40°,则∠OBA 的大小是_____________°.15.如图1,一名男生推铅球,铅球的运动路线近似是抛物线的一部分.铅球出手位置的高度为35m,当铅球行进的水平距离为4m 时,高度达到最大值3m.铅球的行进高度y (单位:m)与水平距离x (单位:m)之间的关系满足二次函数.若以最高点为原点,过原点的水平直线为x 轴,建立如图2所示的平面直角坐标系xOy ,则该二次函数的解析式为2121x y -=.若以过出手点且与地面垂直的直线为y 轴,y 轴与地面的交点为原点,建立如图3所示的平面直角坐标系xOy ,则该二次函数的解析式为.16.某单位承担了一项施工任务,完成该任务共需A ,B ,C ,D ,E ,F ,G 七道工序.施工要求如下:①先完成工序A ,B ,C ,再完成工序D ,E ,F ,最后完成工序G ;②完成工序A 后方可进行工序B ;工序C 可与工序A ,B 同时进行;③完成工序D 后方可进行工序E ;工序F 可与工序D ,E 同时进行;④完成各道工序所需时间如下表所示:工序A B C D E F G 所需时间/天11152817163125(1)在不考虑其它因素的前提下,该施工任务最少_____________天完成.(2)现因情况有变,需将工期缩短到80天.工序A ,C ,D 每缩短1天需增加的投入分别为5万元,4万元,6万元,其余工序所需时间不可缩短,则所增加的投入最少是_____________万元.三、解答题(共68分,17-21题,每题5分,22题6分,第23题5分,第24-26题,每题6分,27-28题,每题7分)17.解方程:()()3121x x x +=+.18.如图,在Rt △ACB 中,∠C =90°.求作:⊙O ,使得△ACB 的三个顶点都在⊙O 上.作法:①作边AB 的垂直平分线,交AB 于点O ;②以点O 为圆心,OA 长为半径作圆.则⊙O 为所求作的圆.(1)利用直尺和圆规,补全图形(保留作图痕迹);(2)完成下面的证明.证明:连接OC .由作图可知,OB =OA=12AB .∴点B 在⊙O 上.在Rt △ACB 中,∠ACB =90°,∴OC =12________()(填推理依据).∴OC =OA .∴点C 在⊙O 上.∴△ACB 的三个顶点都在⊙O 上.19.在平面直角坐标系xOy 中,二次函数2y x bx =+的图象过点A (3,3).(1)求该二次函数的解析式;(2)用描点法画出该二次函数的图象;(3)当0x <<3时,对于x 的每一个值,都有2kx x bx +>,直接写出k 的取值范围.20.某班开展“讲数学家故事”的活动.下面是印有四位中国数学家纪念邮票图案的卡片A,B,C,D,卡片除图案外其它均相同.将四张卡片背面朝上,洗匀后放在桌面上,小明同学从中随机抽取两张,讲述卡片上数学家的故事.(1)请写出小明抽到的两张卡片所有可能出现的结果;(2)求小明抽到的两张卡片中恰好有数学家华罗庚邮票图案的概率.21.如图,AB 是⊙O 的弦,半径OD ⊥AB 于点C .若AB =16,CD =2,求⊙O 的半径的长.22.已知关于x 的一元二次方程()222120x m x m -++-=(1)当该方程有两个不相等的实数根时,求m 的取值范围;(2)当该方程的两个实数根互为相反数时,求m 的值.23.如图,在边长均为1个单位长度的小正方形组成的网格中,O ,B 为格点(每个小正方形的顶点叫做格点),OA =3,OB =4,且∠AOB=150°.线段OA 关于直线OB 对称的线段为O A ',将线段OB 绕点O 逆时针旋转45︒得到线段OB '.(1)画出线段O A ',OB ';(2)将线段OB 绕点O 逆时针旋转角()4590αα︒<<︒得到线段OC ',连接A C ''.若=5A C '',求∠B OC ''的度数.24.如图,AB 为⊙O 的直径,点C 在⊙O 上,∠ACB 的平分线CD 交⊙O 于点D.过点D 作DE ∥AB ,交CB 的延长线于点E .(1)求证:直线DE 是⊙O 的切线;(2)若∠BAC =30°,22BC =,求CD 的长.25.食用果蔬前,适当浸泡可降低农药的残留.某小组针对同种果蔬研究了不同浸泡方式对某种农药去除率的影响.方式一:采用清水浸泡.记浸泡时间为t分钟,农药的去除率为y1%,部分实验数据记录如下:方式二:采用不同浓度的食用碱溶液浸泡相同时间.记食用碱溶液的浓度为x%,农药的去除率为y2%,部分实验数据记录如下:结合实验数据和结果,解决下列问题:(1)通过分析以上实验数据,发现可以用函数刻画方式一中农药的去除率y1(%)与浸泡时间t(分)之间的关系,方式二中农药的去除率y2(%)与食用碱溶液的浓度x(%)之间的关系,请分别在下面的平面直角坐标系中画出这两个函数的图象:(2)利用方式一的函数关系可以推断,降低该种农药残留的最佳浸泡时间约为__________分钟.(3)方式一和方式二的函数关系可以推断,用食用碱溶液浸泡含该种农药的这种果蔬时,要想不低于清水浸泡的最大去除率,食用碱溶液的浓度x %中,x 的取值范围可以是_____________.26.在平面直角坐标系xOy 中,点(2,c )在抛物线2(0)y ax bx c a =++>上,设该抛物线的对称轴为直线x t =.(1)求t 的值;(2)已知11()M x y ,,22()N x y ,是该抛物线上的任意两点,对于11m x m <<+,212m x m +<<+,都有12y y <,求m 的取值范围.27.在△ABC 中,AB =AC ,∠BAC =120°,D 为BC 上一点,连接DA ,将线段DA 绕点D 顺时针旋转60°得到线段DE .(1)如图1,当点D 与点B 重合时,连接AE ,交BC 于点H ,求证:AE ⊥BC ;(2)当BD ≠CD 时(图2中BD <CD ,图3中BD >CD ),F 为线段AC 的中点,连接EF .在图2,图3中任选一种情况,完成下列问题:①依题意,补全图形;②猜想∠AFE 的大小,并证明.28.在平面直角坐标系xOy 中,已知点P 和直线1l ,2l ,点P 关于直线1l ,2l “和距离”的定义如下:若点P 到直线1l ,2l 的距离分别为1d ,2d ,则称1d +2d 为点P 关于直线1l ,2l 的“和距离”,记作d .特别地,当点P 在直线1l 上时,1d =0;当点P 在直线2l 上时,2d =0.(1)在点1P (3,0),2P (-1,2),3P (4,-1)中,关于x 轴和y 轴的“和距离”为3的点是________;(2)若P 是直线3y x =-+上的动点,则点P 关于x 轴和y 轴的“和距离”d 的最小值为________;(3)已知点A (0,3),⊙A 的半径为1,点P 是⊙A 上的动点,直接写出点P 关于x 轴和直线y +6的“和距离”d 的取值范围.东城区2023—2024学年度第一学期期末统一检测初三数学参考答案及评分标准2024.1一、选择题(每题2分,共16分)题号12345678答案BCADCABC二、填空题(每题2分,共16分)9.223y x =-10.1011.0.95950012.(-1,-2)13.答案不唯一,m ≥4即可14.5015.21251233y x x =-++16.86,38三、解答题(共68分,17-21题,每题5分,22题6分,第23题5分,第24-26题,每题6分,27-28题,每题7分)17.解:移项,得()()31210.x x x +-+=因式分解,得()()1320.x x +-=……………………………..1分于是得10x +=,或320.x -=……………………………..3分所以方程的两个根分别为1=-1x ,22.3x =……………………………..5分18.解:(1)作图如下,------------------------3分(2)AB直角三角形斜边上的中线等于斜边的一半.------------------------5分19.解:(1)∵点A (3,3)在抛物线二次函数2y x bx =+的图象上,∴2333b =+.解得2b =-.∴二次函数的解析式为22y x x =-.------------------------2分(2)列表:x …-10123…y…3-13…描点,连线------------------------4分(3)当k ≥1.------------------------5分20.解:(1)所有可能出现的结果共6种:AB ,AC ,AD ,BC ,BD ,CD .…………3分(2)记抽到的2张卡片中恰好有数学家华罗庚邮票图案为事件M ,M 包含的结果有3种,即AC ,BC ,CD ,且6种可能的结果出现的可能性相等,所以()31==62P M …………5分21.解:连接OA .∵半径OD ⊥AB 于点C ,AB =16,∴∠ACO =90°,AC =12AB =8,………2分设OA =r ,则OC =2r -.在Rt △AOC 中,根据勾股定理,得222OA AC OC =+,即2228(2)r r =+-.………4分解得17r =.∴⊙O 的半径的长17.………5分22.解:(1)∵关于x 的一元二次方程22(21)20x m x m -++-=有两个不相等的实数根,∴[]()2222=(21)4244148490m m m m m m ∆-+--=++-+=+> (2)分解得94m >-.∴m 的取值范围是94m >-.………..3分(2)由(1)可知,49m ∆=+.由求根公式,得()1212m x +=,()2212m x +=.………..5分∵该方程的两个实数根互为相反数,∴12+0x x =.∴()()2121+21022m m m +++=+=.解得1=2m -,符合题意.∴当方程的两个实数根互为相反数时,1=2m -.………..6分23.解:(1)如图.……………….2分(2)如图,在△A OC ''中,==3OA OA ',==4OC OB ',=5A C '',∴222=A C OA OC ''''+.∴△A OC ''是直角三角形.∴=90.A OC ''︒∠………………..3分∵∠AOB =150°,OA OA OB '与关于直线对称,∴=150.A OB '︒∠………………..4分∴=60C OB '︒∠,即=60α︒.∴=604515B OC C OB B OB '''''-=︒-︒=︒∠∠∠.………………..5分24.(1)证明:如图1,连接OD .∵AB 是⊙O 的直径,∴∠ACB=90°.∵CD 平分∠ACB ,∴∠ACD =∠BCD=45°.---------------1分∴∠ABD =∠ACD=45°.∵OD =OB ,∴∠ODB =∠OBD =45°.--------------2分∵DE ∥AB ,∴∠BDE =∠OBD =45°.∴∠ODE =∠ODB+∠BDE=90°.∴OD ⊥DE .∵OD 为⊙O 的半径,∴直线DE 是⊙O 的切线.------------------3分(3)如图2,过点B 作BF ⊥CD 于点F .∴∠BFC =∠BFD =90°.∵∠BCD =45°.∴∠CBF =45°.图1∴BF CF =.------------------4分在Rt △BFC 中,BC =根据勾股定理,得=2BF CF =.∵ BCBC =,∴∠CDB =∠BAC =30°.------------------5分∴2=4.BD BF =在Rt △BFD 中,根据勾股定理,得DF∴CD CF DF =+------------------6分25.解:(1)画图如下,---------------------------------------------------------------------2分(2)10-------------------------------------------4分(3)答案不唯一,如7x ≤≤12.---------------------------6分26.解:(1)由题意可知,42a b c c ++=,∴2b a =-.∴12bt a=-=.---------------------------2分(2)∵0a >,1t =,∴当1x >时,y 随x 的增大而增大,当1x <,时y 随x 的增大而减小.---------------------------3分①当1m ≥时,∵11m x m <<+,212m x m +<<+,∴121x x <<.∴12y y <,符合题意.---------------------------4分②当112m <≤时,有3122m +<,(i )当111x m <+≤时,∵212m x m +<<+,∴121x x <≤.∴12y y <.(ii )当11m x <<时,设11()M x y ,关于抛物线对称轴1x =的对称点为01()M 'x y ,,则01x >,011=1x x --.∴012x x =-.∵112m <≤,∴0312x <<.∵3122m +≤<,212m x m ++<<∴232x >.∴02312x x <<<.∴12y y <.∴当112m <≤时,符合题意.---------------------------5分③当102m <≤时,3112m +<≤,令11=2x ,23=2x ,则12=y y ,不符合题意.④当102m -<≤时,有1112m +<≤,令1=0x ,2=1x ,则12=1x x <,∴.12>y y ,不符合题意.⑤当112m -<-≤时,1012m +<≤,令11=2x -,2=1x ,则12=1x x <,∴.12>y y ,不符合题意.⑥当1m <-时,1221x x m <<+<,∴.12>y y ,不符合题意.综上所述,m的取值范围是12m ≥.---------------------------6分27.(1)证明:∵AB =AC ,∠BAC =120°,∴∠ABC =∠C =30°.将线段DA 绕点D 顺时针旋转60°得到线段DE ,∴DE =DA ,∠ADE =60°.∴△ADE 是等边三角形.∴∠BAE =60°.∴∠AHB =90°.∴BC ⊥AE.………..3分(2)解:选择图2:①补全图形如图所示:………..4分②猜想∠AFE =90°.………..5分证明:如图,过点A 作AH ⊥BC 于H ,连接AE .则∠AHB =∠AHC =90°.∵AB =AC ,∠BAC =120°,∴∠CAH =12∠BAC =60°,∠C =30°.∴AH =12AC .∵F 为线段AC 中点,∴AF =12AC .∴AH =AF .由(1)可知△ADE 是等边三角形.∴∠DAE =60°=∠CAH ,AD=AE.∴∠DAH =∠EAF.在△ADH 和△AEF 中,.DAH EA AD AE AH AF F ∠==⎧∠⎪⎨⎪=⎩,,∴△ADH ≌△AEF (SAS ).∴∠AFE =∠AHD =90°.………7分选择图3:①补全图形如图所示:②(选择图3的答案与选择图2的答案一致)28.解:(1)P 1,P 2.………2分(2)3.………4分(3)71122d ≤≤.………7分。

2024年北京朝阳区初三九年级上学期期末数学试题和答案

2024年北京朝阳区初三九年级上学期期末数学试题和答案

张卡片,除所标注文字不同外无其他差别.其中,写有“珍稀濒危植.随机摸出一张卡片写有“珍的扇形作圆锥的侧面,记扇形的半径为R,所在一定范围内变化时,l与S都随R的变第12题图第14题图试题13.某科技公司开展技术研发,在相同条件下,对运用新技术生产的一批产品的合格率进行检测,下表是检测过程中的一组统计数据:估计这批产品合格的产品的概率为.14.如图,AB 是半圆O 的直径,将半圆O 绕点A 逆时针旋转30°,点B 的对应点为B ',连接A B ',若AB =8,则图中阴影部分的面积是_______.15.对于向上抛的物体,在没有空气阻力的条件下,上升高度h ,初速度v ,抛出后所经历的时间t ,这三个量之间有如下关系:221gt vt h -=(其中 g 是重力加速度,g 取10m/s 2).将一物体以v=21m/s 的初速度v 向上抛,当物体处在离抛出点18m 高的地方时,t 的值为 .16.已知函数y 1=kx +4k -2(k 是常数,k ≠0),y 2=ax 2+4ax -5a (a 是常数,a ≠0),在同一平面直角坐标系中,若无论k 为何值,函数y 1和y 2的图象总有公共点,则a 的取值范围是_______.三、解答题(共68分,第17-22题,每题5分,第23-26题,每题6分,27-28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17.解方程x 2-1 =6x .18.关于x 的一元二次方程x 2-(m +4)x +3(m +1)=0 .(1)求证:该方程总有两个实数根;(2)若该方程有一根小于0,求m 的取值范围.抽取的产品数n 5001000150020002500300035004000合格的产品数m 476967143119262395288333673836合格的产品频率nm0.9520.9670.9540.9630.9580.9610.9620.959图2图3图1图1 图2试题北京市朝阳区2023~2024学年度第一学期期末检测九年级数学试卷参考答案及评分标准(选用)2024.1一、选择题(共16分,每题2分)题号12345678答案DABCACAC二、填空题(共16分,每题2分)三、解答题(共68分,第17-22题,每题5分,第23-26题,每题6分,27-28题,每题7分)17.解:方程化为x 2 -6x =1.x 2 -6x+9 =10.1032=-)(x .103±=-x .1031+=x ,1032-=x .18.(1)证明:依题意,得=[-(m +4)]2-4×3(m +1) =(m -2)2.∵(m -2)2≥0,∴0≥∆∴该方程总有两个实数根.(2)解:解方程,得x =.∴x 1= m +1,x 2=3.依题意,得m +1<0.∴m <-1.19.解:(1)根据题意,设该二次函数的解析式为 y 2=a (x -1)2+4.当x =0时,y 2 =3∴a =-1.∴y 2=-x 2+2x +3.题号9101112答案x 1=3,x 2=-3相切(1,3)140题号13141516答案答案不唯一,如0.9593438+π1.2或3a <0或a ≥52线段垂直平分线上的点与这条线段两个端点的距离相等.三角形的外角等于与它不相邻的两个内角的和.由题意可知,抛物线顶点C ),(9254.设抛物线对应的函数解析式)4(2+-=x a y试题26. 解:(1)由题意知,a +b +c = 9a +3b +c .∴b = -4a .∴22=-=a b t . (2)∵a >0,∴当x ≥t 时,y 随x 的增大而增大;当x ≤t 时,y 随x 的增大而减小.设抛物线上的四个点的坐标为A (t -1,m A ) ,B (t ,m B ),C (2,n C ),D (3,n D ).点A 关于对称轴x =t 的对称点为A'(t +1,m A )∵抛物线开口向上,点B 是抛物线顶点,∴m A >m B .ⅰ 当t ≤1时,n C < n D∴t +1≤2.∴m A ≤n C ,∴不存在m >n ,不符合题意.ⅱ 当1<t ≤2时,n C < n D∴2<t +1≤3.∴m A >n C .∴存在m >n ,符合题意.ⅲ当2<t ≤3时,∴n 的最小值为m B .∵m A >m B .. ∴存在m >n ,符合题意.ⅳ 当3<t <4时,n D <n C .∴2<t -1<3.∴m A >n D .∴存在m >n ,符合题意.ⅴ 当t ≥4时,n D <n C .∴t -1≥3.∴m A ≤n D ,∴不存在m >n ,不符合题意.综上所述,t 的取值范围是1<t <4.)解:补全图1,如图.证明:延长AF到点G,使得GF=AF,连接,连接GE并延长,与AB的延长。

2024年北京石景山初三九年级上学期期末数学试题和答案

2024年北京石景山初三九年级上学期期末数学试题和答案

石景山区2023-2024学年第一学期初三期末试卷数 学第一部分 选择题一、选择题(共16分,每题2分)第1- 8题均有四个选项,符合题意的选项只有一个. 1.若34(0)x y y ,则xy的值是(A)34 (B)43(C)74(D)732.如图,在Rt ACB △中,90C °,3AC BC ,则sin A 为(A) 13 (B)4 (C)10(D) 103.如图,四边形ABCD 内接于⊙O ,AB 是直径,D 是 AC的 中点.若40B °,则A 的大小为 (A) 50° (B) 60° (C) 70°(D) 80°4.将抛物线23y x 向左平移1个单位长度,平移后抛物线 的解析式为 (A) 23(1)y x(B) 23(1)y x(C) 231y x(D) 231y x5.若抛物线229y xmx 与x 轴只有一个交点,则m 的值为(A) 3(B) 3(C)(D) 3AB C6.如图1,“矩”在古代指两条边成直角的曲尺,它的两边长分别为a ,b .中国古老的天文和数学著作《周髀算经》中简明扼要地阐述了“矩”的功能:“平距以正绳,偃矩以望高,覆矩以测深,卧矩以知远,环矩以为圆,合矩以为方”.其中“偃矩以望高”的意思就是把“矩”仰立放可测物体的高度.如图2,从“矩”AFE 的一端A 望向树顶端的点C ,使视线通过“矩”的另一端E ,测得8m BD , 1.6m AB . 若“矩”的边30cm EF a ,边60cm AF b ,则树高CD 为 (A) 4m (B) 5.3m (C) 5.6m (D) 16m7.在平面直角坐标系xOy 中,若点1(4)y ,,2(6)y ,在抛物线2(3)1(0)y a x a 上,则下列结论正确的是 (A) 121y y(B) 211y y(C) 211y y(D) 121y y8.如图,在ABC △中,CD AB 于点D ,给出下面三个条件: ①A BCD ; ②A BCD ADC ; ③AD CD CD BD. 添加上述条件中的一个,即可证明ABC △是直角三角形的条件序号是 (A) ①②(B) ①③(C) ②③(D) ①②③第二部分 非选择题二、填空题(共16分,每题2分)9.如图,在矩形ABCD 中,E 是边AD 的中点,连接BE 交 对角线AC 于点F .若6AC ,则AF 的长为 . 10.在平面直角坐标系xOy 中,若点1(3)y ,,2(7)y ,在反比例函数(0)ky k x的图象上,则1y 2y (填“>”“=”或“<”). DABCE F DCBA第6题 图1 第6题 图2DCH11.如图,正六边形ABCDEF 内接于⊙O ,12AB ,则 AB 的长为 .12.如图,PA ,PB 分别与⊙O 相切于A ,B 两点,60P °,6PA ,则⊙O 的半径为 .13.如图,线段AB ,CD 分别表示甲、乙建筑物的高,两座建筑物间的距离BD 为30m .若在点A 处测得点D 的俯角 为30°,点C 的仰角 为45°,则乙建筑物的高CD 约为 m (结果精确到0.1m1.4141.732 ).14.如图,点A ,B 在⊙O 上,140AOB °.若C 为⊙O 上任一点(不与点A ,B 重合),则ACB 的大小为 .15.如图,E 是正方形ABCD 内一点,满足90AEB °,连接CE .若2AB ,则CE 长的最小值为 .16.在平面直角坐标系xOy 中,抛物线2(0)y ax bx c a的顶点为(1)P k ,,且经过点(30)A ,,其部分图象如图 所示,下面四个结论中, ①0a ; ②2b a ;③若点(2)M m ,在此抛物线上,则0m ; ④若点()N t n ,在此抛物线上且n c ,则0t . 所有正确结论的序号是 .A BCDENBDM第11题 第12题 第13题三、解答题(共68分,第17-21题,每题5分,第22题6分,第23题5分,第24-26题,每题6分,第27-28题,每题7分) 解答应写出文字说明、演算步骤或证明过程. 17.计算:20248sin 60(1)tan 45 °°.18.如图,在四边形ABCD 中,AC 平分BAD ,90ACD B °.(1)求证:ACD △∽ABC △; (2)若3AB ,4AD ,求AC 的长.19.已知二次函数223y x x .(1)将223y x x 化成2()(0)y a x h k a 的形式,并写出其图象的顶点坐标;(2)求此函数图象与x 轴交点的坐标;(3)在平面直角坐标系xOy 中,画出此函数的图象.20.如图,AB 是⊙O 的直径,弦CD AB 于点E ,6CD ,1BE .求⊙O 的半径.21.已知二次函数2y x bx c 的图象过点(10)A ,和(03)B ,. (1)求这个二次函数的解析式;(2)当14x 时,结合图象,直接写出函数值y 的取值范围.DABC22.如图,在四边形ABCD 中,AD ∥BC ,90B °,3cos 5C,10CD . 求AB 的长.23.已知某蓄电池的电压为定值,使用此电源时,用电器的电流I (单位:A )与电阻R (单位: )成反比例函数关系,即(0)kI k R ,其图象如图所示.(1)求k 的值;(2)若用电器的电阻R 为6 ,则电流I为 A ;(3)如果以此蓄电池为电源的用电器的电流I 不得超过10A ,那么用电器的电阻R应控制的范围是 .24.如图,在ABC △中,AB AC ,以AB 为直径的O 交BC 于点D ,交AC 于点E ,点F 在AC 的延长线上,12CBF BAC . (1)求证:BF 是O 的切线; (2)若5AB ,1tan 2CBF ,求CE 的长.I /AB CD25.投掷实心球是北京市初中学业水平考试体育现场考试的选考项目之一.实心球被投掷后的运动路线可以看作是抛物线的一部分.建立如图所示的平面直角坐标系, 实心球从出手(点A 处)到落地的过程中,其竖直高度y (单位:m )与水平距离x (单位:m )近似满足二次函数关系.小石进行了三次训练,每次实心球的出手点A 的竖直高度为2m .记实心球运动路线的最高点为P ,训练成绩(实心球落地点的水平距离)为d (单位:m ).训练情况如下:根据以上信息,(1)求第二次训练时满足的函数关系式; (2)小石第二次训练的成绩2d 为 m ; (3)直接写出训练成绩1d ,2d ,3d 的大小关系.2OA26.在平面直角坐标系xOy 中,抛物线2(0)y ax bx c a 经过点(33)A a c ,. (1)求该抛物线的对称轴;(2)点1(12)M a y ,,2(2)N a y ,在抛物线上.若12c y y ,求a 的取值范围.27.如图,在Rt ACB △中,90ACB °,60BAC °.D 是边BA 上一点(不与点B重合且12BD BA),将线段CD 绕点C 逆时针旋转60°得到线段CE ,连接DE ,AE . (1)求CAE 的度数;(2)F 是DE 的中点,连接AF 并延长,交CD 的延长线于点G ,依题意补全图形.若G ACE ,用等式表示线段FG ,AF ,AE 之间的数量关系,并证明.DABCE28.在平面直角坐标系xOy 中,⊙O 的半径为1.对于⊙O 的弦AB 和点C 给出如下定义:若点C 在弦AB 的垂直平分线上,且点C 关于直线AB 的对称点在⊙O 上,则称点C 是弦AB 的“关联点”. (1)如图,点1(22A ,,1(22B ,. 在点1(00)C ,,2(10)C ,,3(11)C ,,4(20)C ,中,弦AB 的“关联点”是 ;(2)若点1(0)2C ,是弦AB 的“关联点”,直接写出AB 的长; (3)已知点(02)M ,,(0)15N ,.对于线段MN 上一点S ,存在⊙O 的弦PQ ,使得点S 是弦PQ 的“关联点”.记PQ 的长为t ,当点S 在线段MN 上运动时,直接写出t 的取值范围.石景山区2023-2024学年第一学期初三期末数学试卷答案及评分参考阅卷须知:1.为便于阅卷,本试卷答案中有关解答题的推导步骤写得较为详细,阅卷时,只要考生将主要过程正确写出即可。

2024年全新初三数学上册期末试卷及答案(人教版)

2024年全新初三数学上册期末试卷及答案(人教版)

2024年全新初三数学上册期末试卷及答案(人教版)一、选择题1. 若a²4a+4=0,则a的值为()A. 2B. 0C. 1D. 22. 下列选项中,哪个不是等腰三角形的性质?A. 底边相等B. 两腰相等C. 底角相等D. 对边相等3. 若一个正方形的边长为5cm,则其对角线的长度为()A. 5cmB. 10cmC. 5√2 cmD. 10√2 cm4. 下列哪个选项是二次函数的一般形式?A. y = ax² + bx + cB. y = ax + bC. y = a/b + cD. y = a² + b² + c²5. 若一个等差数列的前三项分别为2, 5, 8,则该数列的公差为()A. 3B. 2C. 1D. 4二、填空题6. 若a²4a+4=0,则a的值为________。

7. 下列选项中,哪个不是等腰三角形的性质?________。

8. 若一个正方形的边长为5cm,则其对角线的长度为________。

9. 下列哪个选项是二次函数的一般形式?________。

10. 若一个等差数列的前三项分别为2, 5, 8,则该数列的公差为________。

答案:一、选择题1. A2. D3. C4. A5. A二、填空题6. 27. D8. 5√2 cm9. A10. 32024年全新初三数学上册期末试卷及答案(人教版)三、解答题11. 已知等差数列的前三项分别为2, 5, 8,求该数列的通项公式。

解答:我们知道等差数列的通项公式为an = a1 + (n 1)d,其中an是第n项,a1是首项,d是公差。

根据题目,首项a1 = 2,公差d = 5 2 = 3。

所以,该数列的通项公式为an = 2 + (n 1)×3。

12. 一个正方形的边长为5cm,求其对角线的长度。

解答:正方形的对角线长度可以通过勾股定理来求解。

设正方形的边长为a,对角线长度为d,则有:d² = a² + a²将a = 5cm代入上式,得:d² = 5² + 5²d² = 50d = √50d = 5√2 cm所以,该正方形的对角线长度为5√2 cm。

甘肃省兰州市第五十三中学2024届九年级上学期期末考试数学试卷(含答案)

甘肃省兰州市第五十三中学2024届九年级上学期期末考试数学试卷(含答案)

初三数学考试时间:120分钟;一、单选题(共36分).....下列关系式中,的反比例函数的是()3x y =2y x =1y x=21y x =.....已知()230x y xy =≠,则下列比例式成立的是()8.关于x 的二次函数22y ax x c =-+和一次函数y ax c =+(a ,c 都是常数,且0a ≠)在同一平面直角坐标系中的图象可能..是()A .B .C .D .9.如图,在ABC 中,AB AC =,BD 平分ABC ∠,交AC 于点D .若36A ∠=︒,则BDC ∠=()A .36︒B .54︒C .72︒D .108︒三、解答题(共72分)跳舞,相声,以及体育活动.800名学生中抽取部分学生.根据以上信息,回答下列问题:(1)填空:选择跳舞的人数为_________,选择相声人数的百分率为(2)题干中“800”属于_________(选填“总体”“个体”“样本”(3)请你估计全校参加社团的学生中对相声、唱歌满意的总人数.是矩形,说明理由;初三数学答题卡姓名:______________班级:______________座号:准考证号第一题选择题(请用2B铅笔填涂)12345678910111222题、(共4分)25题、(共6分)26题、(共8分)28题、(共12分)参考答案:1.B【详解】解:A、圆锥的主视图是等腰三角形,不符合题意;B、圆柱体的主视图是矩形,符合题意;C、四棱锥的主视图是三角形,不符合题意;D、球的主视图是圆形,不合题意;故选:B.故选:D.【详解】如图,所有结果有4种,满足要求的结果有1种,故概率为11.C12.B∴++=,即30a a c20a c+=,故本选项错误;x=,⑤ 对称轴为直线1∴当1x=时,抛物线有最大值,∴++>++,a b c m a mb c2()(m≠,故本选项正确;∴+<+常数1)m ma b a b故选:B.13.3x(x+2)(x﹣2)【详解】3x3﹣12x=3x(x2﹣4)=3x(x+2)(x﹣2),故答案为3x(x+2)(x﹣2).14x -=±,∴15=x ,23x =-.21.见解析【详解】证明:在ABE 和DCE △中AEB DEC A D AB DC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()AAS ABE DCE ≌△△∴,AE DE BE CE==∴AE CE DE BE+=+∴AC DB =.22.证明见解析【详解】证明:90APD ∠=︒ ,90B C ∠=∠=︒,90APB CPD ∴∠+∠=︒,90BAP APB ∠+∠=︒,CPD BAP ∴∠=∠,又B C ∠=∠ ,∴ABP PCD ∽△△.23.(1)14、24%(2)样本容量(3)320人【详解】(1)(128)(128%32%)50+÷--=(人)5028%14⨯=(人)1250100%24%÷⨯=可求解.【详解】(1)解:设每件玩具的售价定为x 元时,月销售利润恰为2160元,根据题意,得()()2020010302160x x ---=⎡⎤⎣⎦,整理,得27012160x x -+=,解得123832x x ==,,∵每件玩具售价不能高于40元,答:每件玩具的售价定为38或32元时,月销售利润恰为2160元;(2)解:设每件玩具的售价定为x 元,月销售利润为y 元,根据题意,得:()()202001030y x x ⎦=--⎡⎤⎣-21070010000x x =-+-()210352250x =--+,∵100-<,∴当35x =时,y 有最大值为2250,答:每件玩具的售价定为35元时可使月销售利润最大,最大的月利润是2250元.27.(1)见解析(2)当点P 是AC 的中点时,四边形AECF 是矩形,理由见解析(3)当△ABC 是直角三角形,90ACB ∠= ,四边形AECF 是正方形【详解】(1)证明:∵//MN BD ,∴BCE PEC ∠=∠,DCF PFC ∠=∠,∵CE ,CF 分别平分∠ACB ,∠ACD ,∴BCE PCE ∠=∠,DCF PCF ∠=∠,∴PEC PCE ∠=∠,PFC PCF ∠=∠,。

2024年最新人教版初三数学(上册)期末试卷及答案(各版本)

2024年最新人教版初三数学(上册)期末试卷及答案(各版本)

2024年最新人教版初三数学(上册)期末试卷及答案(各版本)一、选择题:5道(每题1分,共5分)1. 下列哪个数是有理数?A. √2B. 3/4C. πD. √12. 下列函数中,哪个函数是奇函数?A. y = x^3B. y = x^2C. y = |x|D. y = x^43. 下列哪个图形是正方体?A. 长方体B. 正方体C. 球体D. 圆柱体4. 下列哪个命题是假命题?A. 对顶角相等B. 两直线平行,同旁内角相等C. 两直线平行,内错角相等D. 两直线平行,同旁内角互补5. 下列哪个数是无理数?A. 1/2B. √9C. πD. 0.333二、判断题5道(每题1分,共5分)1. 任何两个实数的和都是实数。

()2. 任何两个实数的积都是实数。

()3. 0是正数。

()4. 1是质数。

()5. 2是偶数。

()三、填空题5道(每题1分,共5分)1. 两个角的和为180°,这两个角互为__________。

2. 两个角的和为90°,这两个角互为__________。

3. 两个角的和为360°,这两个角互为__________。

4. 两个角的和为270°,这两个角互为__________。

5. 两个角的和为__________°,这两个角互为补角。

四、简答题5道(每题2分,共10分)1. 请简要说明有理数的定义。

2. 请简要说明无理数的定义。

3. 请简要说明实数的定义。

4. 请简要说明函数的定义。

5. 请简要说明奇函数的定义。

五、应用题:5道(每题2分,共10分)1. 计算下列表达式的值:(3/4 + 1/3) ÷ (5/6 1/2)2. 计算下列表达式的值:(2/3)^2 × (3/4)^33. 计算下列表达式的值:√(27) + √(48) √(75)4. 计算下列表达式的值:log2(64) + log2(16) log2(8)5. 计算下列表达式的值:sin(45°) + cos(45°) tan(45°)六、分析题:2道(每题5分,共10分)1. 请分析并解释勾股定理及其应用。

人教版初三上册《数学》期末考试卷及答案【可打印】

人教版初三上册《数学》期末考试卷及答案【可打印】

一、选择题(每题1分,共5分)1. 在直角坐标系中,点P(2,3)关于x轴的对称点坐标是()。

A.(2,3)B.(2,3)C.(2,3)D.(2,3)2. 已知一组数据:1,2,3,4,5,那么这组数据的众数、中位数、平均数分别是()。

A. 3,3,3B. 3,3,3.5C. 3,3,4D. 3,3,4.53. 下列函数中,属于一次函数的是()。

A. y=2x+1B. y=x^2C. y=2/xD. y=3sinx4. 已知正比例函数y=kx(k≠0),当x=2时,y=4,那么k的值为()。

A. 2B. 4C. 2D. 45. 在等腰三角形ABC中,AB=AC,∠A=40°,则∠B的度数是()。

A. 40°B. 70°C. 80°D. 90°二、判断题(每题1分,共5分)1. 任意两个等腰三角形的底边长度相等。

()2. 两条平行线上的任意两个点之间的距离相等。

()3. 当两个数的和为0时,它们互为相反数。

()4. 函数y=2x+1的图像是一条直线。

()5. 正比例函数的图像经过原点。

()三、填空题(每题1分,共5分)1. 若x2y=3,则2x4y=______。

2. 若函数y=kx(k≠0)的图像经过点(1,2),则k=______。

3. 已知等腰三角形ABC中,AB=AC=5,BC=8,则∠B的度数是______。

4. 若一组数据的平均数为5,则这组数据的总和是______。

5. 若两个等腰三角形的底边长度相等,则它们一定全等。

()四、简答题(每题2分,共10分)1. 简述正比例函数的定义。

2. 简述等腰三角形的性质。

3. 简述函数图像平移的规律。

4. 简述求解二元一次方程组的方法。

5. 简述众数、中位数、平均数的定义及区别。

五、应用题(每题2分,共10分)1. 某商店销售一批商品,售价为每件20元,成本为每件15元。

若要使利润率达到50%,则售价应定为多少元?2. 已知函数y=kx(k≠0),若该函数的图像经过点(2,4),求k的值。

初三期末数学试卷及答案

初三期末数学试卷及答案

一、选择题(每题3分,共30分)1. 下列各数中,无理数是()A. √2B. 3/4C. 1.618D. 22. 已知 a、b 是方程x² - 5x + 6 = 0 的两个根,则 a + b 的值是()A. 5B. 2C. 6D. 03. 下列函数中,y 是 x 的正比例函数的是()A. y = 2x + 3B. y = 3x² - 2x + 1C. y = 2xD. y = x³ + 2x² - 3x4. 在平面直角坐标系中,点 A(2,3)关于原点对称的点是()A.(2,-3)B.(-2,3)C.(-2,-3)D.(2,-3)5. 下列各式中,正确的是()A. 5a + 2b = 2a + 5bB. 3a - 2b = 2a - 3bC. 2a + 3b = 3a + 2bD. 4a - 5b = 5a - 4b6. 若 |x| = 5,则 x 的值可以是()A. 5B. -5C. 0D. ±57. 下列各式中,绝对值最小的是()A. |2|B. |-3|C. |1/2|D. |-1/3|8. 在△ABC中,∠A = 60°,∠B = 45°,则∠C的度数是()A. 75°B. 105°C. 135°D. 165°9. 已知函数 y = kx + b(k≠0),当 x = 1 时,y = 3;当 x = 2 时,y = 5,则函数的解析式是()A. y = 2x + 1B. y = 3x + 1C. y = 2x - 1D. y = 3x - 110. 下列各式中,分式有意义的条件是()A. x - 1 = 0B. x + 1 = 0C. x - 1 ≠ 0D. x + 1 ≠ 0二、填空题(每题5分,共25分)11. 已知 a = -2,b = 3,则 2a - 3b 的值是 _______。

2023北京海淀初三(上)期末数学(试卷含答案解析)

2023北京海淀初三(上)期末数学(试卷含答案解析)

2023北京海淀初三(上)期末数 学注意事项:1.本试卷共6页,共两部分,28道题.满分100分.考试时间120分钟.2.在试卷和答题纸上准确填写学校名称、姓名和准考证号.3.试题答案一律填涂或书写在答题纸上,在试卷上作答无效.4.在答题纸上,选择题、作图题用2B 铅笔作答,其他题用黑色字迹签字笔作答.第一部分 选择题一、选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个.1. 刺绣是中国民间传统手工艺之一.下列刺绣图案中,是中心对称图形的为( )A. B.C. D.2. 点()1,2A 关于原点对称的点的坐标是( )A. 1,2B. 1,2C. ()1,2−−D. ()2,1 3. 二次函数22y x =+的图象向左平移1个单位长度,得到的二次函数解析式为( )A. 23y x =+B. ()212y x =−+ C. 21y x =+ D. ()212y x =++ 4. 如图,已知正方形ABCD ,以点A 为圆心,AB 长为半径作A ,点C 与A 的位置关系为( )A. 点C 在A 外B. 点C 在A 内C. 点C 在A 上D. 无法确定 5. 若点()0,5M ,()2,5N 在抛物线()223y x m =−+上,则m 的值为( )A. 2B. 1C. 0D. 1−6. 勒洛三角形是分别以等边三角形的顶点为圆心,以其边长为半径作圆弧,由三段圆弧组成的曲边三角形.如图,该勒洛三角形绕其中心O 旋转一定角度α后能与自身重合,则该角度α可以为( )A. 30︒B. 60︒C. 120︒D. 150︒ 7. 如图,过点A 作O 的切线AB ,AC ,切点分别是B ,C ,连接BC .过BC 上一点D 作O 的切线,交AB ,AC 于点E ,F .若90A ∠=︒,AEF △的周长为4,则BC 的长为( )A. 2B.C. 4D.8. 遥控电动跑车竞速是青少年喜欢的活动.如图是某赛道的部分通行路线示意图,某赛车从人口A 驶入,行至每个岔路口选择前方两条线路的可能性相同,则该赛车从F 口驶出的概率是( )A. 13B. 14C. 15D. 16第二部分 非选择题二、填空题(共16分,每题2分)9. 二次函数243y x x =−+的图象与y 轴的交点坐标为______.10. 半径为3且圆心角为120︒的扇形的面积为________.11. 下表记录了一名球员在罚球线上投篮的结果.______.12. 若关于x 的一元二次方程230x x m −+=有两个不相等的实数根,则m 的取值范围是______. 13. 二次函数2y ax bx =+的图象如图所示,则ab ______0(填“>”,“<”或“=”).14. 如图,ABC 是O 的内接三角形,OD AB ⊥于点E ,若O 45ACB ∠=︒,则OE =______.15. 对于二次函数2y ax bx c =++,y 与x 的部分对应值如表所示.x 在某一范围内,y 随x 的增大而减小,写出一个符合条件的x 的取值范围______.16. 如图,AB ,AC ,AD 分别是某圆内接正六边形、正方形、等边三角形的一边.若2AB =,下面四个结论中,①该圆的半径为2; ②AC ̂的长为π2;③AC 平分BAD ∠; ④连接BC ,CD ,则ABC 与ACD 的面积比为.所有正确结论的序号是______.三、解答题(共68分,第17-20题,每题5分,第21题6分,第22-23题,每题5分,第24-26题,每题6分,第27-28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17. 解方程:226x x −=.18. 已知抛物线22y x bx c =++过点()1,3和()0,4,求该抛物线的解析式.19. 已知a 为方程22310x x −−=的一个根,求代数式()()()1132a a a a +−+−的值.20. 如图,四边形ABCD 内接于O ,AB 为直径,BC CD =.若50A ∠=︒,求B ∠的度数.21. 为了发展学生的兴趣爱好,学校利用课后服务时间开展了丰富的社团活动.小明和小天参加的篮球社共有甲、乙、丙三个训练场.活动时,每个学生用抽签的方式从三个训练场中随机抽取一个场地进行训练.(1)小明抽到甲训练场的概率为______;(2)用列表或画树状图的方法,求小明和小天在某次活动中抽到同一场地训练的概率.22. 已知:如图,PA 是O 的切线,A 为切点. 求作:O 的另一条切线PB ,B 为切点.作法:以P 为圆心,PA 长为半径画弧,交O 于点B ; 作直线PB .直线PB 即为所求.(1)根据上面的作法,补全图形(保留作图痕迹);(2)完成下面证明过程.证明:连接OA ,OB ,OP .∵PA 是O 的切线,A 为切点,∴OA PA ⊥.∴90PAO ∠=︒.在PAO 与PBO 中,,,______,PA PB OP OP =⎧⎪=⎨⎪⎩∴PAO PBO ≌.∴90∠=∠=︒PAO PBO .∴OB PB ⊥于点B .∵OB 是O 的半径,∴PB 是O 的切线(____________________)(填推理的依据).23. 紫砂壶是我国特有的手工制造陶土工艺品,其制作过程需要几十种不同的工具,其中有一种工具名为“带刻度嘴巴架”,其形状及使用方法如图1.当制显艺人把“带刻度嘴巴架”上圆弧部分恰好贴在壶口边界时,就可以保证需要粘贴的壶嘴、壶把、壶口中心在一条直线上.图2是正确使用该工具时的示意图.如图3,O 为某紫砂壶的壶口,已知A ,B 两点在O 上,直线l 过点O ,且l AB ⊥于点D ,交O 于点C .若30mm AB =,5mm CD =,求这个紫砂壶的壶口半径r 的长.24. 如图,AB 是O 的直径,点C 在O 上.过点C 作O 的切线l ,过点B 作BD l ⊥于点D .(1)求证:BC 平分ABD ∠;(2)连接OD ,若60ABD ∠=︒,3CD =,求OD 的长.25. 学校举办“科技之星”颁奖典礼,颁奖现场人口为一个拱门.小明要在拱门上顺次粘贴“科”“技”“之”“星”四个大字(如图1),其中,“科”与“星”距地面的高度相同,“技”与“之”距地面的高度相同,他发现拱门可以看作是抛物线的一部分,四个字和五角星可以看作抛物线上的点.通过测量得到拱门的最大跨度是10米,最高点的五角星距地面6.25米.(1)请在图2中建立平面直角坐标系xOy ,并求出该抛物线的解析式;(2)“技”与“之”的水平距离为2a 米.小明想同时达到如下两个设计效果:① “科”与“星”的水平距离是“技”与“之”的水平距离的2倍;②“技”与“科”距地面的高度差为1.5米.小明的设计能否实现?若能实现,直接写出a 的值;若不能实现,请说明理由.26. 在平面直角坐标系xOy 中,抛物线21y ax bx =++过点()2,1.(1)求b (用含a 的式子表示);(2)抛物线过点()2,M m −,()1,N n ,()3,P p .①判断:()()11m n −−______0(填“>”“<”或“=”);②若M ,N ,P 恰有两个点在x 轴上方,求a 的取值范围.27. 如图,在ABC 中,AB AC =,120BAC ∠=︒.D 是AB 边上一点,DEAC ⊥交CA 的延长线于点E .(1)用等式表示AD 与AE 的数量关系,并证明;(2)连接BE ,延长BE 至F ,使EF BE =.连接DC ,CF ,DF .①依题意补全图形;②判断DCF 的形状,并证明.28. 在平面直角坐标系xOy 中,对于点P 和线段AB ,若线段PA 或PB 的垂直平分线与线段AB 有公共点,则称点P 为线段AB 的融合点.(1)已知()30A ,,()50B ,, ①在点()160P ,,()212P −,,()332P ,中,线段AB 的融合点是______; ②若直线y t =上存在线段AB 的融合点,求t 的取值范围;(2)已知O 的半径为4,(),0A a ,()1,0B a +,直线l 过点()0,1T −,记线段AB 关于l 的对称线段为A B ''.若对于实数a ,存在直线l ,使得O 上有A B ''的融合点,直接写出a 的取值范围.参考答案第一部分选择题一、选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个.1. 【答案】B【解析】【分析】如果一个图形绕某一点旋转180度后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.依据中心对称图形的概念即可解答.【详解】解:A、是轴对称图形不是中心对称图形,故此选项不符合题意;B、是中心对称图形,故此选项符合题意;C、不是中心对称图形,故此选项不符合题意;D、不是中心对称图形,故此选项不符合题意;故选:B.【点睛】本题考查中心对称图形,熟练掌握中心对称图形的概念是解题的关键.2. 【答案】C【解析】【分析】根据关于原点对称点的坐标特点:横、纵坐标均取相反数可直接得到答案.【详解】解:点A(1,2)关于原点对称的点的坐标是(-1,-2),故选:C.【点睛】此题主要考查了关于原点对称点的坐标特点,关键是掌握点的坐标的变化规律.3. 【答案】D【解析】【分析】根据函数平移规律:左加右减,上加下减即可得到答案.【详解】解:由题意可得,22y x=+的图象向左平移1个单位长度可得,2y x=++,(1)2故选D.【点睛】本题考查函数图像平移规律,解题关键是熟练掌握规律:左加右减,上加下减.4. 【答案】A【解析】【分析】设正方形的边长为a,用勾股定理求得点C到A的圆心之间的距离AC,AB为A的半径,通过比较二者的大小,即可得到结论.【详解】解:设正方形的边长为a,则AB a,AC==,AB AC <,∴点C 在A 外, 故选:A .【点睛】本题考查了点与圆的位置关系,解题的关键是确定圆的半径和点到圆心之间的距离的大小关系. 5. 【答案】B【解析】 【分析】由函数的解析式可知函数对称轴为022x m +==,从而得出m 的值. 【详解】由函数()223y x m =−+可知对称轴是直线x m =,由()0,5M ,()2,5N 可知,M ,N 两点关于对称轴对称,即0212x +==, 1m ∴=,故选B .【点睛】本题考查二次函数图象上点的坐标特征,注意掌握二次函数图像上点的对称性是解题的关键. 6. 【答案】C【解析】【分析】连接,OA OB ,可得AB AC BC ==,从而得到13601203AOC ∠=⨯︒=︒,即可求解. 【详解】解:如图,连接,OA OC ,∵ABC 是等边三角形,∴AB AC BC ==,即AB AC BC ==, ∴13601203AOC ∠=⨯︒=︒. ∴该角度α可以为120︒.故选:C【点睛】本题主要考查了弧,弦,圆心角的关系,图形的旋转,等边三角形的性质,熟练掌握弧,弦,圆心角的关系是解题的关键.7. 【答案】B【解析】【分析】利用切线长定理得出AB AC =,DF FC =,DE EB =,再根据三角形周长等于4,可求得2AB AC ==,从而利用勾股定理可求解.【详解】解:∵AB ,AC 是O 的切线,切点分别是B ,C , ∴AB AC =,∵DF 、DE 是O 的切线,切点是D ,交AB ,AC 于点E ,F ,∴DF FC =,DE EB =,∵AEF △的周长为4,即4AF EF AE AF DF DE AE AC AB ++=+++=+=,∴2AB AC ==,∵90A ∠=︒,∴BC ===故选:B .【点睛】本题考查切线长定理,勾股定理,熟练掌握切线长定理是解题的关键.8. 【答案】B【解析】【分析】根据“在每个岔路口都有向左或向右两种可能,且可能性相等”可知在点H 、G 、E 、F 处都是等可能情况,从而得到在四个出口H 、G 、E 、F 也都是等可能情况,然后根据概率的意义列式即可得解.【详解】解:由图可知,在每个岔路口都有向左或向右两种可能,且可能性相等,赛车最终驶出的点共有H 、G 、E 、F 四个,所以,最终从点F 驶出的概率为14, 故选:B .【点睛】本题考查了概率,读懂题目信息,得出所给的图形的对称性以及可能性相等是解题的关键,用到的知识点为:概率=所求情况数与总情况数之比. 第二部分 非选择题二、填空题(共16分,每题2分)9. 【答案】()0,3【解析】【分析】令0x =,求得y 的值即可.【详解】令0x =,得2433y x x =−+=,∴二次函数的图象与y 轴的交点坐标为()0,3,故答案为:()0,3.【点睛】本题考查的是二次函数与y 轴的交点,正确计算是解答此题的关键.10. 【答案】3π.【解析】【分析】直接利用扇形的面积公式S=2360n r π,进而求出即可. 【详解】解:∵半径为3,圆心角为120°的扇形,∴S 扇形=2360n r π=21203360π⨯⨯=3π. 故答案为3π.【点睛】此题主要考查了扇形面积公式应用,熟练记忆扇形面积公式是解题关键.11. 【答案】0.51(答案不唯一)【解析】【分析】根据频率估计概率的方法结合表格数据可得答案.【详解】解:由频率分布表可知,随着投篮次数越来越大时,频率逐渐稳定到常数0.51附近, ∴这名球员在罚球线上投篮一次,投中的概率为0.51,故答案为:0.51(答案不唯一).【点睛】此题考查了利用频率估计概率的知识,注意这种概率的得出是在大量实验的基础上得出的,不能单纯的依靠几次决定.12. 【答案】94m <【解析】【分析】根据一元二次方程根的判别式列出关于m 的不等式,即可解得答案.【详解】解:∵230x x m −+=的一元二次方程有两个不相等的实数根,∴0∆>,即()2340m −−>, 解得:94m <, 故答案为:94m <. 【点睛】本题考查一元二次方程根的判别式,解题的关键是掌握0∆>时,一元二次方程有两个不相等的实数根.13. 【答案】<【解析】【分析】根据抛物线的开口方向,判断a 的符号,根据对称轴的位置,判断b 的符号,进而得到ab 的符号.【详解】解:由图象,可知:抛物线的开口向上:0a >,对称轴在y 的右侧:b x 02a=−>,即:0b <, ∴0ab <;故答案为:<. 【点睛】本题考查二次函数的图象与二次函数的系数之间的关系.熟练掌握二次函数的图象和性质,是解题的关键.14. 【答案】1【解析】【分析】连接OA ,OB ,由圆周角定理求得224590AOB ACB ∠=∠=⨯︒=︒,再由等腰三角形三线合一性质求得1452AOE BOE AOB ∠=∠=∠=︒,从而求得45AOE OAE ∠=∠=︒,得到OE AE =,然后在Rt AOE △中,90AEO ∠=︒,由勾股定理求解即可.【详解】解:连接OA ,OB ,∴224590AOB ACB ∠=∠=⨯︒=︒,∵OD AB ⊥于点E ,OA OB = ∴1452AOE BOE AOB ∠=∠=∠=︒, ∴45AOE OAE ∠=∠=︒,∴OE AE =,在Rt AOE △中,90AEO ∠=︒,由勾股定理,得222OE AE OA +=,∴2222OE OA ==, ∴1OE =,故答案为:1.【点睛】本题考查圆周角定理,等腰三角形的性质,勾股定理,熟练掌握圆周角定理,等腰三角形三线合一性质是解题的关键.15. 【答案】2x >(答案不唯一,满足32x ≥即可) 【解析】【分析】根据表格,用待定系数法求出二次函数解析式,再根据二次函数的性质求解即可.【详解】解:把=1x −,=3y −;0x =,1y =;1x =,3y =分别代入2y ax bx c =++,得313a b c c a b c −+=−⎧⎪=⎨⎪++=⎩,解得:131a b c =−⎧⎪=⎨⎪=⎩, ∴22373124y x x x ⎛⎫=−++=−−+ ⎪⎝⎭, ∵10a =−<, ∴当32x >时,y 随x 的增大而减小, ∴当2x >时,y 随x 的增大而减小,故答案为:2x >(答案不唯一,满足32x ≥即可). 【点睛】本题考查待定系数法求二次函数解析式,二次函数的性质,熟练掌握二次函数的性质是解题的关键.16. 【答案】①③④【解析】【分析】根据圆内接正六边形、内接正方形的性质、弧长公式,勾股定理逐一判断可选项即可.【详解】解:根据题干补全图形,连接BC CD OA OB OC OD OE ,,,,,,,根据内接正六边形的性质可知:60AOB ∠=︒,OA OB =∴AOB 是等边三角形,2OA OB AB ===,圆的半径为2,所以①正确;根据内接正方形的性质可知:=90AOC ︒∠,AC 的长为:90π2π180⨯=,所以②错误; ∵OA OD =,120AOD ∠=︒,∴30OAD ∠=︒,∵OA OC =,=90AOC ︒∠,∴45OAC ∠=︒,∵60OAB ∠=︒,∴604515BAC =︒−︒=︒∠,∴BAC DAC ∠=∠,∴AC 平分BAD ∠, 所以③正确;过点A 作AH BC ⊥交CB 延长线于点H ,AG CD ⊥交DC 延长线于点G , ∵1302ACB AOB ∠=∠=︒, ∴12AH AC =,∵AC ==∴AH =1245ADC AOC ∠=∠=︒,∴2AG AD =, 设OB 交AD 于点M ,∵60AOM ∠=︒,∴OM AD ⊥,2AD AM =,∵30OAM ∠=︒, ∴112MD OA ==,∴AM ==,∴2AD AM ==,∴AG =,∵=BAC CAD ∠∠,∴CD BC =,∴1212ABC ACD BC AH SAH S AG DC AG •====•,所以④正确; 因此正确的结论:①③④故答案为:①③④【点睛】本题考查圆内接正六边形、内接正方形的性质、弧长公式,勾股定理,得出圆形的半径是解题的关键.三、解答题(共68分,第17-20题,每题5分,第21题6分,第22-23题,每题5分,第24-26题,每题6分,第27-28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17 【答案】11x =,21x =【解析】【分析】用配方法求解即可.【详解】解:22161x x −+=+,()217x −=,∴1x −=∴11x =,21x =.【点睛】本题考查解一元二次方程,熟练掌握用配方法求解一元二次方程是解题的关键.18. 【答案】2234y x x =−+【解析】【分析】把()1,3和()0,4代入22y x bx c =++,解方程组求出b 、c 的值即可得答案.【详解】解:∵抛物线22y x bx c =++过点()1,3和()0,4,∴32,4.b c c =++⎧⎨=⎩解方程组,得3,4.b c =−⎧⎨=⎩∴抛物线的解析式是2234y x x =−+.关键.19. 【答案】1【解析】【分析】将a 代入方程中得2231a a −=,将所求代数式化简整理后,把2231a a −=整体代入即可.【详解】解:∵a 为方程22310x x −−=的一个根,∴22310a a −−=.∴2231a a −=.∴原式=()222213646122312111a a a a a a a −+−=−−=−−=⨯−=. 【点睛】本题主要考查了一元二次方程的解的概念,以及用整体代入法求代数式的值.解题的关键是掌握整体代入法.20. 【答案】65B ∠=︒【解析】【分析】连接AC .利用等弧所对圆周角相等,得出DAC BAC ∠=∠,从而得出1252BAC DAB ∠=∠=︒,再利用直径所对圆周角是直角,最后由直角 三角形两锐角互余求解即可.【详解】解:如图,连接AC .∵BC CD =,∴DAC BAC ∠=∠.∵50DAB ∠=︒, ∴1252BAC DAB ∠=∠=︒. ∵AB 为直径,∴90ACB ∠=︒.∴9065B BAC ∠=︒−∠=︒.【点睛】本题考查圆周角定理的推论,直角三角形的性质,熟练掌握圆周角定理的推论是解题的关键. 21. 【答案】(1)13 (2)13【解析】【分析】(1)直接根据概率公式求解即可;(2)画树状图得出所有等可能结果,从中找到符合条件的结果,再根据概率公式求解即可.【小问1详解】 解:小明抽到甲训练场的概率为13, 故答案为:13; 【小问2详解】根据题意,可以画出如下树状图:由树状图可以看出,所有可能出现的结果有9种,并且这些结果出现的可能性相等.小明和小天抽到同一场地训练(记为事件A )的结果有3种,所以,()3193P A ==. 【点睛】此题考查了树状图法求概率.树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.22. 【答案】(1)见解析 (2)OA OB =,经过半径外端并且垂直于这条半径的直线是圆的切线【解析】【分析】(1)按照作法作出图形即可;(2)连接OA ,OB ,OP ,证明PAO PBO ≌即可证明PB 是O 的切线.【小问1详解】补全图形,如图所示: 【小问2详解】连接OA ,OB ,OP .∵PA 是O 的切线,A 为切点,∴OA PA ⊥.∴90PAO ∠=︒.在PAO 与PBO 中,,,,PA PB OP OP OA OB =⎧⎪=⎨⎪=⎩∴PAO PBO ≌.∴90∠=∠=︒PAO PBO .∴OB PB ⊥于点B .∵OB 是O 的半径, ∴PB 是O 的切线(经过半径外端并且垂直于这条半径的直线是圆的切线).故答案为:OA OB =,经过半径外端并且垂直于这条半径的直线是圆的切线.【点睛】本题考查了尺柜作图,切线的性质和判定,以及全等三角形的判定与性质,熟练掌握切线的判定与性质是解答本题的关键.23. 【答案】25mm【解析】【分析】连接OB ,根据垂径定理求得1152BD AB ==,又由5DO r =−,即可由勾股定理求解. 【详解】解:如图,连接OB .∵l 过圆心O ,l AB ⊥,30AB =, ∴1152BD AB ==. ∵5CD =,∴5DO r =−.∵222BO BD DO =+,∴()222155r r =+−. 解得25r =.∴这个紫砂壶的壶口半径r 的长为25mm .【点睛】本题考查垂径定理,勾股定理,熟练掌握垂径定理是解题的关键.24. 【答案】(1)见解析 (2)OD =【解析】【分析】(1)连接OC ,求得OC BD ∥,得到OBC CBD ∠=∠,即可求得BC 平分ABD ∠. (2)连接AC ,求得90ACB ∠=︒,在Rt BDC 中,求得6BC =;在Rt ACB △中,2AB AC =,OC =Rt OCD △中,利用勾股定理可求得OD =.【小问1详解】证明:如图,连接OC .∵直线l 与O 相切于点C ,∴OC l ⊥于点C .∴90OCD ∠=︒.∵BD l ⊥于点D ,∴=90BDC ∠︒.∴180OCD BDC ︒∠+∠=.∴OC BD ∥.∴OCB CBD ∠=∠.∵OC OB =,∴OBC OCB ∠=∠.∴OBC CBD ∠=∠.∴BC 平分ABD ∠.【小问2详解】解:连接AC .∵AB 是O 的直径,∴90ACB ∠=︒.∵60ABD ∠=︒, ∴1302OBC CBD ABD ︒∠=∠=∠=.在Rt BDC 中,∵30CBD ∠=︒,3CD =,∴26BC CD ==.在Rt ACB △中,∵30ABC ∠=︒,∴2AB AC =.∵222AC BC AB +=,∴AB =∴12OC AB ==.在Rt OCD △中,∵222OC CD OD +=,∴OD =【点睛】本题是圆与三角形综合题,考查了切线的性质、角平分线的判定和和勾股定理,作出恰当的辅助线是解决问题的关键25. 【答案】(1)20.25y x =−(答案不唯一)(2)能实现;a =【解析】【分析】(1)建立平面直角坐标系,写出点的坐标,代入求解析式即可; (2)设“技”的坐标()20.25a a −−,,表示“科”()22a a −−,,列出方程解方程即可. 【小问1详解】 解:如图,以抛物线顶点为原点,以抛物线对称轴为y 轴,建立平面直角坐标系.设这条抛物线表示的二次函数为2y ax .∵抛物线过点()5, 6.25−,∴25 6.25a =−∴0.25a =−∴这条抛物线表示的二次函数为20.25y x =−.【小问2详解】能实现;a =由“技”与“之”的水平距离为2a 米,设“技”()20.25a a −−,,“之”()20.25a a −,, 则 “科”()22a a −−,,“技”与“科”距地面的高度差为1.5米,()220.25 1.5a a ∴−−−=,解得:a =a =舍去) 【点睛】本题考查运用二次函数解决实际问题,建立适当的平面直角坐标系,求出函数解析式是解题的关键.26. 【答案】(1)2b a =−(2)①<②a 的取值范围是1138a −<≤−或1a ≥ 【解析】【分析】(1)把()2,1代入21y ax bx =++,计算即可;(2)①把()2,M m −代入21y ax bx =++,得18m a −=,把()1,N n 代入21y ax bx =++,得1n a −=−,当0a >时,180m a −=>,10n a −=−<,得()()110m n −−<;当a<0时,180m a −=<,10n a −=−>,得()()110m n −−<;即可得出结论; ②把()2,M m −,()1,N n ,()3,P p 代入21y ax bx =++,得81m a =+,1n a =−+,31p a =+.当0a >时,抛物线开口向上,对称轴为1x =,则抛物线在1x =时,取得最小值n .所以M ,P 在x 轴上方,N 在x 轴上或x 轴下方,则81031010a a a +>⎧⎪+>⎨⎪−+≤⎩,解得1a ≥.当0a <时,抛物线开口向下,对称轴为1x =,所以抛物线在1x =时,取得最大值n ,且<m p .所以N ,P 在x 轴上方,M 在x轴上或x 轴下方.则10310810a a a −+>⎧⎪+>⎨⎪+≤⎩,解得1138a −<≤−. 【小问1详解】解:把()2,1代入21y ax bx =++,得4211a b ++=,∴2b a =−;【小问2详解】解:①把()2,M m −代入21y ax bx =++,得421m a b =−+,由(1)知:2b a =−,∴18m a −=,把()1,N n 代入21y ax bx =++,得1n a b =++,1n a −=−,当0a >时,180m a −=>,10n a −=−<,∴()()110m n −−<,当a<0时,180m a −=<,10n a −=−>,∴()()110m n −−<,绽上,()()110m n −−<;②由(1)知2b a =−,∴221y ax ax =−+∴抛物线对称轴为1x =.∵抛物线过点()2,M m −,()1,N n ,()3,P p ,∴81m a =+,1n a =−+,31p a =+.当0a >时,抛物线开口向上,对称轴为1x =,∴抛物线在1x =时,取得最小值n .∵M ,N ,P 恰有两点在x 轴上方,∴M ,P 在x 轴上方,N 在x 轴上或x 轴下方.∴81031010a a a +>⎧⎪+>⎨⎪−+≤⎩,解得1a ≥.当0a <时,抛物线开口向下,对称轴为1x =,∴抛物线在1x =时,取得最大值n ,且<m p .∵M ,N ,P 恰有两点在x 轴上方,∴N ,P 在x 轴上方,M 在x 轴上或x 轴下方.∴10310810a a a −+>⎧⎪+>⎨⎪+≤⎩,解得1138a −<≤−. 综上,a 的取值范围是1138a −<≤−或1a ≥. 【点睛】本题考查二次函数图象上点的坐标特征,二次函数的性质,熟练掌握二次函数的图象性质是解题的关键.27. 【答案】(1)2AD AE =,理由见解析;(2)①如图;②结论:DCF 是等边三角形,理由见解析.【解析】【分析】(1)根据DE AC ⊥,120BAC ∠=︒可知90DEA ∠=︒,30ADE BAC DEA ∠=∠−∠=︒,利用含30︒角的直角三角形性质:30︒角所对直角边等于斜边的一半,可得2AD AE =.(2)①根据题意补全图形即可;②延长BA 至点H 使AH AB =,连接CH ,FH ,根据AB AC =可知AH AC =,由18060HAC BAC ∠=︒−∠=︒,得ACH 是等边三角形,HC AC =,60AHC ACH ∠=∠=︒,根据AH AB =,EF BE =,可知2HF AE =,HF AE ∥,得60FHA HAC ∠=∠=︒,120FHC FHA AHC ∠=∠+∠=︒,FHC DAC ∠=∠,由2AD AE =,得HF AD =,由HA AC =,可证明FHC DAC ≌△△,可得FC DC =,HCF ACD ∠=∠,60FCD ACH ∠=∠=︒,从而可证明DCF 是等边三角形.【小问1详解】解:线段AD 与AE 的数量关系:2AD AE =.证明: DE AC ⊥,90DEA ∴∠=︒.120BAC ∠=︒,30ADE BAC DEA ∴∠=∠−∠=︒2AD AE ∴=;【小问2详解】解:①补全图形,如图.②结论:DCF 是等边三角形.证明:延长BA 至点H 使AH AB =,连接CH ,FH ,如图.AB AC =,∴AH AC =.18060HAC BAC ∠=︒−∠=︒,∴ACH 是等边三角形.∴HC AC =,60AHC ACH ∠=∠=︒.AH AB =,EF BE =,∴2HF AE =,HF AE ∥.∴60FHA HAC ∠=∠=︒.∴120FHC FHA AHC ∠=∠+∠=︒.∴FHC DAC ∠=∠,2AD AE =,∴HF AD =.HC AC =,∴FHC DAC ≌△△(SAS )∴FC DC =,HCF ACD ∠=∠.∴60FCD ACH ∠=∠=︒.∴DCF 是等边三角形.【点睛】此题考查了含30︒角的直角三角形性质,等边三角形的判定和性质,全等三角形的判定和性质,综合掌握相关知识点是解题关键.28. 【答案】(1)①1P ,3P;②当22t −≤≤时,直线y t =上存在线段AB 的融合点(21a ≤≤或1a −≤≤【解析】 【分析】(1)①画出对应线段的垂直平分线,再根据融合点的定义进行判断即可;②先确定线段AB 融合点的轨迹为分别以点A ,B 为圆心,AB 长为半径的圆及两圆内区域,则当直线y t =与两圆相切时是临界点,据此求解即可;(2)先推理出A B ''的融合点的轨迹即为以T 为圆心,()1TA −的长为半径的圆和以T 为圆心,以()1TB +的长为半径的圆的组成的圆环上(包括两个圆上),再求出两个圆分别与O 内切,外切时a 的值即可得到答案.【小问1详解】解:①如图所示,根据题意可知1P ,3P是线段AB 的融合点, 故答案为;1P ,3P ;②如图1所示,设PA 的垂直平分线与线段AB 的交点为Q ,∵点Q 在线段PA 的垂直平分线上,∴PQ AQ =,∴当点Q 固定时,则点P 在以Q 为圆心,AQ 的长为半径的圆上,∴当点Q 在AB 上移动时,此时点P 的轨迹即线段AB 的融合点的轨迹为分别以点A ,B 为圆心,AB 长为半径的圆及两圆内区域.当直线y t =与两圆相切时,记为1l ,2l ,如图2所示.∵()30A ,,()50B ,, ∴2AB =,∴2t =或2t =−.∴当22t −≤≤时,直线y t =上存在线段AB 的融合点.【小问2详解】解:如图3-1所示,假设线段AB 位置确定,由轴对称的性质可知TA TA TB TB ''==,,∴点A '在以T 为圆心,TA 的长为半径的圆上运动,点B '在以T 为圆心,以TB 的长为半径的圆上运动, ∴A B ''的融合点的轨迹即为以T 为圆心,()1TA −的长为半径的圆和以T 为圆心,以()1TB +的长为半径的圆的组成的圆环上(包括两个圆上);当TA TB <时,如图3-2所示,当以T 为圆心,()1TA −为半径的圆与O 外切时, ∴141TA −=+,6=, ∴2136a +=,∴a =;如图3-3所示,当以T 为圆心,()1TB +为半径的圆与O 内切时, ∴13TB +=,2=, ∴22114a a +++=, ∴31a (负值舍去);1a ≤≤时,存在直线l ,使得O 上有A B ''的融合点;同理当TA TB >时,当以T 为圆心,()1TB −为半径的圆与O 外切时,∴141TB −=+,6=, ∴221136a a +++=,∴1a =−(正值舍去);当以T 为圆心,()1TA +为半径的圆与O 内切时, ∴13TA +=,2=, ∴214a +=,∴a =;∴1a ≤≤l ,使得O 上有A B ''的融合点;1a ≤≤或1a ≤≤时存在直线l ,使得O 上有A B ''的融合点.【点睛】本题主要考查了坐标与图形,轴对称的性质,线段垂直平分线的性质,勾股定理,圆与圆的位置关系等等,正确推理出对应线段的融合点的轨迹是解题的关键.。

初三数学上册期末测试卷(含答案)

初三数学上册期末测试卷(含答案)

初三数学上册期末测试卷(含答案)一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案的代号在答题卡中对应的方框涂黑.1.在-1、0、2这四个数中,最小的数是()A.-1 B.0C.-D.2【答案】C 【解析】【分析】先利用两个负数,绝对值大的反而小,及算术平方根的含义,比较两个负数的大小,再结合正数大于零,零大于负数,从而可得答案.【详解】解:11,-== 而1<2,1∴1∴->∴<1-<0<2,∴最小的数是故选:.C 【点睛】本题考查的是实数的大小比较,掌握实数的大小比较的方法是解题的关键.2.下列建筑物小图标中,其中是轴对称图形的是()A. B. C. D.【答案】D 【解析】【分析】把一个图形沿某条直线对折,直线两旁的部分能够完全重合,这样的图形是轴对称图形,这条直线是图形的对称轴,根据定义逐一判断即可得到答案.【详解】解:选项A 不是轴对称图形,故A 不符合题意;选项B 不是轴对称图形,故B 不符合题意;选项C 不是轴对称图形,故C 不符合题意;选项D 是轴对称图形,故D 符合题意;故选:.D 【点睛】本题考查的是轴对称图形的识别,掌握轴对称图形的定义是解题的关键.3.下列计算中,正确的是()A.336a a a += B.336a a a ⋅= C.()325a a = D.632a a a ÷=【答案】B 【解析】【分析】分别利用合并同类项、同底数幂相乘、幂的乘方、同底数幂相除逐一分析即可.【详解】解:A .3332a a a +=,原选项计算不正确;B .336a a a ⋅=,原选项计算正确;C .()326a a =,原选项计算不正确;D .633a a a ÷=,原选项计算不正确;故选:B .【点睛】本题考查整式的运算,掌握合并同类项、同底数幂相乘、幂的乘方、同底数幂相除的法则是解题的关键.4.如图,△ABC 与△DEF 位似,点O 为位似中心,已知OA :OD=1:3,且△ABC 的周长为4,则△DEF 的周长为()A.8B.12C.16D.36【答案】B 【解析】【分析】根据OA :OD=1:3可得相似比为1:3,即可求解.【详解】解:∵△ABC 与△DEF 位似,OA :OD=1:3,∴△ABC 与△DEF 位似比为1:3,∴△ABC 与△DEF 相似比为1:3,∴△ABC 与△DEF 周长比为1:3,∴△DEF 的周长为12,故选:B.【点睛】本题考查的是位似图形的概念、相似三角形的性质,掌握位似的两个三角形是相似三角形、相似三角形的面积比等于相似比的平方是解题的关键.5.如图,△ABC 内接于⊙O ,AD 是⊙O 的直径,若∠C=63º,则∠DAB 等于()A.27ºB.31.5ºC.37ºD.63º【答案】A 【解析】【分析】根据直径所对的圆周角是直角可得90ABD ∠=︒,根据同弧所对的圆周角相等可得∠D=63º,利用直角三角形两锐角互余即可求解.【详解】解:∵AD 是⊙O 的直径,∴90ABD ∠=︒,∵∠C=63º,∴∠D=63º,∴9027DAB D ∠=︒-∠=︒,故选:A.【点睛】本题考查圆周角定理,掌握直径所对的圆周角是直角以及同弧所对的圆周角相等是解题的关键.6.把黑色三角形按如图所示的规律拼成下列图案,其中第①个图案中有4个黑色三角形,第②图案有7个黑色三角形,第③个图案有10个黑色三角形,…,按此规律排列下去,则第⑥图案中黑色三角形的个数为()A.16B.19C.31D.36【答案】B 【解析】【分析】观察图案发现第①个图案中黑色三角形的个数为1314+⨯=;第②个图案中黑色三角形的个数为1327+⨯=;第③个图案中黑色三角形的个数为13310+⨯=;即可求解.【详解】解:第①个图案中黑色三角形的个数为1314+⨯=;第②个图案中黑色三角形的个数为1327+⨯=;第③个图案中黑色三角形的个数为13310+⨯=;……第⑥个图案中黑色三角形的个数为13619+⨯=,故答案为:B .【点睛】本题考查图形的规律,观察图案找出规律是解题的关键.7.我国古代数学著作《九章算术》记载了一道“牛马问题”:“今有二马、一牛价过一万,如半马之价.一马、二牛价不满一万,如半牛之价.问牛、马价各几何.”其大意为:现有两匹马加一头牛价钱超过一万,超过的部分正好是半匹马的价钱;一匹马加上二头牛的价钱则不到一万,不足部分正好是半头牛的价钱,求一匹马、一头牛各多少钱?设一匹马价钱为x 元,一头牛价钱为y 元,则符合题意的方程组是()A.2+10000210000(2)2x x y y x y ⎧-=⎪⎪⎨⎪-+=⎪⎩ B.2+1000022100002x x y y x y ⎧-=⎪⎪⎨⎪+-=⎪⎩C.2++1000022100002x x y y x y ⎧=⎪⎪⎨⎪+-=⎪⎩D.210000210000(2)2x x y y x y ⎧++=⎪⎪⎨⎪-+=⎪⎩【答案】A 【解析】【分析】设一匹马价钱为x 元,一头牛价钱为y 元,则利用两匹马加一头牛价钱超过一万,超过的部分正好是半匹马的价钱,可列方程210000,2xx y +-=由一匹马加上二头牛的价钱则不到一万,不足部分正好是半头牛的价钱,可列方程()100002,2yx y -+=从而可得答案.【详解】解:设一匹马价钱为x 元,一头牛价钱为y 元,则2+10000210000(2)2x x y y x y ⎧-=⎪⎪⎨⎪-+=⎪⎩故选:.A 【点睛】本题考查的是二元一次方程组的应用,掌握利用二元一次方程组解决实际问题,理解超过与不足的含义是解题的关键.8.根据如图所示的程序计算函数y 的值,若输入的x 的值为3或-4时,输出的y 值互为相反数,则b 等于()A.-30B.-23C.23D.30【答案】D 【解析】【分析】先分别求解当3x =时,9,y b =-当4x =-时,16,2y b =+再利用相反数的含义列方程,再解方程可得答案.【详解】解:当3x =时,9,y b =-当4x =-时,1216,22b y b +==+结合题意可得:1960,2b b -++=115,2b ∴=30.b ∴=故选:.D 【点睛】本题考查的是求解一次函数值与二次函数值,相反数的含义,掌握以上知识是解题的关键.9.尚本步同学家住“3D魔幻城市”——重庆,他决定用所学知识测量自己居住的单元楼的高度.如图,小尚同学从单元楼CD的底端D点出发,沿直线步行42米到达E点,在沿坡度i=1:0.75的斜坡EF行走20米到达F点,最后沿直线步行30米到达隔壁大厦的底端B 点,小尚从B点乘直行电梯上行到顶端A点,从A点观测到单元顶楼C的仰角为28º,从点A观测到单元楼底端的俯角为37º,若A、B、C、D、E、F在同一平面内,且D、E和F、B分别在通一水平线上,则单元楼CD的高度约为()(结果精确到0.1米,参考数据:sin28º≈0.47,cos28º≈0.88,tan28º≈0.53,sin37º≈0.6,cos37º≈0.8,tan37º≈0.75)A.79.0米B.107.5米C.112.6米D.123.5米【答案】B【解析】【分析】作EG⊥BF交BF的延长线于G,AK⊥CD于K.延长DE交AB于H,解直角三角形求出CK、AH即可解决问题.【详解】解:作EG⊥BF交BF的延长线于G,AK⊥CD于K.延长DE交AB于H,如图,则四边形AKDH 是矩形,∴AK=DH ,KD=AH ,∵140.753EG GF ==∴设EG=4x ,则FG=3x ,由勾股定理得,222EG FG EF +=∵EF=20m∴22169400x x +=解得,=4x (负值舍去)∴EG=16m ,FG=12m ∵DE=42m ,BF=30m ∴DH=DE+FG+BF=84m ,∴AK=84m ;在Rt △ADH 中,∠ADH=37°∴tan37°=AHDH,∴AH=DH×tan37°=84×0.75=63(m )同理,在Rt △AKC 中,∠K AC=28°∴tan28°=CKAK,∴CK=AK×tan28°=84×0.53=44.52(m )∴CD=CK+DK=63+44.52=107.5≈107.5(m)故选:B【点睛】本题考查解直角三角形-仰角俯角问题,坡度坡角问题,解题的关键是熟练掌握基本知识,学会添加常用辅助线,构造直角三角形解决问题.10.若关于x 的不等式组52+11{231x x a >-<()无解,且关于y 的分式方程34122y a y y++=--有非负整数解,则满足条件的所有整数a 的和为()A.8 B.10C.16D.18【答案】C 【解析】【分析】先由不等式组无解,求解8,a ≤再求解分式方程的解2,2a y +=由方程的解为非负整数,求解2a ≥-且2,a ≠再逐一确定a 的值,从而可得答案.【详解】解:52+11{231x x a >-<()①②由①得:25x +>11,x \>3,由②得:3x <1a +,x \<1,3a+ 关于x 的不等式组52+11{231x x a >-<()无解,1+3,3a∴≤19,a ∴+≤8,a ∴≤34122y a y y++=--,()342,y a y ∴-+=-2,2a y +∴=20,y -≠22,2a +∴≠2,a ∴≠ 关于y 的分式方程34122y a y y++=--有非负整数解,20,2a +∴≥2,a ∴≥-22a +为整数,2a ∴=-或0a =或4a =或6a =或8.a =2046816.∴-++++=故选:.C 【点睛】本题考查的由不等式组无解求解字母系数的范围,分式方程的非负整数解,掌握以上知识是解题的关键.11.已知A 、B 两地相距810千米,甲车从A 地匀速前往B 地,到达B 地后停止.甲车出发1小时后,乙车从B 地沿同一公路匀速前往A 地,到达A 地后停止.设甲乙两车之间的距离为y(千米),甲车出发的时间为x (小时),y 与x 的关系如图所示,对于以下说法:①乙车的速度为90千米/时;②点F 的坐标为(9,540);③图中a 的值是13.5;④当甲乙两车相遇时,两车相遇地距A 地的距离为360千米.其中正确的结论是()A.①②③B.①②④C.②③④D.①③④【答案】D 【解析】【分析】通过对运动过程及函数图象的分析可得:CD 段为甲车提前出发的1小时,即可求解甲车速度;DE 段为甲乙相向而行,在E 点时两车相遇,5小时的时间内共行驶750千米即可求出乙车速度,逐一判断即可求解.【详解】解:由图象可知CD 段为甲车提前出发的1小时,可得甲车速度为81075060km/h -=,DE 段为甲乙相向而行,在E 点时两车相遇,5小时的时间内共行驶750千米,∴乙车的速度为7506090km/h 5-=,故①正确;此时两车距A 地的距离为606360⨯=,故④正确;∴甲车到达B 地时对应时间为810=13.5h 60,乙车到达A 地时对应时间为81011090+=,∴图中a 的值是13.5,故③正确;点F 的坐标为(10,600),故②错误;综上,正确的结论有①③④,故选:D .【点睛】本题考查一次函数的应用,根据图象与题干分析出每一段的状态是解题的关键.12.如图,在平面直角坐标系中,△ABO 的顶点O 在坐标原点,另外两个顶点A 、B 均在反比例函数(0)ky k x=≠的图像上,分别过点A 、点B 作y 轴、x 轴的平行线交于点C ,连接OC 并延长OC 交AB 于点D ,已知C (1,2),△BDC 的面积为3,则k 的值为()A.B. C.+2D.8【答案】C 【解析】【分析】过B 、C 分别做BE ⊥x 轴,CF ⊥x 轴,过D 作DG ⊥BC ,DH ⊥AB ,设BC =a ,由点C 的坐标即可表示点B 、C 的坐标,即可得出AC 与BC 的比值,由相似三角形的判定易证得△COF ∽△DCG ,得出DG 与DH 的比值,得出22ABC BCD ACD S S S == ,由三角形面积公式列出关于a 的等式,求得a 的值得出B 点坐标,即可求得k 值.【详解】解:过B 、C 分别做BE ⊥x 轴垂足为E,延长A C 交x 轴于F ,过D 作DG ⊥BC ,DH ⊥AB ,垂足为G 、H .∵C (1,2)∴OF =1,CF =2=BE ,则点A 的横坐标为1,点B 的纵坐标为2,设BC =a ,则B (a+1,2)∵B 在反比例函数k y x =的图像上,∴()21k a =+,∵A 在反比例函数k y x=的图像上,且点A 的横坐标为1,∴A 点的纵坐标为:22y a =+,即点A (1,2a+2),∴AC =AF -CF =2a+2-2=2a ,∴12AC BC =,∵BC//x 轴,CF ⊥x 轴,DG ⊥BC ,∠COF =∠DCG ,∠CFO =∠DGC =90°,∴△COF ∽△DCG ,∴21CF D CG OF G ==,即21DG DH =,∴3BCD ACD S S == ,∴6ABC S = ,∴162AC BC ⋅⋅=,即1262a a ⨯⨯=,∴a =,∴B (,2),∴k =2+,故选:C【点睛】本题考查了反比函数图像上点的坐标特征,相似三角形的性质和判定,注意准确作出辅助线,求得点B 的坐标是关键.二、填空题:(本题共6小题,每小题4分,共24分)请把下列各题的正确答案填写在答题卡中对应的横线上.13.2020年12月中旬出现疫情反复后,北京市立即启动了全市核酸检测信息统一平台,满足常态化核酸检测和短时间、大规模核酸检测要求.目前,通过平台累计采样超过2280000人,数据2280000用科学记数法可以表示为__________.【答案】62.2810⨯【解析】【分析】利用科学记数法表示数的方法即可求解.【详解】解:2280000用科学记数法可以表示为62.2810⨯,故答案为:62.2810⨯.【点睛】本题考查科学记数法表示数,掌握科学记数法表示数的方法是解题的关键.14.计算:()0221π-+-=__________.【答案】1-【解析】【分析】分别利用算术平方根、有理数的乘方、零指数幂计算各项,即可求解.()02212411π-+-=-+=-,故答案为:1-.【点睛】本题考查实数的运算,掌握实数的运算法则是解题的关键.15.现有四张分别标有数字-5、-2、1、2的卡片,它们除数字不同外其余完全相同,把卡片背面朝上洗匀,从中任意抽取一张,将上面的数字记为a ,放回后从卡片中再任意抽取一张,将上面的数字记为b ,则点(a ,b )在直线y=2x -1的概率为___________.【答案】18.【解析】【分析】利用列表法或画树状图法,确定点的坐标的总可能性,把坐标之一代入函数的解析式,确定在直线上的可能性,根据概率公式计算即可.【详解】根据题意,画树状图如下:∴一共有16种等可能性,∵点(-2,-5),(1,1)在直线y=2x -1上,∴有2种可能性,∴点(a ,b )在直线y=2x -1的概率为216=18,故答案为:18.【点睛】本题考查了用列表法或画树状图法求概率,熟练掌握两种求概率的基本方法是解题的关键.16.如图,在矩形ABCD 中,∠DBC=30º,DC=2,E 为AD 上一点,以点D 为圆心,以DE 为半径画弧,交BC 于点F ,若CF=CD ,则图中的阴影部分面积为______________.(结果保留π)【答案】2.π--【解析】【分析】连接DF ,由矩形ABCD ,30,2,DBC DC CF ∠=︒==分别求解,,,EDF DF BC ∠再求解,2DFC ABCD DEF S S S π=== 矩形扇形,从而可得答案.【详解】解:连接DF ,矩形ABCD ,30,2,DBC DC CF ∠=︒==90,4,45,ADC BD DFC FDC DF ∴∠=︒=∠=∠=︒=904545,BC EDF ∴==∠=︒-︒=︒(24512,2223602DFC ABCD DEF S S S ππ⨯∴=====⨯⨯= 矩形扇形,2.S π∴=-阴影故答案为:2.π--【点睛】本题考查的是矩形的性质,等腰直角三角形的性质,含30°的直角三角形的性质,勾股定理的应用,扇形的面积,掌握以上知识是解题的关键.17.如图,在△ABC 中,tan ∠ACB=12,D 为AC 的中点,点E 在BC 上,连接DE ,将△CDE 沿着DE 翻折,得到△FDE ,点C 的对应点是点F ,EF 交AC 于点G ,当EF ⊥EC 时,△DGF 的面积154,连接AF ,则AF 的长度为__________.【答案】【解析】【分析】根据翻折的性质,可得EDC EDF ≅ ,继而由全等三角形对应角相等,解得45FED CED ∠=∠=︒,作,DM EF AN EF ⊥⊥,设DM EM x ==,利用正切的定义解得2FM x =,2x GM =,继而解得FG 的长,再根据三角形面积公式解得x =证明G 是AD 中点,接着证明()ANG DMG AAS ≅ ,解得GN FN AN 、、的长,最后利用勾股定理解题即可.【详解】解:由翻折可知,EDC EDF≅ CED FED∴∠=∠EF EC⊥ 45FED CED ∴∠=∠=︒作,DM EF AN EF⊥⊥设DM EM x==EFD ACB∠=∠ 2tan DM FM x EFD∴==∠//DM BCQ GDM ACB∴∠=∠tan 2x GM GDM DM ∴=∠⋅=32x FG FM GM ∴=-=113152224DGF x S FG DM x ∴=⨯=⋅⋅= x ∴=555,,522FD GD x AD CD FD ∴=======G ∴是AD 中点,即,90AG DG ANG DMG =∠=∠=︒,且AGN DGM ∠=∠()ANG DMG AAS ∴≅ 5,22x GN GM FN FM NM AN DM ∴====-====AF ∴==.【点睛】本题考查翻折、全等三角形的判定与性质、正切、勾股定理等知识,是重要考点,难度较易,掌握相关知识是解题关键.18.随着农历牛年脚步的临近,江北区街道两旁已挂满了各色灯饰,主要有随风舞动的“水母”、亭亭玉立的“麦穗”和绚烂夺目的“星球”三类主题灯饰,他们的数量比为3:4:2.每个灯饰均由A 、B 、C 三种灯管组成,每个灯饰的成本是组成灯饰中各种灯管的成本之和.已知1个“水母”灯饰由1个A 灯管、4个B 灯管、2个C 灯管组成;1个“麦穗”灯饰由2个A 灯管、2个B 灯管、1个C 灯管组成.1个“水母”灯饰的成本是1个A 灯管成本的5倍,1个“星球”灯饰的成本比1个“水母”灯饰的成本高出40%.三类主题灯饰安装后需一次性支付不同的安装费,各类主题灯饰的总费用由灯饰的成本费和安装费组成,其中“麦穗”灯饰的安装费占到了三种灯饰总安装费的15,而“麦穗”灯饰总费用是三类主题灯饰总费用的415,且“麦穗”灯饰、“星球”灯饰的总费用之比为8:7,则“星球”灯饰的安装费与三类主题灯饰总费用之比是_______.【答案】1:10.【解析】【分析】设“水母”灯饰的数量为3,x “麦穗”灯饰的数量为4x ,“星球”灯饰的数量为2x ;一个A 灯管的成本为a ,一个B 灯管的成本为b ,一个C 灯管的成本为c ,再分别表示所有“水母”灯饰的总成本为3515x a ax = ,所有“麦穗”灯饰的总成本为4416x a ax = ,所有“星球”灯饰的总成本为2714x a ax = ,设“麦穗”灯饰的安装费用为y ,则“水母”灯饰和“星球”灯饰的安装费用和为54y y y -=,设“水母”灯饰的安装费用为w ,则“星球”灯饰的安装费用为4y w -,再求解“麦穗”灯饰的总费用与“水母”灯饰的总费用与“星球”灯饰的总费用之比为417::8:15:715230=,再列方程组:()()15151687144168ax w ax y ax y w ax y ⎧+=+⎪⎪⎨⎪+-=+⎪⎩,求解,ax y ,再表示“星球”灯饰的安装费为7425y w w -=,三类主题灯饰总费用为:1415161455ax ax ax y w +++=,从而可得答案.【详解】解:设“水母”灯饰的数量为3,x “麦穗”灯饰的数量为4x ,“星球”灯饰的数量为2x ;一个A 灯管的成本为a ,一个B 灯管的成本为b ,一个C 灯管的成本为c ,则每个“水母”灯饰的成本为()42a b c ++,425,a b c a ++= 22,b c a ∴+=每个“麦穗”灯饰的成本为()22224a b c a a a ++=+=,每个“星球”灯饰的成本为()140%57,a a += 则所有“水母”灯饰的总成本为3515x a ax = ,所有“麦穗”灯饰的总成本为4416x a ax = ,所有“星球”灯饰的总成本为2714x a ax = ,设“麦穗”灯饰的安装费用为y ,则“水母”灯饰和“星球”灯饰的安装费用和为54y y y -=,设“水母”灯饰的安装费用为w ,则“星球”灯饰的安装费用为4y w -,“麦穗”灯饰的总费用是三类主题灯饰总费用的415,且“麦穗”灯饰与“星球”灯饰的总费用之比为8:7,4787,1530÷⨯= ∴“星球”灯饰的总费用是三类主题灯饰总费用的730,∴“水母”灯饰的总费用是三类主题灯饰总费用的471115302--=,∴“麦穗”灯饰的总费用与“水母”灯饰的总费用与“星球”灯饰的总费用之比为417::8:15:715230=,∴()()15151687144168ax w ax y ax y w ax y ⎧+=+⎪⎪⎨⎪+-=+⎪⎩,整理得1201580258ax y w y w +-=⎧⎨=⎩,解得825.275y w ax w ⎧=⎪⎪⎨⎪=⎪⎩∴“星球”灯饰的安装费为87442525y w w w w -=⨯-=,∴三类主题灯饰总费用为:2814151614545545575255ax ax ax y ax y w w w +++=+=⨯+⨯=,∴“星球”灯饰的安装费与三类主题灯饰总费用之比为714:1:10255w w =.故答案为1:10.【点睛】本题考查的是类二元一次方程组的应用,掌握把某些量看作是已知量,列方程组,解方程组是解题的关键.三、解答题:(本大题共7个小题,每小题10分,共70分)请把答案写在答题卡上对应的空白处,解答时每小题必须给出必要的演算过程或推理步骤.19.计算:(1)x (x+4y )-(x -y )(x+2y );(2)294922m m m m m --⎛⎫+÷ ⎪--⎝⎭【答案】(1)232xy y +;(2)33-+m m 【解析】【分析】(1)利用单项式乘多项式、多项式乘多项式法则计算各项,即可求解;(2)利用分式的加法和除法法则计算即可.【详解】解:(1)()()()42x x y x y x y +--+22242x xy x xy y =+--+232xy y =+;(2)294922m m m m m --⎛⎫+÷ ⎪--⎝⎭()()229422233m m m m m m m m ⎛⎫---=+⨯ ⎪--+-⎝⎭()()()232233m m m m m --=⨯-+-33m m -=+.【点睛】本题考查整式的混合运算、分式的混合运算,掌握运算法则是解题的关键.20.如图,AC 是平行四边形ABCD 的对角线,满足AC ⊥AB .(1)尺规作图:按要求完成下列作图,不写做法,保留作图痕迹,并标明字母:①作线段AC 的垂直平分线l ,分别交AD 、BC 于点E 、F ;②连接CE ;(2)在(1)的条件下,已知∠ABC=64°,求∠DCE 的度数.【答案】(1)见解析;(2)64°.【解析】【分析】(1)根据题目要求作出图形即可;(2)根据平行四边形的性质可求得∠EAC=26°,∠DCA=90°,再由线段垂直平分线的性质可得∠ECA=26°,从而可得结论.【详解】解:(1)如图,(2)∵四边形ABCD是平行四边形,∴∠B+∠BAD=180°,∠BAD=∠BCD,又∠ABC=64°,∴∠BAD=180°-∠ABC=180°-64°=116°∴∠BCD=116°,∵AC⊥AB,∴∠BAC=90°,∴∠DAC=∠BAD-∠BAC=116°-90°=26°∵AB//CD,∴∠ACD=∠BAC=90°,∵EF是AC的垂直平分线,∴AE=CE,∴∠EAC=∠ACE=26°∴∠DCE=∠DCA-∠ECA=90°-26°=64°.【点睛】本题考查了作图-基本作图---垂线,同时还考查了平行四边形的性质和线段垂直平分线的性质,熟练掌握相关性质是解答此题的关键.21.玉米是一种重要的粮食作物,也是全世界总产量最高的农作物.玉米的容重是指每升玉米的重量,可以反映出玉米的饱满度以及整齐度.超市采购员小李准备进购一批玉米,小李对甲、乙两个乡镇的玉米进行实地考察,各随机采摘了20根玉米进行容重检测,这些玉米的容重记为x(单位:g/L),对数据进行整理后,将所得的数据分为5个等级:五等玉米:600≤x<630;四等玉米:630≤x<660;三等玉米:660≤x<690;二等玉米:690≤x<720;一等玉米:x≥720.其中二等玉米和一-等玉米,我们把它称为“优等玉米”.下面给出了小李整理、描述和分析数据的部分信息.a.甲乡镇被抽取的20根玉米的容重分别为(单位:g/L):610620635650655635670675680675 680680685690710705710660720730整理数据:容重等级600≤x<630630≤x<660660≤x<690690≤x<720x≥720甲乡镇24a b2 b.乙乡镇被抽取的玉米容重频数分布直方图乙乡镇被抽取的玉米容重在660≤x<690这一组的数据是:660670685680685685685c.分析数据:样本数据的平均数、众数、中位数、“优等玉米”所占的百分比如下表:乡镇平均数众数中位数“优等玉米”所占的百分比甲673.75680677.5d%乙673.75685c35%根据以_上信息:解答下列问题:(1)上述表中的a=________,b=________,c=________,d=________;(2)若小李只选择一个产地采购玉米,根据以上数据,你认为小李选择哪个乡镇采购玉米比较好?(写出一条理由即可)(3)小李最终决定在甲乡镇采购400根玉米,在乙乡镇采购600根玉米,估计本次小李采购的玉米中“优等玉米”的数量是多少?【答案】(1)8,4,685,30;(2)选择乙乡镇,因为乙乡镇优等玉米的比例大;(3)330【解析】【分析】(1)通过对甲乡镇的计数可得a、b和d的值,利用中位数的定义可得c的值;(2)通过甲乡镇与乙乡镇平均数相同,但是乙乡镇中位数和优等玉米百分比高可得结论;(3)利用甲乡镇与乙乡镇的优等玉米百分比即可求解.【详解】解:(1)对甲乡镇的计数可得:8a =,4b =,610020d %=⨯%=30%,即30d =;乙乡镇的中位数为6856856852c +==;(2)选择乙乡镇,因为乙乡镇优等玉米的比例大;(3)4003060035330⨯%+⨯%=(根).【点睛】本题考查统计图与统计表、中位数、样本估计总体等,从统计图和统计表中获取有用信息是解题的关键.22.在数的学习过程中,我们通过对其中一些具有某种特性的数进行研究探索,发现了数字的美和数学的灵动性.现在我们继续探索一类数.定义:一个各位数字均不为0的四位自然数t ,若t 的百位、十位数字之和的2倍比千位、个位数字之和大1,则我们称这个四位数t 是“四·二一数”例如:当t=6413时,∵2×(4+1)-(6+3)=1∴6413是“四·二一数”;当=4257时,:2×(2+5)-(4+7)=3≠1∴4257不是“四·二一数”.(1)判断7142和6312是不是“四二-数”,并说明理由;(2)已知t=4abc (1≤a≤9、1≤b≤9、1≤c≤9且均为正整数)是“四·二一数”,满足4a 与bc 的差能被7整除,求所有满足条件的数t .【答案】(1)7142是“四·二一数”,6312不是“四·二一数”;(2)4235【解析】【分析】(1)根据“四·二一数”的定义分别判断即可;(2)根据“四·二一数”的定义可得225a b c +-=,依次列举即可求解.【详解】解:(1)当t=7142时,∵()()412721+⨯-+=,∴7142是“四·二一数”;当t=6312时,∵()()312620+⨯-+=,∴6312不是“四·二一数”;(2)根据题意可得()241a b c +--=,即225a b c +-=,当1a =,2b =,1c =时,4a 与bc 的差为20,不符合题意;当2a =,1b =,1c =时,4a 与bc 的差为31,不符合题意;当2a =,2b =,3c =时,4a 与bc 的差为19,不符合题意;当2a =,3b =,5c =时,4a 与bc 的差为7,符合题意;当3a =,2b =,5c =时,4a 与bc 的差为18,不符合题意;当3a =,3b =,7c =时,4a 与bc 的差为6,不符合题意;当3a =,4b =,9c =时,4a 与bc 的差为-6,不符合题意;当4a =,3b =,9c =时,4a 与bc 的差为5,不符合题意;综上,满足条件的数t 为4235.【点睛】本题考查新定义问题,理解题干中“四·二一数”的定义是解题的关键.23.在函数学习中,我们经历了“确定函数表达式——画函数图象——利用函数图象研究函数性质——利用图象解决问题”的学习过程,以下是我们研究函数51(32127()2ax x y b x x x ⎧+<⎪⎪=⎨⎪--+≥⎪⎩的性质及其用的部分过程,请你按要求完成下列问题:(1)列表:函数自变量x 的取值范围是全体实数,下表列出了变量x 与y 的几组对应数值:x…52--1122314325234…y (012)8331762651332-…根据表格中的数据直接写出y 与x 的函数解析式及对应的自变量x 的取值范围:____________(2)描点、连线:在平面直角坐标系中,画出该函数的图象,并写出该函数的一条性质:__________________(3)已知函数12733y x =-+,并结合两函数图象,直接写出当y 1>y 时,x 的取值范围____________________【答案】(1)251()3322127()2x x y x x x ⎧+<⎪⎪=⎨⎪--+≥⎪⎩;(2)函数图象见解析;当1x >时,y 随x 的增大而减小;(3)12x <或3x >【解析】【分析】(1)代入1x =-和12x =即可求解;(2)利用描点作图法画出图象,再根据图象写出性质即可;(3)联立函数解析式,求出交点,即可得出结论.【详解】解:(1)当1x =-时,513a -+=,解得23a =;当12x =时,1272b --+=,解得2b =;∴y 与x 的函数关系式为:251()3322127()2x x y x x x ⎧+<⎪⎪=⎨⎪--+≥⎪⎩;(2)函数图象如下:函数性质:当1x >时,y 随x 的增大而减小;(3)当1x ≤时,25332733y x y x ⎧=+⎪⎪⎨⎪=-+⎪⎩,可得122x y ⎧=⎪⎨⎪=⎩;当1x >时,2272733y x xy x ⎧=--+⎪⎪⎨⎪=-+⎪⎩,可得313x y =⎧⎪⎨=⎪⎩,∴当y 1>y 时,x 的取值范围为12x <或3x >.【点睛】本题考查函数图象,掌握待定系数法求解析式、描点作图等方法是解题的关键.24.为减少疫情对农产品销售的影响,年轻党员干部晓辉借助“学习强国”平台直播活动,向网友们大力推介自己乡镇的特色农产品,让原本面临滞销、亏损的农户迎来了新的转机.在帮助某农户推广滞销乳鸽的直播中,晓辉计划首月销售1000只乳鸽,每只乳鸽定价30元.(1)经过首月试销售,晓辉发现单只乳鸽售价每降低0.5元,销量将增加50只,若计划每月乳鸽的销售总量为1500只,则每只乳鸽售价应定为多少元?(2)随着疫情的好转和直播的推广作用,乳鸽的线下销售也终于迎来了复苏,在线上、线下销售单价一致的情况下,11月线上、线下的销售总额为37500元.受寒流影响,12月价格进行了一定调整,线下单价与(1)间中的售价保持一-致,线上单价在(1)问的售价基础上提高了2%5a ,但12月整体月销售总量仍比(1)问中的计划销售总量上涨%a ,其中线下销售量占到了12月总销售量的37,最终12月总销售额比11月增加了495a 元,求a 的值.【答案】(1)25元;(2)40【解析】【分析】(1)设应降低x 元,根据题意列出方程,求解即可;(2)根据题意可得2月份的销售总量为()15001a +%,12月份的线上单价为22515a ⎛⎫+% ⎪⎝⎭,线下单价为25元,根据“12月总销售额比11月增加了495a 元”列出方程,求解即可.【详解】解:(1)设应降低x 元,根据题意可得:10005015000.5x+⨯=,解得5x =,∴每只乳鸽售价应定为30525-=(元),答:每只乳鸽售价应定为25元;(2)12月份的销售总量为()15001a +%,12月份的线上单价为22515a ⎛⎫+% ⎪⎝⎭,线下单价为25元,根据题意可得:()()323150011251150012537500495757a a a a ⎛⎫⎛⎫+%-⨯+%++%⨯⨯-= ⎪ ⎪⎝⎭⎝⎭,解得40a =或0a =(舍).【点睛】本题考查一元一次方程的应用,理解题意,找出等量关系是解题的关键.25.如图,在平面直角坐标系中,抛物线213222y x x =--+交x 轴于点A 、B ,交y 轴于点C .(1)求△ABC 的面积;(2)如图,过点C 作射线CM ,交x 轴的负半轴于点M ,且∠OCM =∠OAC ,点P 为线段AC 上方抛物线上的一点,过点P 作AC 的垂线交CM 于点G ,求线段PG 的最大值及点P 的坐标;(3)将该抛物线沿射线AC 2y ax bx c '=++,新抛物线y '与原抛物线的交点为E ,点F 为新抛物线y 对称轴上的一点,在平面直角坐标系中是否存在点Q ,使以点A 、E 、F 、Q 为顶点的四边形为菱形?若存在,请直接写出点Q 的坐标;若不存在,请说明理由.【答案】(1)5,(2)当P 点坐标为(72-,98)时,PG 最大,最大值为32;Q 点坐标为(72,3762-)或(52-,2)或(112-,92);【解析】【分析】(1)求出A 、B 、C 三点坐标,应用三角形面积公式可求;(2)过P 点作x 轴平行线,交CM 于点H ,过点G 作GD ⊥PH ,垂足为D ,设PG 与AC 、x 轴交点分别为N 、F ,设P (m ,213222m m --+),则H (21344m m --,213222m m --+),表示出PD 长,求最值即可;(3)求出E 点坐标为(-1,3),设F (12,n ),表示出AE 、AF 、EF 的平方,再分类讨论,根据腰相等列方程即可.【详解】解:把y =0代入213222y x x =--+得,2130222x x =--+,解得,121,4x x ==-,A 、B 两点坐标分别为(-4,0),(1,0),把x =0代入213222y x x =--+得,y =2,C 点坐标为(0,2),S △ABC =1152522AB OC ⋅=⨯⨯=;(2)过P 点作x 轴平行线,交CM 于点H ,过点G 作GD ⊥PH ,垂足为D ,设PG 与AC 、x 轴交点分别为N 、F ,由(1)得,12OC OB OA OC ==,∵∠AOC =∠COB =90°,∴△AOC ∽△COB ,∴∠OAC =∠BCO =∠OCM ,易得OM =OB =1,根据M (-1,0)C (0,2),可得CM 解析式为:y =2x +2;∵DG ∥OC ,∴∠DGH =∠OCM ,∵∠ANF =∠FEG =90°,∠NFA =∠EFG ,∴∠NAF =∠FGE ,∵∠OCM =∠OAC ∴∠DGH =∠FGE ,∵∠GDP =∠GDH =90°,GD =GD ,∴△GDP ≌△GDH ,。

越秀初三上期末数学试卷

越秀初三上期末数学试卷

一、选择题(每题5分,共50分)1. 下列各数中,有理数是()A. √9B. √-1C. πD. 0.1010010001…2. 若a=3,b=-2,则a+b的值是()A. 1B. 5C. -5D. -13. 已知等腰三角形ABC中,AB=AC,若∠BAC=60°,则底边BC的长度是()A. 3B. 4C. 5D. 64. 若一个数的平方根是±2,则这个数是()A. 4B. -4C. 16D. -165. 下列函数中,有最小值的是()A. y=x^2C. y=x^3D. y=-x^36. 已知二次函数y=ax^2+bx+c的图象开口向上,且顶点坐标为(1,-4),则a的取值范围是()A. a>0B. a<0C. a=0D. a≠07. 在平面直角坐标系中,点A(2,3),点B(-3,4),则线段AB的中点坐标是()A. (-1,3.5)B. (-1,4)C. (2,3.5)D. (2,4)8. 下列命题中,正确的是()A. 若a>b,则a-b>0B. 若a>b,则a-b<0C. 若a>b,则a+b>0D. 若a>b,则a+b<09. 若一个正方形的对角线长度为10cm,则该正方形的面积是()A. 50cm²B. 100cm²C. 25cm²10. 下列各数中,绝对值最大的是()A. -5B. -3C. 2D. 1二、填空题(每题5分,共50分)11. 若a=3,b=-2,则a-b的值是______。

12. 在等腰三角形ABC中,AB=AC,若∠BAC=70°,则底边BC的长度是______。

13. 若一个数的平方根是±2,则这个数是______。

14. 函数y=x^2-4x+3的顶点坐标是______。

15. 在平面直角坐标系中,点A(-2,1),点B(4,-3),则线段AB的中点坐标是______。

2024年北京燕山区初三上学期期末考数学试卷和答案

2024年北京燕山区初三上学期期末考数学试卷和答案

燕山地区2023—2024学年第一学期九年级期末考试数学试卷2024.1一、选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个.....1.下列图案是我国国产品牌汽车的标识,其中是中心对称图形的是A .B .C .D .2.已知点P 在半径为r 的⊙O 内,且OP =3,则r 的值可能为A .1B .2C .3D .43.下列函数中,当0x >时,y 随x 的增大而减小的是A .y =xB .y =1x +C .y =2x D .y =2x -4.一个小球在如图所示的地板上自由滚动,并随机停留在某块方砖上.如果每一块方砖除颜色外完全相同,则小球最终停留在白砖上的概率是A .13B .49C .59D .235.如图,点A ,B 在⊙O 上,点C 是劣弧AB ︵的中点,∠AOC =80°,则∠CDB 的大小为A .40°B .45°C .60°D .80°6.电影《志愿军:雄兵出击》于国庆档上映,首周累计票房约3.5亿元,第三周累计票房约6.8亿元.若每周累计票房的增长率相同,设增长率为x ,根据题意可列方程为A .23.5 6.8x =B .3.5(1 6.8)x +=C .23.5(1) 6.8x +=D .23.5(1) 6.8x -=7.如图,在平面直角坐标系xOy 中,△ABC 的三个顶点都在格点上,则△ABC 外接圆的圆心坐标为A .(3,2)B .(2,3)C .(2,2)D .(3,3)8.平面直角坐标系xOy 中,已知二次函数y =ax 2+bx (a ≠0)的部分图象如图所示,给出下面三个结论:①a •b >0;②二次函数y =ax 2+bx (a ≠0)有最大值4;③关于x 的方程ax 2+bx =0有两个实数根14=-x ,20=x .上述结论中,所有正确结论的序号是A .①②B .①③C .②③D .①②③二、填空题(共16分,每题2分)9.平面直角坐标系xOy 中,与点P (-4,1)关于原点对称的点的坐标是.10.一元二次方程(3)3x x x -=-的解是.11.将抛物线212y x =向左平移1个单位长度,得到抛物线的解析式为.12.已知某二次函数的图象开口向上,且顶点坐标为(1,3),则这个二次函数解析式可以是.13.如图,P A ,PB 是⊙O 的两条切线,切点为A ,B ,若∠AOB =90°,P A =3,则⊙O 的半径为.14.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,连接AD ,若OE =3,CD =8,则AD 的长为.15.在一个不透明的盒子中共装有40个球,其中有a 个红球,这些球除颜色外无其他差别.为估计a 的值,小颖做摸球试验,她将盒子里面的球充分搅匀,任意摸出1个球记下颜色再放回,不断重复上述过程,记录实验数据如下:摸球的次数n 2050100200300400500摸到红球的次数m133262117181238301摸到红球的频率mn0.650.640.620.5850.6030.5950.602根据以上数据,估计a 的值约为.16.2023年第19届杭州亚运会的举办带热了吉祥物“宸宸、琮琮和莲莲”的销售.某网店经营亚运会吉祥物玩偶礼盒装,每盒进价为30元.当地物价部门规定,该礼盒销售单价最高不能超过50元/盒.在销售过程中发现该礼盒每周的销量y (件)与销售单价x (元)之间近似满足函数关系:2180-y x =+(30≤x ≤50).(1)设该网店每周销售该礼盒所获利润为w (元),则w 与x 的函数关系式为;(2)该网店每周销售该礼盒所获最大利润为元.(第14题)(第13题)宸宸琮琮莲莲三、解答题(共68分,第17-19题,每题5分,第20题6分,第21-23题,每题5分,第24-26题,每题6分,第27-28题,每题7分)解答应写出文字说明,演算步骤或证明过程.17.解方程:220+-=.41x x18.已知250-,求代数式22=x x-x x x-+-的值.3(2)(1)19.2023年7月31日,北京遭遇140年以来最大的暴雨,房山地区受灾严重.为了做好防汛救灾工作,某社区特招募志愿工作者,小东和小北积极报名参加,根据社区安排,志愿者被随机分到A组(信息登记),B组(物资发放),C组(垃圾清运)的其中一组.(1)小东被分配到A组是事件(填“必然”,“随机”或“不可能”);小东被分配到A组的概率是.(2)请用列表或画树状图的方法,求出小东和小北被分配到同一组的概率.20.如图,将△ABC绕点B逆时针旋转得到△DBE,点C的对应点E恰好落在AB上.(1)若BC=6,BD=9,求线段AE的长.(2)连接AD,若∠C=110°,∠BAC=40°,求∠BDA的度数.21.阅读下面的材料一元二次方程及其解法最早出现在公元前两千年左右的古巴比伦人的《泥板文书》中.到了中世纪,阿拉伯数学家阿尔·花拉子米在他的代表作《代数学》中记载了求一元二次方程正数解的几何解法,我国三国时期的数学家赵爽在其所著《勾股圆方图注》中也给出了类似的解法.以x2+10x=39为例,花拉子米的几何解法步骤如下:①如图1,在边长为x的正方形的两个相邻边上作边长分别为x和5的矩形,再补上一个边长为5的小正方形,最终把图形补成一个大正方形;②一方面大正方形的面积为(x+)2,另一方面它又等于图中各部分面积之和,因为x2+10x=39,可得方程(x+)2=39+,则方程的正数解是x =.根据上述材料,解答下列问题.(1)补全花拉子米的解法步骤②;(2)根据花拉子米的解法,在图2的两个构图①②中,能够得到方程x 2-6x =7的正数解的正确构图是(填序号).22.已知关于x 的一元二次方程22(2)0x x m -+-=有两个不相等的实数根.(1)求m 的取值范围;(2)若m 为正整数,请你写出一个满足条件的m 值,并求出此时方程的根.23.已知二次函数23(0)+y ax bx a =+≠的图象经过点A (1,0),B (3,0).(1)求该函数的解析式;(2)当x >3时,对于x 的每一个值,函数y x n =+的值小于二次函数23+y ax bx =+的值,结合函数图象,直接写出n 的取值范围.24.如图,在△ABC 中,∠ACB =90°,点D 在AB 上,以AD 为直径作⊙O 与BC 相切于点E ,连接DE 并延长交AC 的延长线于点F .(1)求证:AF =AD ;(2)若CE =4,CF =2,求⊙O 的半径.图1①②25.学校组织九年级学生进行跨学科主题学习活动,利用函数的相关知识研究某种化学试剂的挥发情况.在两种不同的场景A 和场景B 下做对比实验,设实验过程中,该试剂挥发时间为x 分钟时,在场景A ,B 中的剩余质量分别为y 1,y 2(单位:克).下面是某研究小组的探究过程,请补充完整:记录y 1,y 2与x 的几组对应值如下:x (分钟)05101520…y 1(克)2523.52014.57…y 2(克)252015105…(1)在同一平面直角坐标系xOy 中,描出上表中各组数值所对应的点(x ,y 1),(x ,y 2),并画出函数y 1,y 2的图象;(2)进一步探究发现,场景A 的图象是抛物线的一部分,y 1与x 之间近似满足函数关系210.04+y x bx c =-+.场景B 的图象是直线的一部分,y 2与x 之间近似满足函数关系2y ax c =+(a ≠0).请分别求出场景A ,B 满足的函数关系式;(3)查阅文献可知,该化学试剂的质量不低于4克时,才能发挥作用.在上述实验中,记该化学试剂在场景A ,B 中发挥作用的时间分别为x A ,x B ,则x A x B (填“>”,“=”或“<”).26.在平面直角坐标系xOy 中,点M (-1,m ),N (3,n )在抛物线2y ax bx c =++(a >0)上,设抛物线的对称轴为x =t .(1)若m =n ,求t 的值;(2)若c <m <n ,求t 的取值范围.27.如图,△ABC 为等边三角形,点M 为AB 边上一点(不与点A ,B 重合),连接CM ,过点A 作AD ⊥CM 于点D ,将线段AD 绕点A 顺时针旋转60°得到线段AE ,连接BE .(1)依题意补全图形,直接写出∠AEB 的大小,并证明;(2)连接ED 并延长交BC 于点F ,用等式表示BF 与FC 的数量关系,并证明.28.在平面直角坐标系xOy 中,对于⊙C 和⊙C 外一点P 给出如下定义:连接CP 交⊙C 于点Q ,作点P 关于点Q 的对称点P′,若点P′在线段CQ 上,则称点P 是⊙C 的“关联点”.例如,图中P 为⊙C 的一个“关联点”.(1)⊙O 的半径为1.①如图1,在点A (2-,0),B (2,2),D (0,3)中,⊙O 的“关联点”是;②已知点M 在直线323y x =-上,且点M 是⊙O 的“关联点”,求点M 的横坐标m 的取值范围.(2)直线31()y x =--与x 轴,y 轴分别交于点E ,点F ,⊙T 的圆心为T (t ,0),半径为2,若线段..EF ..上所有点....都是⊙T 的“关联点”,直接写出t 的取值范围.图1备用图燕山地区2023—2024学年第一学期九年级期末考试数学试卷答案及评分参考2024年1月阅卷须知:1.为便于阅卷,本试卷答案中有关解答题的推导步骤写得较为详细,阅卷时,只要考生将主要过程正确写出即可。

2023北京一七一中初三(上)期末数学(试卷含答案解析)

2023北京一七一中初三(上)期末数学(试卷含答案解析)

2023北京一七一中初三(上)期末数 学一、选择题(本题共16分,每小题2分)1. 若关于x 的一元二次方程230x x a ++=的一个根为1,则a 的值为( ) A. 2B. 2−C. 3−D. 4−2. 下列图形中,既是轴对称图形又是中心对称图形的是( )A. B. C. D.3. 将抛物线2y x 向右平移3个单位长度得到的抛物线是( )A. 23y x =+B. 23y x =−C. ()23y x =−D. ()23y x =+4. 某种彩票的中奖机会是1%,下列说法正确的是【 】 A. 买1张这种彩票一定不会中奖 B. 买1张这种彩票一定会中奖 C. 买100张这种彩票一定会中奖D. 当购买彩票数量很大时,中奖的频率稳定在1% 5. 用配方法解方程241x x −=,变形后结果正确的是( ) A. ()225x +=B. ()222x +=C. ()225x −=D. ()222x −=6. 如图,圆心角110AOB ∠=︒,则ACB ∠的度数是( )A. 70︒B. 55︒C. 125︒D. 130︒7. 在半径为6圆中,120︒的圆心角所对扇形的面积是( ) A. 4πB. 8πC. 12πD. 16π8. 如图,在ABC 中,90ACB ∠=︒,1AC =,3AB =,将ABC 绕顶点C 顺时针旋转得到11A B C ,取AC 的中点E ,11A B 的中点P ,则在旋转过程中,线段EP 的最大值为( )的的A. 1B. 25.C. 2D. 15.二、填空题(本题共16分,每小题2分)9. 点()3,1−关于原点对称点的坐标是______.10. 请写出一个开口向下,顶点在x 轴上二次函数解析式__________________. 11. 已知()1,1P x ,()2,1Q x 两点都在抛物线231y x x =−+上,那么12x x +=________.12. 2021年是中国共产党建党100周年,全国各地积极开展“弘扬红色文化,重走长征路”主题教育活动.据了解,某展览中心3月份的参观人数为11万人,5月份的参观人数增加到15.1万人.设参观人数的月平均增长率为x ,则可列方程为________. 13. 如图,AB 是O直径,C ,D 是O 上的两点.若60CAB ∠=︒,则ADC ∠的度数为________.14. 如图,PA ,PB 是O 的切线,切点分别为A ,B .若30OBA ∠=︒,3PA =,则AB 的长为________.15. 如表记录了一名球员在罚球线上投篮的结果.那么,这名球员投篮一次,投中的概率约为______(精确到0.1).的的16. 如图,在平面直角坐标系xOy 中,P 为x 轴正半轴上一点.已知点()0,1A ,()0,7B ,M 为ABP的外接圆.(1)点M 的纵坐标为________;(2)当APB ∠最大时,点P 的坐标为________.三、解答题(本题共68分,17-22题每题5分,23-26题每题6分,27-28题每题7分)17. 下面是小乐设计的“过圆外一点作这个圆的两条切线”的尺规作图过程. 已知:O 及O 外一点P .求作:直线PA 和直线PB ,使PA 切O 于点A ,PB 切O 于点B .作法:如图,①连接OP ,分别以点O 和点P 为圆心,大于12OP 的同样长为半径作弧,两弧分别交于点M ,N ; ②连接MN ,交OP 于点Q ,再以点Q 为圆心,OQ 的长为半径作弧,交O 于点A 和点B ;③作直线PA 和直线PB .所以直线PA 和PB 就是所求作的直线. 根据小乐设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹) (2)完成下面的证明. 证明:∵OP 是Q 的直径,∴OAP OBP ∠=∠=________︒(________)(填推理的依据). ∴PA OA ⊥,PB OB ⊥. ∵OA ,OB 是O 的半径, ∴PA ,PB 是O 的切线.18. 如图,AB 是O 的弦,C 为AB 的中点,OC 的延长线与O 交于点D ,若1CD =,6AB =,求O的半径.19. 用配方法解一元二次方程:2x 2﹣4x +1=0. 20. 已知二次函数243y x x =++.(1)二次函数的图象与x 轴交于点A ,B (点A 在点B 左边),则A ,B 两点的坐标为________; (2)在平面直角坐标系xOy 中画出该函数图象; (3)当30x −≤≤时,y 的取值范围是________.21. 如图,方格中每个小正方形的边长都是单位1,ABC 在平面直角坐标系中的位置如图.的(1)画出将ABC 绕点B 顺时针方向旋转90︒得到的图形; (2)求出点C 经过的路径的长.22. 在一个不透明的纸箱里装有红、黄、蓝三种颜色的小球,它们除颜色外完全相同,其中红球有2个,黄球有1个,蓝球有1个.现有一张电影票,小明和小亮决定通过摸球游戏定输赢(赢的一方得电影票).游戏规则是:两人各摸1次球,先由小明从纸箱里随机摸出1个球,记录颜色后放回,将小球摇匀,再由小亮随机摸出1个球.若两人摸到的球颜色相同,则小明赢,否则小亮赢.这个游戏规则对双方公平吗?请你利用树状图或列表法说明理由.23. 已知关于x 的一元二次方程()22120x m x m m +−+−=.(1)求证:方程总有两个不相等的实数根;(2)若此方程的两个实数根都是正数,求m 的取值范围.24. 如图,在一次学校组织的社会实践活动中,小龙看到农田上安装了很多灌溉喷枪,喷枪喷出的水流轨迹是抛物线,他发现这种喷枪射程是可调节的,且喷射的水流越高射程越远,于是他从该农田的技术部门得到了这种喷枪的一个数据表,水流的最高点与喷枪的水平距离记为x ,水流的最高点到地面的距离记为y .y 与x 的几组对应值如下表:(1)该喷枪的出水口到地面的距离为________m ;(2)在平面直角坐标系xOy 中,描出表中各组数值所对应的点,并画出y 与x 的函数图象;(3)结合(2)中的图象,估算当水流的最高点与喷枪的水平距离为8m 时,水流的最高点到地面的距离为________m (精确到1m ).根据估算结果,计算此时水流的射程约为________m (精确到1m ,参考数2.4≈). 25. 如图,AB 是O 的直径,弦EF AB ⊥于点C ,过点F 作O 的切线交AB 的延长线于点D ,30A ∠=︒.(1)求D ∠的大小;(2)取BE 的中点M ,连接MF ,请补全图形;若MF =O 的半径.26. 已知二次函数2y ax bx =++的图象经过点()1,3. (1)用含a 的代数式表示b ;(2)若该函数的图象与x 轴的一个交点为()2,0−,求二次函数的解析式;(3)当a<0时,该函数图象上的任意两点()11,P x y 、()22,Q x y ,若满足11x =−,12y y >,求2x 的取值范围.27. 如图,在三角形ABC 中,90BAC ∠=︒,AB AC =,点P 为ABC 内一点,连接AP ,BP ,CP ,将线段AP 绕点A 逆时针旋转90︒得到'AP ,连接PP ',CP '.(1)用等式表示CP '与BP 的数量关系,并证明; (2)当135BPC ∠=︒时,①直接写出P CP '∠的度数为________;②若M 为BC 的中点,连接PM ,请用等式表示PM 与AP 的数量关系,并证明. 28. 给出如下定义:对于O 的弦MN 和O 外一点P (M ,O ,N 三点不共线,且P ,O 在直线MN 的异侧),当180MPN MON ∠+∠=︒时,则称点P 是线段MN 关于点O 的关联点.图1是点P 为线段MN 关于点O 的关联点的示意图.在平面直角坐标系xOy 中,O 的半径为2.(1)如图2,M,N.在()2,0A ,()B ,()2,2C ,三点中,是线段MN关于点O 的关联点的是________;(2)如图3,()0,2M ,)1N−,点D 是线段MN 关于点O 的关联点.①MDN ∠的大小为________︒;②在第一象限内有一点,E m ,点E 是线段MN 关于点O 的关联点,求点E 的坐标;③点F 在直线4y x =+上,当MFN MDN ∠≥∠时,直接写出点F 的横坐标F x 的取值范围________.参考答案一、选择题(本题共16分,每小题2分)1. 【答案】D 【解析】【分析】根据一元二次方程的解的定义,把1x =代入方程,得出关于a 的方程,解出即可. 【详解】解:∵关于x 的一元二次方程230x x a ++=的一个根为1, ∴把1x =代入方程,可得:130a ++=, 解得:4a =−, ∴a 的值为4−. 故选:D【点睛】本题考查了一元二次方程的解,解本题的关键在熟练掌握一元二次方程的解的定义.使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根. 2. 【答案】A 【解析】【分析】根据轴对称图形和中心对称图形的定义即可进行解答. 【详解】解:A 、既轴对称图形又是中心对称图形,故A 符合题意; B 、是轴对称图形,不是中心对称图形,故B 不符合题意; C 、是轴对称图形,不是中心对称图形,故C 不符合题意; D 、不是轴对称图形,是中心对称图形,故D 不符合题意; 故选:A .【点睛】本题主要考查了轴对称图形和中心对称图形的定义,把一个图形绕某一点旋转180度,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,解题的关键是熟练掌握相关定义. 3. 【答案】C 【解析】【分析】根据抛物线的平移规律:上加下减,左加右减解答即可. 【详解】解:抛物线2y x 向右平移3个单位长度得到的抛物线是()23y x =−.故选:C【点睛】本题考查了二次函数图象的平移,理解平移规律是解题的关键. 4. 【答案】D 【解析】 【分析】【详解】解:A 、因为中奖机会是1%,就是说中奖概率是1%,机会较小,但也有可能发生,故本选项错误;是B 、买1张这种彩票中奖的概率是1%,即买1张这种彩票会中奖的机会很小,故本选项错误;C 、买100张这种彩票不一定会中奖,故本选项错误;D 、当购买彩票的数量很大时,中奖的频率稳定在1%,故本选项正确, 故选D . 5. 【答案】C 【解析】【分析】根据配方法可直接进行求解.【详解】解:由方程241x x −=两边同时加上4可得()225x −=; 故选C .【点睛】本题主要考查一元二次方程的解法,熟练掌握配方法是解题的关键. 6. 【答案】C 【解析】【分析】设点P 是优弧AB 上的一点,连接AP ,BP ,根据圆周角定理,得出55APB ∠=︒,再根据圆内接四边形的对角互补,计算即可得出ACB ∠的度数.【详解】解:如图,设点P 是优弧AB 上的一点,连接AP ,BP ,∵110AOB ∠=︒, ∴1552APB AOB ∠=∠=︒, ∵180APB ACB ∠+∠=︒, ∴180125ACB APB ∠=︒−∠=︒. 故选:C【点睛】本题考查了圆周角定理、圆内接四边形的性质,解本题的关键在熟练掌握相关的性质定理,并正确作出辅助线.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半. 7. 【答案】C 【解析】【分析】根据扇形面积公式2360n r S π=扇形即可进行解答. 【详解】解:2120612360S ππ⋅==扇形,故选:C .【点睛】本题主要考查了求扇形的面积,解题的关键是掌握扇形的面积公式2360n r S π=扇形. 8. 【答案】C 【解析】【分析】连接CP ,根据旋转的性质,得出1190A CB ∠=︒,113A B =,再根据直角三角形斜边的中线等于斜边的一半,得出11 1.5A P B P CP ===,再根据三角形三边关系,得出EC CP EP +>,进而得出当点E 、C 、P 三点共线时,EP 最大,最大值为CE CP +,再根据中点的性质,得出0.5CE =,进而即可得出答案.【详解】解:连接CP ,∵ABC 绕顶点C 顺时针旋转得到11A B C ,90ACB ∠=︒,1AC =,3AB =, ∴1190A CB ∠=︒,113A B =, ∵11A B 的中点P , ∴11 1.5A P B P CP ===, ∵EC CP EP +>,∴当点E 、C 、P 三点共线时,EP 最大,最大值为CE CP +, ∵点E 是AC 的中点,1AC =, ∴0.5CE =,∴EP 最大值为0.5 1.52+=.故选:C【点睛】本题考查了旋转的性质、直角三角形斜边的中线等于斜边的一半、三角形的三边关系,解本题的关键在熟练掌握三角形的三边关系.二、填空题(本题共16分,每小题2分)9. 【答案】()3,1−【解析】【分析】根据两点关于原点对称,则两点的横、纵坐标都是互为相反数解答.【详解】解:点(3,-1)关于原点的对称点的坐标是(-3,1).故答案为:(-3,1).【点睛】本题考查了关于原点对称的点的坐标,两点关于原点对称,则两点的横、纵坐标都是互为相反数.10. 【答案】y=-2(x+1)2.答案不唯一【解析】【分析】先设出二次函数解析式方程,()()20y a x h k a =++≠,再根据图像开口向下可知a<0,可以得出结论.【详解】设该二次函数的解析式为()()20y a x h k a =++≠∵抛物线的开口向下∴a<0又∵在x 轴上∴k=0∴y=-2(x+1)2,答案不唯一,满足上述条件即可.【点睛】本题主要考查了二次函数()()20y a x h k a =++≠中,当a<0,时开口向下,且顶点在x 轴上时要满足的条件,熟练掌握函数性质是本题解题的关键.11. 【答案】3【解析】【分析】根据题意可得点P 和点Q 关于抛物线的对称轴对称,求出函数的对称轴即可进行解答. 【详解】解:根据题意可得:抛物线的对称轴为直线:33222b x a −=−=−=, ∵()1,1P x ,()2,1Q x , ∴12322x x +=, ∴123x x +=.故答案为:3.【点睛】此题考查了二次函数的性质,解题的关键是根据题意,找到P 、Q 两点关于对称轴对称求解. 12. 【答案】()211115.1x +=【解析】【分析】根据题意可得4月份的参观人数为()111x +人,则5月份的人数为()2111x +,根据5月份的参观人数增加到15.1万人,列一元二次方程即可.【详解】解:根据题意设参观人数的月平均增长率为x ,则可列方程为()211115.1x +=故答案为:()211115.1x +=.【点睛】本题考查了一元二次方程的应用,根据增长率问题列一元二次方程是解题的关键.13. 【答案】30︒##30度【解析】【分析】根据圆周角定理,得出90ACB ∠=︒,再根据直角三角形两锐角互余,得出30ABC ∠=︒,再根据在同圆或等圆中,同弧或等弧所对的圆周角相等,即可得出ADC ∠的度数.【详解】解:∵AB 为O 的直径, ∴90ACB ∠=︒,∴90906030ABC CAB ∠=︒−∠=︒−︒=︒,∴30ADC ABC ∠=∠=︒.故答案为:30︒.【点睛】本题考查了圆周角定理及其推论、直角三角形两锐角互余,解本题的关键在熟练掌握相关的性质定理.14. 【答案】3【解析】【分析】根据切线长定理和切线的性质,得出PA PB =,90PBO ∠=︒,再根据等腰三角形的判定定理,得出PAB 为等腰三角形,再根据角之间的数量关系,得出60PBA ∠=︒,再根据等边三角形的判定定理,得出PAB AB PA =,进而即可得出答案.【详解】解:∵PA ,PB 分别为O 的切线,∴PA PB =,90PBO ∠=︒,∴PAB 为等腰三角形,∵30OBA ∠=︒,∴60PBA PBO OBA ∠=∠−∠=︒,∴PAB 为等边三角形,∴AB PA =,∵3PA =,∴3AB =.故答案为:3【点睛】本题考查了切线长定理、切线的性质、等腰三角形的判定定理、等边三角形的判定与性质,解本题的关键在熟练掌握相关的性质定理.15. 【答案】0.5【解析】【分析】利用频率的计算公式进行计算即可.【详解】解:由题意得,这名球员投篮的次数为1550次,投中的次数为796,故这名球员投篮一次,投中的概率约为:7961550≈0.5. 故答案为0.5.【点睛】本题考查利用频率估计概率,难度不大.16. 【答案】 ①. 4 ②.) 【解析】【分析】(1)根据三角形外心的定义,可得出ABP 的外接圆圆心在线段AB 的垂直平分线上,即可求解; (2)点P 在M 切点处时,APB ∠最大,而四边形OPMD 是矩形,由勾股定理求解即可.【详解】解:(1)∵()0,1A ,()0,7B ,∴线段AB 的垂直平分线为直线1742y +==, ∵点M 在AB 的垂直平分线上,∴点M 的纵坐标为4,(2)过点()0,1A ,()0,7B ,作M 与x 轴相切,则点P 在切点处时,APB ∠最大,理由:如上图,若点P '是x 轴正半轴上异于切点P 的任意一点,设'AP 交M 于点E ,连接AE ,则AEB APB ∠=∠,∵AEB ∠是AP E '的外角,∴AEB AP B '∠>∠,∴APB AP B '∠>∠,即点P 在切点处时,APB ∠最大,∵M 经过点()0,1A ,()0,7B ,∴点M 在线段AB 的垂直平分线上,即点M 在直线4y =上,∵M 与x 轴相切于点P ,MP x ⊥轴,从而4MP =,即M 的半径为4,设AB 的中点为D ,连接MD AM 、,如上图,则MD AB ⊥, 132AD BD AB ===,4AM MP ==,∵90POD ∠=︒,MP x ⊥轴,MD AB ⊥,∴四边形OPMD 是矩形,从而OP MD =,由勾股定理,得MD ===∴OP MD ==∴点P 的坐标为),故答案为:4,). 【点睛】本题考查了切线的性质,圆周角定理,线段垂直平分线的性质,矩形的判定及勾股定理,正确作出图形是解题的关键.三、解答题(本题共68分,17-22题每题5分,23-26题每题6分,27-28题每题7分) 17. 【答案】(1)见解析 (2)90,直径所对的圆周角为直角【解析】【分析】(1)根据题意,画出图形即可;(2)根据直径所对的圆周角为直角,得出90OAP OBP ∠=∠=︒,再根据垂线的定义,得出PA OA ⊥,PB OB ⊥,再根据切线的判定定理,即可得出结论.【小问1详解】解:补全图形如图:【小问2详解】证明:∵OP 是Q 的直径,∴90OAP OBP ∠=∠=︒(直径所对的圆周角为直角).∴PA OA ⊥,PB OB ⊥.∵OA ,OB 是O 的半径, ∴PA ,PB 是O 的切线.故答案为:90,直径所对的圆周角为直角【点睛】本题考查了尺规作图,线段的垂直平分线的性质、圆周角定理、切线的判定定理,解本题的关键在理解题意,灵活运用所学知识解决问题.18. 【答案】5【解析】【分析】根据垂径定理可得OD AB ⊥,12AC AB =,根据勾股定理即可求解. 【详解】解:∵AB 是O 的弦,C 为AB 的中点,6AB =, ∴OD AB ⊥,132AC AB ==, 设O 的半径为r ,则AO DO r ==,∵1CD =,∴1CO DO CD r =−=−,在Rt AOC 中,根据勾股定理可得:222AC CO AO +=,即()22231r r +−=,解得:=5r .∴O 的半径为5.【点睛】本题主要考查了垂径定理,解题的关键是掌握垂径定理相关内容,根据勾股定理列出方程求解.19. 【答案】112x =+,212x =− 【解析】【分析】方程整理后,利用配方法求出解即可. 【详解】解:方程整理得:2122x x −=−, 配方得:21212x x −+=,即21(1)2x −=,开方得:12x −=±,解得:112x =+,212x =−. 【点睛】此题考查了解一元二次方程−配方法,解题的关键是熟练掌握完全平方公式.20. 【答案】(1)()30A −,,()10B −, (2)见解析 (3)13y −≤≤【解析】【分析】(1)根据二次函数图象与x 轴交于点A ,B ,得出0y =,即2430x x ++=,解出即可得出A ,B 两点的坐标;(2)列表、描点、连线,画出图象即可;(3)根据(2)的图象,即可得出答案.【小问1详解】解:∵二次函数243y x x =++的图象与x 轴交于点A ,B (点A 在点B 左边),∴0y =,即2430x x ++=,解得:13x =−,21x =−,∴()30A −,,()10B −,; 故答案为:()30A −,,()10B −, 【小问2详解】解:列表:【小问3详解】解:观察图象,可得:当30x −≤≤时,y 的取值范围为13y −≤≤.故答案为:13y −≤≤【点睛】本题考查了二次函数与坐标轴的交点问题、解一元二次方程、用描点法画二次函数图象、二次函数的图象与性质,解本题的关键在正确画出二次函数的图象.21. 【答案】(1)见解析 (2)2【解析】【分析】(1)根据旋转的作图方法和作图步骤即可进行解答;(2)点C 经过的路径是以点B 为圆心,BC 长为半径,旋转角为圆心角的弧长.【小问1详解】解:如图所示:【小问2详解】根据勾股定理得:BC ==,点C 经过的路径长为:180n r π==. 【点睛】本题主要考查作图−旋转变换,解题的关键是掌握旋转变换的定义与性质.22. 【答案】不公平【解析】【分析】游戏是否公平,关键要看游戏双方获胜的机会是否相等,即判断双方取胜的概率是否相等,或转化为在总情况明确的情况下,判断双方取胜所包含的情况数目是否相等.【详解】解:此游戏不公平.理由如下:列树状图如下,由上述树状图知:所有可能出现的结果共有16种.P (小明赢)=63168= ,P (小亮赢)=105168,故此游戏对双方不公平,小亮赢的可能性大. 23. 【答案】(1)证明见解析(2)1m >【解析】【分析】(1)根据一元二次函数的判别式,进行求解即可;(2)首先根据十字相乘法解一元二次方程,得出1x m =,21x m =−,然后再根据题意:方程的两个实数根都是正数,得出不等式组,解出即可得出结果.【小问1详解】证明:在关于x 的一元二次方程()22120x m x m m +−+−=中, ∵()()222412410b ac m m m ∆=−=−−−=>, ∴方程总有两个不相等的实数根;【小问2详解】解:()22120x m x m m +−+−= 因式分解,可得:()()10x m x m −−+=,于是得:0x m −=或x m −+=10,∴1x m =,21x m =−,∵方程的两个实数根都是正数,∴可得:010m m >⎧⎨−>⎩, 解得:1m >,∴m 的取值范围为:1m >.【点睛】本题考查了一元二次方程的判别式、因式分解法解一元二次方程、解不等式组,熟练掌握一元二次方程的解法及根的判别式是解本题的关键.24. 【答案】(1)2(2)见解析 (3)6,18【解析】【分析】(1)令0x =时,求得y 值即可;(2)按照描点,连线的基本步骤画函数图象即可;(3)设直线为y kx b =+,把0x =,2y =和2x =,3y =代入解析式,联立方程组,解出即可得出直线的解析式为122y x =+,然后再把8x =代入122y x =+,求得6y =,进而得出抛物线的顶点坐标,然后设出抛物线解析式为()283y a x =−+,把()02,代入解析式,确定116a =−,得到抛物线解析式,再令0y =,求得x 的值即可.【小问1详解】解:令0x =时,得2y =,故答案为:2【小问2详解】解:根据题意,画图如下:【小问3详解】解:设直线为y kx b =+,把0x =,2y =和2x =,3y =代入,可得:223b k b =⎧⎨+=⎩, 解得122k b ⎧=⎪⎨⎪=⎩, ∴直线的解析式为122y x =+, 当8x =时,可得:()1826m 2y =⨯+=, ∴水流的最高点到地面的距离为6m ,∴抛物线的顶点坐标为()86,, 设抛物线解析式为()286y a x =−, 把()02,代入解析式,可得:6462a +=, 解得:116a =−, ∴()218616y x =−−+, 令0y =,可得:()2186016x −−+=,解得:8x =+或8x =−(舍去),且()817.7918m x =+≈≈,∴此时水流的射程约为18m .故答案为:6,18【点睛】本题考查了一次函数图象的画法、待定系数法求一次函数的解析式、求二次函数解析式、一元二次方程的解法、 二次函数的应用,熟练掌握待定系数法求二次函数的解析式是解本题的关键. 25. 【答案】(1)30︒(2)图形见解析,【解析】【分析】(1)连接OF ,先求出60ABE ∠=︒,从而得出30BEC ∠=︒,再根据同弧所对的圆周角等于圆心角的一半得出260DOF BEC ∠=∠=︒,最后根据切线的定义即可求解;(2)连接,OE OM ,证明EOB 为等边三角形,将OM 的长度用半径表示出来,再证明90MOF DOF BOM ∠=∠+∠=︒,根据勾股定理列出方程求解即可.【小问1详解】解:连接OF ,∵AB 是O 的直径,∴90AEB ∠=︒,∵30A ∠=︒,∴903060ABE ∠=︒−︒=︒,∵EF AB ⊥,∴906030BEC ∠=︒−︒=︒,∴260DOF BEC ∠=∠=︒,∵DF 为O 的切线,∴OF DF ⊥,∴90906030D DOF ∠=︒−∠=︒−︒=︒.【小问2详解】如图,连接,OE OM ,∵OE OB =,60ABE ∠=︒,∴EOB 为等边三角形,∵点M 为BE 中点,∴30BOM ∠=︒,OM BE ⊥,∴603090MOF DOF BOM ∠=∠+∠=︒+︒=︒,设O 半径为r ,在Rt OBM △中,sin 602OM OB r =︒=,∵MF =OF r =, ∴Rt OMF △中,根据勾股定理可得:222OM OF MF +=,即222r ⎫+=⎪⎪⎝⎭,解得:r = ∴O半径为.【点睛】本题主要考查了圆的综合应用,解题的关键是掌握圆周角定理,圆的切线的定义,直角三角形两个内角互余,勾股定理等相关知识.26. 【答案】(1)=−b a(2)211322y x x =−++ (3)21x <−或22x >【解析】【分析】(1)把()1,3代入23y ax bx =++可得关于a 和b 的等式,再进行整理即可;(2)把()1,3,()2,0−代入23y ax bx =++,求出a 和b 的值即可;(3)先求出函数的对称轴,再根据函数的开口方向和增减性即可进行解答.【小问1详解】解:把()1,3代入23y ax bx =++得: 33a b =++,整理得:=−b a .【小问2详解】把()1,3,()2,0−代入23y ax bx =++可得: 330423a b a b =++⎧⎨=−+⎩,解得:1212a b ⎧=−⎪⎪⎨⎪=⎪⎩, ∴该二次函数的解析式为:211322y x x =−++. 【小问3详解】由(1)可知,=−b a ∴该函数的对称轴为直线1222b a x a a −=−=−=,∵a<0,∴函数开口向下,∴在对称轴左边,y 随x 增大而增大;在对称轴右边,y 随x 增大而减小;当12x =时,函数取得最大值; ∵11x =−,12y y >,∴点P 在对称轴左侧,①当点P 和点Q 在对称轴同侧时:21x x <,即21x <−,②当点P 和点Q 在对称轴两侧时:∵11x =−,∴带你P 到对称轴的距离()13122=−−=, ∴点P 关于直线12x =的对称点的横坐标为:13222+= ∴22x >.综上:21x <−或22x >.【点睛】本题考查二次函数图象上点的坐标特征,待定系数法求二次函数解析式,二次函数的性质,熟练掌握二次函数的图象和性质是解题的关键.27. 【答案】(1)CP BP '=,证明见解析(2)①45P CP '∠=︒,②AP =,证明见解析 【解析】【分析】(1)通过证明ABP ACP '≌△△,即可得出结论;(2)①根据三角形的内角和得出45PBC PCB ∠=+∠︒,90ABC ACB ∠+∠=︒,即可得出45ABP ACP ∠+∠=︒,再根据ABP ACP '≌△△,即可得出结论;②延长PM 至点Q ,使PM MQ =,连接CQ ,先证明BPM CQM ≌,得出BP CQ =,PBC MCQ ∠=∠,再证明PCQ PCP '≌,得出PQ PP '=,再根据等腰直角三角形边之间的关系,即可进行解答.【小问1详解】解:CP BP '=,证明过程如下:∵AP 绕点A 逆时针旋转90︒得到'AP ,∴AP AP '=,90PAP '∠=︒,∵90BAC ∠=︒,∴BAC PAC PAP PAC '∠−∠=∠−∠,即B C AP AP '∠∠=,在ABP 和ACP '△中,AB AC BAP CAP AP AP '=⎧⎪∠=∠⎨='⎪⎩,∴()SAS ABP ACP '≌,∴CP BP '=.【小问2详解】①在BPC △中∵135BPC ∠=︒,∴18013545PBC PCB ∠+∠=︒−︒=︒,在ABC 中∵90BAC ∠=︒,∴1809090ABC ACB ∠+∠=︒−︒=︒,∴()()904545ABP ACP ABC ACB PBC PCB ∠+∠=∠+∠−∠+∠=︒−︒=︒,∵ABP ACP '≌△△,∴ABP ACP '∠=∠,∴45ACP ACP ABP ACP '∠+∠=∠+∠=︒,即45P CP '∠=︒.②连接PM ,延长PM 至点Q ,使PM MQ =,连接CQ ,∵点M 为BC 中点,∴BM CM =,在BPM △和CQM 中,BM CM BMP CMQ PM QM =⎧⎪∠=∠⎨⎪=⎩,∴()SAS BPM CQM ≌,∴BP CQ =,PBC MCQ ∠=∠,由(1)可得ABP ACP '≌△△,45PBC PCB ∠=+∠︒,∴BP CP '=,45PCQ MCQ PCB ∠=∠+∠=︒,∴CQ CP '=,45PCQ PCP '∠=∠=︒,在PCQ △和PCQ '中,45PC PC PCQ PCP CQ CP =⎧⎪∠=∠='︒⎨='⎪⎩,∴()SAS PCQ PCP '≌,∴PQ PP '=,∵AP AP '=,90PAP '∠=︒,∴PP '=,∵PM MQ =,∴2PQ PM =,2PM =,整理得:AP =.【点睛】本题主要考查了旋转的综合应用,解题的关键是熟练掌握三角形全等的判定方法和性质,三角形的内角和,等腰直角三角形的性质.28. 【答案】(1)()B (2)①60;②()2EF x ≤≤【解析】【分析】(1)由题意线段MN 关于点O 的关联点的是以线段MN为半径的圆上,再结合点B 的坐标,即可得出答案;(2)①作NH x ⊥轴于H 30NOH ∠=︒,再根据角之间的数量关系,得出120MON ∠=︒,再根据题意,得出180MDN MON ∠+∠=︒,然后计算即可得出答案; ②作EK x ⊥轴于K ,根据锐角三角函数,得出30EOK ∠=︒,进而得出60MOE ∠=︒,再根据180MON MEN ∠+∠=︒,推出M 、O 、N 、E 四点共圆,然后再作MNE 的外接圆O ',再根据圆周角定理,得出90OME ∠=︒,进而得出点E 的纵坐标和点M 的纵坐标相同,即2m =,由此即可得出点E 的坐标;③由②可知,()2E ,进而得出点E在直线4y x =+上,设直线交O '于E 、F ,结合图象,可得点FF 的横坐标F x 的取值范围.【小问1详解】解:∵由题意线段MN 关于点O 的关联点的是以线段MN为半径的圆上,=,又∵()B ,∴线段MN 关于点O的关联点的是()B ;故答案为:()B【小问2详解】解:①如图3-1中,作NH x ⊥轴于H .∵)1N −,∴tan NOH ∠=, ∴30NOH ∠=︒,∴9030120MON ∠=︒+︒=︒,∵点D 是线段MN 关于点O 的关联点,∴180MDN MON ∠+∠=︒,∴60MDN ∠=︒;故答案:60②如图3-2中,作EK x ⊥轴于K .∵),E m ,∴tan 3EOK ∠=, ∴30EOK ∠=︒,∴60MOE ∠=︒,∵180MON MEN ∠+∠=︒,∴M 、O 、N 、E 四点共圆,如图3-3,作MNE 的外接圆O ',∵OE 是O '的直径,∴90OME ∠=︒,∴EM y ⊥轴,∴点E 的纵坐标和点M 的纵坐标相同,又∵()0,2M ,∴2m =,∴()E , ③如图3-3,由②可知,()E ,∴点E 在直线43y x =−+上, 设直线交O '于E 、F ,∵点O '是OE 的中点,∵()E ,∴点F观察图象,可知满足条件的点F 的横坐标F x F x ≤≤F x ≤≤【点睛】本题考查了坐标与图形、锐角三角函数、圆周角定理、一次函数的图象与性质、直线与圆的位置关系,解本题的关键是理解题意,灵活运用所学知识解决问题,属于中考压轴题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A.B.C.D.
九年级数学第一学期期末考试
(考试时间120分满分150分)
一、选择题(本题10小题,每小题4分,共40分.每题有四个选项,其中只有一个选
项是正确的,请将每小题的正确选项填在下面的表格中)
1.一元二次方程x2+3x=0的解是()
A.x=-3 B.x1=0,x2=3 C.x1=0,x2=-3 D.x=3
2.下面左图所示的几何体的俯视图是()
3.顺次连接等腰梯形四边中点所得四边形是()
A.菱形B.正方形C.矩形D.等腰梯形
4.抛物线y=(x-1)2+3的对称轴是()
A.直线x=1 B.直线x=3 C.直线x=-1 D.直线x=-3
5.如图,在△ABC中,AC=DC=DB,
∠ACD=100°,则∠B等于()
A.50°B.40°C.25°D.20°
6.某反比例函数的图象经过点(-2,3),则此函数图象也经过点()A.(2,-3)B.(-3,-3)C.(2,3)D.(-4,6)
7.在直角坐标系中,点P(4,y)在第一象限内,且OP与x轴正半轴的夹角为60°,则y的值是()
A.
43
3B.4 3 C.-3 D.-1
8.根据下列表格的对应值:
A B
C
D
第5题图
ax 2+bx +c -0.06 -0.02 0.03 0.09
判断方程ax 2+bx +c =0(a ≠0,a 、b 、c 为常数)的一个解x 的范围是( ) A .3<x <3.23 B .3.23<x <3.24 C .3.24<x <3.25 D .3.25<x<3.26
9.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其它完全相
同.小明通过多次摸球试验后发现其中摸到红色球、黑色球的频率稳定在15%和45%,则口袋中白色球的个数可能是( ) A .24
B .18
C .16
D .6
10.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示, 则当y 随x 的增大而减小时,x 的取值范围是( ) A .-1<x <3 B .x >3
C .x <-1
D .x <1
二、填空题(本大题有8小题,每小题3分,共24分)
11.如图,在⊙O中,已知∠BOC =60°,则∠BAC 等于 . 12.命题“直角三角形的两个锐角互余”的逆命题是
. 13.如图,一架梯子斜靠在墙上,若梯子底端到墙的距离AC =3米,
cos ∠BAC = 3
4 ,则梯子长AB = 米.
14.如图,1.6米高的小亮同学晚上由路灯A 下的B 处走到C 处
时,测得影子CD 的长为5米,此时小亮离路灯底部B 的距离
BC 是15米,那么路灯A 的高度AB 等于 米. 15.将抛物线y =-3x 2向上平移一个单位再向右平移三个单位后,
得到的抛物线解析式是 .
16.已知反比例函数y =k -2x 的图象位于第一、第三象限,则k 的取值范围是 .
17.为了估计5个人中有2人生肖相同的概率,小明进行模拟试验.利用计算器产生1~
12之间的随机数,每产生五个随机数为一次试验.一共做了50次试验,其中23次
A
B
C
第13题图
A
B
O
C
第11题图
x
y
O
3 1 第14题
B
试验中存在有2个数相同,可以估计每5个人中有2人生肖相同的概率是.
18.如图,点P是∠AOB的角平分线上一点,过点P作PC∥OA交
OB于点C.若∠AOB=60︒,OC=4,则点P到OA的距离PD等
于.
三、解答题(本大题有9小题,共86分)
19.(本题满分10分)
(1)解方程:x2 + 4x-1=0 (2)计算:sin60︒-2sin30︒cos30︒
解:解:
20.(本题满分8分)
人的视觉机能受运动速度的影响很大,行驶中司机在驾驶室内观察前方物体时是动态的,车速增加,视野变窄.当车速为50 km/h时,视野为80度.如果视野f(度)是车速v(km/h)的反比例函数,
(1)求f与v之间的关系式,
(2)计算当车速为100 km/h时视野的度数.
解:
21.(本题满分8分)
如图,在梯形ABCD中,AB∥CD,对角线AC⊥BC,且CA=8,CB=6,CD=5,E是
AB的中点.
(1)求线段AB的长.
(2)试判断四边形AECD的形状,并说明理由.
解:
22.(本题满分8分)
汽车产业的发展,有效促进我国现代化建设.某汽车销售公司2005年盈利1500万元,到2007年盈利2160万元,则这两年的年平均增长率是多少?
解:
23.(本题满分8分)
小红和小明做游戏:他们在一个不透明的布袋中放入3个完全相同的乒乓球,把它们分别标号为1,2,3,先由小红从袋中随机地摸出一个乒乓球然后放回,再由小明随机地摸出一个乒乓球.
小红说:若摸出的两个球的数字的和是偶数,我获胜;否则,你获胜.
(1)请用树状图或列表法表示两人摸球可能出现的所有结果;
(2)若按小红说的规则进行游戏,这个游戏公平吗?请说明理由.
解:
24.(本题满分10分)
热气球的探测器显示,从热气球看一栋高楼顶部的仰角为36︒,看这栋高楼底部的俯角为58︒,热气球与高楼的水平距离为66 m ,这栋高楼有多高?(结果精确到0.1 m )
解:
25.(本题满分10分)
图1是一个机器零件的立体示意图,为了求出这个零件大小两个同心圆柱的半径,陈华用曲尺在大圆柱的背面上画了两条互相垂直的弦AB 、BC ,如图2所示,其中AB ⊥BC ,AB 与小圆相切于点D ,已知量得AB =12cm ,BC =5cm ,分别求这两个圆的半径.
解:
C
A
B
图1
图2
A
D
O
26.(本题满分12分)
已知:如图,抛物线y = − x 2+bx +c 与x 轴、y 轴分别相交于点A (− 1,0)、B (0,3)两点,其顶点为D .
(1)求这条抛物线的解析式;
(2)若抛物线与x 轴的另一个交点为E . 求△ODE 的面积; (注:抛物线y =ax 2+bx +c (a ≠0)的顶点坐标为(−
b 2a ,4a
c −b 2
4a
)) 解:
27.(本题满分12分)
如图,在边长为4的正方形ABCD 中,点P
于点Q .
(1)试证明:无论点P 运动到AB (2)当点P 在AB 上运动到什么位置时,△ADQ 的面积是正方形ABCD 面积的1
6 ;
(3)若点P 从点A 运动到点B ,再继续在BC 上运动到点C ,在整个运动过程中,当点
P 运动到什么位置时,△ADQ 恰为等腰三角形.
A
Q
P
B
D C。

相关文档
最新文档