《带电粒子在电场中的偏转》知识讲解
带电粒子在电场中的偏转(含答案解析)
带电粒子在电场中的偏转一、基础知识1、带电粒子在电场中的偏转(1)条件分析:带电粒子垂直于电场线方向进入匀强电场. (2)运动性质:匀变速曲线运动.(3)处理方法:分解成相互垂直的两个方向上的直线运动,类似于平抛运动. (4)运动规律:①沿初速度方向做匀速直线运动,运动时间⎩⎪⎨⎪⎧a.能飞出电容器:t =lv 0.b.不能飞出电容器:y =12at 2=qU 2md t 2,t =2mdyqU②沿电场力方向,做匀加速直线运动⎩⎪⎨⎪⎧加速度:a =F m =qE m =Uqmd 离开电场时的偏移量:y =12at 2=Uql 22mdv 2离开电场时的偏转角:tan θ=v yv 0=Uqlmdv 20特别提醒 带电粒子在电场中的重力问题(1)基本粒子:如电子、质子、α粒子、离子等除有说明或有明确的暗示以外,一般都不考虑重力(但并不忽略质量).(2)带电颗粒:如液滴、油滴、尘埃、小球等,除有说明或有明确的暗示以外,一般都不能忽略重力.2、带电粒子在匀强电场中偏转时的两个结论(1)不同的带电粒子从静止开始经过同一电场加速后再从同一偏转电场射出时,偏移量和偏转角总是相同的. 证明:由qU 0=12mv 20y =12at 2=12·qU 1md ·(l v 0)2 tan θ=qU 1lmdv 20得:y =U 1l 24U 0d ,tan θ=U 1l2U 0d(2)粒子经电场偏转后,合速度的反向延长线与初速度延长线的交点O 为粒子水平位移的中点,即O 到偏转电场边缘的距离为l2.3、带电粒子在匀强电场中偏转的功能关系当讨论带电粒子的末速度v 时也可以从能量的角度进行求解:qU y =12mv 2-12mv 20,其中U y =Udy ,指初、末位置间的电势差.二、练习题1、如图,一质量为m ,带电量为+q 的带电粒子,以速度v 0垂直于电场方向进入电场,关于该带电粒子的运动,下列说法正确的是( )A .粒子在初速度方向做匀加速运动,平行于电场方向做匀加速运动,因而合运动是匀加速直线运动B .粒子在初速度方向做匀速运动,平行于电场方向做匀加速运动,其合运动的轨迹是一条抛物线C .分析该运动,可以用运动分解的方法,分别分析两个方向的运动规律,然后再确定合运动情况D .分析该运动,有时也可用动能定理确定其某时刻速度的大小 答案 BCD2、如图所示,两平行金属板A 、B 长为L =8 cm ,两板间距离d =8 cm ,A 板比B 板电势高300 V ,一带正电的粒子电荷量为q =1.0×10-10 C ,质量为m =1.0×10-20 kg ,沿电场中心线RO 垂直电场线飞入电场,初速度v 0=2.0×106 m/s ,粒子飞出电场后经过界面MN 、PS 间的无电场区域,然后进入固定在O 点的点电荷Q 形成的电场区域(设界面PS 右侧点电荷的电场分布不受界面的影响).已知两界面MN 、PS 相距为12 cm ,D 是中心线RO 与界面PS 的交点,O 点在中心线上,距离界面PS 为9 cm ,粒子穿过界面PS 做匀速圆周运动,最后垂直打在放置于中心线上的荧光屏bc 上.(静电力常量k =9.0×109 N ·m 2/C 2,粒子的重力不计)(1)求粒子穿过界面MN 时偏离中心线RO 的距离多远?到达PS 界面时离D 点多远? (2)在图上粗略画出粒子的运动轨迹.(3)确定点电荷Q 的电性并求其电荷量的大小.解析 (1)粒子穿过界面MN 时偏离中心线RO 的距离(侧向位移): y =12at 2a =F m =qU dmL =v 0t则y =12at 2=qU 2md (L v 0)2=0.03 m =3 cm 粒子在离开电场后将做匀速直线运动,其轨迹与PS 交于H ,设H 到中心线的距离为Y ,则有12L12L +12 cm=yY,解得Y =4y =12 cm(2)第一段是抛物线、第二段是直线、第三段是圆弧(图略) (3)粒子到达H 点时,其水平速度v x =v 0=2.0×106 m/s 竖直速度v y =at =1.5×106 m/s 则v 合=2.5×106 m/s该粒子在穿过界面PS 后绕点电荷Q 做匀速圆周运动,所以Q 带负电 根据几何关系可知半径r =15 cmk qQr 2=m v 2合r解得Q ≈1.04×10-8 C答案 (1)12 cm (2)见解析 (3)负电 1.04×10-8 C3、如图所示,在两条平行的虚线内存在着宽度为L 、电场强度为E 的匀强电场,在与右侧虚线相距也为L 处有一与电场平行的屏.现有一电荷量为+q 、质量为m 的带电粒子(重力不计),以垂直于电场线方向的初速度v 0射入电场中,v 0方向的延长线与屏的交点为O .试求:(1)粒子从射入电场到打到屏上所用的时间;(2)粒子刚射出电场时的速度方向与初速度方向间夹角的正切值tan α; (3)粒子打在屏上的点P 到O 点的距离x . 答案 (1)2L v 0 (2)qEL mv 20 (3)3qEL 22mv 20解析 (1)根据题意,粒子在垂直于电场线的方向上做匀速直线运动,所以粒子从射入电场到打到屏上所用的时间t =2L v 0.(2)设粒子刚射出电场时沿平行电场线方向的速度为v y ,根据牛顿第二定律,粒子在电场中的加速度为:a =Eq m所以v y =a L v 0=qELmv 0所以粒子刚射出电场时的速度方向与初速度方向间夹角的正切值为tan α=v y v 0=qELmv 20.(3)解法一 设粒子在电场中的偏转距离为y ,则 y =12a (L v 0)2=12·qEL 2mv 20 又x =y +L tan α, 解得:x =3qEL 22mv 20解法二 x =v y ·Lv 0+y =3qEL 22mv 20.解法三 由xy =L +L2L 2得:x =3y =3qEL 22mv 20.4、如图所示,虚线PQ 、MN 间存在如图所示的水平匀强电场,一带电粒子质量为m =2.0×10-11 kg 、电荷量为q =+1.0×10-5 C ,从a 点由静止开始经电压为U =100 V 的电场加速后,垂直于匀强电场进入匀强电场中,从虚线MN 的某点b (图中未画出)离开匀强电场时速度与电场方向成30°角.已知PQ 、MN 间距为20 cm ,带电粒子的重力忽略不计.求:(1)带电粒子刚进入匀强电场时的速率v 1; (2)水平匀强电场的场强大小; (3)ab 两点间的电势差.答案 (1)1.0×104 m/s (2)1.732×103 N/C (3)400 V 解析 (1)由动能定理得:qU =12mv 21代入数据得v 1=1.0×104 m/s(2)粒子沿初速度方向做匀速运动:d =v 1t 粒子沿电场方向做匀加速运动:v y =at 由题意得:tan 30°=v 1v y由牛顿第二定律得:qE =ma 联立以上各式并代入数据得:E =3×103 N/C ≈1.732×103 N/C(3)由动能定理得:qU ab =12m (v 21+v 2y )-0联立以上各式并代入数据得:U ab =400 V .5、如图所示,一价氢离子(11H)和二价氦离子(42He)的混合体,经同一加速电场加速后,垂直射入同一偏转电场中,偏转后,打在同一荧光屏上,则它们( )A .同时到达屏上同一点B .先后到达屏上同一点C .同时到达屏上不同点D .先后到达屏上不同点 答案 B解析 一价氢离子(11H)和二价氦离子(42He)的比荷不同,经过加速电场的末速度不同,因此在加速电场及偏转电场的时间均不同,但在偏转电场中偏转距离相同,所以会先后打在屏上同一点,选B.6、如图所示,六面体真空盒置于水平面上,它的ABCD 面与EFGH 面为金属板,其他面为绝缘材料.ABCD 面带正电,EFGH 面带负电.从小孔P 沿水平方向以相同速率射入三个质量相同的带正电液滴a 、b 、c ,最后分别落在1、2、3三点.则下列说法正确的是( )A .三个液滴在真空盒中都做平抛运动B .三个液滴的运动时间不一定相同C .三个液滴落到底板时的速率相同D .液滴c 所带电荷量最多 答案 D解析 三个液滴具有水平速度,但除了受重力以外,还受水平方向的电场力作用,不是平抛运动,选项A 错误;在竖直方向上三个液滴都做自由落体运动,下落高度又相同,故运动时间必相同,选项B 错误;在相同的运动时间内,液滴c 水平位移最大,说明它在水平方向的加速度最大,它受到的电场力最大,电荷量也最大,选项D 正确;因为重力做功相同,而电场力对液滴c 做功最多,所以它落到底板时的速率最大,选项C 错误.7、绝缘光滑水平面内有一圆形有界匀强电场,其俯视图如图所示,图中xOy 所在平面与光滑水平面重合,电场方向与x 轴正向平行,电场的半径为R =2 m ,圆心O 与坐标系的原点重合,场强E =2 N/C.一带电荷量为q =-1×10-5 C 、质量m =1×10-5 kg 的粒子,由坐标原点O 处以速度v 0=1 m/s 沿y 轴正方向射入电场(重力不计),求:(1)粒子在电场中运动的时间; (2)粒子出射点的位置坐标; (3)粒子射出时具有的动能.答案 (1)1 s (2)(-1 m,1 m) (3)2.5×10-5 J解析 (1)粒子沿x 轴负方向做匀加速运动,加速度为a ,则有: Eq =ma ,x =12at 2沿y 轴正方向做匀速运动,有y =v 0t x 2+y 2=R 2解得t =1 s.(2)设粒子射出电场边界的位置坐标为(-x 1,y 1),则有x 1=12at 2=1 m ,y 1=v 0t =1 m ,即出射点的位置坐标为(-1 m,1 m).(3)射出时由动能定理得Eqx 1=E k -12mv 20代入数据解得E k=2.5×10-5 J.8、如图所示,在正方形ABCD区域内有平行于AB边的匀强电场,E、F、G、H是各边中点,其连线构成正方形,其中P点是EH的中点.一个带正电的粒子(不计重力)从F点沿FH方向射入电场后恰好从D点射出.以下说法正确的是( )A.粒子的运动轨迹一定经过P点B.粒子的运动轨迹一定经过PE之间某点C.若将粒子的初速度变为原来的一半,粒子会由ED之间某点射出正方形ABCD区域D.若将粒子的初速度变为原来的一半,粒子恰好由E点射出正方形ABCD区域答案BD解析粒子从F点沿FH方向射入电场后恰好从D点射出,其轨迹是抛物线,则过D 点做速度的反向延长线一定与水平位移交于FH的中点,而延长线又经过P点,所以粒子轨迹一定经过PE之间某点,选项A错误,B正确;由平抛运动知识可知,当竖直位移一定时,水平速度变为原来的一半,则水平位移也变为原来的一半,所以选项C错误,D正确.9、用等效法处理带电体在电场、重力场中的运动如图所示,绝缘光滑轨道AB部分为倾角为30°的斜面,AC部分为竖直平面上半径为R的圆轨道,斜面与圆轨道相切.整个装置处于场强为E、方向水平向右的匀强电场中.现有一个质量为m的小球,带正电荷量为q=3mg3E,要使小球能安全通过圆轨道,在O点的初速度应满足什么条件?图9审题与关联解析 小球先在斜面上运动,受重力、电场力、支持力,然后在圆轨道上运动,受重力、电场力、轨道作用力,如图所示,类比重力场,将电场力与重力的合力视为等效重力mg ′,大小为mg ′=qE 2+mg 2=23mg 3,tan θ=qE mg =33,得θ=30°,等效重力的方向与斜面垂直指向右下方,小球在斜面上匀速运动.因要使小球能安全通过圆轨道,在圆轨道的等效“最高点”(D 点)满足等效重力刚好提供向心力,即有:mg ′=mv 2D R,因θ=30°与斜面的倾角相等,由几何关系可知AD =2R ,令小球以最小初速度v 0运动,由动能定理知: -2mg ′R =12mv 2D -12mv 20 解得v 0= 103gR 3,因此要使小球安全通过圆轨道,初速度应满足v ≥103gR 3.。
《带电粒子在匀强电场中的偏转》 知识清单
《带电粒子在匀强电场中的偏转》知识清单一、基本概念带电粒子在匀强电场中的偏转,指的是带电粒子以一定的初速度垂直进入匀强电场后,受到电场力的作用而发生偏转的现象。
匀强电场是指电场强度的大小和方向都相同的电场。
在这种电场中,带电粒子所受的电场力是恒定的。
二、运动规律1、水平方向带电粒子在水平方向不受力,做匀速直线运动。
其水平速度 vx 保持不变,水平位移 x = vxt,其中 vx 为初速度在水平方向的分量,t 为粒子在电场中的运动时间。
2、竖直方向带电粒子在竖直方向受到恒定的电场力,做匀加速直线运动。
其加速度 a = Eq/m,其中 E 为电场强度,q 为粒子的电荷量,m 为粒子的质量。
竖直速度 vy = at,竖直位移 y = 1/2at²三、偏转角度带电粒子离开电场时的偏转角度可以通过正切值来表示,tanθ =vy/vx四、偏移量粒子在电场中的偏移量 y 与粒子的初速度 v0、电场强度 E、粒子的电荷量 q、质量 m 以及极板长度 L 和极板间距 d 等因素有关。
偏移量的表达式为:y = qEL²/2mv₀²d五、应用实例1、示波器示波器是利用带电粒子在匀强电场中的偏转来显示电信号的变化。
电子枪发射的电子经过加速后,垂直进入偏转电场,通过控制电场的强度和方向,使电子束在荧光屏上产生不同的偏转,从而显示出信号的波形。
2、喷墨打印机在喷墨打印机中,带电的墨滴在匀强电场的作用下发生偏转,准确地喷射到纸张的指定位置,形成文字或图像。
六、解题思路与方法1、分析受力首先要明确带电粒子在匀强电场中所受的电场力,根据电场力的方向和大小,判断粒子在竖直方向的运动情况。
2、运动分解将带电粒子的运动分解为水平方向的匀速直线运动和竖直方向的匀加速直线运动,分别列出相应的运动方程。
3、联立方程求解根据已知条件,联立水平和竖直方向的运动方程,求解出粒子的偏转角度、偏移量等物理量。
七、常见错误与注意事项1、忽略粒子的重力在一些情况下,粒子的重力相比电场力可以忽略不计,但在某些特殊问题中,重力可能不能忽略,需要具体情况具体分析。
《带电粒子在电场中的偏转》精讲
在电场中的偏转
带电粒子在电场中的偏转 1.带电粒子在电场中的偏转 (1)条件分析:带电粒子垂直于电场线 方向进入匀强电场. (2)运动性质:匀变速曲线运动.
(3)处理方法:分解成相互垂直的两个方向上的直线运动,类似于平 抛运动. (4)运动规律: ①沿初速度方向做匀速直线运动,运动时间
a.能飞出电容器:t=v . 1 qU b. 不能飞出电容器: y = at = t ,t= 2 2场力方向,做匀加速直线运动
1 qUl 离开电场时的偏移量: y = at = 2 2mdv v qUl 离开电场时的偏转角: tan θ = = v mdv
U1l2 Ul 得:y= ,tanθ= 1 4U0d 2U0d
(2)粒子经电场偏转后,合速度的反 向延长线与初速度延长线的交点O 为粒子水平位移的中点,即O到偏 转电场边缘的距 离为l/2. 3.带电粒子在匀强电场中偏转的功能 关系 当讨论带电粒子的末速度v时也可以从 能量的角度进行求解:qUy=12mv2- 12mv20,其中Uy=Udy,指初、末位 置间的电势差.
2 2 y 0
F qE qU 加速度:a= = = m m md
2 0
2 0
2.带电粒子在匀强电场中偏转时的两个结论
(1)不同的带电粒子从静止开始经过同一电场加速后再从同 一偏转 电场射出时,偏移量和偏转角总是相同的.
1 2 证明:由 qU0= mv 0 2 1 2 1 qU1 l 2 y= at = · · ( ) 2 2 md v 0 tanθ= qU1 l 2 mdv0
带电粒子在电场中的偏转(含问题详解)
带电粒子在电场中的偏转一、基础知识1、带电粒子在电场中的偏转(1)条件分析:带电粒子垂直于电场线方向进入匀强电场. (2)运动性质:匀变速曲线运动.(3)处理方法:分解成相互垂直的两个方向上的直线运动,类似于平抛运动. (4)运动规律:①沿初速度方向做匀速直线运动,运动时间⎩⎨⎧a.能飞出电容器:t =l v 0.b.不能飞出电容器:y =12at 2=qU 2mdt 2,t = 2mdy qU②沿电场力方向,做匀加速直线运动⎩⎪⎨⎪⎧加速度:a =F m =qE m =Uqmd离开电场时的偏移量:y =12at 2=Uql 22md v 20离开电场时的偏转角:tan θ=v y v 0=Uql md v20特别提醒 带电粒子在电场中的重力问题(1)基本粒子:如电子、质子、α粒子、离子等除有说明或有明确的暗示以外,一般都不考虑重力(但并不忽略质量).(2)带电颗粒:如液滴、油滴、尘埃、小球等,除有说明或有明确的暗示以外,一般都不能忽略重力.2、带电粒子在匀强电场中偏转时的两个结论(1)不同的带电粒子从静止开始经过同一电场加速后再从同一偏转电场射出时,偏移量和偏转角总是相同的. 证明:由qU 0=12m v 20y =12at 2=12·qU 1md ·(l v 0)2tan θ=qU 1lmd v 20得:y =U 1l 24U 0d ,tan θ=U 1l 2U 0d(2)粒子经电场偏转后,合速度的反向延长线与初速度延长线的交点O 为粒子水平位移的中点,即O 到偏转电场边缘的距离为l2.3、带电粒子在匀强电场中偏转的功能关系当讨论带电粒子的末速度v 时也可以从能量的角度进行求解:qU y =12m v 2-12m v 20,其中U y =Ud y ,指初、末位置间的电势差.二、练习题1、如图,一质量为m ,带电量为+q 的带电粒子,以速度v 0垂直于电场方向进入电场,关于该带电粒子的运动,下列说确的是( )A .粒子在初速度方向做匀加速运动,平行于电场方向做匀加速运动,因而合运动是匀加速直线运动B .粒子在初速度方向做匀速运动,平行于电场方向做匀加速运动,其合运动的轨迹是一条抛物线C .分析该运动,可以用运动分解的方法,分别分析两个方向的运动规律,然后再确定合运动情况D .分析该运动,有时也可用动能定理确定其某时刻速度的大小 答案 BCD2、如图所示,两平行金属板A 、B 长为L =8 cm ,两板间距离d =8 cm ,A 板比B 板电势高300 V ,一带正电的粒子电荷量为q =1.0×10-10C ,质量为m =1.0×10-20kg ,沿电场中心线RO 垂直电场线飞入电场,初速度v 0=2.0×106 m/s ,粒子飞出电场后经过界面MN 、PS 间的无电场区域,然后进入固定在O 点的点电荷Q 形成的电场区域(设界面PS 右侧点电荷的电场分布不受界面的影响).已知两界面MN 、PS 相距为12 cm ,D 是中心线RO 与界面PS 的交点,O 点在中心线上,距离界面PS 为9 cm ,粒子穿过界面PS 做匀速圆周运动,最后垂直打在放置于中心线上的荧光屏bc 上.(静电力常量k =9.0×109 N·m 2/C 2,粒子的重力不计)(1)求粒子穿过界面MN 时偏离中心线RO 的距离多远?到达PS 界面时离D 点多远? (2)在图上粗略画出粒子的运动轨迹.(3)确定点电荷Q 的电性并求其电荷量的大小.解析 (1)粒子穿过界面MN 时偏离中心线RO 的距离(侧向位移): y =12at 2 a =F m =qU dm L =v 0t则y =12at 2=qU 2md (L v 0)2=0.03 m =3 cm粒子在离开电场后将做匀速直线运动,其轨迹与PS 交于H ,设H 到中心线的距离为Y ,则有12L 12L +12 cm =yY ,解得Y =4y =12 cm(2)第一段是抛物线、第二段是直线、第三段是圆弧(图略) (3)粒子到达H 点时,其水平速度v x =v 0=2.0×106 m/s 竖直速度v y =at =1.5×106 m/s 则v 合=2.5×106 m/s该粒子在穿过界面PS 后绕点电荷Q 做匀速圆周运动,所以Q 带负电 根据几何关系可知半径r =15 cm k qQr 2=m v 2合r解得Q ≈1.04×10-8 C答案 (1)12 cm (2)见解析 (3)负电 1.04×10-8 C3、如图所示,在两条平行的虚线存在着宽度为L 、电场强度为E 的匀强电场,在与右侧虚线相距也为L 处有一与电场平行的屏.现有一电荷量为+q 、质量为m 的带电粒子(重力不计),以垂直于电场线方向的初速度v 0射入电场中,v 0方向的延长线与屏的交点为O .试求:(1)粒子从射入电场到打到屏上所用的时间;(2)粒子刚射出电场时的速度方向与初速度方向间夹角的正切值tan α; (3)粒子打在屏上的点P 到O 点的距离x . 答案 (1)2L v 0 (2)qEL m v 20 (3)3qEL 22m v 20解析 (1)根据题意,粒子在垂直于电场线的方向上做匀速直线运动,所以粒子从射入电场到打到屏上所用的时间t =2Lv 0.(2)设粒子刚射出电场时沿平行电场线方向的速度为v y ,根据牛顿第二定律,粒子在电场中的加速度为:a =Eqm所以v y =a L v 0=qELm v 0所以粒子刚射出电场时的速度方向与初速度方向间夹角的正切值为tan α=v y v 0=qELm v 20.(3)解法一 设粒子在电场中的偏转距离为y ,则 y =12a (L v 0)2=12·qEL 2m v 20 又x =y +L tan α, 解得:x =3qEL 22m v 20解法二 x =v y ·L v 0+y =3qEL 22m v 20.解法三 由x y =L +L 2L 2得:x =3y =3qEL 22m v 20.4、如图所示,虚线PQ 、MN 间存在如图所示的水平匀强电场,一带电粒子质量为m =2.0×10-11kg 、电荷量为q =+1.0×10-5 C ,从a 点由静止开始经电压为U =100 V 的电场加速后,垂直于匀强电场进入匀强电场中,从虚线MN 的某点b (图中未画出)离开匀强电场时速度与电场方向成30°角.已知PQ 、MN 间距为20 cm ,带电粒子的重力忽略不计.求:(1)带电粒子刚进入匀强电场时的速率v 1; (2)水平匀强电场的场强大小; (3)ab 两点间的电势差.答案 (1)1.0×104 m/s (2)1.732×103 N/C (3)400 V 解析 (1)由动能定理得:qU =12m v 21代入数据得v 1=1.0×104 m/s(2)粒子沿初速度方向做匀速运动:d =v 1t 粒子沿电场方向做匀加速运动:v y =at 由题意得:tan 30°=v 1v y由牛顿第二定律得:qE =ma 联立以上各式并代入数据得: E =3×103 N/C ≈1.732×103 N/C (3)由动能定理得:qU ab =12m (v 21+v 2y )-0 联立以上各式并代入数据得:U ab =400 V .5、如图所示,一价氢离子(11H)和二价氦离子(42He)的混合体,经同一加速电场加速后,垂直射入同一偏转电场中,偏转后,打在同一荧光屏上,则它们( )A.同时到达屏上同一点B.先后到达屏上同一点C.同时到达屏上不同点D.先后到达屏上不同点答案 B解析一价氢离子(11H)和二价氦离子(42He)的比荷不同,经过加速电场的末速度不同,因此在加速电场及偏转电场的时间均不同,但在偏转电场中偏转距离相同,所以会先后打在屏上同一点,选B.6、如图所示,六面体真空盒置于水平面上,它的ABCD面与EFGH面为金属板,其他面为绝缘材料.ABCD面带正电,EFGH面带负电.从小孔P沿水平方向以相同速率射入三个质量相同的带正电液滴a、b、c,最后分别落在1、2、3三点.则下列说确的是()A.三个液滴在真空盒中都做平抛运动B.三个液滴的运动时间不一定相同C.三个液滴落到底板时的速率相同D.液滴c所带电荷量最多答案 D解析 三个液滴具有水平速度,但除了受重力以外,还受水平方向的电场力作用,不是平抛运动,选项A 错误;在竖直方向上三个液滴都做自由落体运动,下落高度又相同,故运动时间必相同,选项B 错误;在相同的运动时间,液滴c 水平位移最大,说明它在水平方向的加速度最大,它受到的电场力最大,电荷量也最大,选项D 正确;因为重力做功相同,而电场力对液滴c 做功最多,所以它落到底板时的速率最大,选项C 错误.7、绝缘光滑水平面有一圆形有界匀强电场,其俯视图如图所示,图中xOy 所在平面与光滑水平面重合,电场方向与x 轴正向平行,电场的半径为R = 2 m ,圆心O 与坐标系的原点重合,场强E =2 N/C.一带电荷量为q =-1×10-5 C 、质量m =1×10-5 kg 的粒子,由坐标原点O 处以速度v 0=1 m/s 沿y 轴正方向射入电场(重力不计),求:(1)粒子在电场中运动的时间; (2)粒子出射点的位置坐标; (3)粒子射出时具有的动能.答案 (1)1 s (2)(-1 m,1 m) (3)2.5×10-5 J解析 (1)粒子沿x 轴负方向做匀加速运动,加速度为a ,则有: Eq =ma ,x =12at 2沿y 轴正方向做匀速运动,有 y =v 0tx 2+y 2=R 2 解得t =1 s.(2)设粒子射出电场边界的位置坐标为(-x 1,y 1),则有x 1=12at 2=1 m ,y 1=v 0t =1 m ,即出射点的位置坐标为(-1 m,1 m).(3)射出时由动能定理得Eqx 1=E k -12m v 20代入数据解得E k =2.5×10-5 J.8、如图所示,在正方形ABCD 区域有平行于AB 边的匀强电场,E 、F 、G 、H 是各边中点,其连线构成正方形,其中P 点是EH 的中点.一个带正电的粒子(不计重力)从F 点沿FH 方向射入电场后恰好从D 点射出.以下说确的是( )A .粒子的运动轨迹一定经过P 点B .粒子的运动轨迹一定经过PE 之间某点C .若将粒子的初速度变为原来的一半,粒子会由ED 之间某点射出正方形ABCD 区域 D .若将粒子的初速度变为原来的一半,粒子恰好由E 点射出正方形ABCD 区域 答案 BD解析 粒子从F 点沿FH 方向射入电场后恰好从D 点射出,其轨迹是抛物线,则过D 点做速度的反向延长线一定与水平位移交于FH 的中点,而延长线又经过P 点,所以粒子轨迹一定经过PE 之间某点,选项A 错误,B 正确;由平抛运动知识可知,当竖直位移一定时,水平速度变为原来的一半,则水平位移也变为原来的一半,所以选项C 错误,D 正确.9、用等效法处理带电体在电场、重力场中的运动如图所示,绝缘光滑轨道AB部分为倾角为30°的斜面,AC部分为竖直平面上半径为R的圆轨道,斜面与圆轨道相切.整个装置处于场强为E、方向水平向右的匀强电场中.现有一个质量为m的小球,带正电荷量为q=3mg3E,要使小球能安全通过圆轨道,在O点的初速度应满足什么条件?图9审题与关联解析小球先在斜面上运动,受重力、电场力、支持力,然后在圆轨道上运动,受重力、电场力、轨道作用力,如图所示,类比重力场,将电场力与重力的合力视为等效重力mg′,大小为mg ′=(qE )2+(mg )2=2 3mg 3,tan θ=qE mg =33,得θ=30°,等 效重力的方向与斜面垂直指向右下方,小球在斜面上匀速运动.因要使小球能安全通过圆轨道,在圆轨道的等效“最高点”(D 点)满足等效重力刚好提供向心力,即有:mg ′=m v 2D R,因θ=30°与斜面的倾角相等,由几何关系可知AD =2R ,令小球以最小初速度v 0运动,由动能定理知:-2mg ′R =12m v 2D -12m v 20 解得v 0=103gR 3,因此要使小球安全通过圆轨道,初速度应满足v ≥ 103gR 3. 答案 v ≥ 103gR 3 10、在空间中水平面MN 的下方存在竖直向下的匀强电场,质量为m 的带电小球由MN 上方的A 点以一定的初速度水平抛出,从B 点进入电场,到达C 点时速度方向恰好水平,A 、B 、C 三点在同一直线上,且AB =2BC ,如图所示.由此可见( )A .电场力为3mgB .小球带正电C .小球从A 到B 与从B 到C 的运动时间相等D .小球从A 到B 与从B 到C 的速度变化量的大小相等答案 AD解析 设AC 与竖直方向的夹角为θ,带电小球从A 到C ,电场力做负功,小球带负电,由动能定理,mg ·AC ·cos θ-qE ·BC ·cos θ=0,解得电场力为qE =3mg ,选项A 正确,B错误.小球水平方向做匀速直线运动,从A到B的运动时间是从B到C的运动时间的2倍,选项C错误;小球在竖直方向先加速后减速,小球从A到B与从B到C竖直方向的速度变化量的大小相等,水平方向速度不变,小球从A到B与从B到C的速度变化量的大小相等,选项D正确.。
一轮复习:带电粒子在电场中的偏转
6.示波器的工作原理 (1)构造:①电子枪;②偏转极板;③荧光屏。(如图所示) (2)工作原理 ①YY′上加的是待显示的信号电压,XX′上是仪器自身产生的锯 齿形电压,叫做扫描电压。
②观察到的现象
a.如果在偏转电极XX′和YY′之间都没有加电压,则电子枪射出 的电子沿直线运动,打在荧光屏中心,在那里产生一个亮斑。
6.(多选)如图所示,水平放置的平行金属板A、B连接一恒定 电压,两个质量相等的带电粒子M和N同时分别从极板A的边缘
和两极板的正中间沿水平方向进入板间电场,两带电粒子恰好
在板间某点相遇。若不考虑带电粒子的重力和它们之间的相互 作用,则下列说法正确的是A( C ) A.M的电荷量大于N的电荷量 B.两带电粒子在电场中运动的加速度相等 C.从两带电粒子进入电场到两带电粒子相遇,电场力对M做 的功大于电场力对N做的功 D.M进入电场的初速度大小与N进入电场的初速度大小一定相 同
3.两个结论 (1)不同的带电粒子从静止开始经过同一电场加速后再 从同一偏转电场射出时,偏移量和偏转角总是相同的。 证明:由 qU0=12mv20 y=12at2=12·qmUd1·vl02 tanθ=mqUdv1l20 得:y=4UU10l2d,tanθ=2UU10ld。 (2)粒子经电场偏转后,合速度的反向延长线与初速度延 长线的交点 O 为粒子水平位移的中点,即 O 到偏转电场边 缘的距离为2l 。
(1)13.5 cm (2)30 cm
Байду номын сангаас
2L qEL 3qEL2 (1) v0 (2)mv20 (3) 2mv20
2.(多选)如图,质子(11H)、氘核(21H)和 α 粒子(42He)都沿
平行板电容器中线 OO′方向垂直于电场线射入板间的匀强
《带电粒子在电场中的偏转》知识讲解
③
④ a qU
md
⑤
qE yEk1 2m 21 2m 0 2
L2 0t2 ① y2 t2 ②
y总(L21 L2)tan
【例1】一束电子流在经U =5000V的加速电压 加速后,在距两极板等距处垂直进入平行 板间的匀强电场,如图所示.若两板间距d =1.0 cm,板长l =5.0 cm,那么,要使电子 能 从平行板间飞出,两个极板上最多能加
2
若经电压U0加速后射入偏转电场,则
与带电粒子的质量m、电荷量q及 射入偏转电场的初速无关
小结: 加速电压U1
-
d
L0
qU1
1 2
m02
①
L0
2
t加速
②
沿初速 方向:
沿电场 方向:
0
2qU1 m
y 偏转电压U2 v0
l1
L2
L 0t
E U2 d
①
t L
②
0
a qE m
y 1 at 2 2
at
大而增大。
3、离开电场速度大小:
(1)用速度合成方法:
E U d
①
Hale Waihona Puke a qE m②02 2
at ③
(2)用动能定理求解:
02
2qEy m
qE 1 2 ym 21 2m 0 21 2m 2
y
m
2
2 qE
4、偏转角θ的计算
E U d
①
a qE ② m
at ③
v
v0
y L tan
(3)粒子在整个运动过程中动能的变化量。
此课件下载可自行编辑修改,仅供参考! 感谢您的支持,我们努力做得更好!谢谢
高二物理:带电粒子在电场中的偏转
高二物理:带电粒子在电场中的偏转班级__________ 座号_____ 姓名__________ 分数__________一、知识清单 1. 正交分解法222y F a __________m a.t _____11qU b.y at t ,22md t 1y at ________2vtan ________v ⎧===⎪⎪⎧⎪⎪⎪=⎪⎪⎪⎪==⎨⎪⎪⎪⎨⎪⎪⎪⎪⎩⎪⎪==⎪⎪⎪θ==⎪⎩0加速度:能飞出平行板电容器:运动时间打在平行极板上:离开电场时的偏移量:离开电场时的偏转角正切: 2. 推论法:①tanθ=2tanα;推导:位移偏转角2021v Lmd qU x y tan ==α;速度偏转角20v L md qU v v tan x y ==θ所以tanθ=2tanα。
②末速度的反向延长线与初速度延长线交点恰好在水平位移的中点。
方法三、 qEy =ΔE K 3. 功能关系法(1)动能定理:当讨论带电粒子的末速度v 时也可以从能量的角度进行求解:qU y =12mv 2-12mv 20,其中U y=Ud y ,指初、末位置间的电势差. (2)势能定理:电势能的变化量ΔE P =-qU y =-qEy 4. 电偏转中的比较与比值问题5.考虑重力的电偏转6.与电容器的两类基本问题有关的电偏转二、选择题1. (2004广东理综)图为示波管中偏转电极的示意图,相距为d 长度为l 的平行板A 、B 加上电压后,可在A 、B 之间的空间中(设为真空)产生电场(设为匀强电场).在AB 左端距A 、B 等距离处的O 点,有一电荷为+q 、质量为m 的粒子以初速度v 0沿水平方向(与平行)射入.不计重力,要使此粒子能从C 处射出,则A 、B 间的电压应为( )A 、2202ql mv dB 、2202qd mv l C 、qd lmv 0 D 、v dlv q 02. 如图所示,在真空中带电粒子P 1和P 2先后以相同的初速度从O 点射入匀强电场。
带电粒子在电场中的运动问题2(偏转)知识讲解
带电粒子在电场中的偏转一、如图所示,某带电粒子以速度0v 沿垂直于电场线方向飞入匀强电场时,受到恒定的与初速度方向垂直的电场力作用而做匀变速曲线运动。
1、处理方法:类平抛运动,运动的合成与分解求解相关问题;水平方向:匀速直线运动; 竖直方向:匀加速直线运动。
2、所涉及的方程及结论 ①加速度:mdqU m qE m F a ===②运动时间: A 、能飞出极板间时,0v l t = B 、打在极板上时,由qUmd a d t at d 22,212===得 ③竖直上的偏转量:A 、离开电场时,dmv U ql at y 2022221==,如果综合加速电场0U 时,由20021mv qU =得dU Ul y 024=,即经过加速电场后进入偏转电场时,竖直方向上的偏转量与粒子的比荷无关。
换句话说,就是不同的粒子经过相同的加速电场和进入相同的偏转电场,离开电场时竖直方向上的偏转量都是一样的。
B 、打在极板上时,2d y =,水平方向的位移为qUmd v a d v t v x 2000=== ④偏转角:dmv qUl v at v v y2000tan ===θ,结合20021mv qU =得d U Ul 02tan =θ即经过加速电场后进入偏转电场时,偏转角与粒子的比荷无关。
换句话说,即不同的粒子经过相同的加速电场和进入相同的偏转电场,离开电场时速度的方向都是一样的。
⑤如果粒子能离开偏转电场,离开电场时速度方向的反向延长线交水平位移的中点2l 处。
⑥速度:220y v v v +=或者根据动能定理:y dU U mv mv qU y y =-=,2121202例1、如图所示,离子发生器发射出一束质量为m ,电荷量为q 的离子,从静止经加速电压U 1加速后,获得速度0v ,并沿垂直于电场线方向射入两平行板中央,受偏转电压U 2作用后,以速度v 离开电场,已知平行板长为l ,两板间距离为d ,求:①0v 的大小;②离子在偏转电场中运动时间t ;③离子在偏转电场中受到的电场力的大小F ;④离子在偏转电场中的加速度;⑤离子在离开偏转电场时的横向速度y v ;⑥离子在离开偏转电场时的速度v 的大小;⑦离子在离开偏转电场时竖直方向上的偏移量y ;⑧离子离开偏转电场时的偏转角θ的正切值tanθ举一反三1、如图所示,质子(11H)、氘核(H21)和α粒子(42He),以相同的初动能垂直射入偏转电场(粒子不计重力),三个粒子均能射出电场;求①这三个粒子射出电场时所花时间比;②这三个粒子射出电场时竖直方向上的偏转量的比;③这三个粒子射出电场时速度的偏转角的比;2、如图所示,氕、氘、氚的原子核自初速度为零经同一电场加速后,又经同一匀强电场偏转,最后打在荧光屏上,那么()A.经过加速电场过程,电场力对氚核做的功最多B.经过偏转电场过程,电场力对三种核做的功一样多C.三种原子核打在屏上时的速度一样大D.三种原子核都打在屏上的同一位置上3、在上题的基础上,求:①进入偏转电场到离开时所需时间比;二、示波器工作原理例2、如图所示是示波管的原理图.它由电子枪、偏转电极(XX′和YY′)、荧光屏组成,管内抽成真空.给电子枪通电后,如果在偏转电极XX′和YY′上都没有加电压,电子束将打在荧光屏的中心O点,在那里产生一个亮斑.下列说法正确的是()A.要想让亮斑沿OY向上移动,需在偏转电极YY′上加电压,且Y′比Y电势高B.要想让亮斑移到荧光屏的右上方,需在偏转电极XX′、YY′上加电压,且X比X′电势高、Y比Y′电势高C.要想在荧光屏上出现一条水平亮线,需在偏转电极XX′上加特定的周期性变化的电压(扫描电压)D.要想在荧光屏上出现一条正弦曲线,需在偏转电极XX′上加适当频率的扫描电压、在偏转电极YY′上加按正弦规律变化的电压举一反三1、如图所示,是一个示波器工作原理图,电子经过加速后以速度v0垂直进入偏转电场,离开电场时偏转量是h,两平行板间距离为d,电势差为U,板长为l,每单位电压引起的偏移量(h/U)叫示波器的灵敏度.若要提高其灵敏度,可采用下列办法中的()A.增大两极板间的电压B.尽可能使板长l做得短些C.尽可能使板间距离d减小些D.使电子入射速度v0大些2、如图所示的示波管,当两偏转电极XX′、YY′电压为零时,电子枪发射的电子经加速电场加速后会打在荧光屏上的正中间(图示坐标的O点,其中x轴与XX′电场的场强方向重合,x轴正方向垂直于纸面向里,y轴与YY′电场的场强方向重合).若要电子打在图示坐标的第Ⅲ象限,则()A.X、Y极接电源的正极,X′、Y′接电源的负极B.X、Y′极接电源的正极,X′、Y接电源的负极C.X′、Y极接电源的正极,X、Y′接电源的负极D.X′、Y′极接电源的正极,X、Y接电源的负极。
《带电粒子在匀强电场中的偏转》 知识清单
《带电粒子在匀强电场中的偏转》知识清单一、匀强电场匀强电场是指电场强度大小和方向都处处相同的电场。
在实际情况中,带等量异种电荷的平行金属板之间的电场可以近似看作匀强电场。
二、带电粒子在匀强电场中的偏转条件当带电粒子以初速度 v₀垂直于电场方向进入匀强电场时,粒子将发生偏转。
三、带电粒子在匀强电场中的运动性质带电粒子在匀强电场中的偏转运动是一个类平抛运动。
这意味着它在垂直于电场方向上做匀速直线运动,在平行于电场方向上做初速度为零的匀加速直线运动。
四、基本运动规律1、垂直于电场方向粒子在垂直于电场方向上不受电场力的作用,所以其速度vₓ 始终不变,位移 x 与时间 t 的关系为:x = v₀t2、平行于电场方向粒子在平行于电场方向上受到恒定的电场力作用,加速度 a =Eq/m(其中 E 为电场强度,q 为粒子电荷量,m 为粒子质量)。
位移 y 与时间 t 的关系为:y = 1/2 at²速度 vᵧ= at五、偏转角度粒子射出电场时的速度偏转角 tanθ = vᵧ/v₀,其中 vᵧ是粒子在平行于电场方向的末速度,v₀是初速度。
六、偏转位移偏转位移 y 与粒子的电荷量 q、质量 m、初速度 v₀、电场强度 E 以及极板长度 l 和极板间距 d 都有关系。
当粒子从平行板的中线射入时,偏转位移 y = qEl²/2mv₀²七、粒子动能的变化电场力对粒子做功,导致粒子的动能发生变化。
电场力做功 W =Eqy,根据动能定理,粒子动能的变化量等于电场力所做的功。
八、实际应用1、示波器示波器是利用带电粒子在匀强电场中的偏转来显示电信号的变化。
2、粒子加速器在粒子加速器中,通过控制电场的强度和方向,使带电粒子不断加速和偏转,达到更高的能量。
九、解题技巧1、画出粒子的运动轨迹草图,有助于直观地分析问题。
2、分别列出垂直于电场方向和平行于电场方向的运动方程。
3、注意两个方向运动的时间相同,这是联系两个方向运动的关键。
2025高考物理总复习带电粒子在电场中的偏转
考点一 带电粒子在匀强电场中的偏转
思考 不同的带电粒子(带同种电性)在加速电场的同一位置由静止开始 加速后再进入同一偏转电场,带电粒子的轨迹是重合的吗?
考点一 带电粒子在匀强电场中的偏转
答案 由 qU0=12mv02 y=12at2=12·qmUd1·vl02 tan θ=vv0y=mqdUv10l2 得 y=4UU10l2d,tan θ=2UU10ld, y、θ均与m、q无关。即偏移量和偏转角总是相同的,所以它们的轨迹是 重合的。
思路二
考点二 示波管的工作原理
例3 (2023·江苏省金陵中学阶段检测)示波器可用来观察电信号随时间变化的情 况,其核心部件是示波管。示波管由电子枪、偏转电极和荧光屏组成,管内抽成 真空,结构如图甲所示。图乙是从右向左看到的荧光屏的平面图。在偏转电极 XX′、YY′上都不加电压时,从电子枪发出的电子束沿直线运动,打在荧光屏 中心,在O点产生一个亮斑。若同时在两个偏转电极上分别加ux=Usin ωt和uy= Ucos ωt两个交流电信号,
考点一 带电粒子在匀强电场中的偏转
电子做类平抛运动,在OC方向做初速度为零的匀 加速直线运动,且加速度大小相等。沿电场方向 的位移为x,垂直于电场方向的位移为y,由几何 关系可得 xAC=32R,yAC= 23R,xAB=R,yAB= 3R,由 x=12at2 得 tAC∶tAB = xAC∶ xAB= 3∶ 2,又由 v0=yt得vvCB=yyAACB×ttAACB=2 23<1,所以电 子经过 C 点的初速度小于经过 B 点的初速度,故 C 正确,D 错误。
2meU,
返回
< 考点二 >
示波管的工作原理
考点二 示波管的工作原理
在示波管模型中,带电粒子经加速电场U1加速,再经偏转电场U2偏转后, 需要经历一段匀速直线运动才会打到荧光屏上并显示亮点P,如图所示。
《带电粒子在匀强电场中的偏转》 知识清单
《带电粒子在匀强电场中的偏转》知识清单一、匀强电场的概念匀强电场是指电场强度大小和方向处处相同的电场。
在这种电场中,带电粒子所受的电场力是恒定的,这为我们研究带电粒子的运动提供了较为简单的条件。
想象一下,一个空间内,电场强度的大小和方向就像被一个神奇的力量固定住了,无论带电粒子在哪个位置,它所感受到的电场的作用都是一样的。
二、带电粒子在匀强电场中的受力分析当带电粒子进入匀强电场时,它会受到电场力的作用。
电场力的大小可以通过公式 F = qE 来计算,其中 q 是带电粒子的电荷量,E 是电场强度。
如果带电粒子带正电,那么电场力的方向与电场强度的方向相同;如果带电粒子带负电,电场力的方向则与电场强度的方向相反。
比如说,一个带正电的粒子进入电场,就好像有一股力量在推着它沿着电场强度的方向前进;而一个带负电的粒子进入电场,就像是有一股力量在拉着它朝着电场强度相反的方向移动。
三、带电粒子在匀强电场中的运动类型带电粒子在匀强电场中的运动可以分为两种情况:直线运动和偏转运动。
1、直线运动当带电粒子的初速度方向与电场强度方向平行时,粒子将做直线运动。
这种情况下,粒子所受的电场力不会改变其速度的方向,只会改变速度的大小。
举个例子,就像一个运动员沿着笔直的跑道跑步,只有速度的快慢在变化,方向始终不变。
2、偏转运动当带电粒子的初速度方向与电场强度方向垂直时,粒子将做偏转运动。
这是我们重点要研究的情况。
好比一个球被横着抛出去,然后受到一个垂直方向的力,它的运动轨迹就会发生偏转。
四、带电粒子在匀强电场中的偏转规律1、运动的分解对于带电粒子的偏转运动,我们可以将其分解为水平方向的匀速直线运动和竖直方向的匀加速直线运动。
水平方向上,由于不受力,粒子以初速度 v₀做匀速直线运动,位移 x = v₀t。
竖直方向上,粒子受到恒定的电场力,加速度 a = qE/m,做匀加速直线运动,位移 y = 1/2 at²。
2、偏转角度粒子离开电场时的偏转角度可以通过正切值tanθ = vy / v₀来计算,其中 vy 是竖直方向的末速度。
物理带电粒子在电场中的偏转运动
物理带电粒子在电场中的偏转运动1.偏转问题:(1)条件分析:带电粒子垂直于电场线方向进入匀强电场。
(2)运动形式:类平抛运动。
(3)处理方法:应用运动的合成与分解。
(4)运动规律:2.带电粒子在电场中偏转的两类问题:最终侧移的距离和偏转后的动能或速度。
典例如图所示,水平放置的平行板电容器与某一电源相连,它的极板长L=0.4 m,两板间距离d=4×10-3 m,有一束由相同带电微粒组成的粒子流,以相同的速度v0从两板中央平行极板射入,开关S闭合前,两板不带电,由于重力作用微粒能落到下极板的正中央,已知微粒质量为m=4×10-5 kg,电荷量q=+1×10-8 C,g=10 m/s2。
求:(1)微粒入射速度v0为多少?(2)为使微粒能从平行板电容器的右边射出电场,电容器的上极板应与电源的正极还是负极相连?所加的电压U应取什么范围?【巩固练习】1.(多选)如图所示,带电荷量之比为qA∶qB=1∶3的带电粒子A、B以相等的速度v0从同一点出发,沿着跟电场强度垂直的方向射入平行板电容器中,分别打在C、D点,若OC=CD,忽略粒子重力的影响,则( )A.A和B在电场中运动的时间之比为1∶2B.A和B运动的加速度大小之比为4∶1C.A和B的质量之比为1∶12D.A和B的位移大小之比为1∶12.如图所示,两个平行带电金属板M、N相距为d,M板上距左端为d处有一个小孔A,有甲、乙两个相同的带电粒子,甲粒子从两板左端连线中点O处以初速度v1平行于两板射入,乙粒子从A孔以初速度v2垂直于M板射入,二者在电场中的运动时间相同,并且都打到N板的中点B处,则初速度v1与v2的关系正确的是( )3.(多选)如图所示的直角坐标系中,第一象限内分布着均匀辐向的电场,坐标原点与四分之一圆弧的荧光屏间电压为U;第三象限内分布着竖直向下的匀强电场,场强大小为E。
大量电荷量为-q(q>0)、质量为m的粒子,某时刻起从第三象限不同位置连续以相同的初速度v0沿x轴正方向射入匀强电场。
带电粒子在电场中的偏转及在电场中的运动综合应用
带电粒子在电场中的偏转及在电场中的运动综合应用知识要点一、带电粒子在电场中的偏转以初速v0垂直场强方向射入匀强电场中的带电粒子,受恒定电场力作用,做类似平抛的匀变速运动,如图所示。
变速运动,如图所示。
有关参量如下:有关参量如下:1、运动时间:在初速度v0方向上是匀速运动,射出板间时其位移为l,故l=v0t,所以。
2、加速度:忽略重力影响,物体所受电场力即合力,所以。
3、偏转位移:带电粒子在沿电场方向做初速度为零的匀加速直线运动,。
4、出射速度射出板间时速度大小。
5、速度偏角:。
偏转的距离(2)电场力做功与带电粒子的具体路径无关,仅由始末位置的电势差决定.当带电粒子同时受到除电场力以外的其他力作用时,受到除电场力以外的其他力作用时,电场力的功对应着电势能的变化,电场力的功对应着电势能的变化,合力的功对应着动能的变化.化.2、注意分清微观粒子和普通带电微粒研究微观粒子(如电子、质子、α粒子等)在电场中的运动,通常不必考虑其重力及运动中重力势能的变化;研究普通的带电微粒(如油滴、尘埃等)在电场中的运动,必须考虑其重力及运动中重力势能的变化.中重力势能的变化.3、研究带电粒子在电场中运动的两条主要线索 带电粒子在电场中的运动,带电粒子在电场中的运动,是一个综合电场力、是一个综合电场力、是一个综合电场力、电势能的力学问题,电势能的力学问题,电势能的力学问题,研究的方法与质点动力研究的方法与质点动力学相同,它同样遵循运动的合成与分解、力的独立作用原理、牛顿运动定律、动量定理、动能定理、功能原理等力学规律.研究时,主要可以按以下两条线索展开.(1)力和运动的关系——牛顿第二定律根据带电粒粒子受到的电场力,用牛顿第二定律找出加速度,结合运动学公式确定带电粒子的速度、位移等.这条线索通常适用于恒力作用下做匀变速运动的情况.(2)功和能的关系——动能定理根据电场力对带电粒子所做的功,根据电场力对带电粒子所做的功,引起带电粒子的能量发生变化,引起带电粒子的能量发生变化,利用动能定理或从全过程中能量的转化,研究带电粒子的速度变化,经历的位移等.这条线索同样也适用于不均匀的电场.4、研究带电粒子在电场中运动的两类重要的思维技巧 (1)类比与等效电场力和重力都是恒力,电场力和重力都是恒力,在电场力作用下的运动可与重力作用下的运动类比.在电场力作用下的运动可与重力作用下的运动类比.在电场力作用下的运动可与重力作用下的运动类比.例如,例如,垂直射入平行板电场中的带电粒子的运动可类比于平抛,带电单摆在竖直方向匀强电场中的运动可等效于重力场强度g 值的变化等.值的变化等.(2)整体法(全过程法)电荷间的相互作用是成对出现的,电荷间的相互作用是成对出现的,把电荷系统的整体作为研究对象,把电荷系统的整体作为研究对象,把电荷系统的整体作为研究对象,就可以不必考虑其间的就可以不必考虑其间的相互作用.相互作用.电场力的功与重力的功一样,电场力的功与重力的功一样,都只与始末位置有关,都只与始末位置有关,都只与始末位置有关,与路径无关.与路径无关.与路径无关.它们分别引起电荷电势能它们分别引起电荷电势能的变化和重力势能的变化,从电荷运功的全过程中功能关系出发(尤其从静止出发末速度为零的问题)往往能迅速找到解题入口或简化计算.典型例题[例1] 如图所示,如图所示,两个电子两个电子a 和b 先后以大小不同的速度,先后以大小不同的速度,从同一位置沿垂直于电场的方向从同一位置沿垂直于电场的方向射入匀强电场中,其运动轨迹如图所示,那么[ ] A .b 电子在电场中运动的时间比a 长 B .b 电子初速度比a 大C .b 电子离开电场时速度比a 大D .两电子离开电场时的速度大小关系不确定两板间场强加上交流电压时,A、B两板间场强电子飞离金属板时的偏距电子飞离金属板时的竖直速度电子从飞离金属板到达圆筒时的偏距所以在纸筒上的落点对入射方向的偏距(见图)为可见,在记录纸上的点以振幅0.20m,周期作简谐运动,因为圆筒每秒转2内,纸上的图形如图所示。
带电粒子在电场中偏转运动全面版
带电粒子在电场中的偏转示波器物理组李亚东教材剖析:带电粒子在电场中的运动包含了加快和偏转两种种类,内容比较多,所以将加快和偏转分红两课时睁开教课。
本节课要点商讨带电粒子在电场中的偏转规律,在此根基上来知道和认识示波器中示波管的工作原理,并对荧光屏上的图像做了简单的商讨,不单是对带电粒子在电场中的偏转规律的应用,并且能够激发学生认识电子仪器的兴趣。
教课目的知识与技术:1、认识带电粒子在电场中的运动规律,能解决带电粒子在电场中偏转速度、偏转角和偏转位移的计算。
2、知道示波管的结构和根来源理过程与方法:1、经过带电粒子在电场中的加快和偏转的相关计算,培育学生剖析和推理的能力2、领会运动的合成的分解的方法在电场计算中的应用感情、态度和价值观领会带电粒子偏转规律在示波管中的应用,培育学生热爱科学的精神。
教课要点带电粒子在电场中偏转规律教课难点:运用电学和力学的综合知识和方法办理带电粒子在电场中的偏转计算示波管的荧光屏上的图形问题教课方法互动研究法、教授法、概括法教课过程〔一〕、复习引入新课创建情境一:如图,热电子逸出,加快电压为U0,电子参数:质量m、电量 e提出问题:电子从金属板的小孔飞出时速度v0多大?学生回复并板书:动能定理eU01m v0202〔二〕、新课教课 创建情境二:上下搁置一对水平平行金属板,板长 l ,板间距 d ,上板接电源正极,下板接电源负极,电源电压为 U 。
电子以速度 v 0 从两板中间沿平行于板面得方向射入电场中。
任务 1、画出电子在两板之间运动的轨迹。
学生板书〔如图〕教师评论:两种形态的曲线,飞出板间、打在板上。
任务 2、轨迹的性质学生议论、剖析和概括:恒力作用,近似平抛,抛物线——匀变速曲线运动。
任务 3、飞出电场时的速度大小学生活动并板书:方法:运动的合成和分解、牛顿定律、匀变速直线运动的公式FqUa tldv 0qU lqUl 2v yat v tv 02md v 0mdv 0任务 4、速度方向的改变角— 偏转角 φ学生活动并板书: tan v y qUl2v 0 mdv 0任务 5、电子射出电场时,在垂直于板面方向偏移的距离y学生活动并板书:y 1 1 at 2 1 qU l 22 2 md v 0 2教师评论: y 大小与 U 、 v 0 相关,假定U 过大或 v 0 过小,那么 y 过大,会出现电子打在屏上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
此课件下载可自行编辑修改,仅供参考! 感谢您的支持,我们努力做得更好!谢谢
qU2L 2mdV02
UL2 4dU0
y与 q、m及初速V0无关 ,随加速电压的增大而 减小,随偏转电压的增
大而增大。
3、离开电场速度大小:
(1)用速度合成方法:
E U d
①
a qE m
②
02 2
at ③
(2)用动能定理求解:
02
2qEy m
qE 1 2 ym 21 2m 0 21 2m 2
的速度v0从两板中央平行极板射入,开关S闭合前,
两板不带电,由于重力作用微粒能落到下板的正中
央,已知微粒质量为m=
kg,电量q=
C,
取g=10m/s2。求:
(1)微粒入射速度v0为多少?
(2)为使微粒能从平行板电容器的右边射出电场,
电容器的上板应与电源的正极还是负极相连?所加
的电压U应取什么范围?
【例4】如图所示,在两条平行的虚线内存在着宽度 为L、场强为E的匀强电场,在与右侧虚线相距也 为L处有一与电场平行的屏。现有一电荷量为+q、 质量为m的带电粒子(重力不计),以垂直于电场线 方向的初速度v0射入电场中,v0方向的延长线与屏 的交点为O。试求: (1)粒子从射入到打到屏上所用的时间; (2)粒子打到屏上的点P到O点的距离;
切值。
++++++
拓展:让质子和α粒子的混合物经过 同一加速电场由静止开始加速,然后 垂直进入同一偏转电场,在通过偏转 电场时,它们是否会分为两股?请说 明理由。
v0
d
------
U1
L
【例3】如图所示,水平放置的平行板电容器,与某一
电源相连.它的极板长L=0.4m,两板间距离d=
m,有一束由相同带电微粒组成的粒子流,以相同
多大电压?加最大电压时,电子飞离电场 的速度多大?
【例2】离子发生器发射出一束质量为m,电荷量为q的
负离子,从静止 经加速电压U 1 加速后,并沿垂直于 电场线方向从中央射入电压U2偏转电场,而且能飞离
偏转电场,已知平行板长为L,两板间距离为d,求:
(1)离子在偏转电场中运动 的时间、加速度
(2)离子在离开偏转电场时的偏转位移和偏转角的正
y
m
2
2 qE
4、偏转角θ的计算
E U d
①
a qE ② m
at ③
v
v0
y L tan
2
若经电压U0加速后射入偏转电场,则
与带电粒子的质量m、电荷量q及 射入偏转电场的初速无关
小结: 加速电压U1
-
d
L0
qU1
1 2
m02
①
L0
2
t加速
②
沿初速 方向:
沿电场 方向:
0
2qU1 m
①
E U d
②
沿电场 方向:
a qE
③
m
y 1 at 2 ④ 2
t L
0
a qU md
y
qUL
2
mdv
2 0
2
对偏移公式的讨论
1at2 2
qUL2 2md0v2
对于不同的带电粒子
(1)若以相同的速度射入 则y∝q/m
(2)若以相同的动能射入, 则y∝q
(3)若经相同电压U0加速后射入,则
y
《带电粒子在电场中的偏转》
带电粒子在匀强电场中 受力情况:受到恒定的电场力 运动情况:做匀变速运动
带电粒子在电场中的偏转
d
v0
y U (偏转电压 )
l
1、分析方法:
(1)粒子在沿速度方向上做匀速直线运动
(2)粒子在沿电场方向上做初速度为零的匀加速运 动
2、偏转位移 y的计算
L t 沿初速方向: 0
y 偏转电压U2 v0
l1
L2
L 0t
E U2 d
①
t L
②
0
a qE m
y 1 at 2 2
at
③
④ a qU
md
⑤
qE yEk1 2m 21 2m 0 2
L2 0t2 ① y2 t2 ②
y总(L21 L2)tan
【例1】一束电子流在经U =5000V的加速电压 加速后,在距两极板等距处垂直进入平行 板间的匀强电场,如图所示.若两板间距d =1.0 cm,板长l =5.0 cm,那么,要使电子 能 从平行板间飞出,两个极板上最多能加