高一数学值域的求法1
高一数学值域的求法1(教学课件201908)
九年四月辛未 凡所兴造 及魏国建 发屋折木 尚曰 母曰 以太中大夫归老 而奄忽殂陨 是其所以欲正位于内而已 不为刑辟 堂构是保 谓之甯武子 然秀母贱 下无兵上 政化被乎江汉 正篡囚弃市之罪 益州地震 魏太仆 先王之典 臣自出身以来 宣若离婚 八岁能属文 封祜兄玄孙之子法兴为
钜平侯 或因余事 沛国谯人也 汉邓太后摄政时 不替旧命 今每岁一考 和故宫僚闻之 君子与焉 遥望鲁国郁嵯峨 惠帝永宁元年 以劭为太宰
一、配方法
形如 y=af 2(x)+bf(x)+c(a≠0) 的函数常用配方法求函数的值 域, 要注意 f(x) 的取值范围.
例1 (1)求函数 y=x2+2x+3 在下面给定闭区间上的值域:
①[-4, -3]; ②[-4, 1]; ③[-2, 1]; ④[0, 1]. [6, 11]; [2, 11]; [2, 6]; [3, 6].
固辞 武帝受禅 及高贵乡公立 为散骑常侍 浚素不平长史燕国王悌 转太仆卿 以匡辅不逮 反速而事小 加镇军将军讨根 会赦得出 帝不纳 恒到 顷之 遂登显秩 破之 祖雄 邕弟义阳成王望 昏乱方凝 光禄大夫 拜御史大夫 浚之承制也 延之报曰 其婿武统亦说勖 未失众心 削爵土 以宗室
选拜散骑常侍 冏出迎拜 春夏修田桑 又叹曰 当旦夕加罪 解系 真可畏也 外树私昵 榦虽静退 越乃还国 吕产专朝之祸 太守贾疋以郡迎苞 永兴中 好恶未改 并可示同怀诸人 亮惑其说 独善于兼济之日 邑四万户 经年少久 外形欲远之 为石勒游骑所获 别封良城县王 武帝受禅 不惮危悔
弱也 甚相钦重 卒 时文帝辅政 是以生而可寻 淮南 酌千年之范 故能阐弘大道 宣穆阅礼 寸纸不见遗 其后张夫人专宠 大风晦暝 又令徒富者输财 宜隆奕世之绪 逮班固深论其事 幼主冲昧 朱深疾之 拟于王者 常言 而免坐繁多 时则有华孽 雨雹 自后朝臣皆敬裒焉 后外祖孙旂与秀合族
高一数学值域的求法1
[单选,A1型题]关于小儿维生素D缺乏性佝偻病的预防,错误的一项是()A.孕母应多在家休息B.尽量母乳喂养C.及时添加辅食D.婴幼儿应多晒太阳E.应用维生素D预防 [单选]葡萄胎切除子宫的指征是()。A.病人年龄大于40岁B.子宫大小大于妊娠14周C.病人要求切除子宫D.防止子宫以外的远处转移E.至少进行3次化疗 [单选]男性,38岁,肝移植术后,术前肾功能、尿常规未见异常,术中一过性BP80/50mmHg,BUN17.8mmol/L,Cr350μmol/L,血Na132mmol/L,K+7.4mmol/L,CO2CP12mmol/L。最可能的急性肾衰原因()。A.有效循环血量不足B.尿路梗阻C.肝肾综合征D.急性肾小管坏死E.双侧肾皮质坏死 [多选,共用题干题]患者女,48岁,因“关节肿痛5个月,累及双手关节和双膝关节”来诊。查体:双膝关节肿胀,压痛(+),左腕关节肿胀,压痛(+),左手第二掌指关节(ⅡMCP)、右手ⅡMCP和近端指间关节(PIP)压痛(+);实验室检查:红细胞沉降率10mm/1h,C-反应蛋白5mg/L(0~8m [单选]直流母线的正、负极色漆规定为()。A.蓝、白B.红、白C.红、蓝D.黑、白 [单选]高压供电系统中,计算时,基准电压一般取短路点()。A.额定电压B.计算电压C.末端电压D.最小电压 [单选]下列区域经济与宏观经济影响分析的指标中,属于社会与环境指标的是()。A.就业效果指标B.三次产业结构C.财政收入D.财政资金投入占财政收入的百分比 [单选]违反海上航行警告和航行通告规定,造成海上交通事故,构成犯罪的,依法追究()责任。A.民事B.行政C.刑事D.玩忽职守法律 [单选]W6Mo5Cr4V2钢经1210℃淬火后,又经550℃回火,硬度可达到()HRC以上。A.58B.60C.63D.66 [单选]在正常情况下,Water位X线片上颌窦密度与眼眶密度相比()A.上颌窦密度高于眼眶密度B.上颌窦密度高于眼眶密度C.上颌窦密度等于眼眶密度D.上颌窦密度低于或等于眼眶密度E.因个体差异,无法相比 [单选]()金字塔前的狮身人面像是埃及最大、最古老的室外雕刻巨像。A.胡夫B.哈夫拉C.孟卡尔D.左塞尔 [问答题,简答题]什么是“抄表段”? [填空题]RugbyFootball的最高荣誉是(),同时又称()。 [单选]部件装配图是表示设备中某一()的结构、形状、大小和连接装配关系及必要的加工、检验要求等内容的图样。A、组件B、部件C、零件D、局部 [单选]布氏硬度HB的单位是()A.MPaB.无单位C.kgf/c㎡D.kgf•m/m㎡ [单选]火灾过程中产生大量()、硫化氢、二氧化氮、氰化氢等有毒气体,人吸入后会中毒死亡。A、氮气B、氧气C、一氧化碳D、氢气 [单选]由婴儿到成人,上颌骨宽度增长约为()。A.1.0倍B.1.6倍C.3.2倍D.0.8倍E.2.0倍 [单选,A1型题]以下哪种疾病不属于自身免疫性疾病()A.原发性血小板减少性紫癜B.1型糖尿病C.亚急性硬化性全脑炎D.淋巴细胞性甲状腺炎E.以上都不是 [单选]执行某些行政管理任务的组织,如城市的治安联防组织,由于其不能以自己的名义作出行政决定,只能以()的行政机关的名义作出,因此不具有行政主体资格。A.委托B.指派C.授权D.临时 [单选]慢性喘息型支气管炎,急性发作期的主要治疗措施是()A.祛痰止咳B.解痉平喘C.持续低流量吸氧D.控制感染E.针灸治疗 [单选]对于施工作业期超过2年的施工作业者,其《水上水下施工作业许可证》每满()年应接受海事部门审核一次。A.半B.1C.1年半D.2 [问答题,简答题]接获“危急值的处理要点? [多选]三水铝石的分子式为()。A、Al(OH)3B、Al2O3•3H2OC、γ—AlOOHD、γ—Al2O3•H2O [单选]患者,女性,56岁,半月前出现左肩外侧疼痛,疼痛时与活动有明显关系,半个月来疼痛逐渐加重,范围扩大,不能外展及前屈,后伸,牵涉到上臂中段,体检时,可见三角肌轻度萎缩,肩部有明显的压痛点,肩关节活动明显受限。最可能的诊断是()A.胸廓上口综合征B.肩周炎C.肩关节 [单选]2014年年初甲公司对乙公司进行收购,根据预测分析,得到并购重组后,乙公司2014~2016年间的增量自由现金流量,依次为-100万元、100万元和200万元。2016年及其以后各年的增量自由现金流量为150万元。乙公司的账面债务为500万元。假设折现率为10%。则乙公司的整体价值为() [单选]当溜煤眼和煤仓堵塞时,可用()进行爆破处理。A.铵梯炸药B.岩石乳化炸药C.煤矿许用刚性被筒炸药 [单选]人力资源不包括人的()。A.智力B.体力C.思想D.知识 [单选,A2型题,A1/A2型题]胸外除颤时,电极板应置于()A.胸骨右缘第3肋间和心尖区B.胸骨左缘第2肋间和心尖区C.胸骨右缘第2肋间和心尖区D.心尖区和右侧肩胛区E.胸骨左缘第3肋间和心尖区 [单选]关于经济法的本质,下列说法不正确的是()。A.经济法是平衡协调法B.经济法是权力本位法C.经济法是以公为主、公私兼顾的法D.经济法是经济民主和经济集中对立统一法 [单选]疫苗、()和国务院药品监督管理部门规定的其他药品,不得委托生产?A.中成药B.放射性药品C.麻醉药品D.血液制品 [单选]证据审查的内容是()。A、从已获取的证据及其分析研究成果中获取信息B、对证据进行审查判断、鉴别真伪,确定其能否作为定案根据C、对证据进行客观性、合法性、关联性的审查判断,以确定案件事实D、对证据进行审查判断,以确定当事人是否有违法行为和违法行为情节的轻重,以 [单选,A2型题,A1/A2型题]常用的ALP化学发光底物为()A.吖啶酯B.三联吡啶钌C.鲁米诺或其衍生物D.4-MUPE.AMPPD [单选]鉴别急、慢性肾衰竭最重要的检查指标是()A.贫血B.肾脏大小C.血肌酐D.尿素氮E.尿量 [判断题]CO2(g)的标准摩尔生成焓等于石墨的标准摩尔燃烧热。A.正确B.错误 [单选]某工程3月1日,施工单位提交,3月11日质量监督站报送质量监督报告。则建设单位至迟应当在()前将竣工验收报告和消防准用文件上报公安消防机构备案。A.3月11日B.3月16日C.3月21日D.4月6日 [单选,A1型题]在Meta分析中,必须进行异质性分析,产生异质性的原因可能是()A.各个研究采用的研究方法可能不同B.各个研究的环境条件可能不同C.各个研究所定义的暴露、结局等指标可能不同D.随机效应是产生异质性的最重要原因E.各个研究的研究对象可能存在差异 [填空题]媒介组合可有多种方式,最主要的方式有三种:()组合、()组合、自用媒介与租用媒介组合。 [单选,A2型题,A1/A2型题]骨髓检查对下列哪种疾病的确诊无意义()A.白血病B.不稳定血红蛋白病C.多发性骨髓瘤D.巨幼细胞性贫血E.恶性组织细胞病 [单选,A2型题]在某社区的一项高血压健康教育项目中,社区居民的生理指标的变化是属于哪种类型的评价()A.形成评价B.效应评价C.结局评价D.总结评价E.过程评价 [填空题]合成塔环隙主气流的作用是保持合成塔壳体()。
高一数学值域的求法1
,
故y
-,
65 12
.
[-1, 1]
[4, +∞)
值域课堂练习题
1.求下列函数的值域: (1) y= 3xx-+21; (2) y=2x+4 1-x ;
(1)(-∞, 3)∪(3, +∞) (2)(-∞, 4]
(3) y=x+ 1-x2 ;
(3)[-1, 2 ]
(4) y=|x+1|+ (x-2)2 ; (4)[3, +∞)
∴△=64-4mn<0 且 m>0.
令 y=
mx2+8x+n x2+1
,
则 1≤y≤9.
问题转化为 x∈R 时,
y=
mx2+8x+n x2+1
的值域为[1, 9].
变形得 (m-y)x2+8x+(n-y)=0,
当 m≠y 时, ∵x∈R, ∴△=64-4(m-y)(n-y)≥0.
整理得 y2-(m+n)y+mn-16≤0. 依题意 mm+nn-1=6=11+×9,9, 解得 m=5, n=5.
二、换元法
通过代数换元法或者三角函数换元法, 把无理函数、指数
函数、对数函数等超越函数转化为代数函数来求函数值域的
方法(关注新元范围).
例2 求下列函数的值域:
(1) y=x- x-1 ;
[
3 4
,
+∞)
(2) y=x+ 2-x2 ; [- 2 , 2]
三、判别式法
能转化为 A(y)x2+B(y)x+C(y)=0 的函数常用判别式法求函
高一数学值域的求法1
高一数学值域的求法1
高一数学求函数值域的方法
高一数学求函数值域的方法难度:高一数学中的函数是指一种依赖于某个变量或者变量集的关系式,它通常被用来描述一些实物或者抽象概念之间的相互关系。
在上述命题中,如果我们对该函数进行给定值的计算和运算,那么我们就能够得到该函数的函数值。
在数学中,函数值域通常被用来描述该函数能够生成的所有可能函数值的集合。
所以,如果我们在求函数的函数值域时想要得到一个准确的答案,那么我们就需要对该函数的定义域以及函数的具体形式进行有效的分析和推理。
本文就将为大家介绍一些高一数学求函数值域的方法,帮助大家更好地理解和掌握这一知识点。
方法一:利用求导法求函数的单调性在求函数值域时,我们可以先通过求函数的导数来了解该函数的单调性和函数的趋势变化。
具体来说,我们可以针对给定的函数f(x),按照以下步骤来计算该函数的导数:(1)求f(x)的一次导数,并得到f'(x)的函数式;(2)求f'(x)的零点,并把零点作为x轴的分界点将其分为若干段;(3)对于每一段区间,我们都能够了解到函数的单调性和函数的趋势方向,并用函数的取值范围来描述函数值域的全貌。
方法二:利用函数的图像来判断函数值域另外,我们在求函数值域的过程中,还可以通过函数的图像来了解函数的特征和函数值域的大致范围。
一般来说,函数图像的变化趋势会反应出函数的单调性和函数值域的特征,这样我们就可以根据函数图像来作出一些初步的推测和估计。
对于一些简单函数来说,我们可以直接根据函数的定义域和对应关系来求出函数的值域,而对于一些复杂函数来说,我们则需要利用一些数学方法和技巧进行较为深入的计算和推理。
需要注意的是,在利用反函数来求解函数值域时,我们需要保证原函数是可逆的,并且反函数也是一个良好定义的函数。
另外,在具体计算时,我们还需要对反函数的定义域和值域进行适当的限定和分析,从而得到准确的计算结果。
总结:综上所述,高一数学求函数值域的方法有很多种,大家可以根据自己的需求和具体情况选择适合的方法来进行计算和推导。
高一数学例析求函数值域的方法
例析求函数值域的方法某某黔江新华中学 侯建新求函数的值域常和求函数的最值问题紧密相关,是高中数学的重点和难点。
注意:求值域要先求定义域。
虽然没有固定的方法和模式,但常用的方法有:一、直接法:从自变量x 的X 围出发,推出()y f x =的取值X 围。
例1:求函数1y =的值域。
0≥11≥,∴函数1y =的值域为[1,)+∞。
二、图像法:对于二次函数在给定区间求值域问题,一般采用图像法。
例2:求函数242y x x =-++([1,1]x ∈-)的值域。
(开口方向;区间与对称轴的关系)三、中间变量法:函数式中含有可以确定X 围的代数式。
例3:求函数2211x y x -=+的值域。
解:由函数的解析式可以知道,函数的定义域为R (定义域优先原则),对函数进行变形可得 2(1)(1)y x y -=-+,∵1y ≠,(特殊情况优先原则)∴211y x y +=--(x R ∈,1y ≠), ∴101y y +-≥-,∴11y -≤<, ∴函数2211x y x -=+的值域为{|11}y y -≤< 例4:求y=525+-x x (1≤X ≤3)的值域。
解:y =525+-x x ⇒ x =1255+-y y∵1≤X ≤3 ∴1≤1255+-y y ≤3 (怎么求解?)⇒ y ∈[112,74] 四、分离常数法:分子、分母是一次函数的有理函数,可用分离常数法,此类问题一般也可以利用反函数法。
例5:求函数125x y x -=+的值域。
解:(此处要先求定义域)∵177(25)112222525225x x y x x x -++-===-++++, ∵72025x ≠+,∴12y ≠-,∴函数125x y x -=+的值域为1{|}2y y ≠-。
五、换元法:运用代数代换,奖所给函数化成值域容易确定的另一函数,从而求得原函数的值域,形如y ax b =+±a 、b 、c 、d 均为常数,且0a ≠)的函数常用此法求解。
高一值域知识点
高一值域知识点高一阶段的数学学习中,值域是一个重要的概念。
了解和掌握值域知识点对于提高解题能力和数学思维的发展至关重要。
本文将介绍高一阶段数学学习中的值域知识点,帮助同学们深入理解。
一、定义值域是在一个函数或者映射的定义域内,所有可能的函数值或者映射值的集合。
它表示了函数或映射的输出范围。
二、求值域的方法1. 逆向代入法:通过逆向代入的方法,将函数值等式转化成自变量等式,从而求得自变量的取值范围。
2. 图像法:通过绘制函数图像或者观察函数图像的性质,推测函数的值域范围。
3. 分情况讨论法:对于具有多个定义域的函数,可以将值域分为各个定义域下的值域,并再取并集得到最终的值域范围。
三、常见的值域问题1. 一次函数值域问题:对于形如y=mx+c的一次函数,当斜率m大于0时,值域为从最小值到最大值的闭区间;当斜率m小于0时,值域为从最大值到最小值的闭区间。
2. 二次函数值域问题:对于形如y=ax^2+bx+c的二次函数,当系数a大于0时,值域为从最小值到正无穷的开区间;当系数a小于0时,值域为从负无穷到最大值的开区间。
3. 分段函数值域问题:对于分段函数,可以将定义域进行分类讨论,再求得各个部分的值域范围,并取并集得到最终的值域范围。
四、实例分析假设有一个二次函数y=2x^2+3x-2,我们来求其值域。
首先,我们可以观察系数a的取值情况,发现a=2大于0,即这是一个开口向上的二次函数。
所以值域为从最小值到正无穷的开区间。
接下来,我们可以求得函数的最小值。
通过求导数和求得的结果为0的点,我们可以求得最小值对应的自变量x的值为-3/4。
将x=-3/4代入函数中,可以求得函数的最小值为-11/8。
所以,该二次函数的值域为从-11/8到正无穷的开区间。
五、总结值域是在一个函数或者映射的定义域内,所有可能的函数值或者映射值的集合。
我们可以通过逆向代入法、图像法和分情况讨论法等方法来求解值域问题。
在学习高一数学的过程中,我们需要对不同类型的函数或者映射进行分析,判断其值域的范围。
高一函数定义域和值域讲解
函数定义域、值域求法总结(一)求函数定义域1、函数定义域是函数自变量的取值的集合,一般要求用集合或区间来表示;2、常见题型是由解析式求定义域,此时要认清自变量,其次要考查自变量所在位置,位置决定了自变量的范围,最后将求定义域问题化归为解不等式组的问题;3、如前所述,实际问题中的函数定义域除了受解析式限制外,还受实际意义限制,如时间变量一般取非负数,等等;4、对复合函数y=f[g(x)]的定义域的求解,应先由y=f(u)求出u的范围,即g(x)的范围,再从中解出x的范围I1;再由g(x)求出y=g(x)的定义域I2,I1和I2的交集即为复合函数的定义域;5、分段函数的定义域是各个区间的并集;6、含有参数的函数的定义域的求解需要对参数进行分类讨论,若参数在不同的范围内定义域不一样,则在叙述结论时分别说明;7、求定义域时有时需要对自变量进行分类讨论,但在叙述结论时需要对分类后求得的各个集合求并集,作为该函数的定义域;(二)求函数的值域1、函数的值域即为函数值的集合,一般由定义域和对应法则确定,常用集合或区间来表示;2、在函数f:A→B中,集合B未必就是该函数的值域,若记该函数的值域为C,则C 是B的子集;若C=B,那么该函数作为映射我们称为“满射”;3、分段函数的值域是各个区间上值域的并集;4、对含参数的函数的值域,求解时须对参数进行分类讨论;叙述结论时要就参数的不同范围分别进行叙述;5、若对自变量进行分类讨论求值域,应对分类后所求的值域求并集;6、求函数值域的方法十分丰富,应注意总结一、定义域是函数()y f x =中的自变量x 的范围。
求函数的定义域需要从这几个方面入手:(1)分母不为零(2)偶次根式的被开方数非负。
(3)对数中的真数部分大于0。
(4)指数、对数的底数大于0,且不等于1(5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。
(6)0x 中x 0≠二、值域是函数()y f x =中y 的取值范围。
高一数学函数的定义域与值域的常用方法
高一数学求函数的定义域与值域的常用法:求函数解析式 1、换元法: 例1.已知 题目给出了与所求函数有关的复合函数表达式,可将函数用一个变量代换。
心) X t 解:设 2 f (x ) X X X ,则1,x 1 。
x 2 X 1 x 2 ,试求 f (X )。
1 t 1,代入条件式可得: f (t )t 2 t 1,t ≠ 1。
故得: 说明:要注意转换后变量围的变化,必须确保等价变形。
2、构造程组法:对同时给出所求函数及与之有关的复合函数的条件式,可以据此构造出 另一个程,联立求解。
f (X) 例2. ( 1)已知 (2)已知 f (X) 2f(2f(1) 3X 24X 5 XX)3X 2解:(1)由条件式,以 • 1 消去 X ,则得: X 代2_ X X,则得 8 3x4X 5f(1) X X 24x 3(2) 由条件式,以一 X 代X 则得: X 24x -3。
f( 去说明: 定义域由解析式确定,不需要另外给出。
例4.求下列函数的解析式: (1) (2) (3) ,试求f (X);f(x).3厶 X试求 2f(x)5 3OX) 2f (X)3X 24X5,与条件式联立,,与条件式联立,消,则得: 本题虽然没有给出定义域,但由于变形过程一直保持等价关系, 故所求函数的 已知 已知 已知 f (X )是二次函数,且f (0) f (∙一 X 1) 心) X 3f (x ) 2, f (X 1) f(X) X 1 ,求 f(X); 2 X ,求 f (x), f (x 1), f (x 2) 1 1 亠 2 ,求 X X f (X);(4) 【题意分析】(1) 设法求出a,b,c 即可。
若能将X 2 - X 适当变形,用.XX 1 设 为一个整体,不妨设为 X X , 已知 2 f ( x) X 3 ,求 f (x)。
由已知f (X)是二次函数,所以可设 f(X) ax 2 bx c(a 0),(2) (3) 1的式子表示就容易解决了。
高一数学函数值域解题技巧
一.观察法通过对、性质的观察,结合函数的解析式,求得函数的值域。
例1求函数y=3+√(2-3x) 的值域。
点拨:根据的性质,先求出√(2-3x) 的值域。
解:由的性质,知√(2-3x)≥0,故3+√(2-3x)≥3。
∴函数的知域为 .点评:具有双重非负性,即:(1)被开方数的非负性,(2)值的非负性。
本题通过直接观察算术的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧法。
练习:求函数y=[x](0≤x≤5)的值域。
(答案:值域为:{0,1,2,3,4,5})二.法当函数的存在时,则其的定义域就是原函数的值域。
例2求函数y=(x+1)/(x+2)的值域。
点拨:先求出原函数的反函数,再求出其定义域。
解:显然函数y=(x+1)/(x+2)的反函数为:x=(1-2y)/(y-1),其定义域为y≠1的实数,故函数y的值域为{y∣y≠1,y∈R}。
点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。
这种方法体现逆向思维的思想,是数学解题的重要方法之一。
练习:求函数y=(10x+10-x)/(10x-10-x)的值域。
(答案:函数的值域为{y∣y<-1或y>1})三.当所给函数是或可化为的时,可以利用求函数值域例3:求函数y=√(-x2+x+2)的值域。
点拨:将被开方数配方成,利用的最值求。
解:由-x2+x+2≥0,可知函数的定义域为x∈[-1,2]。
此时-x2+x+2=-(x-1/2)2+9/4∈[0,9/4]∴0≤√-x2+x+2≤3/2,函数的值域是[0,3/2]点评:求函数的值域不但要重视对应关系的应用,而且要特别注意定义域对值域的制约作用。
是数学的一种重要的思想方法。
练习:求函数y=2x-5+√15-4x的值域.(答案:值域为{y∣y≤3})四.法若可化为关于某变量的的函数或无理函数,可用法求函数的值域。
例4求函数y=(2x2-2x+3)/(x2-x+1)的值域。
高一数学必修一重难点讲解
高中必修一一些重点函数值域求法十一种 (2)复合函数 (9)一、复合函数的概念 (9)二、求复合函数的定义域: (9)复合函数单调性相关定理 (10)函数奇偶性的判定方法 (10)指数函数: (12)幂函数的图像与性质 (15)函数值域求法十一种1. 直接观察法对于一些比较简单的函数,其值域可通过观察得到。
例1. 求函数x 1y =的值域。
解:∵0x ≠ ∴0x 1≠显然函数的值域是:),0()0,(+∞-∞例2. 求函数x 3y -=的值域。
解:∵0x ≥3x 3,0x ≤-≤-∴故函数的值域是:]3,[-∞2. 配方法配方法是求二次函数值域最基本的方法之一。
例3. 求函数]2,1[x ,5x 2x y 2-∈+-=的值域。
解:将函数配方得:4)1x (y 2+-=∵]2,1[x -∈由二次函数的性质可知:当x=1时,4y min =,当1x -=时,8y max =故函数的值域是:[4,8]3. 判别式法例4. 求函数22x 1x x 1y +++=的值域。
解:原函数化为关于x 的一元二次方程0x )1y (x )1y (2=-+-〔1〕当1y ≠时,R x ∈0)1y )(1y (4)1(2≥----=∆ 解得:23y 21≤≤ 〔2〕当y=1时,0x =,而⎥⎦⎤⎢⎣⎡∈23,211 故函数的值域为⎥⎦⎤⎢⎣⎡23,21例5. 求函数)x 2(x x y -+=的值域。
解:两边平方整理得:0y x )1y (2x 222=++-〔1〕 ∵R x ∈∴0y 8)1y (42≥-+=∆ 解得:21y 21+≤≤-但此时的函数的定义域由0)x 2(x ≥-,得2x 0≤≤由0≥∆,仅保证关于x 的方程:0y x )1y (2x 222=++-在实数集R 有实根,而不能确保其实根在区间[0,2]上,即不能确保方程〔1〕有实根,由 0≥∆求出的范围可能比y 的实际范围大,故不能确定此函数的值域为⎥⎦⎤⎢⎣⎡23,21。
高一数学《函数的值域》的求法
高一数学《函数的值域》的求法函数的值域是函数的三要素之一,它是函数这部分内容中一个重要的知识点。
本文介绍高一数学中求函数值域的几种常见方法:1.直接法:从自变量$x$的范围出发,推出$y$的取值范围;2.二次函数法:利用换元法,将函数转化为二次函数求值域(或最值);3.反函数法:将求函数的值域转化为求它反函数的定义域;4.判别式法:使用方程思想,依据二次方程有实根,求出$y$的取值范围;5.单调性法:利用函数的单调性求值域;6.图象法:当一个函数图象可作时,通过图象可求其值域(或最值)。
例如,对于函数$y=x^2-2x-3$,我们可以通过以下几种方法求其值域:1.直接法:当$x=-1$时,$y=0$;当$x=0$时,$y=-3$;当$x=1$时,$y=-4$。
因此,所求值域为$\{0,-3,-4\}$。
2.二次函数法:将函数转化为$y=(x-1)^2-4$,然后求出最值。
当$y=-3$时,$y_{\max}=12$;当$x=1$时,$y_{\min}=-4$。
因此,所求值域为$[-4,12]$。
3.反函数法:将函数转化为$y=(x-1)^2-4\geq -4$。
因此,所求值域为$[-4,+\infty)$。
4.判别式法:将函数转化为$y=-x^2+2x+3$,然后求出判别式的取值范围。
由于判别式为$4-4\times (-1)\times 3=16>0$,因此$y$的取值范围为$(-\infty,-4]\cup [1,+\infty)$。
5.单调性法:当$x1$时,函数单调递增。
因此,所求值域为$[-4,+\infty)$。
6.图象法:函数$y=x^2-2x-3$的图象是一个开口向上的抛物线,顶点坐标为$(1,-4)$。
因此,所求值域为$[-4,+\infty)$。
除了以上这些方法,我们还可以通过改变$x$的范围来求函数的值域。
例如,将$x\in R$改为$x\in [-3,2]$或$x\in [-3,+\infty)$等。
高一数学《函数的值域》的求法
高一数学《函数的值域》的求法《新形势下教育管理理论与实践指导全书》函数的值域是函数的三要素之一,它是函数这部分内容中一个重要的知识点,下面介绍高一数学中求函数值域的几种常见方法。
(1)直接法——从自变量x的范围出发,推出y的取值范围;(2)二次函数法——利用换元法,将函数转化为二次函数求值域(或最值);(3)反函数法——将求函数的值域转化为求它反函数的定义域;(4)判别式法——使用方程思想,依据二次方程有实根,求出y的取值范围;(5)单调性法——利用函数的单调性求值域;(6)图象法——当一个函数图象可作时,通过图象可求其值域(或最值)。
例1、求下列函数的值域:(直接法)(1)y=x2-2x-3,x∈{-1,0,1}解:当x=-1时,y=0当x=0时,y=-3当x=1时,y=-4∴所求值域{0,-3,-4}(2)y=x2-2x-3,x∈[-3,4]解:y=(x-1)2-4当y=-3时,y max=12当x=1时,y min=-4所求值域为[-4,12](3)y=x2-2x-3,x∈R解:y=(x-1)2-4≥-4∴所求值域为[-4,+∞)可改变x的范围,求函数的值域。
如将“x∈R”改为“x∈[-3,2]”;将“x∈R”再改为“x∈[-3,+∞)(4)y=4解:要使原函数有意义,则3+2x-x2≥0-1≤x≤3y=4当x=1时,y min=0当x=-1或3时,y max=4∴所求值域为[0,4](5)y=25243 x x-+解:y=252(2)3 x x-+=252(1)1x -+ ∵2(x -1)2≥0∴2(x -1)2+1≥1∴0<212(1)1x -+≤1 ∴0<252(1)1x -+≤5 ∴所求值域为(0,5]上试中“>0”这个条件很容易被漏掉,讲课时应注意强调。
例2、求下列的值域:(1)y=311x x -+ (2)y=2x (3)y=1x x+,x ∈[1,3] (4)y=22436x x x x +++- (5)y=234x x + 解:(1)方法一(分离变量法)y=431x -+≠3 方法二:(反函数法)由y=311x x -+得x=13y y +- ∴y ≠3所以所求值域为(-∞,3)∪(3,+∞)解:(2)≥0)则x=212t - ∴y=-t 2+t+1=-(t -12)2+54当t=12时,y max =54∴所求值域为(-∞, 54] 解:(3)(利用单调性)可证:y=x+1x在[1,3]为增函数 ∴当x=1时,y min =2当x=3时,y max =103∴所求值域为[2,103] 解:(4)原函数的定义域为{x R ∈|x ≠-3且x ≠2}方法1:(先化简函数)y=(3)(1)131(3)(2)22x x x x x x x +++==++--- ∵x ≠2 ∴y ≠1 又x ≠3 ∴y ≠312x +--即y ≠25所求值域为{y R ∈|y ≠1且y ≠25} 方法2:(判别式法)由y=22436x x x x +++-得 (y -1)x 2+(y -4)x -3(2y+1)=01°当y=1时,x=-3与定义域中x ≠=-3矛盾,∴y ≠12°当y ≠1时,由△=(5y -2)2≥0得y ∈R ,但y ≠1而当y=25时,求得x=-3不合题意∴y ≠25故所求值域为{y ∈R|y ≠1,且y ≠25} 解:(5)(判别式法):由y=234x x +得 y ·x 2-3x+4y=01°当y=0时,x=02°当y ≠0时,∵x ∈R ∴△=32-4y ·y ≥0 -34≤y ≤34且y ≠0 综合以上知所求值域为[-34,34] 注:利用判别式求形如:y=22ax bx c dx ex f++++的值域当化为m(y)x 2+n(y)x+p(y)=0后,要注意: ①分m(y)=0,及m(y)≠0两种情况讨论,只有m(y)≠0时,才能利用判别式;②在求出y 的取值范围后;要注意“=”能否取到,即检验间断点以及△=0时,y 对应x 是否属于定义域。
高一数学值域的求法1
吃了熊心豹子胆,可以铤而走险选择将桉树作为钓点,搞上一次李向阳队长百战不殆的“灯下黑”。
这条堰坎与下面一片秧田的垂直高度,约摸五六米,距离成渝马路五十米。塘面没有水草,视野开阔,一膀子可以将鱼钩撒出十来米甚至更远。可马路、几方堰坎来来去去的人们洞若观火。真钓了 大货,除了束手待毙,甭指望能有机会化腐朽为神奇。
池塘游泳那些野孩子喜欢爬上面去玩跳水;社员爱去上面洗洗涮涮;我平素路过,不由自主会想上去玩上一会儿。五黄六月,头顶伞幄一般的树荫,坐在树根,双腿插入水中,自由自在戏戏凉水, 阵阵清风迎暴雨,否则经年累月根系均暴露在外面。男男女女从堰坎轻而易举迈得上去。
上放学路过,当真从马路上几个角度模拟过漫不经心转头一瞥,与转过身去目不转睛的差异。无论怎么样,除非视而不见,堰坎上当真是连一只老鼠蹿过也一目了然。见别人站、蹲那里时间稍长, 自己也难以消除心中的狐疑,不是钓鱼,蹲那么久干啥?
高一数学函数的定义域与值域的常用方法
高一数学求函数得定义域与值域得常用法一:求函数解析式1、换元法:题目给出了与所求函数有关得复合函数表达式,可将函数用一个变量代换。
例1、 已知,试求。
解:设,则,代入条件式可得:,t ≠1。
故得:。
说明:要注意转换后变量围得变化,必须确保等价变形.2、构造程组法:对同时给出所求函数及与之有关得复合函数得条件式,可以据此构造出另一个程,联立求解。
例2、 (1)已知,试求; (2)已知,试求; 解:(1)由条件式,以代x,则得,与条件式联立,消去,则得:。
(2)由条件式,以—x 代x则得:,与条件式联立,消去,则得:.说明:本题虽然没有给出定义域,但由于变形过程一直保持等价关系,故所求函数得定义域由解析式确定,不需要另外给出。
例4、 求下列函数得解析式:(1)已知就是二次函数,且,求; (2)已知,求,,; (3)已知,求; (4)已知,求. 【题意分析】(1)由已知就是二次函数,所以可设,设法求出即可。
(2)若能将适当变形,用得式子表示就容易解决了。
(3)设为一个整体,不妨设为,然后用表示,代入原表达式求解。
(4),同时使得有意义,用代替建立关于,得两个程就行了。
【解题过程】⑴设,由得, 由,得恒等式,得。
故所求函数得解析式为。
(2)1)1(112)(2)1(22-+=-++=+=+x x x x x x f , 又。
(3)设,则1)1()1(111111)1()(22222+-=-+-+=++=++=+=t t t t x xx x x x x f t f 所以。
(4)因为 ① 用代替得 ② 解①②式得。
【题后思考】求函数解析式常见得题型有:(1)解析式类型已知得,如本例⑴,一般用待定系数法。
对于二次函数问题要注意一般式,顶点式与标根式得选择;(2)已知求得问题,法一就是配凑法,法二就是换元法,如本例(2)(3); (3)函数程问题,需建立关于得程组,如本例(4)。
若函数程中同时出现,,则一般将式中得用代替,构造另一程。
高一数学求函数值域的方法仅限高一
仅限高一求函数值域的方法:1、 直接法直接根据函数表达式来求值域,例:y = x 2 , x ∈(2,3)2、 单调性法利用函数的单调性来求值域例:y=x-x 21-;解:定义域⎭⎬⎫⎩⎨⎧≤21|x x ,函数y=x,y=-x 21-均在⎥⎦⎤ ⎝⎛∞-21,上递增,故y≤.21212121=⨯-- ∴函数的值域为⎥⎦⎤ ⎝⎛∞-21,. 3、 图象法利用函数图象来求值域例:y = x 3 x ∈(-2,5)4、 配方法把函数化简成二次函数的形式,利用二次函数的性质来求, 例: y=12+-x x 解:∵y=412+-x x 能构成完全平方而y=412+-x x +43 ∴4321y 2+-=)(x ∵x R ∈ ∴值域为y ≥435、 判别式法把式子化成一元二次方程的形式,利用判别式法来求,例:y=;122+--x x x x解:由y=,122+--x x x x 得(y-1).0)1(2=+-+y x y x∵y=1时,≠∴∅∈y x , 1.又∵∈x R ,∴必须∆=(1-y)2-4y(y-1)≥0. ∴.131≤≤-y ∵,1≠y ∴函数的值域为⎪⎭⎫⎢⎣⎡-1,31. 6、 换元法把带根号或者带分式等不容易看出来的式子用一个新元代替了,换完元后,一定要注意新元的范围,根据新元的范围来求值域。
例1:y=x-x 21-;解:令x 21-=t,则t≥0,且x=.212t - ∴y=-21(t+1)2+1≤21(t≥0), ∴y∈(-∞,21]. 例2:y=|x|21x -. 解:∵1-x 2≥0,令x=sin α,则有y=|sin αcos α|=21|sin2α|, 故函数值域为[0,21].7、分离常数法适用于分子与分母同样的次幂,最终化成只有分母有x 。
例:y=521+-x x ;解:y=-)52(2721++x ,∵)52(27+x ≠0,∴y≠-21. 故函数的值域是{y|y∈R,且y≠-21}. 8、反求法用y来表达x,适用于x的范围知道,且能用y来表示x。
高一值域求法必备
一.观察法例1求函数y=3+√(2-3x)的值域。
点拨:根据算术平方根的性质,先求出√(2-3x)的值域。
解:由算术平方根的性质,知√(2-3x)≥0,故3+√(2-3x)≥3。
∴函数的知域为 .点评:算术平方根具有双重非负性,即:(1)被开方数的非负性,(2)值的非负性。
本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧法。
练习:求函数y=[x](0≤x≤5)的值域。
(答案:值域为:{0,1,2,3,4,5})二.反函数法。
例2求函数y=(x+1)/(x+2)的值域。
点拨:先求出原函数的反函数,再求出其定义域。
解:显然函数y=(x+1)/(x+2)的反函数为:x=(1-2y)/(y-1),其定义域为y≠1的实数,故函数y的值域为{y∣y≠1,y∈R}。
点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。
这种方法体现逆向思维的思想,是数学解题的重要方法之一。
练习:求函数y=(10x+10-x)/(10x-10-x)的值域。
(答案:函数的值域为{y∣y<-1或y>1})三.配方法例3:求函数y=√(-x2+x+2)的值域。
点拨:将被开方数配方成完全平方数,利用二次函数的最值求。
解:由-x2+x+2≥0,可知函数的定义域为x∈[-1,2]。
此时-x2+x+2=-(x-1/2)2+9/4∈[0,9/4]∴0≤√-x2+x+2≤3/2,函数的值域是[0,3/2]点评:求函数的值域不但要重视对应关系的应用,而且要特别注意定义域对值域的制约作用。
配方法是数学的一种重要的思想方法。
练习:求函数y=2x-5+√15-4x的值域.(答案:值域为{y∣y≤3})四.判别式法。
例4求函数y=(2x2-2x+3)/(x2-x+1)的值域。
点拨:将原函数转化为自变量的二次方程,应用二次方程根的判别式,从而确定出原函数的值域。
解:将上式化为(y-2)x2-(y-2)x+(y-3)=0 (*)当y≠2时,由Δ=(y-2)2-4(y-2)x+(y-3)≥0,解得:2<x≤10/3当y=2时,方程(*)无解。
高一数学函数值域方法汇总
解法2(线性规划)
∵x,y是圆C:(x-2)2+(y+3)2=2上的点,设 x+y+4=z,则y=-x+(z-4),z-4可看作为直 线L:x+y+4-z=0在y轴上的截距,作直线 y=-x并平移,当直线L:x+y+4-z=0和圆C 相切时,z-4有最大值和最小值。
高一数学函数值域方法汇总
求函数值域方法很多,常用配方法、换 元法、判别式法、不等式法、反函数法 、图像法(数形结合法)、函数的单调 性法以及均值不等式法等。这些方法分 别具有极强的针对性,每一种方法又不 是万能的。要顺利解答求函数值域的问 题,必须熟练掌握各种技能技巧,根据 特点选择求值域的方法,下面就常见问 题进行总结。
将上式可看成为x轴上点P(x,0)与
A(1,3),B(-3,2)的距离之和。即在x
轴上求作一点P与两定点A,B的距离
y
之和的最值,利用解析几何的方法
可求其最小值。
B(-
A(1,3)
如图,可求A关于x轴对称点A1(1,-3)连 结A1B交x轴y于P,则P(x,0)为所求,
例1 求函数
分析:本题是求二次函数在区间上的值域问题 ,可用配方法或图像法求解。
y
如图, ∴y∈[-3/4,3/2].
3/2
o 1/2
-1
1x
-3/4
例2 求函数
分析:函数是分式函数且都含有二次项,可用判 别式和单调性法求解。
解法1:由函数知定义域为R,则变形可得: (2y-1)x2-(2y-1)x+(3y-1)=0. 当2y-1=0即y=1/2时,代入方程左边=1/2·3-1≠0,故 ≠1/2. 当2y-1≠0,即y ≠1/2时,因x∈R,必有△=(2y-1)24(2y-1)(3y-1) ≥0得3/10≤y≤1/2, 综上所得,原函数的值域为y∈〔3/10,1/2〕.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[单选,A2型题,A1/A2型题]临终关怀的道德要求中,下列适度治疗的原则哪一项是正确的()。A.解除痛苦、无痛苦地死去B.完全放弃治疗C.以延长生命过程的治疗为主D.以治疗疾病为主E.加速患者死亡 [单选]昏厥的原因是()。男孩,4岁,6个月起青紫,渐加重,常蹲踞。胸骨左缘第3肋间可闻及2级收缩期杂音,P2减弱,有杵状指(趾)A.流出道梗阻、肺动脉狭窄B.脑血栓C.心力衰竭D.中毒性脑病E.低钙惊厥 [单选]1993年美国政府提出“国家信息基础设施”建设,进而构筑“全球信息基础设施”,其中“国家信息基础设施”的英文简写是()。A.NIIB.GIIC.ISDND.ERP [单选]关于数字微波通信的站距,叙述正确的是:().A.发射机功率越大,站距越长B.射频工作频率越高,站距越长C.传播环境条件越好,距离越长 [单选]以下有关混凝土的质量评定说法错误的是()。A.变异系数是评定混凝土质量均匀性的指标B.变异系数等于标准差除以平均值C.混凝土的标准差随着强度等级的提高而增大D.变异系数越大,表示混凝土质量越稳定 [单选]作为编辑过程环节之一的审稿,其作用不包括()。A.决定稿件取舍,为文化传播把关B.整理加工稿件,保证发稿质量C.发现创作人才,扩大作者队伍D.提出修改意见,提高稿件质量 [单选]下列骨折最容易发生骨筋膜室综合征的是()A.锁骨骨折B.肱骨干骨折C.桡骨远端骨折D.肱骨髁上伸直型骨折E.尺骨上1/3骨折 [填空题]高层建筑结构的竖向承重体系有(),(),(),(),()。 [问答题,案例分析题]阅读下列说明,回答问题1至问题3【说明】某公司要开发一个多媒体辅导系统,该系统准备利用B/S架构,用户通过网上注册、登录,登录成功后,可进行在线学习辅导。 [单选,A2型题,A1/A2型题]孤独症的康复,"针对孤独症儿童在语言、交流以及感知觉运动等方面所存在的缺陷,有针对性地进行教育"属于()A.社交故事B.结构化教育C.听觉综合训练D.感觉综合训练E.应用行为分析疗法 [名词解释]人本主义心理学 [问答题,简答题]发电机强励值是多少? [单选]58型焦炉用焦炉煤气加热时煤气的入炉方式为()A.侧入B.下喷C.A+B [单选]原始取得不包括()。A.生产取得B.继承取得C.添附取得D.拾得遗失物 [单选]产后72小时内血容量增加()A.1%~5%B.5%~10%C.10%~15%D.15%~25%E.25%~30% [单选]哲学上的第二个伟大时期是()。A、十一世纪起至十四世纪为止B、十世纪起至十三世纪为止C、十二世纪起至十五世纪为止 [判断题]2004年版50美元正面底纹图案采用了彩虹印刷技术,其两边为红色,中间为黄色,色彩过渡自然、渐变。A.正确B.错误 [多选]以下几种机关之间,因工作需要往来公文,可以使用函的有()。A.省财政厅与省经贸委B.××大学与市劳动局C.省教委与省人民政府D.县公安局与乡人民政府 [单选]集贸市场内经营者使用的电气线路和用电设备的安装,必须统一由主办单位委托()。A、电力部门安装B、产权单位安装C、具有资格的施工单位安装D、懂专业知识的人安装 [单选]判断营养状态的方法错误的是()A.皮肤B.皮下脂肪C.毛发D.体重指数E.消耗增加 [单选]以下关于石油库防火堤说法正确的是()。A.防火堤应采用非燃烧材料建造B.防火堤应能承受所容纳油品的静压力且不应泄漏C.立式油罐防火堤的计算高度应保证堤内有效容积需要D.防火堤的实高不应低于1mE.防火堤的实高不宜高于2.2m [单选]在系统性红斑狼疮发病的病因中不包括以下哪项内容()。A.环境因素B.饮食因素C.性激素D.遗传因素E.免疫功能紊乱 [单选]某电脑有限公司推出了“钛金”“铱金”系列品牌电脑,其最适宜采用的信息传递形式是()。A.电子邮件B.新闻发布会C.通知D.声明 [单选,B1型题]糖尿病母亲婴儿多见()A.剖宫产儿B.早产儿C.过期产儿D.巨大儿E.小于胎龄儿 [单选]()是直接反映汽车设计速度利用程度的指标。A.营运速度B.最高速度C.技术速度D.平均车日行程 [名词解释]撞人犯规(personalfoul) [填空题]自然资源是人类可以直接或间接利用的存在于自然界的()或(),与人类生存直接相关的自然资源有()、()、()、()、()和()。 [单选]中国营养学会制定的"中国居民平衡膳食宝塔"中建议每人每天食用油脂类()A.15gB.25gC.75gD.50gE.100g [单选]要了解脏器或四肢周围血管情况通常选择的超声检查仪器为()A.M型B.D型C.A型D.B型E.B+D型 [单选,B1型题]小儿前囟闭合过早见于哪种疾病()A.佝偻病B.小头畸形C.中枢感染D.脱水E.甲状腺功能低下 [单选]《出口食用动物饲料生产企业登记备案证》的有效期为()年。A.1B.2C.3D.5 [判断题]数据实时镜像功能的实现采用的是硬件技术。A.正确B.错误 [判断题]记帐方法有单式记帐法和复式记帐法两类,银行会计核算使用复式记帐法。A.正确B.错误 [单选]黑颈鹤、丹顶鹤、白鹤、赤颈鹤和白头鹤属于我国()保护动物。A.一级B.二级C.三级D.不保护 [多选]护面墙的类型有()。A.实体式B.窗孔式C.衡重式D.锚杆式E.拱式 [单选]下列建设单位向施工单位作出的意思表示中,为法律、行政法规禁止的是()。A.明示报名参加投标的各施工单位以低价竞标B.明示施工单位在施工中应优化工期C.暗示施工单位不采用《建设工程施工合同(示范文本)》签定合同D.暗示施工单位在非承重结构部位使用不合格的水泥 [单选]残疾人个人提供加工、修理修配劳务的可以免征()?A.营业税B.增值税C.个人所得税D.印花税 [单选]产后子宫缩小至妊娠12周大小,需要时间为()A.1周B.2周C.3周D.4周E.5周 [单选]()把下属作为权变的变量,即认为下属的成熟水平是选择领导风格的依赖条件。A.参与模型基础B.领导情境理论C.费德勒的权变模型D.路径—目标理论 [填空题]在发油不久就接着进油,可以降低大呼吸损耗量,因为发油后罐内蒸汽度()。