AOD4182

合集下载

常用运算放大器

常用运算放大器

返回
低噪声和精密的OP27 OP273 低噪声和精密的OP27-1
低噪声和精密的OP27 OP273 低噪声和精密的OP27-2
低噪声和精密的OP27 OP273 低噪声和精密的OP27-3
返回
低噪声、高速和精密的OP37 OP374 低噪声、高速和精密的OP37-1
低噪声、高速和精密的OP37 OP374 低噪声、高速和精密的OP37-2
低噪声、高速和精密的OP37 OP374 低噪声、高速和精密的OP37-3
低噪声、高速和精密的OP37 OP374 低噪声、高速和精密的OP37-4
返回
低噪声、高速和精密的OP37 OP374 低噪声、高速和精密的OP37-5
Hale Waihona Puke 速的LF353 LF3535 中速的LF353-1
中速的LF353 LF3535 中速的LF353-2
LM6164高速运算放大器 高速运算放大器9 LM6164高速运算放大器-6
返回
常见功率运算放大器10 常见功率运算放大器-1
18W功率运放TDA2030 18W功率运放TDA2030 功率运放
常见功率运算放大器10 常见功率运算放大器-2
常见功率运算放大器10 常见功率运算放大器-3
常见功率运算放大器10 常见功率运算放大器-4
LM6164高速运算放大器 高速运算放大器9 LM6164高速运算放大器-2
LM6164高速运算放大器 高速运算放大器9 LM6164高速运算放大器-3
LM6164高速运算放大器 高速运算放大器9 LM6164高速运算放大器-4
LM6164高速运算放大器 高速运算放大器9 LM6164高速运算放大器-5
常见仪表放大器AD620 AD62011 常见仪表放大器AD620-7

HT4182(5V输入同步升压型1.2A双节锂电池充电IC)

HT4182(5V输入同步升压型1.2A双节锂电池充电IC)

HT4182(5V输入同步升压型1.2A双节锂电池充电IC)
>>概述:
HT4182是一款5V输入,升压模式的充电管理IC, 适用于双节串联锂
电池。

其能自适应任意5V电源进行充电,并且由输入过压、欠压保护。

HT4182采用同步升压结构,内置MOSFET,外围元件简单。

通过调节外部电阻,可任意调节充电电流,最大支持1.2A, 效率超过90%。

HT4182具有多重保护功能:充电超时、芯片过热反馈调节、过温关断、输入
过压、输入欠压、输出过流、输出过压、输出短路、NTC温度保护等。

异常时,可通过LED进行异常指示。

该产品提供SOP8L-PP封装。

>>特点:
・高效的1.2A 800kHz开关模式同步升压充电器,5V输入、7.2V电池、1A
充电电流下,效率92%
・支持5V输入, 给双节串联锂电池充电4V-6V范围内正常工作;4-4.5V自动调节输入电流;6.2V过压保护,最大支持16V输入
・电池饱充电压8.4V和8.7V可选
・短路涓流/预充涓流/恒流/恒压充电模式
・充电电流由外部电阻灵活调节
・LED状态显示
・保护:充电超时、芯片过热反馈调节、过温关断、输入过压、输入欠压、输出过流、输出过压、输出短路、NTC温度保护等
・SOP8L-PP封装
>>应用:
・音箱 ・POS机 ・电子烟
・对讲机 ・其他便携式电子设备
顶视图
引脚定义
典型应用图。

OPA4188零漂移4运放

OPA4188零漂移4运放

OPA2188 采用微型小外形尺寸 (MSOP)-8 和小外形尺 寸 (SO)-14 封装。 此器件额定工作温度范围为 ―40°C 至 +105°C。
145 OPA2188 Zero-Drift Architecture
125
Precision Laser Trim Architecture
Offset Voltage (mV)
(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or visit the device product folder at .
OPA2188
PARAMETER
CONDITIONS
MIN
TYP
OFFSET VOLTAGE
VOS PSRR
Input offset voltage Power-supply rejection ratio Long-term stability
TA = –40°C to +105°C
VS = 4 V to 36 V, VCM = VS / 2
PACKAGE- PACKAGE PRODUCT LEAD DESIGNATOR
OPA2188
SO-8 MSOP-8
D DGK
PACKAGE INFORMATION(1)
SPECIFIED TEMPERATURE
RANGE
PACKAGE MARKING
–40°C to +105°C
2188
–40°C to +105°C

Extech CD Regulated Power Supply Modelos 382203 y

Extech CD Regulated Power Supply Modelos 382203 y

Manual del usuarioFuente de poder CD regulada con tres salidas Modelos 382203 (Análogo) y 382213 (Digital)IntroducciónFelicitaciones por seleccionar la Fuente de poder CD regulado Modelos 382203 (análogo) o 382213 (digital) de Extech. Los modelos 382203 y 382213 son fuentes de poder reguladas de estado sólido y compactos, apropiadas para muchas aplicaciones incluyendo pruebas de banco, servicio de campo, equipo de telecomunicaciones y diversión.Descripción del medidor1. Pantallas LCD Voltaje y Corriente2. LED indicador de estado de límite de corriente3. Interruptor de encendido con LED de estado4. Terminales de salida 5V y 12V fijo5. Terminales de salida alimentación variable6. Perillas de ajuste de voltaje y corriente variableNota: El Modelo 382213 (escalas LCD) se muestra arriba. El Modelo 382203 (mostrado en la portada) usa escala análoga.Operación1. La Fuente de poder debe ser alimentada con voltaje de línea nominal (110V ó 220V) dentro de+ 5%.2. Antes de encender, retire todas las cargas conectadas y fije la perilla de ajuste de voltajetotalmente contrarreloj (salida 0V CD).3. Para operar la fuente de alimentación como fuente de corriente constante, la salida de corrientedebe fijarse entre 10% y 100% del valor nominal (3A). El indicador de limitación de corriente se iluminará al activarse el circuito limitador de corriente.4. Use las perillas para ajuste de corriente y voltaje para fijar las salidas variables de corriente yvoltaje respectivamente. Use las terminales de salida variable para conexiones.5. Para las salidas de 5VCD y 12VCD, use las terminales de salida fija.6. Las pantallas análoga o digital indicaran las salidas reales de corriente y voltaje.7. Mantenga libre de obstrucciones las rejillas de ventilación del medidor (arriba y lados) paraprevenir sobrecalentamiento.Especificaciones382203382213Indicador Análogo doble conescalas Pantalla LCD doble de 3dígitosSalida de voltaje, CD0-30VSalida de corriente, CD0 - 3 amperiosIndicador de límite decorrienteLED de estadoPrecisión ± 7% de la escala total ± 1% de la escala total + 2dígitosOndulación y Ruido< 5mVRegulación de línea< 0,05% + 10mVVoltaje fijo de salida5V / 0,5A (Continuo); 1A (máx.)12V / 0,5A (Continuo); 1A (máx.)Tensión110/220VCA 50/60Hz (conmutable) Dimensiones152 x 142 x 242mm(6 x 5,6 x 9,5") (WxHxD)Peso4,5 kg (10 lbs.)Copyright (c)2012 Extech Instruments Corporation (a FLIR company) Reservados todos los derechos, incluyendo el derecho de reproducción total o parcial en cualquier medi o.。

LED恒流IC芯片大盘点模板

LED恒流IC芯片大盘点模板

LED恒流IC芯片大盘点模板在现代电子产品中,LED光源被广泛应用于照明、显示、通信和传感等领域。

为了保证LED光源的稳定工作和延长寿命,需要使用LED恒流IC芯片控制LED电流的大小。

本文将对LED恒流IC芯片进行大盘点,介绍常用的IC芯片以及其特点和应用领域。

一、LM3414是一款高效率、非同步降压转换器,主要用于LED驱动器。

其具有输入电压范围广泛、恒定电流输出、频率可调等特点,适用于照明和背光系统等领域。

二、LT3762是一款高效的双级LED恒流驱动器,适用于大功率LED照明应用。

它具有宽输入电压范围、高电流精度、PWM和直流调光功能等特点,适用于室内和室外照明系统。

五、AL8810是一款高效的LED恒流驱动器,可用于大功率LED照明应用。

它具有高精确度、宽输入电压范围、过热保护和短路保护等特点,适用于室内照明和汽车照明等领域。

六、BD1835是一款高效的恒流LED驱动器,适用于背光和照明系统。

它具有高效率、电流精确度、PWM和直流调光功能等特点,适用于电视、显示屏和照明灯具等应用。

以上仅是LED恒流IC芯片中的一部分,还有许多其他品牌和型号可供选择。

在选择LED恒流IC芯片时,需要根据具体应用需求来确定合适的芯片型号,包括输入电压范围、输出电流范围、调光功能以及保护功能等。

此外,还需要考虑芯片的可靠性、稳定性和供应商的售后服务等因素。

总结起来,LED恒流IC芯片在LED照明应用中起到了至关重要的作用。

选择合适的芯片可以提高LED光源的效率和稳定性,延长LED的使用寿命。

随着LED照明技术的不断发展,LED恒流IC芯片也将变得更加智能化和高效化,为LED照明行业的发展提供更多可能性。

STK4182中文资料

STK4182中文资料
THD = 0.4%, f = 20Hz to 20kHz
20
40
100
45
PO (2)
VCC = ±30.5V, THD = 1.0%, RL = 4Ω, f = 1kHz
50
THD
PO = 1.0W, f = 1kHz
fL, fH
PO
=
1.0W,
+0 –3
dB
0.3 20 to 50k
ri
PO = 1.0W, f = 1kHz
C14 C7 R3, R4 R1, R2 R5, R9 (R6, R10) R11, R13 (R12, R14) R21 R18 R19, R20 R15, R16
Input filter capacitors • A filter formed with R3 or R4 can be used to reduce noise at high frequencies.
元器件交易网
Ordering number: EN2205B
Thick Film Hybrid IC
STK4182 II
AF Power Amplifier (Split Power Supply) (45W + 45W min, THD = 0.4%)
Features
• The STK4102II series (STK4182II) and STK4101V series (high-grade type) are pin-compatible in the output range of 6W to 50W and enable easy design.
Resistors for input filter
Quiescent current, Icco - mA

部分加速度计型号参数

部分加速度计型号参数

部分加速度计型号参数部分加速度计型号参数加速度传感器MXP7205VF MXP7205VF引脚低成本±5 G带SPI接口的双轴加速度计MXR6500G MXR6500G引脚薄型,低功耗±1.7克双轴加速度计,按比例输出KXTE9-1026 KXTE9-1026引脚±2g的三轴数字加速度计产品规格LSM320HAY30 LSM320HAY30引脚MEMS运动传感器模块的三维数字加速度计和2D间距和偏航模拟陀螺仪SCA830-D06 SCA830-D06引脚SCA830-D06单轴数字SPI接口的高性能加速度计,KXSS5-2057 KXSS5-2057引脚为±3克三轴加速度计产品规格ADIS16006 ADIS16006引脚双轴±5 g加速度计具有SPI接口的2240-002 2240-002引脚的模拟加速计模块KXP74 KXP74引脚 Kxp74系列加速度计和倾角传感器SCA3000-E01 SCA3000-E01 超低功耗引脚 SCA3000-E01 3轴加速度计,数字SPI接口KXTF9-4100 KXTF9-4100引脚±2g的三轴数字加速度计产品规格2430-002 2430-002引脚三轴模拟加速计模块KXPA4-2050 KXPA4-2050引脚±2 G三轴模拟加速度计产品规格SCA2100-D01 SCA2100-D01 SCA2100-D01 2轴加速度计,数字SPI接口引脚MXA2050A MXA2050A引脚低成本,±10 G双模拟输出三轴加速度计SCA3000-E05 SCA3000-E05 超低功耗引脚 SCA3000-E05 3轴加速度计,数字SPI接口MXR7150V MXR7150V引脚低成本?7 G按比例输出的双轴加速度计,MXR2010A MXR2010A引脚低成本,±35克双轴加速度计,按比例输出KXSC7-1050 KXSC7-1050引脚±2g的三轴模拟加速度计产品规格SCA3100-D03 SCA3100-D03 SCA3100-D03的3轴加速度计,数字SPI接口引脚MXA6500G MXA6500G引脚低成本,低噪音1 G双轴加速度计,绝对模拟输出SCA3060-D01 SCA3060-D01引脚 Sca3060-D01数位式低功率加速度计非安全关键汽车应用? 2012-002 2012-002引脚的模拟加速计模块MXD6125G MXD6125G引脚薄型,低功耗,±2 G双数字输出三轴加速度计MXR9500G MXR9500G引脚低成本±1.5 G三成比例的输出三轴加速度计KXTE9-2050 KXTE9-2050引脚±2g的三轴数字加速度计产品规格KXSS5-4457 KXSS5-4457引脚为±3克三轴加速度计产品规格2264-005 2264-005引脚的模拟加速计模块KXP84 KXP84引脚 Kxp84系列加速度计和倾角传感器SCA3100-D04 SCA3100-D04 SCA3100-D04 引脚高性能3轴加速度计,数字SPI接口SCA820-D04 SCA820-D04引脚 Sca820-D04 1轴高性能加速度计,数字SPI接口2460-002 2460-002引脚三轴模拟加速计模块格SCA820-D03 SCA820-D03引脚 Sca820-D03单轴加速度计,数字SPI接口BU-21771-000 BU-21771-000引脚BU系列加速BU-21771-000ADXL202E ADXL202E引脚低成本?2 G,占空比输出的双轴加速度计MXD2020E MXD2020E引脚超低噪声,低失调漂移±1 G双数字输出三轴加速度计KXR94-1050 KXR94-1050引脚±2g的三轴加速度计产品规格SCA3100-D07 SCA3100-D07 SCA3100-D07 引脚高性能3轴加速度计,数字SPI接口MX205Q MX205Q引脚低成本,5.0G,双模拟输出三轴加速度计ADXL202 ADXL202引脚低成本?2 G双轴加速度计,占空比输出MXR7250VW MXR7250VW引脚低成本±5 G双轴加速度计,按比例输出MXR6400Q MXR6400Q引脚超高性能为±1g双轴加速度计,按比例输出KXSD9-2050 KXSD9-2050引脚±2g的三轴数字加速度计产品规格SCA2100-D02 SCA2100-D02 SCA2100-D02 引脚 2轴高性能加速度计,数字SPI接口ADIS16003 ADIS16003引脚双轴±1.7 g加速度计具有SPI接口的2220-002 2220-002引脚的模拟加速计模块KXD94-2802 KXD94-2802引脚±10克三轴加速度计产品规格SCA3000-D02 SCA3000-D02引脚SCA3000-D02低功耗3轴加速度计,数字I 2 C接口KXTF9-1026 KXTF9-1026引脚±2g的三轴数字加速度计产品规格2422-002 2422-002引脚三轴模拟加速计模块KXPA4-1050 KXPA4-1050引脚±2 G三轴模拟加速度计产品规格SCA2110-D03 SCA2110-D03引脚 Sca2110-D03 2轴加速度计,数字SPI接口ADXL105 ADXL105引脚的高精度61克到65克单轴iMEMS加速度计与模拟输入KXPS5-2050 KXPS5-2050引脚±2g的三轴加速度计产品规格AIS326DQ的AIS326DQ引脚MEMS惯性传感器的3轴,带有数字输出的低g加速度计SCA3000-E04 SCA3000-E04 超低功耗引脚 SCA3000-E04 3轴加速度计,数字SPI接口? BU-23173-000 BU-23173-000引脚 BU系列加速BU-23173-000ADXL210E ADXL210E引脚低成本?10 G双轴加速度计,占空比MXD6125Q MXD6125Q引脚超高的性能为±1g双轴加速度计的数字输出KXR94-2353 KXR94-2353引脚±2g的三轴数字加速度计产品规格MXA2500J MXA2500J引脚超低成本,1.0 G绝对值输出的双轴加速度计,SCC1300-D04 SCC1300-D04引脚 Scc1300-D04组合的陀螺仪和3轴加速度计,数字SPI接口? 2010-002 2010-002引脚数字加速计模块MXP7205VW MXP7205VW引脚低成本±5 G带SPI接口的双轴加速度计MXR9150G MXR9150G引脚低成本±5克三成比例的输出三轴加速度计KXTE9-1050 KXTE9-1050引脚±2g的三轴数字加速度计产品规格KXSS5-3028 KXSS5-3028引脚为±3克三轴加速度计产品规格2260-002 2260-002引脚的模拟加速计模块KXP74-1050 KXP74-1050引脚±2g的三轴数字加速度计产品规格SCA3000-E02 SCA3000-E02引脚 SCA3000-E02的3轴加速度计,数字I 2 C接口超低功耗? 2440-002 2440-002引脚三轴模拟加速计模块KXPB5-2050 KXPB5-2050引脚±2 G三轴加速度计产品规格SCA830-D05 SCA830-D05引脚SCA830-D05单轴加速度计,数字SPI接口ADXL190 ADXL190引脚低成本6100 G单轴加速度计的模拟输出MXC62020GP MXC62020GP引脚低功耗,薄型±2 G双I 2 C接口的三轴加速度计KXPS5-4457 KXPS5-4457引脚±3G的三轴加速度计产品规格CMA3000-D01 CMA3000-D01引脚 CMA3000-D01的3轴超低功耗加速度计,数字SPI和I 2 C接口MXR7305VF MXR7305VF引脚改进的低成本±5 G双成比例的模拟输出三轴加速度计MXR6150M MXR6150M引脚薄型,低功耗±5g的双轴加速度计,按比例输出KXSD9-1026 KXSD9-1026引脚±2g的三轴数字加速度计产品规格SCA2120-D07 SCA2120-D07引脚 Sca2120-D07 2轴加速度计,数字SPI接口MXD202 MXD202引脚低成本,2.0G,双数字输出三轴加速度计SCA3060-D02 SCA3060-D02引脚 Sca3060-D02数位式低功率加速度计非安全关键汽车应用? 2210-002 2210-002引脚的模拟加速计模块KXD94 KXD94引脚 KXD94系列加速计和倾斜计SCA3000-D01 SCA3000-D01引脚SCA3000-D01低功耗3轴加速度计,数字SPI接口KXTE9-4100 KXTE9-4100引脚±2g的三轴数字加速度计产品规格ML8953 ML8953 的3轴加速度计的数字量输出引脚数据KXR94-2283 KXR94-2283引脚,多项数据表为±2G三轴的加速度计产品规格2420-002 2420-002引脚三轴数字加速计模块KXP94 KXP94引脚 Kxp94系列加速度计和倾角传感器SCA2120-D05 SCA2120-D05引脚 Sca2120-D05 2轴加速度计,数字SPI接口ADXL05 ADXL05引脚 61 G 65 G的单芯片加速度计与信号调理2470-002 2470-002引脚三轴模拟加速计模块KXPS5-1050 KXPS5-1050引脚±2g的三轴加速度计产品规格AIS226DS AIS226DS引脚 MEMS惯性传感器的2轴,低g加速度计的数字量输出SCA810-D01 SCA810-D01引脚 Sca810-D01单轴加速度计,数字SPI接口BU-23842-000 BU-23842-000引脚BU系列加速BU-23842-000MMA7455 MMA7455 MMA7455引脚 3轴加速度计模块ADXL50 ADXL50引脚单片加速度传感器与信号调理MXD6025Q MXD6025Q引脚超低噪声,低失调漂移±1 G双数字输出三轴加速度计KXR94-2050 KXR94-2050引脚±2g的三轴加速度计产品规格MPXY8300 MPXY8300引脚根部分号码汽车压力范围卡车轮胎压力范围压力范围压力传感器精度* Z-轴加速度计测量范围Z-轴加速度计精度X轴加速度计测量范围X轴加速度计精度AcceleMXA2500G MXA2500G引脚改进,超低噪声1.7克双轴加速度计具有绝对的输出SCC1300-D02 SCC1300-D02引脚 Scc1300-D02组合的陀螺仪和3轴加速度计,数字SPI接口? ADXL210 ADXL210引脚低成本?10 G双轴加速度计,占空比1221L-002 1221L-002引脚的低噪声模拟加速度计引脚 1.5克MMA7368L MMA7368L三轴低g微机械加速度计LIS2L06AL LIS2L06AL引脚MEMS惯性传感器的2轴- + / - 2g/6g超小型线性加速度计ADXL327 ADXL327引脚小尺寸,低功耗,3轴±2 g加速度计MMA7330L MMA7330L引脚4克,12克三轴低g微机械加速度计MMA7341LC MMA7341LC引脚 3G,11克三轴低g微机械加速度计4203 4203引脚型号4203加速度计MMA2300 MMA2300引脚表面贴装微机械加速度计MLX90308 MLX90308引脚可编程的通用传感器接口MMA1220KEG MMA1220KEG引脚低g微机械加速度计LIS3L02AS5 LIS3L02AS5引脚 MEMS惯性传感器3轴- ?2g/6g 线性加速度计MMA3201D MMA3201D引脚表面贴装微机械加速度计MMA6261Q MMA6261Q的引脚 Mma6261q加速度传感器MMA8452Q MMA8452Q,,引脚 3轴,12-bit/8-bit,,数字加速度计3031-050 3031-050引脚型号3031加速度计4610-020-060 4610-020-060引脚型号4610加速度计MMAS40G10D MMAS40G10D引脚微机械加速度计SCA610-CAHH1G SCA610-CAHH1G引脚SCA610-cahh1g 1轴模拟测斜仪MAX1459 MAX1459引脚 MAX1459 2线,4-20mA的智能信号调理KXRB5-2050 KXRB5-2050引脚,多项数据表为±2G三轴的加速度计ADXL335 ADXL335引脚小尺寸,低功耗,3轴±3 g加速度计MMA1270KEG MMA1270KEG引脚飞思卡尔半导体技术资料MMA2204KEG MMA2204KEG引脚表面贴装微机械加速度计LIS2L01 LIS2L01引脚,多项数据表的惯性传感器2axis/1g线性加速度计MMA2204D MMA2204D引脚表面贴装微机械加速度计HMR3400 HMR3400引脚数字罗盘解决方案QA-1400 QA-1400引脚加速度计具有成本效益级惯性传感器ADXL213 ADXL213引脚低成本±1.2克双轴加速度计4655-020 4655-020引脚型号4655加速度计4801A 0010 4801A-0010引脚型号4801a加速度计MMA1212 MMA1212引脚表面贴装微机械加速度计BMA145 BMA145引脚 Bma145数据表B Bma145三轴模拟加速度传感器LIS344AL的LIS344AL引脚MEMS惯性传感器的3轴超小型线性加速度计ADXL150 ADXL150引脚 65克到650克,低噪声,低功耗,单/双通道轴的iMEMS?加速度计MMA2260D和 MMA2260D引脚 1.5克X-轴微机械加速度计MMA2301KEG MMA2301KEG引脚表面贴装微机械加速度计LIS352AX的 LIS352AX引脚 MEMS惯性传感器的3轴- ±2g的绝对模拟输出加速度计1203-1000-10-072X 1203-1000-10-072X引脚型号1203加速度计MMA1212D MMA1212D引脚表面贴装微机械加速度计MLX90308CAB MLX90308CAB引脚可编程传感器接口52M30-2000-360 52M30-2000-360引脚型号52m30加速度计ADXL323 ADXL323引脚小尺寸,低功耗,2轴±3 GI MEMS加速度计MLX90308CCC MLX90308CCC引脚可编程传感器接口MMA7341L MMA7341L引脚 3G,11克三轴低g微机械加速度计LIS2L02AQ LIS2L02AQ引脚惯性传感器2axis - 2g/6g线性加速度计ADXL345 ADXL345引脚三轴±2/4/8/16g数字加速度计MMA2244EG MMA2244EG引脚低g微机械加速度计MMA6341L MMA6341L引脚 3G,11克两轴低g微机械加速度计LIS302SG LIS302SG引脚 MEMS运动传感器的3轴- ?2G模拟输出短笛加速度计4000A-020-060 4000A-020-060引脚型号4000A加速度计MMA1201P MMA1201P引脚微机械加速度计ADXL193 ADXL193引脚单轴,高g,公司的iMEMS加速度计MMA7660FC MMA7660FC引脚 3轴方向/运动检测传感器LIS3L02AQ3 LIS3L02AQ3引脚 MEMS惯性传感器的3轴- 2G /6克线性加速度计ADW22035 ADW22035引脚精度±18 G Single-/dual-axis iMEMS加速度计MMA7360L MMA7360L引脚 1.5G,6克三轴低g微机械加速度计MAX1166 MAX1166引脚低功耗,16位模拟数字转换器,并行接口MMA6851QR2 MMA6851QR2引脚单轴SPI惯性传感器NJU7029 NJU7029引脚低噪声,轨至轨输出双通道CMOS运算放大器4602-010-060 4602-010-060引脚型号4602加速度计MMA6270Q MMA6270Q引脚 R1.5 G - 6 G双三轴低g微机械加速度计SCA610-C23H1A SCA610-C23H1A引脚的 SCA610-c23h1a单轴模拟加速度计ADIS16355, ADIS16355引脚三轴惯性传感器ADXL312 ADXL312引脚三轴,±1.5g/3g/6g/12g数字加速度计MMA2202KEG MMA2202KEG引脚表面贴装微机械加速度计LIS3L02AQ LIS3L02AQ引脚惯性传感器3轴- 2g/6g线性加速度计MMA2202D MMA2202D引脚表面贴装微机械加速度计BU1511KV2 BU1511KV2引脚事件数据记录系统LSIQA3000-030 QA3000-030引脚的 Q-Flex QA-3000加速度计ADS8201 ADS8201引脚 2.2V至5.5V,低功耗,12位,100ksps时,与PGA和SPI?接口的8通道数据采集系统3058-010-P 3058-010-P引脚型号3058加速度计4623-025-060 4623-025-060引脚型号4623加速度计XMMA1000P XMMA1000P引脚微机械加速度计LIS244AL LIS244AL引脚 MEMS运动传感器的2轴- ?2克超小型线性加速度计KXPS5 KXPS5引脚加速度计和倾角传感器ADIS16354 ADIS16354引脚高精度三轴惯性传感器MMA7261QT和 MMA7261QT引脚 2.5G - 10G三轴低g微机械加速度计MMA6222AKEG MMA6222AKEG引脚模拟双轴微机械加速度计“惯性传感器LIS3L02AS LIS3L02AS引脚 3轴- 2g/6g线性加速度计MMA1210D MMA1210D引脚表面贴装微机械加速度计HMC1055 HMC1055引脚 3轴罗盘传感器集QA-700 QA-700引脚加速度计的经济温度补偿传感器ADXL320 ADXL320引脚小而薄的±5 G iMEMS加速度计834M1-2000, 834M1-2000引脚型号834m1加速度计MMA2260 MMA2260引脚 1.5克X-轴微机械加速度计LIS332AR LIS332AR引脚 MEMS运动传感器的3轴±2 G模拟输出超小型加速度计LIS3LV02DL LIS3LV02DL引脚 MEMS惯性传感器的3轴-2G /??6克数字输出低电压,线性加速度计MMA1270D MMA1270D引脚低g微机械加速度计MMA2244KEG MMA2244KEG引脚低g微机械加速度计LIS33DE LIS33DE引脚 MEMS运动传感器的3轴- ±2克/±8G智能数字输出“纳米”加速度1207F-1000 1207F-1000引脚型号1207f加速度计MMA1200D MMA1200D引脚表面贴装微机械加速度计邢树村整理:TEL:189********。

PIC16F873

PIC16F873

2002 Microchip Technology Inc.DS39025F-page 1MPIC16F87XThis document includes the programming specifications for the following devices:1.0PROGRAMMING THEPIC16F87XThe PIC16F87X is programmed using a serial method.The Serial mode will allow the PIC16F87X to be pro-grammed while in the user’s system. This allows for increased design flexibility. This programming specifi-cation applies to PIC16F87X devices in all packages.1.1Programming Algorithm RequirementsThe programming algorithm used depends on the operating voltage (V DD ) of the PIC16F87X device.Algorithm 1 is designed for a V DD range of 2.2V ≤V DD <5.5V. Algorithm 2 is for a range of 4.5V ≤V DD ≤5.5V. Either algorithm can be used with the two available programming entry methods. The first method follows the normal Microchip Programming mode entry of applying a V PP voltage of 13V ± .5V. The second method, called Low Voltage ICSP TM or LVP for short, applies V DD to MCLR and uses the I/O pin RB3to enter Programming mode. When RB3 is driven to V DD from ground, the PIC16F87X device enters Programming mode.1.2Programming ModeThe Programming mode for the PIC16F87X allows pro-gramming of user program memory, data memory, spe-cial locations used for ID, and the configuration word.•PIC16F870•PIC16F874•PIC16F871•PIC16F876•PIC16F872•PIC16F877•PIC16F873EEPROM Memory Programming SpecificationPIC16F87XDS39025F-page 22002 Microchip Technology Inc.PIN DESCRIPTIONS (DURING PROGRAMMING): PIC16F87XPin Name During ProgrammingFunction Pin TypePin DescriptionRB3PGM I Low voltage ICSP programming input if LVP configuration bit equals 1RB6CLOCK I Clock input RB7DATA I/O Data input/output MCLR V TEST MODEP*Program Mode Select V DD V DD P Power Supply V SSV SSPGroundLegend:I = Input, O = Output, P = Power*In the PIC16F87X, the programming high voltage is internally generated. To activate the Programming mode, high voltage needs to be applied to the MCLR input. Since the MCLR is used for a level source, this means that MCLR does not draw any significant current.PIC16F87X2.0PROGRAM MODE ENTRY2.1User Program Memory MapThe user memory space extends from 0x0000 to 0x1FFF (8K). In Programming mode, the program memory space extends from 0x0000 to 0x3FFF, with the first half (0x0000-0x1FFF) being user program memory and the second half (0x2000-0x3FFF) being configuration memory. The PC will increment from 0x0000 to 0x1FFF and wrap to 0x0000, 0x2000 to 0x3FFF and wrap around to 0x2000 (not to 0x0000). Once in configuration memory, the highest bit of the PC stays a ‘1’, thus always pointing to the configuration memory. The only way to point to user program mem-ory is to reset the part and re-enter Program/Verify mode, as described in Section2.4.In the configuration memory space, 0x2000-0x200F are physically implemented. However, only locations 0x2000 through 0x2007 are available. Other locations are reserved. Locations beyond 0x200F will physically access user memory (see Figure2-1).2.2Data EEPROM MemoryThe EEPROM data memory space is a separate block of high endurance memory that the user accesses using a special sequence of instructions. The amount of data EEPROM memory depends on the device and is shown below in number of bytes.The contents of data EEPROM memory have the capa-bility to be embedded into the HEX file.The programmer should be able to read data EEPROM information from a HEX file and conversely (as an option), write data EEPROM contents to a HEX file, along with program memory information and configura-tion bit information.The 256 data memory locations are logically mapped starting at address 0x2100. The format for data mem-ory storage is one data byte per address location, LSB aligned.2.3ID LocationsA user may store identification information (ID) in four ID locations. The ID locations are mapped in [0x2000 : 0x2003]. It is recommended that the user use only the four Least Significant bits of each ID location. In some devices, the ID locations read out in an unscrambled fashion after code protection is enabled. For these devices, it is recommended that ID location is written as “11 1111 1000 bbbb” where ‘bbbb’ is ID information. In other devices, the ID locations read out normally, even after code protection. To understand how the devices behave, refer to Table5-1.To understand the scrambling mechanism after code protection, refer to Section4.0.Device# of BytesPIC16F87064PIC16F87164PIC16F87264PIC16F873128PIC16F874128PIC16F876256PIC16F8772562002 Microchip Technology Inc.DS39025F-page 3PIC16F87XDS39025F-page 4 2002 Microchip Technology Inc.PIC16F87X2.4Program/Verify ModeThe Program/Verify mode is entered by holding pins RB6 and RB7 low, while raising MCLR pin from V IL to V IHH (high voltage). In this mode, the state of the RB3 pin does not effect programming. Low voltage ICSP Programming mode is entered by raising RB3 from V IL to V DD and then applying V DD to MCLR. Once in this mode, the user program memory and the configuration memory can be accessed and programmed in serial fashion. The mode of operation is serial, and the mem-ory that is accessed is the user program memory. RB6 and RB7 are Schmitt Trigger Inputs in this mode.The sequence that enters the device into the Program-ming/Verify mode places all other logic into the RESET state (the MCLR pin was initially at V IL). This means that all I/O are in the RESET state (high impedance inputs).The normal sequence for programming is to use the load data command to set a value to be written at the selected address. Issue the begin programming com-mand followed by read data command to verify, and then increment the address.A device RESET will clear the PC and set the address to 0. The “increment address” command will increment the PC. The “load configuration” command will set the PC to 0x2000. The available commands are shown in Table2-2.2.4.1LOW VOLTAGE ICSPPROGRAMMING MODELow voltage ICSP Programming mode allows a PIC16F87X device to be programmed using V DD only. However, when this mode is enabled by a configuration bit (LVP), the PIC16F87X device dedicates RB3 to control entry/exit into Programming mode.When LVP bit is set to ‘1’, the low voltage ICSP pro-gramming entry is enabled. Since the LVP configura-tion bit allows low voltage ICSP programming entry in its erased state, an erased device will have the LVP bit enabled at the factory. While LVP is ‘1’, RB3 is dedi-cated to low voltage ICSP programming. Bring RB3 to V DD and then MCLR to V DD to enter programming mode. All other specifications for high voltage ICSP™apply.To disable low voltage ICSP mode, the LVP bit must be programmed to ‘0’. This must be done while entered with High Voltage Entry mode (LVP bit = 1). RB3 is now a general purpose I/O pin.2.4.2SERIAL PROGRAM/VERIFYOPERATIONThe RB6 pin is used as a clock input pin, and the RB7 pin is used for entering command bits and data input/output during serial operation. To input a com-mand, the clock pin (RB6) is cycled six times. Each command bit is latched on the falling edge of the clock, with the Least Significant bit (LSb) of the command being input first. The data on pin RB7 is required to have a minimum setup and hold time (see AC/DC specifications), with respect to the falling edge of the clock. Commands that have data associated with them (read and load) are specified to have a minimum delay of 1 µs between the command and the data. After this delay, the clock pin is cycled 16 times with the first cycle being a START bit and the last cycle being a STOP bit. Data is also input and output LSb first.Therefore, during a read operation, the LSb will be transmitted onto pin RB7 on the rising edge of the sec-ond cycle, and during a load operation, the LSb will be latched on the falling edge of the second cycle. A min-imum 1 µs delay is also specified between consecutive commands.All commands are transmitted LSb first. Data words are also transmitted LSb first. The data is transmitted on the rising edge and latched on the falling edge of the clock. To allow for decoding of commands and reversal of data pin configuration, a time separation of at least 1µs is required between a command and a data word (or another command).The commands that are available are:2.4.2.1Load ConfigurationAfter receiving this command, the program counter (PC) will be set to 0x2000. By then applying 16 cycles to the clock pin, the chip will load 14-bits in a “data word,” as described above, to be programmed into the configuration memory. A description of the memory mapping schemes of the program memory for normal operation and Configuration mode operation is shown in Figure2-1. After the configuration memory is entered, the only way to get back to the user program memory is to exit the Program/Verify Test mode by taking MCLR low (V IL).2.4.2.2Load Data for Program Memory After receiving this command, the chip will load in a 14-bit “data word” when 16 cycles are applied, as described previously. A timing diagram for the load data command is shown in Figure6-1.Note:The OSC must not have 72 osc clockswhile the device MCLR is between V IL andV IHH.2002 Microchip Technology Inc.DS39025F-page 5PIC16F87XDS39025F-page 62002 Microchip Technology Inc.2.4.2.3Load Data for Data MemoryAfter receiving this command, the chip will load in a 14-bit “data word ” when 16 cycles are applied. How-ever, the data memory is only 8-bits wide, and thus,only the first 8-bits of data after the START bit will be programmed into the data memory. It is still necessary to cycle the clock the full 16 cycles in order to allow the internal circuitry to reset properly. The data memory contains up to 256 bytes. If the device is code pro-tected, the data is read as all zeros.2.4.2.4Read Data from Program MemoryAfter receiving this command, the chip will transmit data bits out of the program memory (user or configu-ration) currently accessed, starting with the second ris-ing edge of the clock input. The RB7 pin will go into Output mode on the second rising clock edge, and it will revert back to Input mode (hi-impedance) after the 16th rising edge. A timing diagram of this command is shown in Figure 6-2.2.4.2.5Read Data from Data MemoryAfter receiving this command, the chip will transmit data bits out of the data memory starting with the sec-ond rising edge of the clock input. The RB7 pin will go into Output mode on the second rising edge, and it will revert back to Input mode (hi-impedance) after the 16th rising edge. As previously stated, the data memory is 8-bits wide, and therefore, only the first 8-bits that are output are actual data.2.4.2.6Increment AddressThe PC is incremented when this command is received. A timing diagram of this command is shown in Figure 6-3.2.4.2.7Begin Erase/Program CycleA load command must be given before every begin programming command. Programming of the appro-priate memory (test program memory, user program memory or data memory) will begin after this command is received and decoded. An internal timing mechanism executes an erase before write. The user must allow for both erase and programming cycle times for program-ming to complete. No “end programming ” command is required.2.4.2.8Begin ProgrammingA load command must be given before every begin programming command. Programming of the appro-priate memory (test program memory, user program memory or data memory) will begin after this command is received and decoded. An internal timing mechanism executes a write. The user must allow for program cycle time for programming to complete. No “end pro-gramming ” command is required.This command is similar to the ERASE/PROGRAM CYCLE command, except that a word erase is not done. It is recommended that a bulk erase be per-formed before starting a series of programming only cycles.Note:The Begin Program operation must take place at 4.5 to 5.5 V DD range.TABLE 2-2:COMMAND MAPPING FOR PIC16F87XCommandMapping (MSB … LSB)Data Voltage Range Load ConfigurationX X 00000, data (14), 0 2.2V - 5.5V Load Data for Program Memory X X 00100, data (14), 0 2.2V - 5.5V Read Data from Program Memory X X 01000, data (14), 02.2V - 5.5V Increment AddressX X 0110 2.2V - 5.5V Begin Erase Programming Cycle 0010002.2V - 5.5V Begin Programming Only Cycle 011000 4.5V - 5.5V Load Data for Data Memory X X 00110, data (14), 0 2.2V - 5.5V Read Data from Data Memory X X 01010, data (14), 0 2.2V - 5.5V Bulk Erase Setup1000001 4.5V - 5.5V Bulk Erase Setup21114.5V -5.5VPIC16F87X2.5Erasing Program and DataMemoryDepending on the state of the code protection bits, pro-gram and data memory will be erased using different procedures. The first set of procedures is used when both program and data memories are not code pro-tected. The second set of procedures must be used when either memory is code protected. A device pro-grammer should determine the state of the code pro-tection bits and then apply the proper procedure to erase the desired memory.2.5.1ERASING NON-CODE PROTECTEDPROGRAM AND DATA MEMORY When both program and data memories are not code protected, they must be individually erased using the following procedures. The only way that both memories are erased using a single procedure is if code protec-tion is enabled for one of the memories. These proce-dures do not erase the configuration word or ID locations.Procedure to bulk erase program memory:1.Execute a Load Data for Program Memory com-mand (000010) with a ’1’ in all locations(0x3FFF)2.Execute a Bulk Erase Setup1 command(000001)3.Execute a Bulk Erase Setup2 command(000111)4.Execute a Begin Erase/Programming command(001000)5.Wait 8ms6.Execute a Bulk Erase Setup1 command(000001)7.Execute a Bulk Erase Setup2 command(000111)Procedure to bulk erase data memory:1.Execute a Load Data for Data Memory com-mand (000011) with a ’1’ in all locations(0x3FFF)2.Execute a Bulk Erase Setup1 command(000001)3.Execute a Bulk Erase Setup2 command(000111)4.Execute a Begin Erase/Programming command(001000)5.Wait 8ms6.Execute a Bulk Erase Setup1 command(000001)7.Execute a Bulk Erase Setup2 command(000111)2.5.2ERASING CODE PROTECTEDMEMORYFor the PIC16F87X devices, once code protection is enabled, all protected program and data memory loca-tions read all ’0’s and further programming is disabled. The ID locations and configuration word read out unscrambled and can be reprogrammed normally. The only procedure to erase a PIC16F87X device that is code protected is shown in the following procedure. This method erases program memory, data memory, configuration bits and ID locations. Since all data within the program and data memory will be erased when this procedure is executed, the security of the data or code is not compromised.1.Execute a Load Configuration command(000000) with a ’1’ in all locations (0x3FFF)2.Execute Increment Address command(000110) to set address to configuration wordlocation (0x2007)3.Execute a Bulk Erase Setup1 command(000001)4.Execute a Bulk Erase Setup2 command(000111)5.Execute a Begin Erase/Programming command(001000)6.Wait 8ms7.Execute a Bulk Erase Setup1 command(000001)8.Execute a Bulk Erase Setup2 command(000111)2002 Microchip Technology Inc.DS39025F-page 7PIC16F87XDS39025F-page 82002 Microchip Technology Inc.FIGURE 2-1:FLOW CHART - PIC16F87X PROGRAM MEMORY (2.2V ≤V DD < 5.5V)STARTSet V DD = V DDPLoad Data Wait All Locations Done?Verify all LocationsData Correct?DONEIncrement Address CommandReport VerifyErrorNoNoCommandBeginErase/ProgrammingCommandtera + tprogPIC16F87X2002 Microchip Technology Inc.DS39025F-page 9PIC16F87XDS39025F-page 10 2002 Microchip Technology Inc.3.0CONFIGURATION WORDThe PIC16F87X has several configuration bits. These bits can be set (reads ‘0’), or left unchanged (reads ‘1’), to select various device configurations.3.1Device ID WordThe device ID word for the PIC16F87X is located at 2006h.TABLE 3-1:DEVICE ID VALUEDeviceDevice ID ValueDev Rev PIC16F87000 1101 000x xxxx PIC16F87100 1101 001x xxxx PIC16F87200 1000 111x xxxx PIC16F87300 1001 011x xxxx PIC16F87400 1001 001x xxxx PIC16F87600 1001 111x xxxx PIC16F87700 1001 101x xxxxREGISTER 3-1:CONFIG: CONFIGURATION WORD FOR PIC16F873/874/876/877(ADDRESS 2007h)U-0U-0U-0U-0U-0U-0U-0R/P-1U-0R/P-1R/P-1R/P-1R/P-1R/P-1 CP1CP0RESV—WRT CPD LVP BODEN CP1CP0PWRTE WDTE F0SC1F0SC0 bit 13bit 0bit 13-12 bit 5-4CP1:CP0: FLASH Program Memory Code Protection bits(2) 4K Devices:11 = Code protection off10 = 0F00h to 0FFFh code protected01 = 0800h to 0FFFh code protected00 = 0000h to 0FFFh code protected8K Devices:11 = Code protection off10 = 1F00h to 1FFFh code protected01 = 1000h to 1FFFh code protected00 = 0000h to 1FFFh code protectedbit 11Reserved: Set to ‘1’ for normal operationbit 10Unimplemented: Read as ‘1’bit 9WRT: FLASH Program Memory Write Enable bit1 =Unprotected program memory may be written to by EECON control0 =Unprotected program memory may not be written to by EECON controlbit 8CPD: Data EE Memory Code Protection bit1 =Code protection off0 =Data EE memory code protectedbit 7LVP: Low Voltage ICSP Programming Enable bit1 =RB3/PGM pin has PGM function, low voltage programming enabled0 =RB3 is digital I/O, HV on MCLR must be used for programmingbit 6BODEN: Brown-out Reset Enable bit(2)1 =BOR enabled0 =BOR disabledbit 3PWRTE: Power-up Timer Enable bit1 =PWRT disabled0 =PWRT enabledbit 2WDTE: Watchdog Timer Enable bit1 =WDT enabled0 =WDT disabledbit 1-0FOSC1:FOSC0: Oscillator Selection bits11 =RC oscillator10 =HS oscillator01 =XT oscillator00 =LP oscillatorNote1:Enabling Brown-out Reset automatically enables Power-up Timer (PWRT), regardless of the value of bit PWRTE. Ensure the Power-up Timer is enabled any time Brown-out Reset is enabled.2:All of the CP1:CP0 pairs have to be given the same value to enable the code protection scheme listed.Legend:R = Readable bit P = Programmable bit U = Unimplemented bit, read as ‘0’- n = Value when device is unprogrammed u = Unchanged from programmed stateREGISTER 3-2:CONFIG: CONFIGURATION WORD FOR PIC16F870/871/872 (ADDRESS 2007h) U-0U-0U-0U-0U-0U-0U-0R/P-1U-0R/P-1R/P-1R/P-1R/P-1R/P-1 CP1CP0RESV—WRT CPD LVP BODEN CP1CP0PWRTE WDTE F0SC1F0SC0 bit 13bit 0bit 13-12 bit 5-4CP1:CP0: FLASH Program Memory Code Protection bits(2) 11 =Code protection off10 =Not supported01 =Not supported00 =0000h to 07FFh code protectedbit 11Reserved: Set to ‘1’ for normal operationbit 10Unimplemented: Read as ‘1’bit 9WRT: FLASH Program Memory Write Enable bit1 =Unprotected program memory may be written to by EECON control0 =Unprotected program memory may not be written to by EECON controlbit 8CPD: Data EE Memory Code Protection bit1 =Code protection off0 =Data EE memory code protectedbit 7LVP: Low Voltage ICSP Programming Enable bit1 =RB3/PGM pin has PGM function, low voltage programming enabled0 =RB3 is digital I/O, HV on MCLR must be used for programmingbit 6BODEN: Brown-out Reset Enable bit(2)1 =BOR enabled0 =BOR disabledbit 3PWRTE: Power-up Timer Enable bit1 =PWRT disabled0 =PWRT enabledbit 2WDTE: Watchdog Timer Enable bit1 =WDT enabled0 =WDT disabledbit 1-0FOSC1:FOSC0: Oscillator Selection bits11 =RC oscillator10 =HS oscillator01 =XT oscillator00 =LP oscillatorNote1:Enabling Brown-out Reset automatically enables Power-up Timer (PWRT), regardless of the value of bit PWRTE. Ensure the Power-up Timer is enabled any time Brown-out Reset is enabled.2:All of the CP1:CP0 pairs have to be given the same value to enable the code protection scheme listed.Legend:R = Readable bit P = Programmable bit U = Unimplemented bit, read as ‘0’- n = Value when device is unprogrammed u = Unchanged from programmed state4.0EMBEDDING THE CONFIGURATION WORD AND ID INFORMATION IN THEHEX FILETo allow portability of code, the programmer is required to read the configuration word and ID locations from the HEX file when loading the HEX file. If configuration word information was not present in the HEX file, then a simple warning message may be issued. Similarly, while saving a HEX file, configuration word and ID information must be included. An option to not include this information may be provided.Specifically for the PIC16F87X, the EEPROM data memory should also be embedded in the HEX file (see Section2.2).Microchip Technology Inc. feels strongly that this feature is important for the benefit of the end customer.5.0CHECKSUM COMPUTATION Checksum is calculated by reading the contents of the PIC16F87X memory locations and adding up the opcodes, up to the maximum user addressable loca-tion, e.g., 0x1FF for the PIC16F87X. Any carry bits exceeding 16-bits are neglected. Finally, the configura-tion word (appropriately masked) is added to the checksum. Checksum computation for each member of the PIC16F87X devices is shown in Table5-1.The checksum is calculated by summing the following:•The contents of all program memory locations •The configuration word, appropriately masked •Masked ID locations (when applicable)The Least Significant 16 bits of this sum are the checksum.The following table describes how to calculate the checksum for each device. Note that the checksum cal-culation differs depending on the code protect setting. Since the program memory locations read out differ-ently depending on the code protect setting, the table describes how to manipulate the actual program mem-ory values to simulate the values that would be read from a protected device. When calculating a checksum by reading a device, the entire program memory can simply be read and summed. The configuration word and ID locations can always be read.Note that some older devices have an additional value added in the checksum. This is to maintain compatibil-ity with older device programmer checksums.TABLE 5-1:CHECKSUM COMPUTATIONDeviceCodeProtectChecksum*BlankValue0x25E6 at 0and maxaddressPIC16F870OFF SUM[0x0000:0x07FFF] + CFGW & 0x3BFF0x33FF0xFFCD ALL CFGW & 0x3BFF + SUM_ID0x3FCE0x0B9C PIC16F871OFF SUM[0x0000:0x07FFF] + CFGW & 0x3BFF0x33FF0xFFCD ALL CFGW & 0x3BFF + SUM_ID0x3FCE0x0B9C PIC16F872OFF SUM[0x0000:0x07FFF] + CFGW & 0x3BFF0x33FF0xFFCD ALL CFGW & 0x3BFF + SUM_ID0x3FCE0x0B9C PIC16F873OFF SUM[0x0000:0x0FFF] + CFGW & 0x3BFF0x2BFF0xF7CD 0x0F00 : 0xFFF SUM[0x0000:0x0EFF] + CFGW & 0x3BFF +SUM_ID0x48EE0xFAA30x0800 : 0xFFF SUM[0x0000:0x07FF] + CFGW & 0x3BFF + SUM_ID0x3FDE0xF193 ALL CFGW & 0x3BFF + SUM_ID0x37CE0x039C PIC16F874OFF SUM[0x0000:0x0FFF] + CFGW & 0x3BFF0x2BFF0xF7CD 0x0F00 : 0xFFF SUM[0x0000:0x0EFF] + CFGW & 0x3BFF +SUM_ID0x48EE0xFAA30x0800 : 0xFFF SUM[0x0000:0x07FF] + CFGW & 0x3BFF + SUM_ID0x3FDE0xF193 ALL CFGW & 0x3BFF + SUM_ID0x37CE0x039C PIC16F876OFF SUM[0x0000:0x1FFF] + CFGW & 0x3BFF0x1BFF0xE7CD 0x1F00 : 0x1FFF SUM[0x0000:0x1EFF] + CFGW & 0x3BFF +SUM_ID0x28EE0xDAA30x1000 : 0x1FFF SUM[0x0000:0x0FFF] + CFGW & 0x3BFF + SUM_ID0x27DE0xD993 ALL CFGW & 0x3BFF + SUM_ID0x27CE0xF39C PIC16F877OFF SUM[0x0000:0x1FFF] + CFGW & 0x3BFF0x1BFF0xE7CD 0x1F00 : 0x1FFF SUM[0x0000:0x1EFF] + CFGW & 0x3BFF +SUM_ID0x28EE0xDAA30x1000 : 0x1FFF SUM[0x0000:0x0FFF] + CFGW & 0x3BFF + SUM_ID0x27DE0xD993 ALL CFGW & 0x3BFF + SUM_ID0x27CE0xF39C Legend:CFGW=Configuration WordSUM[a:b]=[Sum of locations a to b inclusive]SUM_ID=ID locations masked by 0xF then made into a 16-bit value with ID0 as the most significant nibble.For example, ID0 = 0x1, ID1 = 0x2, ID3 = 0x3, ID4 = 0x4, then SUM_ID = 0x1234 *Checksum=[Sum of all the individual expressions] MODULO [0xFFFF]+=Addition&=Bitwise AND6.0PROGRAM/VERIFY MODE ELECTRICAL CHARACTERISTICS TABLE 6-1:TIMING REQUIREMENTS FOR PROGRAM/VERIFY MODEAC/DC CHARACTERISTICS Standard Operating Conditions (unless otherwise stated) Operating Temperature:0°C ≤ T A≤ +70°C Operating Voltage: 2.2V ≤ V DD≤ 5.5VCharacteristics Sym Min Typ Max Units Conditions/Comments GeneralV DD level for Algorithm 1V DD 2.2 5.5V Limited command set(See Table2-2)V DD level for Algorithm 2V DD 4.5 5.5V All commands available High voltage on MCLR forhigh voltage programming entry V IHH V DD + 3.513.5VVoltage on MCLR forlow voltage ICSP programming entryV IH 2.2 5.5VMCLR rise time (V SS to V HH) for Testmode entryt VHHR 1.0µs(RB6, RB7) input high level V IH10.8V DD V Schmitt Trigger input (RB6, RB7) input low level V IL10.2V DD V Schmitt Trigger inputRB<7:6> setup time before MCLR ↑ tset0100nsRB<7:6> hold time after MCLR ↑ thld05µsRB3 setup time before MCLR ↑tset2100nsSerial Program/VerifyData in setup time before clock ↓tset1100nsData in hold time after clock ↓thld1100nsData input not driven to next clock input(delay required between command/data orcommand/command)tdly1 1.0µsDelay between clock ↓ to clock ↑ of nextcommand or datatdly2 1.0µsClock ↑ to data out valid (during read data)tdly380nsErase cycle time tera24msProgramming cycle time tprog24ms2002 Microchip Technology Inc.DS39025F - page 21Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications.No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip ’s products as critical com-ponents in life support systems is not authorized except with express written approval by Microchip. No licenses are con-veyed, implicitly or otherwise, under any intellectual property rights.TrademarksThe Microchip name and logo, the Microchip logo, FilterLab,K EE L OQ , microID, MPLAB, PIC, PICmicro, PICMASTER,PICSTART , PRO MATE, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip T echnology Incorporated in the U.S.A. and other countries.dsPIC, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB,In-Circuit Serial Programming, ICSP , ICEPIC, microPort,Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM,MXDEV, PICC, PICDEM, , rfPIC, Select Mode and Total Endurance are trademarks of Microchip Technology Incorporated in the U.S.A.Serialized Quick Term Programming (SQTP) is a service mark of Microchip Technology Incorporated in the U.S.A.All other trademarks mentioned herein are property of their respective companies.© 2002, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.Printed on recycled paper.Microchip received QS-9000 quality system certification for its worldwide headquarters, design and wafer fabrication facilities inChandler and Tempe, Arizona in July 1999. The Company’s quality system processes and procedures are QS-9000 compliant for itsPICmicro ® 8-bit MCUs, K EE L OQ ® code hopping devices, Serial EEPROMs and microperipheral products. In addition, Microchip ’s quality system for the design and manufacture of development systems is ISO 9001 certified.Note the following details of the code protection feature on PICmicro ® MCUs.•The PICmicro family meets the specifications contained in the Microchip Data Sheet.•Microchip believes that its family of PICmicro microcontrollers is one of the most secure products of its kind on the market today, when used in the intended manner and under normal conditions.•There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowl-edge, require using the PICmicro microcontroller in a manner outside the operating specifications contained in the data sheet. The person doing so may be engaged in theft of intellectual property.•Microchip is willing to work with the customer who is concerned about the integrity of their code.•Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable ”.•Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our product.If you have any further questions about this matter, please contact the local sales office nearest to you.。

LA4182资料

LA4182资料
Easy to design radiator fin.
Package Dimensions
unit : mm
3022A-DIP12F
[LA4182]
SANYO : DIP12F
Specifications
Note) In general applications, heat generated in this package can be radiated through the Cu-foiled area of the printed circuit board, but since power dissipation Pd may be increased depending on the supply voltage and load conditions, it is recommended to use a fin additionally.
Unit (resistance: Ω)
No.742 -2/9
元器件交易网
Sample Application Circuit 1 : Stereo
LA4182
(Mylar)
(Mylar)
Unit (capacitance: F)
Stereo Bridge
Unit (capacitance: F) Example of printed pattern (bottom view) for use in stereo, bridge amplifier applications : 60 × 80 mm2
Operating Characteristics at Ta = 25°C, VCC = 9 V, f = 1 kHz, RL = 4 Ω, Rg = 600 Ω, ( ): 8 Ω, See specified Test Circuit.

盘点在电源设计中的优秀LED驱动IC

盘点在电源设计中的优秀LED驱动IC

盘点在电源设计中的优秀LED驱动IC宝剑锋从磨砺出,梅花香自苦寒来;此句是中国流传下来的一句古训,喻为如果想要取得成绩,获取成就,就要能吃苦,勤于锻炼,这样才能靠自己的努力赢得胜利。

各个行业皆是如此。

在电源网论坛里,就存在这样一些人,他们时常能DIY出被网友们称之为的经典设计,出于大家能够共同学习的目的,小编抓住了难得的机会,整理了这些经典帖,供分享学习。

本文来自文子的讨论精华帖。

--------小编语。

下图是一款不错的PFC线路,在大功率路灯或灯具上面可以引用。

ZXLD1350,市场反映相当好,体积小巧比较适合做射灯产品。

这款IC原厂设计初衷是为汽车LED应用,我看会在射灯用最合适,体积小适合做到产品受限领域比较合适。

根据使用的外置元件的类型和特性。

这款LED驱动器的效率最高时可达95%。

该驱动器的典型关断电流极低,只有15μA,因此其节能效果极佳,有助于延长电池寿命。

LM3402一:LM3402市场反映不错,输入电压范围涵盖整个汽车应用领域,内置MOS管最多可以15颗LED,1-3颗LED是感觉有些贵,5颗以上时性价比很不错。

目前接触到的客户工程师评价很高,接受领域比较广线路简洁实用,是国半众多LED驱动IC中间佼佼者。

LM3402/LM3402HV是一款由可控电流源衍生的降压型稳压器,设计该器件来驱动串联的大功率、高亮度发光二极管(HBLEDs)串。

当使用LM3402时,电路板可以接受范围在6V至42V的输入电压。

当使用引脚兼容的LM3402HV时,输入电压的上限可达到75V。

按照需要对转换器的输出电压进行调节,以维持通过LED阵列的恒定电流水平。

LM3402/02HV是一款真正的降压型稳压器,其输出电压范围从VO(MIN)为200 mV(参考电压)扩展到由最小关断时间(典型值300ns)决定的VO(MAX)。

只要LED阵列的组合前馈电压不超过VO(MAX),则电路能保持任意数量的LED中的调节电流不变。

常用开关电源芯片大全之欧阳育创编

常用开关电源芯片大全之欧阳育创编

常用开关电源芯片大全第1章DC-DC电源转换器/基准电压源1.1 DC-DC电源转换器1.低噪声电荷泵DC-DC电源转换器AAT3113/AAT31142.低功耗开关型DC-DC电源转换器ADP30003.高效3A开关稳压器AP15014.高效率无电感DC-DC电源转换器FAN56605.小功率极性反转电源转换器ICL76606.高效率DC-DC电源转换控制器IRU30377.高性能降压式DC-DC电源转换器ISL64208.单片降压式开关稳压器L49609.大功率开关稳压器L4970A10.1.5A降压式开关稳压器L497111.2A高效率单片开关稳压器L497812.1A高效率升压/降压式DC-DC电源转换器L597013.1.5A降压式DC-DC电源转换器LM157214.高效率1A降压单片开关稳压器LM1575/LM2575/LM2575HV15.3A降压单片开关稳压器LM2576/LM2576HV16.可调升压开关稳压器LM257717.3A降压开关稳压器LM259618.高效率5A开关稳压器LM267819.升压式DC-DC电源转换器LM2703/LM270420.电流模式升压式电源转换器LM273321.低噪声升压式电源转换器LM275022.小型75V降压式稳压器LM500723.低功耗升/降压式DC-DC电源转换器LT107324.升压式DC-DC电源转换器LT161525.隔离式开关稳压器LT172526.低功耗升压电荷泵LT175127.大电流高频降压式DC-DC电源转换器LT176528.大电流升压转换器LT193529.高效升压式电荷泵LT193730.高压输入降压式电源转换器LT195631.1.5A升压式电源转换器LT196132.高压升/降压式电源转换器LT343333.单片3A升压式DC-DC电源转换器LT343634.通用升压式DC-DC电源转换器LT346035.高效率低功耗升压式电源转换器LT346436.1.1A升压式DC-DC电源转换器LT346737.大电流高效率升压式DC-DC电源转换器LT378238.微型低功耗电源转换器LTC175439.1.5A单片同步降压式稳压器LTC187540.低噪声高效率降压式电荷泵LTC191141.低噪声电荷泵LTC3200/LTC3200-542.无电感的降压式DC-DC电源转换器LTC325143.双输出/低噪声/降压式电荷泵LTC325244.同步整流/升压式DC-DC电源转换器LTC340145.低功耗同步整流升压式DC-DC电源转换器LTC340246.同步整流降压式DC-DC电源转换器LTC340547.双路同步降压式DC-DC电源转换器LTC340748.高效率同步降压式DC-DC电源转换器LTC341649.微型2A升压式DC-DC电源转换器LTC342650.2A两相电流升压式DC-DC电源转换器LTC342851.单电感升/降压式DC-DC电源转换器LTC344052.大电流升/降压式DC-DC电源转换器LTC344253.1.4A同步升压式DC-DC电源转换器LTC345854.直流同步降压式DC-DC电源转换器LTC370355.双输出降压式同步DC-DC电源转换控制器LTC373656.降压式同步DC-DC电源转换控制器LTC377057.双2相DC-DC电源同步控制器LTC380258.高性能升压式DC-DC电源转换器MAX1513/MAX151459.精简型升压式DC-DC电源转换器MAX1522/MAX1523/MAX152460.高效率40V升压式DC-DC电源转换器MAX1553/MAX155461.高效率升压式LED电压调节器MAX1561/MAX159962.高效率5路输出DC-DC电源转换器MAX156563.双输出升压式DC-DC电源转换器MAX1582/MAX1582Y64.驱动白光LED的升压式DC-DC电源转换器MAX158365.高效率升压式DC-DC电源转换器MAX1642/MAX164366.2A降压式开关稳压器MAX164467.高效率升压式DC-DC电源转换器MAX1674/MAX1675/MAX167668.高效率双输出DC-DC电源转换器MAX167769.低噪声1A降压式DC-DC电源转换器MAX1684/MAX168570.高效率升压式DC-DC电源转换器MAX169871.高效率双输出降压式DC-DC电源转换器MAX171572.小体积升压式DC-DC电源转换器MAX1722/MAX1723/MAX172473.输出电流为50mA的降压式电荷泵MAX173074.升/降压式电荷泵MAX175975.高效率多路输出DC-DC电源转换器MAX180076.3A同步整流降压式稳压型MAX1830/MAX183177.双输出开关式LCD电源控制器MAX187878.电流模式升压式DC-DC电源转换器MAX189679.具有复位功能的升压式DC-DC电源转换器MAX194780.高效率PWM降压式稳压器MAX1992/MAX199381.大电流输出升压式DC-DC电源转换器MAX61882.低功耗升压或降压式DC-DC电源转换器MAX62983.PWM升压式DC-DC电源转换器MAX668/MAX66984.大电流PWM降压式开关稳压器MAX724/MAX72685.高效率升压式DC-DC电源转换器MAX756/MAX75786.高效率大电流DC-DC电源转换器MAX761/MAX76287.隔离式DC-DC电源转换器MAX8515/MAX8515A88.高性能24V升压式DC-DC电源转换器MAX872789.升/降压式DC-DC电源转换器MC33063A/MC34063A90.5A升压/降压/反向DC-DC电源转换器MC33167/MC3416791.低噪声无电感电荷泵MCP1252/MCP125392.高频脉宽调制降压稳压器MIC220393.大功率DC-DC升压电源转换器MIC229594.单片微型高压开关稳压器NCP1030/NCP103195.低功耗升压式DC-DC电源转换器NCP1400A96.高压DC-DC电源转换器NCP140397.单片微功率高频升压式DC-DC电源转换器NCP141098.同步整流PFM步进式DC-DC电源转换器NCP142199.高效率大电流开关电压调整器NCP1442/NCP1443/NCP1444/NCP1445100.新型双模式开关稳压器NCP1501101.高效率大电流输出DC-DC电源转换器NCP1550102.同步降压式DC-DC电源转换器NCP1570103.高效率升压式DC-DC电源转换器NCP5008/NCP5009 104.大电流高速稳压器RT9173/RT9173A105.高效率升压式DC-DC电源转换器RT9262/RT9262A106.升压式DC-DC电源转换器SP6644/SP6645107.低功耗升压式DC-DC电源转换器SP6691108.新型高效率DC-DC电源转换器TPS54350109.无电感降压式电荷泵TPS6050x110.高效率升压式电源转换器TPS6101x111.28V恒流白色LED驱动器TPS61042112.具有LDO输出的升压式DC-DC电源转换器TPS6112x 113.低噪声同步降压式DC-DC电源转换器TPS6200x114.三路高效率大功率DC-DC电源转换器TPS75003115.高效率DC-DC电源转换器UCC39421/UCC39422116.PWM控制升压式DC-DC电源转换器XC6371117.白光LED驱动专用DC-DC电源转换器XC9116118.500mA同步整流降压式DC-DC电源转换器XC9215/XC9216/XC9217119.稳压输出电荷泵XC9801/XC9802120.高效率升压式电源转换器ZXLB16001.2 线性/低压差稳压器121.具有可关断功能的多端稳压器BAXXX122.高压线性稳压器HIP5600123.多路输出稳压器KA7630/KA7631124.三端低压差稳压器LM2937125.可调输出低压差稳压器LM2991126.三端可调稳压器LM117/LM317127.低压降CMOS500mA线性稳压器LP38691/LP38693128.输入电压从12V到450V的可调线性稳压器LR8129.300mA非常低压降稳压器(VLDO)LTC3025130.大电流低压差线性稳压器LX8610131.200mA负输出低压差线性稳压器MAX1735132.150mA低压差线性稳压器MAX8875133.带开关控制的低压差稳压器MC33375134.带有线性调节器的稳压器MC33998135.1.0A低压差固定及可调正稳压器NCP1117136.低静态电流低压差稳压器NCP562/NCP563137.具有使能控制功能的多端稳压器PQxx138.五端可调稳压器SI-3025B/SI-3157B139.400mA低压差线性稳压器SPX2975140.五端线性稳压器STR20xx141.五端线性稳压器STR90xx142.具有复位信号输出的双路输出稳压器TDA8133143.具有复位信号输出的双路输出稳压器TDA8138/TDA8138A144.带线性稳压器的升压式电源转换器TPS6110x145.低功耗50mA低压降线性稳压器TPS760xx146.高输入电压低压差线性稳压器XC6202147.高速低压差线性稳压器XC6204148.高速低压差线性稳压器XC6209F149.双路高速低压差线性稳压器XC64011.3 基准电压源150.新型XFET基准电压源ADR290/ADR291/ADR292/ADR293151.低功耗低压差大输出电流基准电压源MAX610x152.低功耗1.2V基准电压源MAX6120153.2.5V精密基准电压源MC1403154.2.5V/4.096V基准电压源MCP1525/MCP1541155.低功耗精密低压降基准电压源REF30xx/REF31xx156.精密基准电压源TL431/KA431/TLV431A第2章AC-DC转换器及控制器1.厚膜开关电源控制器DP104C2.厚膜开关电源控制器DP308P3.DPA-Switch系列高电压功率转换控制器DPA423/DPA424/DPA425/DPA4264.电流型开关电源控制器FA13842/FA13843/FA13844/FA138455.开关电源控制器FA5310/FA53116.PWM开关电源控制器FAN75567.绿色环保的PWM开关电源控制器FAN76018.FPS型开关电源控制器FS6M07652R9.开关电源功率转换器FS6Sxx10.降压型单片AC-DC转换器HV-2405E11.新型反激准谐振变换控制器ICE1QS0112.PWM电源功率转换器KA1M088013.开关电源功率转换器KA2S0680/KA2S088014.电流型开关电源控制器KA38xx15.FPS型开关电源功率转换器KA5H0165R16.FPS型开关电源功率转换器KA5Qxx17.FPS型开关电源功率转换器KA5Sxx18.电流型高速PWM控制器L499019.具有待机功能的PWM初级控制器L599120.低功耗离线式开关电源控制器L659021.LINK SWITCH TN系列电源功率转换器LNK304/LNK305/LNK30622.LINK SWITCH系列电源功率转换器LNK500/LNK501/LNK52023.离线式开关电源控制器M51995A24.PWM电源控制器M62281P/M62281FP25.高频率电流模式PWM控制器MAX5021/MAX502226.新型PWM开关电源控制器MC4460427.电流模式开关电源控制器MC4460528.低功耗开关电源控制器MC4460829.具有PFC功能的PWM电源控制器ML482430.液晶显示器背光灯电源控制器ML487631.离线式电流模式控制器NCP120032.电流模式脉宽调制控制器NCP120533.准谐振式PWM控制器NCP120734.低成本离线式开关电源控制电路NCP121535.低待机能耗开关电源PWM控制器NCP123036.STR系列自动电压切换控制开关STR8xxxx37.大功率厚膜开关电源功率转换器STR-F665438.大功率厚膜开关电源功率转换器STR-G865639.开关电源功率转换器STR-M6511/STR-M652940.离线式开关电源功率转换器STR-S5703/STR-S5707/STR-S570841.离线式开关电源功率转换器STR-S6401/STR-S6401F/STR-S6411/STR-S6411F 442.开关电源功率转换器STR-S651343.离线式开关电源功率转换器TC33369~TC3337444.高性能PFC与PWM组合控制集成电路TDA16846/TDA1684745.新型开关电源控制器TDA1685046.“绿色”电源控制器TEA150447.第二代“绿色”电源控制器TEA150748.新型低功耗“绿色”电源控制器TEA153349.开关电源控制器TL494/KA7500/MB375950.Tiny SwitchⅠ系列功率转换器TNY253、TNY254、TNY25551.Tiny SwitchⅡ系列功率转换器TNY264P~TNY268G52.TOP Switch(Ⅱ)系列离线式功率转换器TOP209~TOP22753.TOP Switch-FX系列功率转换器TOP232/TOP233/TOP23454.TOP Switch-GX系列功率转换器TOP242~TOP25055.开关电源控制器UCX84X56.离线式开关电源功率转换器VIPer12AS/VIPer12ADIP57.新一代高度集成离线式开关电源功率转换器VIPer53第3章功率因数校正控制/节能灯电源控制器1.电子镇流器专用驱动电路BL83012.零电压开关功率因数控制器FAN48223.功率因数校正控制器FAN75274.高电压型EL背光驱动器HV8265.EL场致发光背光驱动器IMP525/IMP5606.高电压型EL背光驱动器/反相器IMP8037.电子镇流器自振荡半桥驱动器IR21568.单片荧光灯镇流器IR21579.调光电子镇流器自振荡半桥驱动器IR215910.卤素灯电子变压器智能控制电路IR216111.具有功率因数校正电路的镇流器电路IR216612.单片荧光灯镇流器IR216713.自适应电子镇流器控制器IR252014.电子镇流器专用控制器KA754115.功率因数校正控制器L656116.过渡模式功率因数校正控制器L656217.集成背景光控制器MAX8709/MAX8709A18.功率因数校正控制器MC33262/MC3426219.固定频率电流模式功率因数校正控制器NCP165320.EL场致发光灯高压驱动器SP440321.功率因数校正控制器TDA4862/TDA486322.有源功率因数校正控制器UC385423.高频自振荡节能灯驱动器电路VK05CFL24.大功率高频自振荡节能灯驱动器电路VK06TL第4章充电控制器1.多功能锂电池线性充电控制器AAT36802.可编程快速电池充电控制器BQ20003.可进行充电速率补偿的锂电池充电管理器BQ20574.锂电池充电管理电路BQ2400x5.单片锂电池线性充电控制器BQ2401xB接口单节锂电池充电控制器BQ2402x7.2A同步开关模式锂电池充电控制器BQ241008.集成PWM开关控制器的快速充电管理器BQ29549.具有电池电量计量功能的充电控制器DS277010.锂电池充电控制器FAN7563/FAN756411.2A线性锂/锂聚合物电池充电控制器ISL629212.锂电池充电控制器LA5621M/LA5621V13.1.5A通用充电控制器LT157114.2A恒流/恒压电池充电控制器LT176915.线性锂电池充电控制器LTC173216.带热调节功能的1A线性锂电池充电控制器LTC173317.线性锂电池充电控制器LTC173418.新型开关电源充电控制器LTC198019.开关模式锂电池充电控制器LTC400220.4A锂电池充电器LTC400621.多用途恒压/恒流充电控制器LTC400822.4.2V锂离子/锂聚合物电池充电控制器LTC405223.可由USB端口供电的锂电池充电控制器LTC405324.小型150mA锂电池充电控制器LTC405425.线性锂电池充电控制器LTC405826.单节锂电池线性充电控制器LTC405927.独立线性锂电池充电控制器LTC406128.镍镉/镍氢电池充电控制器M62256FP29.大电流锂/镍镉/镍氢电池充电控制器MAX150130.锂电池线性充电控制器MAX150731.双输入单节锂电池充电控制器MAX1551/MAX155532.单节锂电池充电控制器MAX167933.小体积锂电池充电控制器MAX1736B接口单节锂电池充电控制器MAX181135.多节锂电池充电控制器MAX187336.双路输入锂电池充电控制器MAX187437.单节锂电池线性充电控制器MAX189838.低成本/多种电池充电控制器MAX190839.开关模式单节锂电池充电控制器MAX1925/MAX192640.快速镍镉/镍氢充电控制器MAX2003A/MAX200341.可编程快速充电控制器MAX712/MAX71342.开关式锂电池充电控制器MAX74543.多功能低成本充电控制器MAX846A44.具有温度调节功能的单节锂电池充电控制器MAX8600/MAX860145.锂电池充电控制器MCP73826/MCP73827/MCP7382846.高精度恒压/恒流充电器控制器MCP73841/MCP73842/MCP73843/MCP73844 647.锂电池充电控制器MCP73861/MCP7386248.单节锂电池充电控制器MIC7905049.单节锂电池充电控制器NCP180050.高精度线性锂电池充电控制器VM7205。

海德福斯插装阀型号表

海德福斯插装阀型号表

4305710
4303510 4303910 4303710 4304110 G Plating
4305712 4307112 4305882 4305892 4305612 4305412 4303512 4303912 4303712 4304112
4305724 4307124 4305884 4305894 4305624 4305424 4303524 4303924 4303724 4304124
-12TD
7155010
M J Y Neutral Sensor SV12-P20
4301891 4305710
G Plating430310 4303910 4303710 4304110
4301612 4301862 4301892 4305712 4307112 4305882 4305892 4305612 4305412 4303512 4303912 4303712 4304112
6356010
4301891 4305710
G Plating
4303510 4303910 4303710 4304110
阀块型号 订货号
-2B -3B -4T -6T -8T -3BD -6TD -8TD
7028620 7028630 7024640 7024660 7024680 7151050 7151010 7151020
4301871 4305110
G Plating
4303410 4303810 4303610 4304010 6301010 6302010
V Seals P Seals
6351010 6352010
6351012 6355012 6352012 6359412 6356012 4301612 4301862 4301892 4305712 4307112 4305882 4305892 4305612 4305412 4303512 4303912 4303712 4304112

AOD418

AOD418

SymbolSymbolt ≤ 10s Steady-State Steady-StateR θJCMaximum Junction-to-Case°C/W°C/W Maximum Junction-to-Ambient A D2.5503MaximumParameter Absolute Maximum Ratings T A =25°C unless otherwise noted Thermal Characteristics Units Maximum Junction-to-AmbientA°C/W R θJA 164120ParameterTyp Max GS DGSDGG DDSSBottom ViewAOD418/AOI418SymbolMin Typ Max Units BV DSS 30VV DS =30V, V GS =0V1T J =55°C5I GSS ±100nA V GS(th)Gate Threshold Voltage 1.5 1.952.5V I D(ON)125A 6.27.5T J =125°C 9.511.5g FS 63S V SD 0.721V I S36A C iss 92011501380pF C oss 125180235pF C rss 60105150pF R g0.55 1.1 1.65ΩQ g (10V)162024nC Q g (4.5V)7.69.511Q gs 2.7nC Q gd 5nC t D(on) 6.5ns t r 2ns t D(off)17ns t f 3.5nst rr 78.710.5ns Q rr1113.516nCTHIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN,FUNCTIONS AND RELIABILITY WITHOUT NOTICE.V GS =0V, V DS =15V, f=1MHz SWITCHING PARAMETERS Body Diode Reverse Recovery TimeGate resistanceV GS =0V, V DS =0V, f=1MHzTurn-Off Fall TimeTotal Gate Charge V GS =10V, V DS =15V, I D =20AElectrical Characteristics (T J =25°C unless otherwise noted)STATIC PARAMETERS ParameterConditions Drain-Source Breakdown Voltage I D =250µA, V GS =0V V GS =10V, V DS =5V V GS =10V, I D =20AOn state drain currentForward TransconductanceDiode Forward VoltageV GS =4.5V, I D =20A TO252I S =1A,V GS =0V V DS =5V, I D =20AStatic Drain-Source On-ResistanceV GS =10V, I D =20A TO251AV GS =4.5V, I D =20A TO251AI DSS µA V DS =V GS I D =250µA V DS =0V, V GS = ±20V Zero Gate Voltage Drain Current Gate-Body leakage current m ΩTO2528.511m ΩBody Diode Reverse Recovery Charge I F =20A, dI/dt=500A/µsTurn-On Rise Time Turn-Off DelayTime I F =20A, dI/dt=500A/µsMaximum Body-Diode Continuous Current GInput Capacitance Output Capacitance Turn-On DelayTime DYNAMIC PARAMETERS Total Gate Charge Gate Source Charge Gate Drain Charge V GS =10V, V DS =15V, R L =0.75Ω, R GEN =3ΩReverse Transfer Capacitance R DS(ON)m Ωm Ω6.78911.5A. The value of R θJA is measured with the device mounted on 1in 2FR-4 board with 2oz. Copper, in a still air environment with T A =25°C. The Power dissipation P DSM is based on R θJA and the maximum allowed junction temperature of 150°C. The value in any given application depends on the user's specific board design, and the maximum temperature of 175°C may be used if the PCB allows it.B. The power dissipation P D is based on T J(MAX)=175°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.C. Repetitive rating, pulse width limited by junction temperature T J(MAX)=175°C. Ratings are based on low frequency and duty cycles to keep initial T J =25°C.D. The R θJA is the sum of the thermal impedence from junction to case R θJC and case to ambient.E. The static characteristics in Figures 1 to 6 are obtained using <300µs pulses, duty cycle 0.5% max.F. These curves are based on the junction-to-case thermal impedence which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of T J(MAX)=175°C. The SOA curve provides a single pulse rating.G. The maximum current rating is package limited.H. These tests are performed with the device mounted on 1 in 2FR-4 board with 2oz. Copper, in a still air environment with T A =25°C.TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS02040608010011.522.533.544.555.5V GS (Volts)Figure 2: Transfer Characteristics (Note E)I D (A )02040608010012014012345V DS (Volts)Fig 1: On-Region Characteristics (Note E)I D (A )TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS02468105101520Q g (nC)Figure 7: Gate-Charge CharacteristicsV G S (V o l t s )2004006008001000120014001600051015202530V DS (Volts)Figure 8: Capacitance CharacteristicsC a p a c i t a n c e (p F )VdsChargeGate Charge Test Circuit & WaveformUnclamped Inductive Switching (UIS) Test Circuit & WaveformsBV DSSIARVddVddVddResistive Switching Test Circuit & WaveformsVds。

多种电源管理芯片代换

多种电源管理芯片代换

1200AP40 1200AP60、1203P60200D6、203D6 DAP8A 可互代203D6/1203P6 DAP8A2S0680 2S08803S0680 3S08805S0765 DP104、DP7048S0765C DP704加24V的稳压二极管ACT4060 ZA3020LV/MP1410/MP9141ACT4065 ZA3020/MP1580ACT4070 ZA3030/MP1583/MP1591MP1593/MP1430 ACT6311 LT1937ACT6906 LTC3406/AT1366/MP2104AMC2576 LM2576AMC2596 LM2596AMC3100 LTC3406/AT1366/MP2104AMC34063A AMC34063AMC7660 AJC1564AP8012 VIPer12AAP8022 VIPer22ADAP02 可用SG5841 /SG6841代换DAP02ALSZ SG6841DAP02ALSZ SG6841DAP7A、DP8A 203D6、1203P6DH321、DL321 Q100、DM0265RDM0465R DM/CM0565RDM0465R/DM0565R 用cm0565r代换(取掉4脚的稳压二极管)DP104 5S0765DP704 5S0765DP706 5S0765DP804 DP904FAN7601 LAF0001LD7552 可用SG6841代(改4脚电阻)LD7575PS 203D6改1脚100K电阻为24KOB2268CP OB2269CPOB2268CP SG6841改4脚100K电阻为20-47KOCP1451 TL1451/BA9741/SP9741/AP200OCP2150 LTC3406/AT1366/MP2104OCP2160 LTC3407OCP2576 LM2576OCP3601 MB3800OCP5001 TL5001OMC2596 LM2596/AP1501PT1301 RJ9266PT4101 AJC1648/MP3202PT4102 LT1937/AJC1896/AP1522/RJ9271/MP1540SG5841SZ SG6841DZ/SG6841DSM9621 RJ9621/AJC1642SP1937 LT1937/AJC1896/AP1522/RJ9271/MP1540STR-G5643D STR-G5653D、STR-G8653DTEA1507 TEA1533TEA1530 TEA1532对应引脚功能接入THX202H TFC719THX203H TFC718STOP246Y TOP247YVA7910 MAX1674/75 L6920 AJC1610VIPer12A VIPer22A[audio01]ICE2A165(1A/650V.31W);ICE2A265(2A/650V.52W);ICE2B0565(0.5A/650V.23W):ICE2B165(1A/650V.31W);ICE2B265(2A/650V.52W);ICE2A180(1A/800V.29W);ICE2A280(2A/800.50W).KA5H0365R, KA5M0365R, KA5L0365R, KA5M0365RN# u) t! u1 W1 B) R, PKA5L0365RN, KA5H0380R, KA5M0380R, KA5L0380R1、KA5Q1265RF/RT(大小两种体积)、KA5Q0765、FSCQ1265RT、KACQ1265RF、FSCQ0765RT、FSCQ1565Q这是一类的,这些型号的引脚功能全都一样,只是输出功率不一样。

一种基于LMD18200T直流伺服电动机驱动器的设计

一种基于LMD18200T直流伺服电动机驱动器的设计
流 伺服 电动机 驱 动器 ,控 制信 号采 用光 隔 电路 ,提 高驱动 器稳 定性 。 实践证 明 :该驱 动 器具有 良好 的调 速性
能、可靠性 高 、体 积小等优 点 。
关键 词 :L M D 1 8 2 0 O T ;直 流伺服 电动机 ;光 隔电路 ;驱 动 器 中图分类号 :T M 3 8 3 文 献标识码 :A 文章编 号 :1 0 0 9 — 2 3 7 4( 2 0 1 4)1 6 - 0 0 2 6 一 O 2
摘 要 :在伺服 控 制 系统 中 ,我们 经 常会使 用 到 电机 驱 动 器。常规 驱 动 器电路硬 件 结构设 计 复 杂 、系统运 行可 靠 性 不 高、体 积较 大 。所 以为 了提 高伺 服 系统 的可 靠性 、减 小其体 积 ,我们 设 计 了一种 基 于L M D 1 8 2 0 0 T 的 直
度报 警 输 出端 ,提供 温度 报警 信 号 。
表1
低 等缺 点 。针 对上 述缺 点 ,我们 选 用L M 1 8 2 0 0 T 作 为驱 动 芯 片 ,设计 了一种新 式直 流 电机 驱动 器 。
P W , l 方向 刹车 实际输出电演方向 工作状态
H ¨ X L 渣出 l ,渍入 2 正转
电源上,在少用或不用人为干预的情况下使系统迅速恢
何任 由
霍 募 篓 豢 蓑 荨 萋 至 笔 耋 等 , n n 1 r 1
[ 5 ] 姜维.浅析数字 图像处理技术及其应用[ J ] .信息
与 电脑 ( 理论 版 ),2 0 1 2 , ( 3).
参考文献 [ 1 ] 李宝安,李行善. 自动测试 系统 ( A T S )软件 的发
开 发一 个 电动 机 控制 驱 动器 是一 项 繁琐 的工 作 。过 去 用逻 辑集 成 电路 、 比较 器 、晶体 管 、二 极管 等 电子 元 器 件 装 配在 一 个面 板上 ,并使用 分 立 的M O S F E T 或 绝栅双 极 管 连接 成 的一 个H 桥 或 半 桥 输 出 电路 。这种 方 法 设 计

一种独立式预警电气火灾监控探测器[实用新型专利]

一种独立式预警电气火灾监控探测器[实用新型专利]

专利名称:一种独立式预警电气火灾监控探测器专利类型:实用新型专利
发明人:沈杰,张丹,隋斌
申请号:CN201120510971.2
申请日:20111209
公开号:CN202352017U
公开日:
20120725
专利内容由知识产权出版社提供
摘要:一种独立预警电气火灾监控探测器,基准电路ADR02芯片的5V输出端连接MicrochipdsPIC30F4013单片机;剩余电流互感器的输出信号端连接第一LM358运算放大
器,PT100温度传感器连接第二LM358运算放大器,第一,第二运算放大器、PCF8563时钟芯片、FM24C04存储器及RS485通讯芯片ADM2483连接单片机,单片机IO口线连接MC1413达林顿阵列芯片,达林顿阵列芯片连接继电器及蜂鸣器。

本实用新型电路简单,功能全面,操作简便,成本低廉,使用单片机及少量外围电路,可实现剩余电流测量,温度测量,声光报警,故障事件记录,且温度和剩余电流的超限报警方式可根据实际选择报警方式或脱扣方式;对于线路中的剩余电流预警功能。

有效的减少了线路绝缘逐渐老化带来的火灾隐患,将电气火灾的风险降到了最低。

申请人:丹东华通测控有限公司
地址:118009 辽宁省丹东市临港产业园区甘泉路19号
国籍:CN
代理机构:沈阳杰克知识产权代理有限公司
代理人:孙国瑞
更多信息请下载全文后查看。

康奈德单体电池仪模块特殊寄存器

康奈德单体电池仪模块特殊寄存器

内阻采集触发规则:
1.为保证内阻采集结果的准确性,自单体模块上电时起,前4次触发内阻采集的数值不会保存,查询内阻值将会返回无效数值。

2.两次触发内阻采集动作的间隔至少在五分钟以上,否则将会有烧毁设备或电池的风险。

备注:(保留)
1.DI的值Bit0代表DI当前开关量输入状态。

其它Bit位保留,始终为0。

2.自动清零和手动清零并不冲突,设置了自动清零,相关可清0的寄存器仍然可以用手工清0。

3.每个寄存器的清0是独立的,相互不影响。

4.DO的状态写0xFF00表示输出1,0x0000表示输出0。

写其他值返回失败。

DO上电时的状态同理。

5.DO处于电平工作模式时,写对应的脉冲宽度寄存器无效果。

6.DO处于脉冲工作模式时,写对应DO的状态寄存器无效果。

DC-DC芯片反向大电流检测的设计

DC-DC芯片反向大电流检测的设计

DC-DC芯片反向大电流检测的设计
曼茂立
【期刊名称】《科技创新与应用》
【年(卷),期】2017(0)6
【摘要】提出了一种降压型电流模DC-DC芯片的反向大电流检测电路.该电路检测开关管之间的电压,与基准电压比较后输出逻辑信号控制开关管,将DC-DC芯片的反向电感电流门限设定为900mA,提高了芯片轻负载工作下的效率.
【总页数】1页(P71)
【作者】曼茂立
【作者单位】承德石油高等专科学校汽车工程系,河北承德 067000
【正文语种】中文
【相关文献】
1.单芯片高效率降压DC-DC芯片设计
2.一种高效率大电流的DC-DC降压电源设计
3.通过WEBENCH设计平台设计基于LM3481芯片的DC-DC开关电源
4.通信用采用磁集成技术的低压大电流DC-DC变换器的设计
5.一种低压大电流DC-DC 电源的设计
因版权原因,仅展示原文概要,查看原文内容请购买。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

SymbolSymbolt ≤ 10s Steady-State Steady-StateR θJCMaximum Junction-to-Case°C/W°C/W Maximum Junction-to-Ambient A D1501.5Absolute Maximum Ratings T A =25°C unless otherwise noted Units Maximum Junction-to-Ambient A°C/W R θJA 164020Thermal CharacteristicsParameterTyp Max GS DGSDSymbolMin Typ Max Units BV DSS 80VV DS =80V, V GS =0V10T J =55°C50I GSS 100nA V GS(th)Gate Threshold Voltage 2.8 3.34.2V I D(ON)85A 12.515.5T J =125°C22.5281620m Ωg FS33S V SD 0.71V I S54A C iss 133516702005pF C oss 150215280pF C rss 4072100pF R g0.350.75 1.2ΩQ g (10V)222834nC Q gs 8.81113nC Q gd 5811nC t D(on)12ns t r 9ns t D(off)20ns t f 8ns t rr 14.52127.5ns Q rr45.56585nCTHIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN,FUNCTIONS AND RELIABILITY WITHOUT NOTICE.Body Diode Reverse Recovery TimeDrain-Source Breakdown Voltage On state drain currentI D =250µA, V GS =0V V GS =10V, V DS =5V V GS =10V, I D =20AReverse Transfer Capacitance I F =20A, dI/dt=500A/µsV GS =0V, V DS =40V, f=1MHz SWITCHING PARAMETERS Electrical Characteristics (T J =25°C unless otherwise noted)STATIC PARAMETERS Parameter Conditions I DSS µA V DS =V GS I D =250µA V DS =0V, V GS = ±25V Zero Gate Voltage Drain Current Gate-Body leakage current Forward TransconductanceDiode Forward Voltage R DS(ON)Static Drain-Source On-Resistancem ΩI S =1A,V GS =0VV DS =5V, I D =20AV GS =7V, I D =20AV GS =10V, V DS =40V, R L =2Ω, R GEN =3ΩGate resistanceV GS =0V, V DS =0V, f=1MHzTurn-Off Fall TimeTotal Gate Charge V GS =10V, V DS =40V, I D =20AGate Source Charge Gate Drain Charge Body Diode Reverse Recovery Charge I F =20A, dI/dt=500A/µsMaximum Body-Diode Continuous CurrentGInput Capacitance Output Capacitance Turn-On DelayTime DYNAMIC PARAMETERS Turn-On Rise Time Turn-Off DelayTime A. The value of R θJA is measured with the device mounted on 1in 2FR-4 board with 2oz. Copper, in a still air environment with T A =25°C. ThePower dissipation P DSM is based on R θJA and the maximum allowed junction temperature of 150°C. The value in any given application depends on the user's specific board design, and the maximum temperature of 175°C may be used if the PCB allows it.B. The power dissipation P D is based on T J(MAX)=175°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.C. Repetitive rating, pulse width limited by junction temperature T J(MAX)=175°C. Ratings are based on low frequency and duty cycles to keep initial T J =25°C.D. The R θJA is the sum of the thermal impedence from junction to case R θJC and case to ambient.E. The static characteristics in Figures 1 to 6 are obtained using <300µs pulses, duty cycle 0.5% max.F. These curves are based on the junction-to-case thermal impedence which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of T J(MAX)=175°C. The SOA curve provides a single pulse rating.G. The maximum current rating is package limited.H. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T A =25°C.2345678V GS (Volts)Figure 2: Transfer Characteristics (Note E)020*********12345V DS (Volts)Fig 1: On-Region Characteristics (Note E)I D (A )TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS24681051015202530V G S (V o l t s )40080012001600200024000102030405060C a p a c i t a n c e (p F )TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICSAOD4182VdsChargeGate Charge Test Circuit & WaveformResistive Switching Test Circuit & WaveformsVddVdsIdVgsBV I Unclamped Inductive Switching (UIS) Test Circuit & WaveformsARDSS2E = 1/2 LI VddAR AR。

相关文档
最新文档