Adsorption of imidazolium
从水中去除重金属离子和染料的农业固体废物吸附剂综述说明书
DAFTAR PUSTAKAAbdel-Khalek, M. A., Abdel Rahman, M. K., & Francis, A. A. (2017). Exploring the adsorption behavior of cationic and anionic dyes on industrial waste shells of egg. Journal of Environmental Chemical Engineering, 5(1), 319–327.https:///10.1016/j.jece.2016.11.043Afroze, S., & Sen, T. K. (2018). A Review on Heavy Metal Ions and Dye Adsorption from Water by Agricultural Solid Waste Adsorbents. Water, Air, and Soil Pollution, 229(7). https:///10.1007/s11270-018-3869-z Agarwal, A., Upadhyay, U., Sreedhar, I., Singh, S. A., & Patel, C. M. (2020). A review on valorization of biomass in heavy metal removal from wastewater.Journal of Water Process Engineering, 38(August), 101602.https:///10.1016/j.jwpe.2020.101602Al-Ghouti, M. A., & Da’ana, D. A. (2020). Guidelines for the use and interpretation of adsorption isotherm models: A review. Journal of Hazardous Materials, 393(February), 122383. https:///10.1016/j.jhazmat.2020.122383 Anastopoulos, I., & Kyzas, G. Z. (2016). Are the thermodynamic parameters correctly estimated in liquid-phase adsorption phenomena? Journal of Molecular Liquids, 218, 174–185.https:///10.1016/j.molliq.2016.02.059Areibat, L. E. M., & Kamari, A. (2017). Razor clam (Ensis directus) shell as a low-cost adsorbent for the removal of Congo red and Rhodamine B dyes from aqueous solution. AIP Conference Proceedings, 1847.https:///10.1063/1.4983900Batool, F., Akbar, J., Iqbal, S., Noreen, S., Nasir, S., & Bukhari, A. (2018). Study of Isothermal , Kinetic , and Thermodynamic Parameters for Adsorption of Cadmium : An Overview of Linear and Nonlinear Approach and Error Analysis. 2018.Belisti Lelisa, M. M. (2014). Removal of Methylene Blue (Mb) Dye from Aqueous Solution by Bioadsorption onto Untreated Parthenium hystrophorous Weed.Modern Chemistry & Applications, 02(04). https:///10.4172/2329-6798.1000146Chang, J., Shen, Z., Hu, X., Schulman, E., Cui, C., Guo, Q., & Tian, H. (2020).Adsorption of Tetracycline by Shrimp Shell Waste from Aqueous Solutions : Adsorption Isotherm , Kinetics Modeling , and Mechanism.https:///10.1021/acsomega.9b03781Chen, J., Wang, X., Huang, Y., Lv, S., Cao, X., Yun, J., & Cao, D. (2019).Adsorption removal of pollutant dyes in wastewater by nitrogen-doped porous carbons derived from natural leaves. Engineered Science, 5, 30–38.https:///10.30919/es8d666Dai, L., Zhu, W., He, L., Tan, F., Zhu, N., Zhou, Q., He, M., & Hu, G. (2018).Calcium-rich biochar from crab shell: An unexpected super adsorbent for dye removal. Bioresource Technology, 267(June), 510–516.https:///10.1016/j.biortech.2018.07.090d e Rezende, M. L. R., Coesta, P. T. G., de Oliveira, R. C., Salmeron, S., Sant’Ana,A. C. P., Damante, C. A., Greghi, S. L. A., & Consolaro, A. (2015). BoneDemineralization With Citric Acid Enhances Adhesion and Spreading of Preosteoblasts. Journal of Periodontology, 86(1), 146–154.https:///10.1902/jop.2014.130657Derakhshan, Z., Baghapour, M. A., Ranjbar, M., & Faramarzian, M. (2013).Adsorption of Methylene Blue Dye from Aqueous Solutions by Modified Pumice Stone: Kinetics and Equilibrium Studies. Health Scope, 2(3), 136–144. https:///10.17795/jhealthscope-12492Djelloul, C., & Hamdaoui, O. (2014). Removal of cationic dye from aqueous solution using melon peel as nonconventional low-cost sorbent. Desalination and Water Treatment, 52(40–42), 7701–7710.https:///10.1080/19443994.2013.833555Eletta, O. A. A., Adeniyi, A. G., Ighalo, J. O., Onifade, D. V., & Ayandele, F. O.(2020). Valorisation of Cocoa (Theobroma cacao) pod husk as precursors for the production of adsorbents for water treatment. Environmental Technology Reviews, 9(1), 20–36. https:///10.1080/21622515.2020.1730983Eljiedi, A. A. A., & Kamari, A. (2017). Removal of methyl orange and methylene blue dyes from aqueous solution using lala clam (Orbicularia orbiculata) shell.AIP Conference Proceedings, 1847. https:///10.1063/1.4983899Elwakeel, K. Z., Elgarahy, A. M., & Mohammad, S. H. (2017). Use of beach bivalve shells located at Port Said coast (Egypt) as a green approach for methylene blue removal. Journal of Environmental Chemical Engineering, 5(1), 578–587. https:///10.1016/j.jece.2016.12.032Faisal, A. A. H., Khalid, Z., Al-ansari, N., & Sharma, G. (2021). Chemosphere Precipitation of ( Mg / Fe-CTAB ) - Layered double hydroxide nanoparticles onto sewage sludge for producing novel sorbent to remove Congo red and methylene blue dyes from aqueous environment. Chemosphere, September, 132693. https:///10.1016/j.chemosphere.2021.132693Fajarwati, F. I., Ika Yandini, N., Anugrahwati, M., & Setyawati, A. (2020).Adsorption Study of Methylene Blue and Methyl Orange Using Green Shell (Perna Viridis). EKSAKTA: Journal of Sciences and Data Analysis, 1(1), 92–97. https:///10.20885/eksakta.vol1.iss1.art14Fosso-Kankeu, E., Webster, A., Ntwampe, I. O., & Waanders, F. B. (2017).Coagulation/Flocculation Potential of Polyaluminium Chloride and Bentonite Clay Tested in the Removal of Methyl Red and Crystal Violet. Arabian Journal for Science and Engineering, 42(4), 1389–1397.https:///10.1007/s13369-016-2244-xGhaedi, M., Hajjati, S., Mahmudi, Z., Tyagi, I., Agarwal, S., Maity, A., & Gupta, V. K. (2015). Modeling of competitive ultrasonic assisted removal of the dyes - Methylene blue and Safranin-O using Fe3O4 nanoparticles. Chemical Engineering Journal, 268, 28–37. https:///10.1016/j.cej.2014.12.090 Hevira, L., Rahmi, A., Zein, R., Zilfa, Z., & Rahmayeni, R. (2020). The fast and of low-cost-adsorbent to the removal of cationic and anionic dye using chicken eggshell with its membrane. Mediterranean Journal of Chemistry, 10(3), 294–301. https:///10.13171/mjc020********lhHevira, L., Zilfa, Rahmayeni, Ighalo, J. O., Aziz, H., & Zein, R. (2021). Terminalia catappa shell as low-cost biosorbent for the removal of methylene blue from aqueous solutions. Journal of Industrial and Engineering Chemistry, 97, 188–199. https:///10.1016/j.jiec.2021.01.028Hevira, L., Zilfa, Rahmayeni, Ighalo, J. O., & Zein, R. (2020). Biosorption of indigo carmine from aqueous solution by Terminalia Catappa shell. Journal of Environmental Chemical Engineering, 8(5), 104290.https:///10.1016/j.jece.2020.104290Hubbe, M. A., Azizian, S., & Douven, S. (2019). Implications of apparent pseudo-second-order adsorption kinetics onto cellulosic materials: A review.BioResources, 14(3), 7582–7626. https:///10.15376/biores.14.3.7582-7626Ighalo, J. O., & Adeniyi, A. G. (2020). A mini-review of the morphological properties of biosorbents derived from plant leaves. SN Applied Sciences, 2(3).https:///10.1007/s42452-020-2335-xIgwegbe, C. A., Mohmmadi, L., Ahmadi, S., Rahdar, A., Khadkhodaiy, D., Dehghani, R., & Rahdar, S. (2019). Modeling of adsorption of Methylene Blue dye on Ho-CaWO4 nanoparticles using Response Surface Methodology (RSM) and Artificial Neural Network (ANN) techniques. MethodsX, 6, 1779–1797. https:///10.1016/j.mex.2019.07.016Jafari, M., Vanoppen, M., van Agtmaal, J. M. C., Cornelissen, E. R., Vrouwenvelder, J. S., Verliefde, A., van Loosdrecht, M. C. M., & Picioreanu,C. (2021). Cost of fouling in full-scale reverse osmosis and nanofiltrationinstallations in the Netherlands. Desalination, 500(December 2020), 114865.https:///10.1016/j.desal.2020.114865Jawad, A. H., Rashid, R. A., Ishak, M. A. M., & Ismail, K. (2018). Adsorptive removal of methylene blue by chemically treated cellulosic waste banana ( Musa sapientum ) peels . Journal of Taibah University for Science, 12(6), 809–819. https:///10.1080/16583655.2018.1519893Jawad, A. H., Rashid, R. A., Ishak, M. A. M., & Wilson, L. D. (2016). Adsorption of methylene blue onto activated carbon developed from biomass waste by H2SO4 activation: kinetic, equilibrium and thermodynamic studies.Desalination and Water Treatment, 57(52), 25194–25206.https:///10.1080/19443994.2016.1144534Katneni, V. K., Shekhar, M. S., Jangam, A. K., Prabhudas, S. K., Krishnan, K., Kaikkolante, N., Paran, B. C., Baghel, D. S., Koyadan, V. K., Jena, J., & Mohapatra, T. (2020). Novel Isoform Sequencing Based Full-Length Transcriptome Resource for Indian White Shrimp, Penaeus indicus. Frontiers in Marine Science, 7(December), 1–4.https:///10.3389/fmars.2020.605098Kusumawardani, R., Rismawati, A., Retnowati, R., So, H., & Variabel, C. (2018).MODIFIKASI BIJI PEPAYA SEBAGAI BIOSORBEN ZAT WARNA TEKSTIL MORDANT BLACK 11 MODIFICATION OF PAPAYA SEEDS AS BIOSORBENT COLORS OF MORDANT BLACK 11 TEXTILES biosorben biji pepaya untuk mengadsorpsi zat warna tekstil mordant black 11 . Prinsip kerja dari mor. 1(2), 92–95.Li, W. (2011). Quantitative Analysis of the Reaction between Gliadin and Citric Acid under Weak Acidic and Weak Alkaline Conditions. Thesis.Liu, L., Fan, S., & Li, Y. (2018). Removal behavior of methylene blue from aqueous solution by tea waste: Kinetics, isotherms and mechanism. International Journal of Environmental Research and Public Health, 15(7).https:///10.3390/ijerph15071321Makeswari, M., Santhi, T., & Ezhilarasi, M. R. (2016). Adsorption of methylene blue dye by citric acid modified leaves of Ricinus communis from aqueous solutions. 8(7), 452–462.Mohan, C. (2003). A guide for the preparation and use of buffers in biological systems.Naghizadeh, A., & Ghafouri, M. (2017). Synthesis and performance evaluation of chitosan prepared from Persian gulf shrimp shell in removal of reactive blue29 dye from aqueous solution (Isotherm, thermodynamic and kinetic study).Iranian Journal of Chemistry and Chemical Engineering, 36(3), 25–36. Pang, Y. L., Tan, J. H., Lim, S., & Chong, W. C. (2021). A state-of-the-art review on biowaste derived chitosan biomaterials for biosorption of organic dyes: Parameter studies, kinetics, isotherms and thermodynamics. Polymers, 13(17).https:///10.3390/polym13173009Pathak, P. D., Mandavgane, S. A., & Kulkarni, B. D. (2016). Characterizing fruit and vegetable peels as bioadsorbents. Current Science, 110(11), 2114–2123.https:///10.18520/cs/v110/i11/2114-2123Ponnusami, V., Vikram, S., & Srivastava, S. N. (2008). Guava (Psidium guajava) leaf powder: Novel adsorbent for removal of methylene blue from aqueous solutions. Journal of Hazardous Materials, 152(1), 276–286.https:///10.1016/j.jhazmat.2007.06.107Pratiwi, R. (2018). ASPEK BIOLOGI DAN ABLASI MATA PADA UDANG WINDU Penaeus monodon SUKU PENAEIDAE (DECAPODA: MALACOSTRACA). Oseana, 43(2), 34–47.https:///10.14203/oseana.2018.vol.43no.2.19Purnomo, J. S. (2022). PENINGKATAN KAPASITAS ADSORPSI METHYLENE BLUE SECARA BATCH MENGGUNAKAN AMPAS DAUN SERAI WANGI (Cymbopogon nardus L. Rendle) YANG DIMODIFIKASI DENGAN ASAM SITRAT. In Universitas Andalas (Issue8.5.2017).Qin, L., Zhou, Z., Dai, J., Ma, P., Zhao, H., He, J., Xie, A., Li, C., & Yan, Y. (2016).Novel N-doped hierarchically porous carbons derived from sustainable shrimp shell for high-performance removal of sulfamethazine and chloramphenicol.Journal of the Taiwan Institute of Chemical Engineers, 62, 228–238.https:///10.1016/j.jtice.2016.02.009Rafatullah, M., Sulaiman, O., Hashim, R., & Ahmad, A. (2010). Adsorption of methylene blue on low-cost adsorbents: A review. Journal of Hazardous Materials, 177(1–3), 70–80. https:///10.1016/j.jhazmat.2009.12.047 Rahmayeni, R., Oktavia, Y., Stiadi, Y., Arief, S., & Zulhadjri, Z. (2021). Spinel ferrite of MnFe2O4 synthesized in Piper betle Linn extract media and its application as photocatalysts and antibacterial. Journal of Dispersion Science and Technology, 42(3), 465–474.https:///10.1080/01932691.2020.1721011Rajumon, R., Anand, J. C., Ealias, A. M., Desai, D. S., George, G., & Saravanakumar, M. P. (2019). Adsorption of textile dyes with ultrasonic assistance using green reduced graphene oxide: An in-depth investigation on sonochemical factors. Journal of Environmental Chemical Engineering, 7(6), 103479. https:///10.1016/j.jece.2019.103479Ramadhani, P., Chaidir, Z., Zilfa, Tomi, Z. B., Rahmiarti, D., & Zein, R. (2020).Shrimp shell (Metapenaeus monoceros) waste as a low-cost adsorbent for metanil yellow dye removal in aqueous solution. Desalination and Water Treatment, 197, 413–423. https:///10.5004/dwt.2020.25963 Ramrakhiani, L., Ghosh, S., & Majumdar, S. (2016). Surface Modification of Naturally Available Biomass for Enhancement of Heavy Metal Removal Efficiency, Upscaling Prospects, and Management Aspects of Spent Biosorbents: A Review. Applied Biochemistry and Biotechnology, 180(1), 41–78. https:///10.1007/s12010-016-2083-yRápó, E., & Tonk, S. (2021). Factors affecting synthetic dye adsorption; desorption studies: A review of results from the last five years (2017–2021). Molecules, 26(17). https:///10.3390/molecules26175419Ravi, & Pandey, L. M. (2019). Enhanced adsorption capacity of designed bentonite and alginate beads for the effective removal of methylene blue. Applied Clay Science, 169(October 2018), 102–111.https:///10.1016/j.clay.2018.12.019Ribeiro, C., Scheufele, F. B., Espinoza-Quiñones, F. R., Módenes, A. N., da Silva,M. G. C., Vieira, M. G. A., & Borba, C. E. (2015). Characterization of Oreochromis niloticus fish scales and assessment of their potential on the adsorption of reactive blue 5G dye. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 482, 693–701.https:///10.1016/j.colsurfa.2015.05.057Sadaf, S., & Bhatti, H. N. (2014). Batch and fixed bed column studies for the removal of Indosol Yellow BG dye by peanut husk. Journal of the Taiwan Institute of Chemical Engineers, 45(2), 541–553.https:///10.1016/j.jtice.2013.05.004Safa, Y., & Bhatti, H. N. (2011). Adsorptive removal of direct dyes by low cost rice husk : Effect of treatments and modifications. 10(16), 3128–3142.https:///10.5897/AJB10.1302Sandip, Q. (2015). Journal of Industrial and Engineering Chemistry Efficient adsorption and photocatalytic degradation of Rhodamine B dye over Bi 2 O 3 -bentonite nanocomposites : A kinetic study. 1–8.Sawasdee, S., & Watcharabundit, P. (2016). Effect of temperature on brilliant green adsorption by shrimp shell: Equilibrium and kinetics. Chiang Mai University Journal of Natural Sciences, 15(3), 221–236.https:///10.12982/cmujns.2016.0017Senthil Kumar, P., Janet Joshiba, G., Femina, C. C., Varshini, P., Priyadharshini, S., Arun Karthick, M. S., & Jothirani, R. (2019). A critical review on recent developments in the low-cost adsorption of dyes from wastewater.Desalination and Water Treatment, 172, 395–416.https:///10.5004/dwt.2019.24613Shakoor, S., & Nasar, A. (2016). Removal of methylene blue dye from artificially contaminated water using citrus limetta peel waste as a very low cost adsorbent. Journal of the Taiwan Institute of Chemical Engineers, 66, 154–163. https:///10.1016/j.jtice.2016.06.009Sun, C., Qiu, J., Zhang, Z., Marhaba, T. F., Zhang, Y., & Zhang, W. (2016).Characterization of Citric Acid-Modified Clam Shells and Application for Aqueous Lead (II) Removal. Water, Air, and Soil Pollution, 227(9).https:///10.1007/s11270-016-2975-zSuryawanshi, N., Jujjavarapu, S. E., & Ayothiraman, S. (2019). Marine shell industrial wastes–an abundant source of chitin and its derivatives: constituents, pretreatment, fermentation, and pleiotropic applications-a revisit.International Journal of Environmental Science and Technology, 16(7), 3877–3898. https:///10.1007/s13762-018-02204-3Taylor, P., Wang, P., Ma, Q., Hu, D., & Wang, L. (2015). Desalination and Water Treatment Adsorption of methylene blue by a low-cost biosorbent : citric acid modified peanut shell. May, 37–41.https:///10.1080/19443994.2015.1033651Taylor, P., Zhou, Y., Zhang, R., Gu, X., Lu, J., Zhou, Y., Zhang, R., Gu, X., & Lu, J. (2015). Separation Science and Technology Adsorption of Divalent Heavy Metal Ions from Aqueous Solution by Citric Acid Modified Pine Sawdust Adsorption of Divalent Heavy Metal Ions from Aqueous Solution by Citric Acid Modified Pine Sawdust. January, 37–41.https:///10.1080/01496395.2014.956223Thamaraiselvan, C., Lerman, S., Weinfeld-Cohen, K., & Dosoretz, C. G. (2018).Characterization of a support-free carbon nanotube-microporous membrane for water and wastewater filtration. Separation and Purification Technology, 202(March), 1–8. https:///10.1016/j.seppur.2018.03.038Xu, Y., Liu, Y., Liu, S., Tan, X., Zeng, G., Zeng, W., Ding, Y., Cao, W., & Zheng,B. (2016). Enhanced adsorption of methylene blue by citric acid modificationof biochar derived from water hyacinth (Eichornia crassipes). Environmental Science and Pollution Research, 23(23), 23606–23618.https:///10.1007/s11356-016-7572-6Zein, R. (2019). Pensi shell (Corbicula moltkiana)as a biosorbent for metanil yellow dyes removal: pH and equilibrium model evaluation. Jurnal Litbang Industri, 15–22.Zein, R., Chaidir, Z., Fauzia, S., & Ramadhani, P. (2022). Isotherm and Kinetic Studies on the Adsorption Behavior of Metanil Yellow Dyes onto Modified Shrimp Shell-Polyethylenimine ( SS-PEI ). 8(May), 10–22.https:///10.15408/jkv.v8i1.22566Zein, R., Purnomo, J. S., Ramadhani, P., Alif, M. F., & Safni, S. (2022).Lemongrass ( Cymbopogon nardus ) leaves biowaste as an effective and low-cost adsorbent for methylene blue dyes removal: isotherms, kinetics, and thermodynamics studies . Separation Science and Technology, 00(00), 1–17.https:///10.1080/01496395.2022.2058549Zein, R., Tomi, Z. B., Fauzia, S., & Zilfa, Z. (2020). Modification of rice husk silica with bovine serum albumin (BSA) for improvement in adsorption of metanil yellow dye. Journal of the Iranian Chemical Society, 17(10), 2599–2612.https:///10.1007/s13738-020-01955-6Zhou, Y., Ge, L., Fan, N., & Xia, M. (2018). Adsorption of Congo red from aqueous solution onto shrimp shell powder. Adsorption Science and Technology, 36(5–6), 1310–1330. https:///10.1177/0263617418768945。
咪唑类离子液体的研究进展_王仲妮
收稿:2007年9月,收修改稿:2007年11月 3山东省自然科学基金项目(Y 2006B29)资助33通讯联系人 e 2mail :zhongniw @咪唑类离子液体的研究进展3王仲妮33 王洁莹 司友华 周 武(山东师范大学化学化工与材料科学学院 济南250014)摘 要 咪唑类离子液体以其独特的物理化学性质和在众多领域的巨大应用潜能而引起广泛的关注。
本文结合我们的研究工作,对近期国际上关于咪唑类离子液体的气2液和液2液平衡、咪唑类离子液体的表面活性剂行为、传统表面活性剂在咪唑类离子液体中聚集体的形成、表面活性剂Π水(油)Π咪唑类离子液体三元体系超分子自组装体形成等方面的一些主要研究成果进行了综合评述。
在此基础上,提出了进一步开展非传统表面活性剂Π离子液体体系超分子自组装体及离子液体结构对聚集体形成、结构、性质影响等研究的设想。
关键词 咪唑类离子液体 溶解平衡 超分子自组装体中图分类号:O64514;O626123 文献标识码:A 文章编号:10052281X (2008)07Π821057207Imidazolium 2B ased Ionic LiquidsWang Zhongni33 Wang Jieying Si Youhua Zhou Wu(C ollege of Chemistry ,Chemical Engineering and Materials Science ,ShandongN ormal University ,Jinan 250014,China )Abstract The unique physicochemical properties of imidazolium 2based ionic liquids (I BI Ls )have attracted increasing interests due to their potential applications in various areas.In this paper ,combining with our w orks ,recent progress in s ome physicochemical properties of I BI Ls have been reviewed and discussed ,including the gas 2liquid and liquid 2liquid equilibrium of I BI Ls ,the surfactant behaviour of I BI Ls ,the aggregations of traditional surfactant in I BI Ls ,as well as the supram olecular self 2assemblies formed in surfactant ΠI BI Ls Πwater (or oil )ternary systems.Suggestions for further studies have been proposed to investigate the self 2assemblies formed in non 2traditional surfactant ΠI BI Ls systems and to make clear that how the structures of I BI Ls in fluence the formation and properties of surfactant self 2assemblies.K ey w ords imidazolium 2based ionic liquids (I BI Ls );s olubility equilibrium ;supram olecular self 2assemblies 离子液体(ionic liquids ,I Ls )是一类新型的熔融盐物质,其阳离子一般是体积较大、带有烷基取代基的有机离子如烷基季铵阳离子、N 2烷基吡啶阳离子、N ,N ′2二烷基咪唑阳离子等,阴离子一般是体积相对较小且对称性较好的离子如X -,BF 4-,PF 6-,ROS O 3-,T fO-(CF 3S O 3-),N fO -(C 4F 9S O 3-),T f 2N -((CF 3S O 2)2N -)等[1,2]。
四种烷基咪唑磷酸酯离子液体的热力学性质
化工进展Chemical Industry and Engineering Progress2024 年第 43 卷第 3 期四种烷基咪唑磷酸酯离子液体的热力学性质刘泽鹏,曾纪珺,唐晓博,赵波,韩升,廖袁淏,张伟(西安近代化学研究所氟氮化工资源高效开发与利用国家重点实验室,陕西 西安 710065)摘要:针对烷基咪唑磷酸酯离子液体的热物性数据较少的问题,本文在常压下测定了1-乙基-3-甲基咪唑磷酸二氢盐([EMIM][DHP])、1-乙基-3-甲基咪唑磷酸二甲酯盐([EMIM][DMP])、1-乙基-3-甲基咪唑磷酸二乙酯盐([EMIM][DEP])、1-丁基-3-甲基咪唑磷酸二丁酯盐([BMIM][DBP])四种烷基咪唑磷酸酯离子液体的密度、黏度(293.15~353.15K )和电导率(293.15~343.15K ),并且测定了四种离子液体的热稳定性。
结果表明,离子液体的密度、黏度随温度的升高而减小,而电导率随温度的升高而增大。
采用自然对数方程关联四种离子液体的密度,根据实验值计算到了离子液体体积性质;采用VFT 方程关联离子液体黏度和电导率,其中密度与电导率的实验值与模型相关系数R 2达到0.9999,黏度相关系数R 2达到0.99999,实验测定的数据与模型一致;四种离子液体的热稳定性相近,分解温度均在271.9~278.6℃范围内;瓦尔登规则分析表明,四种烷基咪唑磷酸酯离子液体符合Walden 规则,而[EMIM][DMP]和[EMIM][DEP]被归类为“good ionic liquids ”。
关键词:烷基咪唑磷酸酯离子液体;密度;黏度;电导率;热稳定性中图分类号:TQ013.1 文献标志码:A 文章编号:1000-6613(2024)03-1484-08Thermodynamic properties of four alkyl imidazolium phosphate ionicliquidsLIU Zepeng ,ZENG Jijun ,TANG Xiaobo ,ZHAO Bo ,HAN Sheng ,LIAO Yuanhao ,ZHANG Wei(State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi ’an Modern Chemistry Research Institute, Xi ’an 710065,Shaanxi, China)Abstract: The density, viscosity, and conductivity of 1-ethyl-3-methylimidazolium dihydrogen-phosphate ([EMIM][DHP]), 1-ethyl-3-methylimidazolium dimethylphosphate ([EMIM][DMP]), 1-ethyl-3-methylimidazolium diethylphosphate ([EMIM][DEP]) and 1-butyl-3-methylimidazolium dibutyl-phosphate ([BMIM][DBP]) ionic liquids were measured in the temperature range of 293.15K to 353.15K under ambient conditions. Some important volumetric properties, including the isobaric thermal expansion coefficients, molecular volume, standard entropy and lattice potential energy were calculated from the experimental density values. The thermal gravimetric analysis was performed in the temperature range of 35℃ to 700℃, resulting in thermal decomposition temperatures up to 271.9—278.6℃. The Walden rule analysis demonstrated that four phosphate ionic liquids complied with the Walden rule well, while [EMIM][DMP] and [EMIM][DEP] were classified as “good ionic liquids ”.Keywords: alkyl imidazolium phosphate ionic liquids; density; viscosity; conductivity; thermal stability研究开发DOI :10.16085/j.issn.1000-6613.2023-1722收稿日期:2023-09-28;修改稿日期:2023-12-05。
IGA-介绍
Diffusion Coefficient (cm2s-1)
扩
1.00E-05
散
系
数 (cm2 / S) 1.00E-06
613K 563K 540K 513K 463K
1.00E-07 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 H/M
86次/分钟,确保真正静态吸附的 压力恒定 ⊕ DSMS(动态取样质谱)接口
The IGA product range
o IGA-001
单路气体吸附
o IGA-002
单路气体+静态蒸气吸附
o IGA-003
动态多组分吸附-气体吸附
o IGA100
综合吸附系统-动态多组分吸附+静态蒸气吸附
(IGA001+IGA002+IGA003)
o参考文献: oCrank J. The mathematics of diffusion (1967) 2nd. Edition
IGA-002 系统
--------气体/蒸气吸附系统
IGA-002 系统
--------气体/蒸气吸附系统
o 用于从真空到吸附质蒸气压的蒸气吸附 o 内置储液罐和传输系统 o 防冷凝保护 o 用于气体排出的高传导真空系统 o 实验压力控制低至10-3 mbar o 精确控制压力,真正静态吸附 o 安托因方程参数已输入软件 o 蒸气压力计算器
IGA -智能重量分析仪
(Intelligent Gravimetric Analyser)
⊕ 独特的IGA方法,智能评估吸附平衡 ⊕ 超灵敏度微天平0.1ug分辨率 ⊕ 高精度和优异的重复性 ⊕ 压力可控范围:UHV-20 Bar ⊕ 温度可控范围:-196℃-1000℃ ⊕ 单/多组分气体/蒸气 ⊕ 精确的压力控制,压力调节达到
Colloids and Surfaces A_ Physicochemical and
Colloids and Surfaces A:Physicochem.Eng.Aspects 471(2015)45–53Contents lists available at ScienceDirectColloids and Surfaces A:Physicochemical andEngineeringAspectsj o u r n a l h o m e p a g e :w w w.e l s e v i e r.c o m /l o c a t e /c o l s u r faWater-soluble complexes of hydrophobically modified polymer and surface active imidazolium-based ionic liquids for enhancing oil recoveryShaohua Gou a ,b ,∗,Ting Yin b ,Liwei Yan b ,Qipeng Guo c ,∗∗aState Key Laboratory of Oil and Gas Reservoir Geology and Exploitation,Southwest Petroleum University,Chengdu 610500,PR ChinabOil &Gas Field Applied Chemistry Key Laboratory of Sichuan Province,School of Chemistry and Chemical Engineering,Southwest Petroleum University,Chengdu 610500,PR China cPolymers Research Group,Institute for Frontier Materials,Deakin University,Locked Bag 2000,Geelong,Victoria 3220,Australiah i g h l i g h t s•A series of copolymer/ionic liquidscomplexes (PAAD/ILs)were used for EOR.•PAAD/C 8mimBr complex can effec-tively reduce the IFT of water/crude oil.•PAAD/C 8mimBr complex with NaCl can further reduce IFT of water/crude oil.•PAAD/C 8mimBr complex exhibits excellent temperature resistance.•PAAD/C 8mimBr complex can enhance oil recovery as high as 21.65%.g r a p h i c a la b s t r a cta r t i c l ei n f oArticle history:Received 20October 2014Received in revised form 27January 2015Accepted 2February 2015Available online 16February 2015Keywords:Ionic liquidsHydrophobically associating copolymer Interfacial tensionEnhancing oil recoverya b s t r a c tThe current study introduces the water-soluble complexes containing hydrophobically associating copolymer and a series of surface activity imidazolium-based ionic liquids (C n mimBr,n =6,8,10,12,14and 16).The polymer,denoted as PAAD,was prepared with acrylamide (AM),acrylic acid (AA)and N ,N -diallyl-2-dodecylbenzenesulfonamide (DBDAP).And the hydrophobic associative behavior of PAAD was studied by a combination of the pyrene fluorescence probe and viscosimetry.Incorporation of C n mimBr (n =10,12,14and 16)in PAAD leaded to the white thick gel,while the pellucid solutions were obtained in complexes of PAAD and C n mimBr (n =6and 8);addition of C 6mimBr around critical micelle concen-tration resulted in a large decrease in viscosity of solution.Therefore,we particularly investigated the performance of PAAD/C 8mimBr complex.The interfacial tension of PAAD/C 8mimBr complex solution and crude oil under different conditions was examined.Moreover,PAAD/C 8mimBr complex exhibited∗Corresponding author at:School of Chemistry and Chemical Engineering,South West Petroleum University,Xindu Avenue 8#,Xindu,Chengdu 610500,Sichuan,PR China.Tel.:+8602883037301;fax:+8602883037333.∗∗Corresponding author at:Polymers Research Group,Institute for Frontier Materials,Deakin University,Locked Bag 2000,Geelong,Victoria 3220,Australia.E-mail addresses:shaohuagou@ (S.Gou),qguo@.au (Q.Guo)./10.1016/j.colsurfa.2015.02.0220927-7757/©2015Elsevier B.V.All rights reserved.46S.Gou et al./Colloids and Surfaces A:Physicochem.Eng.Aspects471(2015)45–53superior temperature resistance and shear reversible performance for enhancing oil recovery(EOR)byrheological test.The promising EOR of21.65%can be obtained by PAAD/C8mimBr complex showing highpotential to utilize this kind of new complex in EOR processes.©2015Elsevier B.V.All rights reserved.1.IntroductionIn fact,with the recovery of the reservoirs all over the world, most crude oil is trapped in the reservoirs after using the conven-tional oil production methods.High world energy demands make the efficient enhancing oil recovery(EOR)techniques have never become as urgent as today[1].Generally,chemical enhancing oil recovery methods are of specific concern in oil recovery,like poly-merflooding,surfactantflooding and polymer–surfactantflooding [2–4].One of the most promising chemical EOR techniques is the polymer–surfactantflooding.The main mechanism of this method is based on the large mobility ratio and the low interfacial tension between the displacementfluid and crude oil.Generally,a lager capillary number(Nc)and/or a lower mobility ratio(M)result in a higher oil recovery,and the most effective way of increasing the Nc is reducing interfacial tension between the displacementfluid and crude oil[1].Hydrophobically associating polymer is a special kind of water-soluble polymer which contains a small amount of hydrophobic monomer[5].This kind of polymer has received increasing atten-tions on account of its unique rheological performance[6].Due to the hydrophobic groups it can generate the intramolecular and intermolecular hydrophobic microarea leading to a considerable increase of viscosity,consequently improving the mobility ratio (M).It has been demonstrated that the performance can be notably changed by combinations of this polymer solution with a certain amount of surfactant[7–9].Although the hydrophobically asso-ciating polymer–surfactantflooding technique is promising,its application to date has been limited due to the rheology perfor-mance of system and the failure in function of surfactant under the reservoir conditions such as poor salt tolerance of anionic surfactant[10].For these reasons,there is growing interest infind-ing a new hydrophobically associating polymer–surfactant system whose properties bestfit the EOR requirements.Ionic liquids(ILs)are liquids at ambient that have unique fea-ture such as high thermal stability,negligible vapor pressure,and favorable chemical stability[11,12].Recently,the incorporation of ionic liquid into polymers has attracted much interest,such as poly-mer/ionic liquid gel membranes with high ionic conductivity and mechanical stability[13],and the thermodynamic phase behav-ior of polymer solution in the presence of different kinds of ILs [14,15].The surface active ILs,imparts them unique physicochemical properties:analogous to common surfactants,they have surface activity.It seems to be a few investigations on the interfacial ten-sion(IFT)of ILs solution/oil system were reported[10,16–21].Those authors recognized its desired behavior at high salinity and tem-perature.Imidazolium based surface active ILs are readily available in technical quantities and these kinds of ILs are one of the com-mon ILs among the ILs families[22,23].Hezave et al.[18]examined the IFT of1-dodecyl-3-methylimidazolium chloride with crude oil under different conditions and performed the coreflooding experiments.They found promising results of both enhanced oil recovery efficiency and adsorption on the rock surfaces.Above investigations show high potential to utilize imidazolium based ILs to replace the traditional surfactants in EOR processes to reduce the IFT.However,few studies are available on incorporation of these surface active ILs into hydrophobically associating polymer for EOR.Based on thesefindings,we report a study on the complexes of the long-chain imidazolium based surface active ILs C n mimBr (n=6,8,10,12,14,and16)and hydrophobically modified polymer denoted as PAAD which was prepared by acrylamide(AM),acrylic acid(AA)and N,N-diallyl-2-dodecylbenzenesulfonamide(DBDAP). According to our previous work[24],the introduction of sulfo-namide structure and aromatic ring can improve the rigidity of the polymer chains exhibiting high-temperature resistance,and based on this,DBDAP containing above structures and long chain structure was designed to prepare the hydrophobically associating polymer to further improve the performance of the polymer.ILs can interact with this polymer by electrostatic force and they can also form micelle-like clusters associated with the polymer hydropho-bic plementary hydrophobic associative behavior data of PAAD obtained by pyrene probefluorescence and viscosimetry were also presented.The IFT of PAAD/C8mimBr complex solution and crude oil under different conditions was measured,and the rheological behavior of the complex was also investigated.TG-DSC was also carried out to study the thermal decomposition of the complex.Moreover,the coreflooding test was conducted.2.Experimental2.1.MaterialsAcrylamide(AM),acrylic acid(AA),dodecylbenzene sulfonic acid(DB),thionyl chloride(SOCl2),diallylamine(DAP),nonaphenol polyethyleneoxy(10)ether(OP-10),N-methylimidazole(mim),1-bromobutane,1-bromohexane,1-bromooctane,1-bromodecane, 1-bromododecane,1-bromotetradecane,1-bromohexadecane, cetyltriethylammonium bromide(CTAB),triethylamine(Et3N), dichloromethane(CH2Cl2),trichloromethane(CHCl3),ethyl acetate,diethyl ether,ammonium persulfate((NH4)2S2O8), sodium bisulfite(NaHSO3),NaCl,and NaOH etc.are all provided by Chengdu Kelong Chemical Reagent Factory,Sichuan.These chemicals are chemically pure or above.CHCl3,ethyl acetate, Et3N and diethyl ether were dried using anhydrous sodium sulfate before used,and other chemicals were used as commercial without further purification.2.2.Synthesis of DBDAPN,N-Diallyl-2-dodecylbenzenesulfonamide(DBDAP)was pre-pared referring to the traditional methods[25].Briefly,dode-cylbenzenesulfonyl chloride was prepared by DB with excess SOCl2under reflux at50◦C for5h.And the reaction of dode-cylbenzenesulfonyl chloride and DAP using Et3N as acid binding agent in CH2Cl2was performed at0–5◦C for6h.The product was washed three times with1wt%diluted hydrochloric acid, 1wt%sodium hydroxide and saturated salt water,respectively, and then the solvent was removed under a vacuum.Obtained DBDAP was brown liquid with a yield of92%.DBDAP:1H NMR (400MHz,CDCl3):ı=7.76(d,2H,J=7.2Hz,Ar H),7.07(d,2H, J=8.0Hz,Ar H),5.77–5.81(m,2H,CH2C H CH2), 5.13–5.32 (m,4H,C H2CH CH2),3.15–3.19(m,4H,SO2N(C H2)2),2.46 (t,2H,J=8.0Hz,Ar C H2),1.47–1.57(m,2H,Ar CH2C H2), 1.20–1.24(m,18H,Ar CH2CH2(C H2)9CH3),and0.87(t,3H, J=4.0Hz,C H3CH2),ppm.S.Gou et al./Colloids and Surfaces A:Physicochem.Eng.Aspects471(2015)45–5347Scheme1.The synthetic process of PAAD.2.3.Synthesis of PAADPreparation of PAAD was conducted via free radical copolymer-ization of AM,AA and DBDAP in aqueous solution with emulsifier OP-10.DBDAP(0.02g),AM(6g),AA(4g)and OP-10(0.1g)were dissolved in40mL deionized water with a magnetic stir bar,and the pH was adjusted around7using1.0mol/L NaOH solution. Then,(NH4)2S2O8(0.0368g)and NaHSO3(0.0132g)were added in at40◦C for8h under N2atmosphere.The resulting product was obtained by repeatedly washed with ethanol and dried at40◦C,and then kept in a desiccator.The synthetic process of PAAD is shown in Scheme1.2.4.Synthesis of PAAD/ILs complexSurface active ILs,C n mimBr,n=6,8,10,12,14and16,were prepared and purified as reported in literature[23,26].The water content of ILs is controlled by drying them at100◦C under vacuum conditions.A desired amount of PAAD was dissolved in distilled water under mechanical stirring until a clear homogeneous solu-tion was obtained.Then,the above ILs with definite concentration were added to the prepared polymer solution at50◦C for4h. Finally,the complex solutions of polymer and different ILs were obtained.2.5.CharacterizationFTIR spectra were determined with the KBr pellets method using WQF-520Fourier transform infrared spectrometer in the optical range400–4000cm−1by the averaging of32scans(Bei-jing Rayleigh Analytical Instrument Corporation,China).1H NMR spectra were recorded on a Bruker AV III-400NMR spectrometer (Bruker,Switzerland)in D2O or CDCl3.The intrinsic viscosity of copolymer was measured with a Ubbe-lohde viscometer using1mol/L NaCl aqueous solution as the solvent with the dilution extrapolation method at30.0±0.1◦C, and the initial concentration of copolymer was0.001g/mL (C0=0.001g/mL).The viscosity-average molecular weight of copolymer can be calculated from the intrinsic viscosity value by employing Mark–Houwink equation.However,it should be pointed out that this measurement is an approximate and relative method on the determination of the viscosity-average molecular weight of hydrophobically associating polymers due to the effect of intra-molecular hydrophobic interaction.2.6.Apparent viscosity measurementThe apparent viscosity of different solutions was obtained on a Brookfield D-III+Pro viscometer(Brookfield,USA)with different viscometer rotors0#(6.0rpm)62#(18.8rpm)and63#(27.3rpm).2.7.Pyrenefluorescence probeThefluorescence intensities of copolymer were measured with a Shimadzu RF-5301PC Fluorescence spectrophotometer with excitation at335nm,with a slit width of5nm and in a spectral range350–550nm.The different concentrations of copolymer solu-tions with pyrene were prepared with redistilled water,and the concentration of pyrene was about1.25×10−6mol/L.The ratios (I1/I3)of the strength of thefirst peak to that of the third peak in fluorescence spectra were calculated.2.8.Thermogravimetry and differential scanning calorimetryThe water of PAAD/C8mimBr complex solution with a cer-tain mass ratio was removed through rotary evaporation to test with thermogravimetry and differential scanning calorimetry(TG-DSC)using a STA449F3synchronous thermal analyser(Netzsch, Germany)in the temperature range40–700◦C at a heating rate of 10◦C/min under air atmosphere.2.9.Rheological experimentsThe effect of temperature on the viscosity of samples was mea-sured by HAAKE RS600Rotational Rheometer(HAAKE,Germany) at shear rate of170s−1to simulate injection rate at the heating rate of3◦C/min from30to120◦C.The shear thinning behavior of samples was performed in the range of2–500s−1shear rates at 30◦C.2.10.Interfacial tension testSurface tension measurements were performed with TX500C SpinningDrop Interface tensiometer(CNG USA Co.)using the drop volume method at30◦C.The oil used in interfacial tension test is prepared by crude oil and kerosene with a mass ratio of2:1,and the density is0.8982g/cm3.The crude oil sample is obtained from Bohai Suizhong Oilfield(SZ36-1CEPK).Then,the interfacial tension was measured applying a rotating velocity of5000rpm.The density of each system was measured.2.11.Coreflooding testCoreflooding test was using stainless steel packed with sand (30cm in length and2.55cm in diameter,approximately),and the size distribution of sand was80–100items.The apparent viscos-ity of simulated crude oil was30.6mPa s at70◦C.NaCl solution was injected in core until a steady pressure to obtain the porosities of core by gravimetry,and permeability was obtained by injecting NaCl solution at a constant rate of9.99mL/min using Darcy’s law [27].The sand with crude oil has been saturated at0.1mL/min at 70◦C for96h,and oil saturation was calculated[4].Firstly,the waterflooding was conducted with the NaCl solution until water cut reached at95%,and then it wasflooded with0.2PV cumulative injection volume of chemicals.Finally,the extrapolated waterflooding was conducted with the NaCl solution to obtain water cut95%once more.The injection rate was0.3mL/min in flooding process.The oil recovery was determined as the following equation:EOR=E−E W(1)48S.Gou et al./Colloids and Surfaces A:Physicochem.Eng.Aspects 471(2015)45–53Table 1The characteristics of PAAD.SampleaFeed ratio (wt%)Intrinsic viscosityViscosity-average molecular weightAMAADBDAPPAAD59.939.90.2772.12mL/g3.26×106aThe intrinsic viscosity and viscosity-average molecular weight were determined according to Refs.[28,29].where E is the total oil recovery ratio,E W is the oil recovery of water flooding.3.Results and discussion3.1.Characteristics of PAADThe effect of synthesis conditions on copolymerization of AM,AA and DBDAP were investigated,and the intrinsic viscosity and the viscosity-average molecular weight were measured.The results are summarized in Table 1(see Tables S1and S2and Fig.S1for the details in Supporting information).3.2.FTIR and 1H NMR spectra analysisFTIR and 1H NMR spectra of copolymer PAAD are shown in Fig.1,respectively.From the FTIR curve of PAAD,the strong absorp-tion peaks at 3434cm −1and 1651cm −1respectively assign tothe stretching vibration of N H and C O bond in the CONH 2group.A relatively less intense peaks at 1560and 1401cm −1are due to the COO −group [30].The peaks at 1325and 1119cm −1correspond to the stretching vibrations of SO 2.From the 1H NMR spectra of PAAD,the characteristic peaks around 1.54and 2.15ppm assign to the protons of polymer alkyl chains.The chem-ical shifts at 7.68and 6.87ppm are due to the protons of aromatic ring of DBDAP.It can be inferred that the typical structures of monomers have been successfully incorporated into polymer chain.3.3.Critical association concentration of PAADThe ratio of the intensities between the first and the third band intensity in the fluorescence spectrum of pyrene (I 1/I 3)is used to characterize the size of their environment polar-ity.The weaker polarity of the microenvironment around the pyrene molecule leads to the smaller value of I 1/I 3.Fig.2(a)depicts the relationship curve between the values of I 1/I 3and PAAD concentrations.On the curve of I 1/I 3,the value of I 1/I 3abruptly decreases at a concentration of PAAD about 1.5g/L suggesting the transformation of association type from intra-molecular association into intermolecular association.This is also evident from the curve of the viscosity versus concentration shown in Fig.2(b),and this value is defined as the criti-cal association concentration (CAC)at which the intramolecular association begins to transfer into intermolecular association [31].Fig.1.FTIR and 1H NMR spectra of PAAD.I 1 / I 3Concen tration (mg/L )(a)Concentration (mg/L)A p p a r e n t V i s c o s i t y (m P a ·s )(b)Fig.2.(a)Effect of PAAD concentration on I 1/I 3value;(b)effect of PAAD concentration on viscosity.S.Gou et al./Colloids and Surfaces A:Physicochem.Eng.Aspects471(2015)45–5349Fig. 3.Characteristics of different complex solutions(a)PAAD/C6mimBr;(b) PAAD/C8mimBr;(c)PAAD/C10mimBr;(d)PAAD/C12mimBr;(e)PAAD/C14mimBr;(f) PAAD/C16mimBr and(g)PAAD/CTAB.3.4.Characteristics of PAAD/ILs complex solutionsThe complex solutions of polymer PAAD and different ILs were obtained,and the complex of PAAD and CTAB was also pre-pared for comparing.CTAB is one of the most common used cationic surfactants for EOR.The concentration of PAAD wasfixed at3g/L.The photographs in Fig.3(a–g)show the different com-plex solutions,viz.,(a):PAAD/C6mimBr,(b):PAAD/C8mimBr,(c): PAAD/C10mimBr,(d):PAAD/C12mimBr,(e):PAAD/C14mimBr,(f): PAAD/C16mimBr and(g):PAAD/CTAB.However,when the concen-tration of C n mimBr,n=10,12,14and16,and CTAB is as low as 0.3g/L,a gel phase is observed in our experiment.This unexpected result can be owing to the strong binding of ion-pair interaction between cationic head groups and anion polymer corresponding to structural alkyl chain length of ILs.When the concentration of C n mimBr,n=6and8,is above40g/L,the solutions have remained transparent.The air/water critical micelle concentration(cmc)values of C6mimBr and C8mimBr were measured and compared with the values reported in the literatures at303.15K.The obtained cmc values of465mM for C6mimBr and118mM for C8mimBr are in agreement with the reported values470and121mM,respectively [32,33].Therefore the ILs concentrations werefixed at their cmcs in pure water to investigate the effect of ILs on complexes viscosity in the concentration of copolymer from1to5g/L.From Fig.3it is observed that with the concentration of C6mimBr around470mM, the viscosity of PAAD/C6mimBr complex decreases notably,e.g.the viscosity of3g/L PAAD decreases from660.5to8.7mPa s due to the large concentration of C6mimBr similarly to C8mimBr as discussed below.Because of the limitations of low viscosity of PAAD/C6mimBr complex and the high concentration of C6mimBr,studies of the interaction of IL and PAAD are focused on PAAD/C8mimBr complex.3.5.Effect of C8mimBr concentration on viscosityEffect of C8mimBr concentration on viscosity of2g/L and3g/L PAAD solutions is displayed in Fig.4.The concentration spanning a range from below to above the cmc of C8mimBr is actually higher than the39.9wt%anionic acrylic linked in PAAD chains at this mass ratio causing C8mimBr to partly incorporate with the PAAD and partly remain in the solutions which is also indicated in the TG-DSC results discussed below in this paper.Addition of C8mimBr causes an obvious decrease in the viscosity of complex solution due to the ionic C8mimBr reduces the electrostatic repulsion of polymerConcentration of IL (g/L)ApparentViscosity(mPa·s)Fig.4.Effect of C8mimBr concentration on complex viscosity: PAAD:3g/L,᭹PAAD:2g/L.chains,and cationic hydrophobic head groups adsorb on the anionic PAAD by opposite ion charge interaction leading to the polymer coils much more compact.The hydrophobic effect is apparently too strong in this system for the polymer coils to expand[8].3.6.Interfacial tension test3.6.1.Effect of C8mimBr concentration on interfacial tensionThe IFT changes versus PAAD/C8mimBr complex and C8mimBr at different concentrations of C8mimBr are depicted in Fig.5(a).The concentration of PAAD wasfixed at3g/L.The amphiphilic C8mimBr tends to migrate the interface leading to the adsorption,and con-sequently dropping the IFT.The lower values of IFT of C8mimBr are relevant in the presence of hydrophobically associating copolymer PAAD.For instance,the IFT decreases from2.1mN/m corresponding to30g/L C8mimBr to a minimum value of0.77mN/m correspond-ing to30g/L C8mimBr combined with3g/L PAAD.Accordingly,we carried out the study and discuss below on PAAD/C8mimBr with the30g/L C8mimBr.This can be explained by the surface activity of the copolymer and the Na+originated from PAAD copolymer solution.In details,adsorption of copolymer at the surface would necessarily compress the area available for ILs adsorption leading to the increase of surface excess ILs concentration and causing a lowering of the interface tension[8].In addition,Na+has higher surface charge density.The stronger hydration will be,the smaller number of water molecules available to hydrate[C8mim]+as a result of salting out effect[34].To further increase the concentra-tion of C8mimBr in PAAD solution,the higher surface tension of PAAD/C8mimBr complex demonstrates binding of ILs to the copoly-mer and concomitant depletion of ILs from the interface.3.6.2.Effect of polymer concentration on interfacial tensionAs presented in Fig.5(b),the effect of PAAD concentration from 1to5g/L on IFT of PAAD/C8mimBr complex and crude oil is inves-tigated.The results demonstrate a higher concentration above the CAC of PAAD did not modify the IFT significantly.The changes of concentration of polymer have no obvious effect on IFT of system due to C8mimBr forms mixed micelle with hydrophobic groups attached to the polymer.The concentration of PAAD/C8mimBr com-plex in the following research is3g/L PAAD with30g/L C8mimBr unless noted.3.6.3.Effect of temperature on interfacial tensionIn this stage,the effect of temperature(303K,308K,313K, 323K,333K and338K)on the IFT of PAAD/C8mimBr solution and50S.Gou et al./Colloids and Surfaces A:Physicochem.Eng.Aspects 471(2015)45–53I n t e r f a c i a l T e n s i o n (m N /m )Concentration of C 8mimBr (g/L)(a)I n t e r f a c i a l T e n s i o n(m N /m )Concentration of PAAD (g/L)(b)I n t e r f a c i a l T e n s i o n (m N /m )Temperure (oC)(c)I n t e r f a c i a l T e n s i o n (m N /m )Concentration of NaCl (g/L)(d)Fig.5.(a)Effect of C 8mimBr concentration on IFT;(b)effect of PAAD concentration on IFT;(c)effect of temperature on interfacial tension;(d)effect of NaCl concentration on interfacial tension: C 8mimBr:3wt%,᭹C 8mimBr:1wt%, C 8mimBr:0.5wt%, C 8mimBr:0.2wt%.crude oil was studied,and the effect of temperature on the IFT of C 8mimBr and crude oil was also investigated.The obtained results are given in Fig.5(c).The increasing temperature leads to the increase of IFT between C 8mimBr solutions and crude oil.This is because of the presence of nitrogen atoms with sp2hybridization in and the positive charge is in resonance,thus the diffusion of ILs into the oil phase increases as temperature increases leading to emulsion inversion from oil-in-water to water-in-oil resulting in the increase of IFT [20].However,the results reveal that with the temperature increase the IFT of PAAD/C 8mimBr solution and crude oil slightly decreases,which may be due to the hydrophobic asso-ciation of PAAD enhances as the temperature increases within a certain scope leading to lower IFT values.3.6.4.Effect of NaCl concentration on interfacial tensionThe effect of NaCl concentration on the IFT of PAAD/C 8mimBr solution and crude oil with different concentrations of C 8mimBr was examined.The results given in Fig.5(d)revealed that the IFT reduced at higher NaCl concentrations due to the enhancement of hydrophobic association of complex and the salting out effect discussed earlier in this paper.For instance,the complex of 3g/L PAAD and 5g/L C 8mimBr with 20g/L NaCl can reduce the IFT to 0.85mM/m.In a word,with electrolytes,the interaction param-eter tends to higher positive values indicating reduction in the repulsive interactions between cationic head group of IL molecules [34].This observed trend makes the PAAD/C 8mimBr complex aseffective alternative for EOR processes dealing with harsh salinity conditions.3.7.Effect of temperature and shear rate on viscosityThe effect of temperature on the apparent viscosity of PAAD (2g/L)and PAAD/C 8mimBr complex solutions at a shear rate of 170s −1is shown in Fig.6(a).The viscosity of PAAD decreases then increases followed by a decrease,and it attains a maximum value at 90◦C.This may be due to that the high temperature can enhance hydrophobic association of PAAD.However,to further increase the temperature,the hydrophobic groups are disrupted,so that the viscosity decreased.The viscosity of PAAD/C 8mimBr complex maintains slight decrease from 22.2to 17.4mPa s with temperature raising from 30to 90◦C showing excellent temperature resistance.This decrease may be due to the more enhancing hydrophobic effect with the increasing temperature in this system limiting the poly-mer coils to expand.The shear thinning behavior of PAAD (2g/L)and PAAD/C 8mimBr complex solutions was measured,and the results are shown in Fig.6(b).The shear thinning behavior and reversible are important for polymer injection.At high shear rate,the apparent viscosity of PAAD and PAAD/C 8mimBr complex solutions exhibits a significant decrease.To research the recoverability to alteration in the shear rate,the sample solutions maintained shearing at 170s −1for 5min,next kept shearing at 500s −1for 5min,then went on shearing atS.Gou et al./Colloids and Surfaces A:Physicochem.Eng.Aspects 471(2015)45–535110100A p p a r e n t V i s c o s i t y (m P a ·s )Temperature (oC)(a)Shear Rate (s-1)A p p a r e n t V i s c o s i t y (m P a ·s )(b)Shear Rate (s -1)A p p a r e n t V i s c o s i t y (m P a ·s )Time (s)(c)100200300400500Shear Rate (s -1)A p p a r e n t V i s c o s i t y (m P a ·s )Time (s)(d)100200300400500Fig.6.(a)Effect of temperature on viscosity;(b)effect of shear rate on viscosity;(c)recovering ability of PAAD for shear rate;(d)recovering ability of PAAD/C 8mimBr for shear rate.170s −1for 5min.The results are shown in Fig.6(c,d).When shear rate suddenly changes from 170to 500s −1,the viscosity of PAAD and PAAD/C 8mimBr drops sharply,and when shear rate decreases from 500to 170s −1,the viscosity of PAAD and PAAD/C 8mimBr com-plex recovers immediately.About 87.6%viscosity retention rate compared with the original viscosity is obtained by PAAD,and for PAAD/C 8mimBr complex,the viscosity is equal to the original vis-cosity.It has been shown that the interaction between PAAD and C 8mimBr has excellent recovering ability for shear rate.3.8.TG and DSCTG and DSC were used to analyze the thermal decomposition of PAAD and PAAD/C 8mimBr complex.The results are presented in Fig.7(a,b).As shown in TG diagram of PAAD,the thermogravi-metric stage occurs with the mass loss of 77.96wt%which could be attributed to the decompositions and carbonization of copoly-mer.The TG diagram of PAAD/C 8mimBr displays two stages for the weight loss.The first step occurs in the range of 40–450◦CW e i g h (%)Temperture (oC)(a)D S C (m W /m g )Temperture (oC)(b)Fig.7.(a)TG diagram of PAAD and PAAD/C 8mimBr;(b)DSC diagram of PAAD and PAAD/C 8mimBr.。
敬来教授 张敬来:教授,博士,硕士生导师
河南大学化学化工学院
翟翠萍 副教授
招生专业:物理化学 联系方式:zhaicuiping@
翟翠萍:副教授,博士,硕士生导师。先后承担本科生《物理化学》、《绿色化学与化工》
和《物理化学实验》等课程。发表SCI收录论文20余篇,出版教材一部。参与完成国家自然科 学基金等项目4项,一直致力于用波谱学技术研究溶液或离子液体中化合物之间的相互作用及 分子的微观结构。
研究方向:功能材料的结构与性能 设计合成富氮、富氧等多官能团金属有 机簇合物和聚合物,研究其结构及各种 光、磁、电及热性能,揭示物质的结构 与性质之间的相关性规律,以期获得光 功能、磁功能或光-磁功能复合材料。
主要在研项目
1.新颖磁性功能材料的研究 2.新型杂化功能化合物的合理合成和性能研究
近期主要工作
2.2008年度河南省教育厅自然科学研究资助计划项目
低能电子引起DNA损伤的机理研究 近期主要工作 1. Electronic spectra of the linear polyyne cations HC2 nH+ (n=2–8):An ab initio study The Journal of Chemical Physics 2009, 131, 144307 2. Electronic spectra of linear isoelectronic clusters C2 n1S and C2n1Cl (n=04): An ab initio study. Journal of Physical Chemistry A 2006, 110, 10324. 3.Electronic spectra of heteroatom-containing isoelectronic carton chains C2nS and C2nCl+ (n=1-5). The Journal of Chemical Physics. 2006, 124: 124319. 4. Electronic spectra of the linear magnesium-containing carbon chains MgC2nH (n = 1–5): A CASPT2 study Chemical Physics. 2009, 360, 27-31. 5. Ab initio studies of electronic spectra of the linear aluminum-bearing carbon chains AlC2nH (n = 1–5) Journal of molecular spectroscopy. 2009, 256, 242. 6. Theoretical strudies on structures and electronic spectra linear carbon chains C 2nH+(n=1-5) International Journal of Quantum Chemistry 2009,109:1116 7. Theoretical studies on the structures, electronic spectra and ionization energies of linear isoelectronic HC2n+1P and NC2nP (n=1-10). Journal of Molecular Structure: THEOCHEM. 2006, 761, 63. 8. Theoretical Study of Electronic Absorption Spectra of C3Cl and Its Ions. Journal of Molecular Structure: THEOCHEM. 2006, 773, 81-86. 9. Density functional theory study on lactides:Geometries,IR,NMR and electronic spectra Journal of Molecular Structure: THOCHEM 2007,816, 13. 10. CASPT2 studies on the electronic spectra of linear heteroatom-containing carbon chain anions C4O-, C4S- and C4Se-. Journal of Molecular Structure: THEOCHEM. 2006, 765:137.
蓝磷烯—二硫化钼异质结电子结构性质的第一性原理研究
蓝磷烯—二硫化钼异质结电子结构性质的第一性原理研究蓝磷烯—二硫化钼异质结是一种由单层蓝磷烯和单层二硫化钼构成的异质结。
蓝磷烯(blue phosphorene)是砷磷化学式BP的低维材料,具有类似于石墨烯的二维结构。
蓝磷烯具有优异的电子输运性质,例如高载流子迁移率和电子迁移率,而二硫化钼则具有优秀的光电特性。
因此,蓝磷烯—二硫化钼异质结具有潜在的应用价值,例如在光电器件和电子器件中的应用。
第一性原理方法是研究材料的电子结构性质的常用方法。
它利用量子力学的基本原理和第一性原理进行计算,不需要任何经验参数,能够给出材料的准确结果。
本研究采用第一性原理方法,基于密度泛函理论(DFT)和平面波方法来研究蓝磷烯—二硫化钼异质结的电子结构性质。
首先,通过几何优化,我们得到了蓝磷烯和二硫化钼的优化晶胞结构。
然后,利用得到的晶胞结构计算了电子结构性质,如能带结构、态密度和能级分布等。
同时,还计算了异质结的形成能和界面态等相关性质。
根据计算结果,我们发现蓝磷烯和二硫化钼都是半导体材料,能隙分别为Eg(BP) = 1.6 eV和Eg(MoS2) = 1.9 eV。
异质结的能隙为Eg(hetero) = 1.8 eV,并且能隙比蓝磷烯和二硫化钼的能隙大。
这意味着蓝磷烯—二硫化钼异质结可能具有较好的光电探测性能。
此外,我们还研究了异质结的带偏移和界面态。
结果表明,由于蓝磷烯和二硫化钼的电子亲和势不同,异质结的价带最大值和导带最小值都出现在二硫化钼一侧,形成了能带偏移。
同时,在异质结的界面上还存在一些界面态,可能会对电子输运性质产生影响。
总结起来,本研究采用第一性原理方法研究了蓝磷烯—二硫化钼异质结的电子结构性质。
结果表明,蓝磷烯—二硫化钼异质结具有较大的能带隙和良好的光电特性,可能具有潜在的应用价值。
此外,异质结的界面态也需要进一步研究。
本研究的结果对于进一步理解蓝磷烯—二硫化钼异质结的性质和应用具有重要意义。
陈春明。咪唑阳离子纤维素的合成及性能研究
咪唑阳离子纤维素的合成及性能研究摘要:以纤维素为原料,以功能化的离子液体氯化1-(3-氯-2-羟丙基)-3-甲基咪唑为阳离子化剂和溶剂,合成了咪唑阳离子纤维素,并将其用于废水处理的絮凝剂。
探讨了反应条件对取代度的影响,采用红外光谱、透射扫描电镜和热重分析对产物进行了表征。
实验结果显示醚化反应温度为80℃、反应时间为3h时,产物的取代度达0.85。
红外光谱分析证实纤维素实现了阳离子化。
当咪唑阳离子纤维素用量为15mg/L时,高岭土悬浊液的浊度去除率为92.5%。
关键词:纤维素;合成;阳离子化;阳离子絮凝剂;离子液体Synthesis and properties of alkylimidazolium cationic celluloseAbstract: Cellulose and 3-chloro-2-hydroxypropyltrimethylammonium chloride (CHTAC) were respectively used as the material and the cationization agent to prepare alkylimidazolium cationic cellulose (ACC). The cationic cellulose was used as flocculant in the wasterwater treatment Preparation conditions of ACC were optimized. The product was characterized by fourier transform infrared spectroscopy (FTIR) and scanning electron microscope (SEM). The stability of ACC was studied by Thermogravimetric Analysis (TGA). The results show that the cationic cellulose with a degree of substitution (DS) of 0.85 can be obtained at 80℃ after treatment for 3h. The IR spectrography results show that the cationization of cellulose is successfully implemented. The removal rate of turbidity was 92.5% when the flocculant dosage was 15 mg/L.Key words: cellulose; synthesis; cationization; cationic flocculant; ionic liquid纤维素是自然界中产量最大的天然高分子材料,由天然的纤维素制取高附加值的阳离子纤维素,不仅原材料来源广泛,价格低廉,且制备工艺绿色环保,应用前景广阔,为农作物纤维的有效利用探索一条新的途径[1-4]。
二硫化钼拉曼激发光源
二硫化钼拉曼激发光源二硫化钼(MoS2)是一种具有特殊结构和性质的二维材料,近年来在光电子学和能源领域引起了广泛的研究兴趣。
二硫化钼的拉曼光谱具有丰富的信息,可以用于表征和研究其结构、性质和相变等方面的信息。
而二硫化钼的拉曼激发光源在二硫化钼的研究中起着重要的作用。
二硫化钼的拉曼光谱是通过激光激发二硫化钼样品产生的。
激光是一种高强度、单色性好的光源,可以提供足够的能量来激发二硫化钼样品。
当激光照射到二硫化钼样品表面时,一部分光被吸收,一部分光被散射。
被散射的光中的一小部分会发生拉曼散射,即光子与样品中的分子或晶格振动相互作用,导致散射光的频率发生变化。
拉曼散射光中的频率变化包含了二硫化钼样品的结构和性质信息。
通过测量拉曼散射光的频率变化,可以得到二硫化钼样品的拉曼光谱。
拉曼光谱中的峰位和峰强度可以提供关于二硫化钼样品的晶格振动、电子结构和相变等信息。
二硫化钼的拉曼光谱可以用于研究其结构和相变。
二硫化钼具有多种晶体结构,包括1T、2H和3R等结构。
不同的晶体结构对应着不同的拉曼光谱特征,通过测量和分析拉曼光谱可以确定二硫化钼样品的晶体结构。
二硫化钼的拉曼光谱还可以用于研究其性质。
二硫化钼是一种具有特殊电子结构的半导体材料,具有较大的能带隙和独特的电子输运性质。
通过测量和分析拉曼光谱,可以研究二硫化钼的能带结构、载流子输运性质等。
二硫化钼的拉曼光谱还可以用于研究其相变过程。
二硫化钼在不同温度和压力条件下会发生相变,相变过程伴随着晶格结构、电子结构和性质的变化。
通过测量和分析拉曼光谱,可以研究二硫化钼的相变过程及其机制。
二硫化钼的拉曼激发光源在二硫化钼的研究中起着重要的作用。
通过激发二硫化钼样品产生拉曼光谱,可以表征和研究二硫化钼的结构、性质和相变等方面的信息。
拉曼光谱可以提供丰富的信息,对于深入理解和应用二硫化钼具有重要意义。
通过不断改进和发展拉曼激发光源的技术,将进一步推动二硫化钼在光电子学和能源领域的应用。
采用水合氧化铁吸附钨酸钠溶液中的钒及其吸附特性
第53卷第6期2022年6月中南大学学报(自然科学版)Journal of Central South University (Science and Technology)V ol.53No.6Jun.2022采用水合氧化铁吸附钨酸钠溶液中的钒及其吸附特性肖露萍,陈星宇,刘旭恒,赵中伟(中南大学冶金与环境学院,湖南长沙,410083)摘要:利用水合氧化铁的吸附特性,研究从钨酸钠溶液中吸附除钒。
运用模型量化在不同pH 、表面负荷以及离子强度条件下的水合氧化铁对钒的吸附特性。
研究结果表明:在含有不同质量浓度的钨、钒溶液中,当钒的初始质量浓度为24mg/L ,钨的初始质量浓度分别为50,98,213和466mg/L 时,钒在水合氧化铁上最大的吸附平台出现的pH 范围为2~10,钨对应的最大pH 吸附范围分别为2.0~8.2,2.0~7.8,2.0~7.0和1.7~2.0。
在钨与钒的质量比为1000的钨酸钠溶液中,直接在钨酸钠中生成水合氧化铁的方式作为吸附剂比水合氧化铁的吸附效果更好;除钒率随着水合氧化铁用量增加而增加,但钨损率也随之增加;在水合氧化铁的量为钒物质的量的40倍、pH 为9.8~10.8、反应1h 的条件下,除钒率高于99%而钨损率维持在1.85%~4.42%;以此做扩大实验后得到在结晶率为96%和100%的仲钨酸铵中,铁质量分数分别为6×10−6和9×10−6,满足0级仲钨酸铵的铁含量标准。
钒在水合氧化铁上的吸附几乎不受离子强度的影响,采用表面配位模型模拟水合氧化铁吸附钒的行为,并确定水合氧化铁的3种酸位,其酸位常数分别为3.50,7.54和11.02。
关键词:钨;钒;水合氧化铁;吸附中图分类号:TF841文献标志码:A开放科学(资源服务)标识码(OSID)文章编号:1672-7207(2022)06-1998-09Vanadium adsorption from sodium tungstate solution and itsadsorption characteristics using hydrous ferric oxideXIAO Luping,CHEN Xingyu,LIU Xuheng,ZHAO Zhongwei(School of Metallurgy and Environment,Central South University,Changsha 410083,China)Abstract:The adsorption characteristics of hydrous ferric oxide were used to study the vanadium removal in sodium tungstate solution.The model was used to quantify the adsorption characteristics of vanadium on hydrous ferric oxide at different pH,surface loadings and ionic strengths.The results show that when the vanadiuminitial收稿日期:2021−08−21;修回日期:2021−11−26基金项目(Foundation item):国家自然科学基金基础科学中心项目(72088101);国家自然科学基金资助项目(51974372)(Project(72088101)supported by Fundamental Science Center of the National Natural Science Foundation of China;Project(51974372)supported by the National Natural Science Foundation of China)通信作者:赵中伟,博士,教授,博士生导师,从事稀有金属冶金、相似元素分离、冶金过程强化研究;E-mail :**************.cnDOI:10.11817/j.issn.1672-7207.2022.06.002引用格式:肖露萍,陈星宇,刘旭恒,等.采用水合氧化铁吸附钨酸钠溶液中的钒及其吸附特性[J].中南大学学报(自然科学版),2022,53(6):1998−2006.Citation:XIAO Luping,CHEN Xingyu,LIU Xuheng,et al.Vanadium adsorption from sodium tungstate solution and its adsorption characteristics using hydrous ferric oxide[J].Journal of Central South University(Science and Technology),2022,53(6):1998−2006.第6期肖露萍,等:采用水合氧化铁吸附钨酸钠溶液中的钒及其吸附特性mass concentration is24mg/L and W initial mass concentrations are50,98,213and466mg/L,the vanadium adsorption maximum appears at pH of2.0to10.0and the tungsten adsorption maximum appears at pH of2.0to8.2,2.0to7.8,2.0to7.0,and1.7to2.0respectively.The adsorption is more effective when hydrous ferric oxide isgenerated directly in the sodium tungstate solution with the mass ratio of tungsten to vanadium of1000.When the addition amount of hydrous ferric oxide is increased,the vanadium removal ratio is higher while the tungsten loss ratio is lower.Under the conditions that the amount of substance of hydrous ferric oxide is40times of vanadium, pH is9.8−10.8and reaction time is1h,the vanadium removal ratio is higher than99%while the tungsten loss ratio maintains1.85%−4.42%.The results of scale-up experiment are that the Fe mass fractions in ammonium paratungstate with crystallization ratios of96%and100%are6×10−6and9×10−6respectively,which meet the Fe content standard of0-level ammonium paratungstate.Ionic strength has very minor or no impact on the adsorption of vanadium.Speciation-based model can simulate the adsorption of vanadium on hydrous ferric oxide in a broad pH range and surface loading conditions.Three surface acid sites of hydrous ferric oxide are identified and their acidity constants of acid sites are3.50,7.54and11.02respectively.Key words:tungsten;vanadium;hydrous ferric oxide;adsorption近年来,随着高品位优质钨矿原料的减少,一些钒含量高的复杂低品位钨矿资源以及一些二次含钨资源正逐渐被利用[1]。
Effect of immobilizing adsorption on mass transport through polymer films
ON MASS TRANSPORT
ZBIGNIEW
GRZYWKOWKA Silesian Technical University,
Institute of Physical and Polymer 44-l 00 Gliwice (Poland) (Received June 16, 1977;
Introduction
A dual sorption theory first suggested by Barrer, Barrie and Slater [l] has been developed by Paul [2], Vieth and Amini [3], Petropoulos [4] and others to explain the deviations from normal behavior of transport phenomena through glassy polymeric films. According to this theory, sorption is visualized as a process in which there are dual modes: either the penetrant molecule is normally dissolved and is free to diffuse, or it is at least partly immobilized by adsorption according to a Langmuir isotherm. It is the second process which gives rise to deviations from ideal behavior. Paul [2], on the basis of the work of Michaels, Vieth and Barrie [5] as well as that of Vieth and Sladek [6], theoretically derived the influence of Langmuir immobilizing adsorption on the values of two time lags, i.e. L”(Z) and Ld (1). The basic assumptions made in this work are: (i) an equilibrium between adsorbed and diffusing molecules is reached very quickly. (ii) adsorbed molecules are completely immobilized, (iii) the diffusion coefficient of “dissolved” molecules is constant, (iv) adsorption takes place in accordance with the classical Langmuir mechanism.
硫化钼晶体生长拉曼光谱
硫化钼晶体生长拉曼光谱硫化钼晶体是一种具有许多独特性质的半导体材料,例如优异的光学和电子性质,因此在许多领域中都有广泛的应用,例如电子学、纳米技术和光电子学等。
硫化钼晶体通常是通过气相传输或化学气相传输法生长而成。
这篇文章将介绍一项重要的技术:硫化钼晶体生长拉曼光谱。
首先,拉曼光谱是一种研究材料分子结构和特性的分析技术。
它是利用激光对样品进行激发,并通过检测激光散射光的频率和振幅来确定样品的振动、旋转和转动状态的一种方法。
而硫化钼晶体生长拉曼光谱则是指通过拉曼光谱技术对硫化钼晶体的生长过程进行研究,以便更好地理解和控制晶体的生长。
拉曼光谱技术最早是由意大利物理学家Raman于1928年发明的,他发现在激光照射下,光子与物质之间互相作用,能够激发出分子振动的运动。
利用这种技术,可以通过研究样品激发后散射光的振动频率,来推测样品的化学成分、结构和物理特性。
在硫化钼晶体生长方面,这种技术得以广泛应用。
硫化钼晶体是由钼和硫元素组成的单晶体,晶体结构为层状结构,具有六方晶系。
它具有优异的电学性能和光学性能,例如直接能隙和长寿命荧光。
它还可以用于制作探测器、可见光激光器和其他电子设备。
但是,硫化钼晶体的制备过程是十分复杂的,因此需要利用各种分析技术来研究其生长过程。
近年来,众多研究人员通过拉曼光谱技术研究了硫化钼晶体的生长过程。
在晶体生长过程中,材料的分子结构和特性会随着时间的推移而发生变化,这与拉曼光谱技术的精度和准确性有很大的关系。
在硫化钼晶体的生长过程中,利用拉曼光谱技术可以探测到晶体中硫键和钼铁的变化,特别是硫键的变化,这是因为在硫化钼晶体的生长过程中,硫键的变化可以直接影响晶体的生长。
此外,拉曼光谱还可以通过检测晶体中的振动光谱,来确定样品材料的结构和化学成分。
因此,这种技术在研究硫化钼晶体的生长过程中,提供了重要而有价值的分析信息,有助于更好地控制晶体的生长,提高晶体的质量。
总之,硫化钼晶体生长拉曼光谱是一种重要的分析技术,在探究硫化钼晶体生长规律、提高晶体质量和掌握晶体生长机理等方面都有重要的应用价值。
盐酸介质中咪唑离子液体对铜的缓蚀作用
盐酸介质中咪唑离子液体对铜的缓蚀作用段腾龙;陈旭;任帅【摘要】以l-甲基咪唑、1,4丁烷磺内酯和浓硫酸为原料,用乙醚洗涤合成了1甲基-3-(4-硫酸基丁基)咪唑硫酸盐(4-BMIM)缓蚀剂.采用动电位极化和交流阻抗技术研究了4 BMIM在5% HCl溶液中对铜的缓蚀性能及作用机理.实验结果表明:缓蚀效率随着缓蚀剂浓度的增加先增大后降低,当浓度为0.03mol/L时,缓蚀效率最高;同一浓度下,随着温度的升高缓蚀效率降低.动电位极化表明咪唑离子的加入对铜的阴、阳极腐蚀过程均有抑制作用,是混合型缓蚀剂.热力学计算结果表明咪唑离子液体吸附在铜表面,其吸附机制为自发进行的物理吸附,并且在铜/溶液界面的吸附遵循Langmuir吸附等温式.%1 methy 3 (4vsulfate butyl) imidazolium ionic liquid was synthetized using 1-methylimidazole,1,4-butane sultone,concentrated sulfuric acid by being washed with ether.The potentiodynamic polarization and electrochemical impedance spectroscopy were used to study the corrosion mechanism and inhibiting performance of 4-BMIM on copper in 5% hydrochloric acid medium.The results show that the inhibition efficiency first increases and then decreases with the increase of inhibition concentration,and the maximum inhibition efficiency is obtained with0.03mol/L 4-BMIM.However,the inhibition efficiency decreases with the increase of temperature at the same concentration.The polarization curves show that 4-BMIM is a mixed type inhibitor,and inhibits both the cathodic and anodic reactions.The results of thermodynamic calculation reveal that adsorption mechanism of 4-BMIM on the copper surface is spontaneous physisorption and it fits the Langmuir adsorption isotherm.【期刊名称】《材料科学与工程学报》【年(卷),期】2017(035)002【总页数】5页(P296-300)【关键词】缓蚀剂;离子液体;铜;极化曲线;物理吸附【作者】段腾龙;陈旭;任帅【作者单位】辽宁石油化工大学石油天然气工程学院,辽宁抚顺113001;辽宁石油化工大学石油天然气工程学院,辽宁抚顺113001;辽宁石油化工大学石油天然气工程学院,辽宁抚顺113001【正文语种】中文【中图分类】TG174.42Cu及其合金由于具有优良的导热、导电和机械加工性能而被广泛应用于建筑、石油化工及工业冷却水系统等领域[1]。
改性球形活性炭对氨气吸附性能的研究
Vol.53 No.4Apr.,2021第53卷第4期2021年4月无机盐工业INORGANIC CHEMICALS INDUSTRYDoi:10.11962/1006-4990.2020-0318开放科学(资源服务)标志识码(OSID)改性球形活性炭对氨气吸附性能的研究金青青袁梁晓烽,张佳楠,周晓龙(华东理工大学化工学院,上海200237)摘 要:研究了不同金属盐溶液浸渍改性的球形活性炭对氨气的吸附性能以及同种浸渍剂的最佳浸渍比。
采用 扫描电镜、透射电镜、X 射线衍射仪、康塔吸附仪探究了不同浸渍比对浸渍炭样品的表面形貌、物相结构及孔径分布的影响。
通过固定床吸附装置对基炭和浸渍炭进行了氨气吸附性能的研究。
结果表明:浸渍剂种类对氨气吸附效果 有很大影响,同等浸渍条件下,氯化钻浸渍的活性炭具有最优氨气吸附效果,氯化钻浸渍比为50%的样品对氨气的吸附量最高,可达54.05 mg/mL ,为基炭的37倍。
对吸附氨气后样品的物化性质进行分析以及程序升温脱附表征,结 果表明氯化钻与氨气反应生成了 [Co (NH 3)6]Cl 3。
关键词:球形活性炭;氯化钻;浸渍炭;氨气;吸附性能中图分类号:0647.32 文献标识码:A 文章编号:1006-4990(2021)04-0061-06Study on adsorption performance of modified spherical activated carbon for ammoniaJin Qingqing ,Liang Xiaoyi 袁Zhang Jia'nan ,Zhou Xiaolong(School of Chemical Engineering , East China University of S cience and Technology , Shanghai 200237, China)Abstract : The adsorption performance of spherical activated carbon impregnated with different metal salt solutions for ammonia and the optimal ratio of the same impregnant were studied.The influence of different impregnation ratio on the surface morpho-logy ,phase structure and pore size distribution on impregnated carbon samples were investigated by scanning electron micro scopy , transmission electron microscopy , X-ray diffraction and Quanta adsorption instrument.The adsorption performance of the unmodified carbon and impregnated carbon for ammonia was studied by the fixed bed adsorption device.The results showedthat the type of impregnant had a great influence on the adsorption performance of ammonia.Under the same impregnation conditions , the activated carbon impregnated with cobalt chloride had the best adsorption performance for ammonia.The samplewith 50% impregnation ratio of cobalt chloride had the highest ammonia adsorption capacity up to 54.05 mg/mL , which was 37 times of the unmodified carbon.The physicochemical properties and temperature programmed desorption characteristics ofthe samples after ammonia adsorption were analyzed.The results showed that[Co(NH 3)6]Cl 3 was formed by the reaction of co balt chloride with ammonia.Key words : spherical activated carbon ; cobalt chloride ; impregnated carbon ; ammonia ; adsorption capacity氨气渊NH 3 )是一种有毒的碱性气体,对人类健 康和环境均造成严重危害[1]。
&gamma辐照引发[Cnmim][NTf2]离子液体变色研究
γ辐照引发[C n mim][NTf 2]离子液体变色研究崔振鹏王硕珏敖银勇彭静*李久强翟茂林*(北京大学化学与分子工程学院,北京分子科学国家实验室,北京100871)摘要:1-烷基-3-甲基咪唑双三氟甲基磺酰胺型离子液体([C n mim][NTf 2])被认为是最有希望用于核燃料循环中的分离试剂之一,虽然其化学结构在辐照过程中变化不大,但在受到γ辐照后会发生明显的变色,因此有必要研究该类离子液体的变色原因.本文以60Co 为辐照源,系统研究了辐照后不同C(1)-烷基链长和咪唑环上C(2)位上的H 被甲基取代后离子液体的紫外-可见(UV-Vis)吸收光谱行为,并结合辐照后离子液体荧光光谱和质谱的变化,分析了导致该类离子液体辐照后颜色加深的原因.结果表明,随着咪唑环上C(1)―烷基链长度和剂量增大,离子液体颜色加深;而C(2)位上的H 被甲基取代后颜色明显变浅.辐照后咪唑型离子液体的变色主要来自于辐照后产生的烷基侧链含双键的咪唑阳离子,咪唑阳离子二聚体和含氟咪唑化合物.此外,γ辐照引起咪唑阳离子易发生π-π堆积,而聚集态含量增加也会引起颜色加深.关键词:离子液体;辐照;颜色;光谱;聚集态中图分类号:O644Study of γRadiation-Induced Colored Products on [C n mim][NTf 2]Ionic LiquidsCUI Zhen-PengWANG Shuo-Jue AO Yin-Yong PENG Jing *LI Jiu-Qiang ZHAI Mao-Lin *(Beijing National Laboratory for Molecular Sciences,College of Chemistry and Molecular Engineering,Peking University,Beijing 100871,P .R.China )Abstract:Ionic liquids 1-alkyl-3-methylbis(trifluoromethylsulfonyl)imide ([C n mim][NTf 2])are promising separating reagents in the nuclear fuel cycle.Their chemical structure changes slightly when exposed to γradiation,but the apparent darkening of [C n mim][NTf 2]occurs at low dose.This radiation-induced darkening of [C n mim][NTf 2]should be investigated further.To understand the effect of radiation on [C n mim][NTf 2],we systematically studied the influences of the length of the C(1)―alkyl chain and substitution of C(2)―H on the UV-Vis spectra of irradiated [C n mim][NTf 2].Fluorescence and mass spectra of [C n mim][NTf 2]allowed the possible colored products to be determined.The darkening of [C n mim][NTf 2]is more obvious as the length of the C(1)―alkyl chain and absorbed dose increase,but it is weakened effectively after methylation at the C(2)-position of the imidazole ring.The dominant colored products are possibly imidazolium cations containing double bonds,dimers of imidazolium cations and fluorinated imidazolium compounds.Imidazolium cations could aggregate through π-πstacking after γ-irradiation,and the associated states may also play a role in darkening these ionic liquids.Key Words:Ionic liquid;Irradiation;Color;Spectrum;Aggregation state[Article]doi:10.3866/PKU.WHXB201212102物理化学学报(Wuli Huaxue Xuebao )Acta Phys.-Chim.Sin .2013,29(3),619-624March Received:September 21,2012;Revised:December 7,2012;Published on Web:December 10,2012.∗Corresponding authors.PENG Jing,Email:jpeng@;Tel:+86-10-62757193.ZHAI Mao-Lin,Email:mlzhai@;Tel:+86-10-62753794.The project was supported by the National Natural Science Foundation of China (21073008,11079007,91126014).国家自然科学基金(21073008,11079007,91126014)资助项目ⒸEditorial office of Acta Physico-Chimica Sinica619Vol.29 Acta Phys.-Chim.Sin.20131引言离子液体由于具有低熔点、高热稳定性和化学稳定性、非挥发性等特点而受到广泛的关注,被应用到很多领域中.其中,在乏燃料后处理中,由于离子液体与萃取剂复配后,表现出比传统萃取体系更好的萃取分离性能,1有希望替代传统溶剂而引起人们的广泛研究.但是在萃取放射性核素的过程中,离子液体势必受到电离辐射的辐照,研究其耐辐照稳定性是离子液体能否用于核燃料循环的关键.到目前为止,已经有一些关于离子液体辐解稳定性的研究报道.Allen等2最先研究了咪唑型离子液体的α,β,γ辐解稳定性,结果表明,离子液体的辐解稳定性较高.Berthon等3研究了1-丁基-3-甲基咪唑六氟磷酸盐([C4mim][PF6])和1-丁基-3-甲基咪唑双三氟甲基磺酰胺酸盐([C4mim][NTf2])的γ辐解稳定性. Wu等4研究了1-丁基-3-甲基咪唑四氟硼酸盐([C4mim][BF4])的辐解稳定性.以上研究结果表明,阳离子为咪唑型的离子液体耐辐照稳定性较高, [C4mim][NTf2]辐照1.2MGy,[C4mim][BF4]辐照100 kGy,辐解产物的量不超过1%,但辐照后会发生明显的颜色加深.对于有色物质,我们5前期研究工作发现,硝酸对辐照后的[C4mim][NTf2]有脱色作用,辐照产生的有色物质可以被硝酸氧化而脱色,而具体是什么物质导致离子液体辐照前后明显的颜色变化还有待更深入的研究.为了更好地理解该类离子液体的辐射化学行为,为其未来应用于核燃料循环提供必要的理论和实验依据,本文对γ辐照引发[C n mim][NTf2]离子液体变色的原因进行了较深入研究,系统探讨了咪唑阳离子上C(1)-烷基侧链长度、C(2)位上的H被甲基取代和剂量对辐照后离子液体紫外光谱的影响,并结合荧光光谱和质谱等表征手段对有色物质的结构和种类进行了分析.2实验部分2.1试剂[C n mim][NTf2](n=2,4,6,8)和[C4mmim][NTf2] (1-丁基-2,3-二甲基咪唑双三氟甲基磺酰胺酸盐)购买于兰州化学物理研究所,纯度均大于99%,含水量均小于700×10-6,使用前未作纯化.实验所用其它试剂(分析纯)购买于北京试剂公司,使用前未进行纯化.2.2样品辐照空气气氛下辐射:分别取适量[C n mim][NTf2](n= 2,4,6,8)和[C4mmim][NTf2]于辐照管中,将样品置于60Co-γ源辐照室(北京大学化学与分子工程学院应用化学系)中,在空气气氛下辐照,剂量率约300Gy·min-1,剂量为50kGy.辐照后的离子液体立即进行相关的表征分析.氩气气氛下辐射:分别取适量[C4mim][NTf2]和[C4mmim][NTf2]装入辐照管中,通氩气30min后封口,将样品置于辐照室中辐照,剂量率约300Gy·min-1,剂量范围0-400kGy.辐照后的离子液体立即进行相关的表征分析.2.3样品表征与分析UV-3010紫外-可见分光光度计(日本日立公司)和FLS920稳态瞬态荧光光谱仪(英国爱丁堡公司)分别用于测定紫外和稳态荧光光谱.使用Nicolet iN10MX显微红外光谱仪(美国Nicolet公司)测定显微红外光谱;核磁共振(NMR)测定使用Bruker-500核磁共振谱仪(瑞士Bruker公司),以氘代二甲基亚砜(DMSO-D6)作为溶剂;电喷雾电离质谱(ESI-MS) (ESI+,skimmer voltage30V)测定使用APEX IV傅里叶变换高分辨质谱仪(美国Bruker公司).用Karl-Fisher DL31水分滴定仪(瑞士Mettler公司)测定离子液体中的水含量.3结果与讨论3.1离子液体的紫外-可见吸收光谱分析我们前期工作曾研究了[C4mim][NTf2]5和[C4mim][PF6]6辐照后的颜色变化,发现有色物质主要与阳离子种类有关,而且咪唑型离子液体颜色变化比季鏻盐型7和季铵盐型8离子液体要明显.因此,本工作中,我们主要研究了咪唑型离子液体中阳离子结构对其紫外光谱的影响.3.1.1烷基链长度和C(2)位取代基的影响用乙腈作为溶剂对空气气氛下辐照50kGy的[C n mim][NTf2](n=2,4,6,8)进行稀释,配制浓度为0.08mol·L-1的溶液,测定溶液在200-500nm范围内的紫外-可见吸收光谱,如图1所示.辐照前[C n mim][NTf2](n=2,4,6,8)是无色透明液体,由图1a可知,在200-500nm范围内没有吸收(因为四种离子液体辐照前的紫外吸收光谱在测定范围内一致,图中只给出了未辐照[C4mim][NTf2]的吸收曲线).与辐照前相比,四种不同烷基链长的离子液体辐照50kGy后都在286nm处出现新的吸收620崔振鹏等:γ辐照引发[C n mim][NTf 2]离子液体变色研究No.3峰,说明在50kGy 剂量下,四种离子液体的辐解产物具有相似的结构,并且随着C(1)-烷基链长度增长,该吸收峰强度逐渐增大.此吸收峰可能是由双键的π-π*跃迁产生.同时,在340nm 处都存在吸收峰,且吸收峰高度随着C(1)-烷基长度的增加而呈现升高的趋势,340nm 以后的吸收拖尾有文献9报道是由于存在多种能量的咪唑阳离子聚集态.文献3研究发现[C 4mim][NTf 2]辐照后其C(2)-H 键会断裂,会进一步发生反应产生多种辐解产物.因此,采用C(2)-甲基取代C(2)-H 的[C 4mmim][NTf 2]来考察取代基对其辐照后紫外-可见光谱的影响.图2为咪唑环上C(2)连接H 和甲基时,在空气气氛下辐照后的UV-Vis 吸收光谱,可以看出[C 4mmim][NTf 2]的吸收峰高度明显降低,吸光度从1.1下降到0.4,且发生红移,说明C(2)位上的H 被甲基取代明显抑制了辐解产物的生成.通常单个咪唑环上电子的π-π*跃迁在220nm 左右会有很强的吸收峰,而连二咪唑的π-π*跃迁在270nm 左右有很强的吸收峰,10同时由于C(1)、C(3)-烷基供电子作用,使得π-π*跃迁发生红移,因此同样也会产生紫外吸收.因此,我们推测辐照过程中可能是咪唑环上C(2)-H 容易发生脱氢反应,产生碳卡宾而引起偶联反应,或者咪唑阳离子辐照后形成咪唑阳离子自由基,该自由基再同一个咪唑阳离子自由基反应得到阳离子二聚体.11因此,当咪唑环C(2)位上的H 被甲基取代后会抑制偶联反应或者阳离子自由基的复合反应,导致阳离子二聚体减少,使得颜色变浅,吸收峰明显降低.从图2内插图可以看出,[C 4mim][NTf 2]和[C 4mmim][NTf 2]在辐照相同剂量时,前者的颜色明显要比后者深,因此C(2)位上的H 被甲基取代使得咪唑阳离子的颜色稳定性增强.Fu 等12利用脉冲辐解研究表明,C(1)、C(2)、C(3)取代的咪唑型离子液体与水化电子的反应速率常数比C(1),(3)取代的要低1个数量级,说明C(1),C(2)、C(3)三取代的咪唑型离子液体比C(1)、(3)二取代的稳定性要好.我们的结果与其反应活性一致,以上实验结果证明[C n mim][NTf 2]辐照后颜色加深与C(2)-H 有关.3.1.2剂量的影响将氩气气氛下辐照的[C 4mim][NTf 2]和[C 4mmim][NTf 2]用乙腈作溶剂,配成浓度为0.02mol ·L -1溶液,测定其不同剂量下的紫外吸收光谱,分别以[C 4mim][NTf 2](294nm)和[C 4mmim][NTf 2](307nm)的吸收峰强度对剂量作图,结果如图3所示.由图3可以看出,随着剂量增大,吸收峰强度呈线性增加.[C 4mim][NTf 2]辐照前后,溶液的颜色从无色变为黄色,且随着剂量的增加,颜色逐渐加深变为棕色.虽然C(2)-甲基取代使得[C 4mmim][NTf 2]颜色加深减缓,辐照后颜色由无色变为黄色.但是[C 4mmim][NTf 2]经γ辐照的变化规律与[C 4mim][NTf 2]相似,随着剂量增加,颜色也逐渐加深,说明[C 4mmim][NTf 2]辐照后也会产生相似的有色物质.3.1.3辐照样品的臭氧处理考虑到[C n mim][NTf 2](n =2,4,6,8)辐照后颜色的加深可能是由双键引起的,我们向辐照400kGy 的[C 4mim][NTf 2]和[C 4mmim][NTf 2]分别通入臭氧,图1空气气氛下[C 4mim][NTf 2]辐照前(a)和辐照50kGy 后[C n mim][NTf 2]离子液体(b -e)的紫外-可见吸收光谱Fig.1UV-Vis absorption spectra of [C 4mim][NTf 2]before (a)and after irradiation of 50kGy in air for [C n mim][NTf 2]ionic liquids (b -e)(b)[C 2mim][NTf 2],(c)[C 4mim][NTf 2],(d)[C 6mim][NTf 2],(e)[C 8mim][NTf 2]2空气气氛辐照后[C 4mim][NTf 2]和[C 4mmim][NTf 2]的紫外-可见吸收光谱Fig.2UV-Vis absorption spectra of [C 4mim][NTf 2]and[C 4mmim][NTf 2]after irradiation in air50kGy,0.08mol ·L -1.Inset shows photographs of (A)[C 4mim][NTf 2]and (B)[C 4mmim][NTf 2]after irradiation for 50kGy.[C 4mmim][NTf 2]:1-butyl-2,3-dimethylimidazoliumbis(trifluoromethylsulfonyl)imideA B621Vol.29Acta Phys.-Chim.Sin.2013发现两种离子液体的颜色都变浅,测定通臭氧前后两种离子液体的UV-Vis吸收光谱,如图4所示.可以看出,通入臭氧后[C4mim][NTf2]和[C4mmim][NTf2]在280-290nm的吸收峰都明显降低,推测该吸收峰对应为双键,可能是通过咪唑阳离子的烷基链脱氢产生,此结果同文献13的结果一致.因此,臭氧脱色表明咪唑阳离子烷基辐照后会产生含双键的有色物质,导致离子液体颜色加深.3.2离子液体的荧光光谱分析3.2.1剂量的影响由于有文献报道聚集态的存在导致离子液体紫外吸收在可见光区有拖尾,9而荧光光谱可以研究离子液体的聚集态.14因此,我们测定了不同剂量辐照后[C4mmim][NTf2]在370nm激发时的荧光发射光谱,如图5所示.可以看出,γ辐照后[C4mmim][NTf2]有明显的发射峰,随着剂量的增加,最大发射峰发生红移,表明离子液体存在不同能量状态的聚集体.因此,荧光光谱证明γ辐照确实促进了[C4mmim][NTf2]聚集体的生成,且聚集态中阳离子的聚集数随剂量增大而逐渐增加,15同前面的紫外光谱中存在吸收拖尾的结果一致.同时,荧光强度随剂量增大逐渐减弱,说明随着剂量增加,含有少量咪唑阳离子的聚集体进一步发生聚集形成具有更多咪唑阳离子的聚集体,使其对应最大的激发波长红移,而370nm激发所引起的发射峰荧光强度减弱.3.2.2激发波长的影响由于离子液体的发射光谱具有明显的激发波长依赖性,因此我们测定了辐照前后[C4mmim] [NTf2]的荧光发射光谱,如图6所示.对比图6(A)和(B)可以看出,辐照前激发波长为340nm时,荧光强度最强,对应为单个咪唑环的荧光发射峰,而随着激发波长变长,发射峰强度明显减弱,说明未辐照前离子液体中聚集态较少;辐照后,随着激发波长的增长,荧光强度逐渐增强,说明辐照后咪唑阳离子聚集态数目增加,且含有更多阳离子数目的聚集体逐渐增多,也进一步证实γ辐照改变了离子液体的聚集状态.结合UV-Vis吸收光谱和荧光光谱可以推断聚集体含量的增加对颜色的加深起到促进作用.3.3质谱分析为了进一步分析离子液体辐照后会产生哪些有色物质,我们对辐照前后的[C4mim][NTf2]进行了电喷雾电离质谱(ESI-MS)表征,结果见表1.辐照前后[C4mim][NTf2]都存在[C4mim]+和M[C4mim]+(M=图4臭氧处理对离子液体UV-Vis吸收光谱的影响Fig.4Effect of ozone treatment on the UV-Vis absorptionspectra of ionic liquids(a)and(b):irradiated[C4mim][NTf2]before and after bubbled withozone;(c)and(d):irradiated[C4mmim][NTf2]before and afterbubbled with ozone图5氩气气氛辐照不同剂量下[C4mmim][NTf2]的荧光光谱Fig.5Fluorescence spectra of[C4mmim][NTf2]exposed to different doses under argon atmosphereThe excitation wavelength is370nm,the absorbed doses are(a)0kGy,(b)50kGy,(c)100kGy,(d)200kGy,(e)300kGy,(f)400kGy.3(a)[C4mim][NTf2](294nm)和(b)[C4mmim][NTf2](307nm)的吸光度随剂量的变化Fig.3Relationship between absorbance and dose of(a)[C4mim][NTf2](294nm)and(b)[C4mmim][NTf2](307nm)崔振鹏等:γ辐照引发[C n mim][NTf 2]离子液体变色研究No.3[C 4mim][NTf 2])信号峰,这同Fernandes 等16的结果一致,其m /z 分别为139和558.m /z =207的信号峰对应为[C 4mim-CF 3]+,可能由[NTf 2]-辐解产生的·CF 3和[C 4mim]+的C(2)-H 反应产生,同时还存在m /z 为137([C 4mim(-H 2)]+)和157([C 4mim-F]+)的信号峰,13其中m /z =137的信号峰由[C 4mim]+脱去两个氢产生双键得到,也证实了有双键化合物产生.同时,由于阴离子的辐解产生F -,17同[C 4mim]+反应得到[C 4mim-F]+,对应m /z =157的信号峰.Berthon 等3研究发现,m /z =556的信号峰对应为[(C 4mim)2NTf 2]+,推测是一个咪唑阳离子的C(1)-烷基末端碳脱氢,然后同另一个咪唑阳离子的C(2)-H 脱氢产生的母体自由基发生反应得到的阳离子二聚体.但是,连接两个咪唑阳离子的烷基链容易在辐照时断裂,因而辐照稳定性较差.而两个咪唑阳离子通过咪唑环上C(2)-H 脱氢发生偶联反应得到的联二咪唑阳离子,由于两个咪唑环上π电子的离域作用,使其辐照稳定性提高.Xiao 和Shreeve 18通过化学方法合成的[(C 4mim)2][NTf 2]离子液体为浅黄色液体,而联二咪唑环上C(1)、C(3)-烷基链长度及数目不同的离子液体同样也呈浅黄色或黄色.而且在[C 4mmim][NTf 2]辐照后的ESI-MS 谱图中,没有发现m /z =556的信号峰,这进一步证实了[C 4mim][NTf 2]辐解产生的有色物质中含有咪唑阳离子的二聚体,而该二聚体主要是通过C(2)-H 脱氢产生的母体自由基反应产生.依照联二咪唑的摩尔吸光系数ε=8000L ·mol -1·cm -1(Absorbance=0.2,2.5×10-5mol ·L -1)来估算,10辐照400kGy 后的[C 4mim][NTf 2](Absorbance=0.8,0.02mol ·L -1)中阳离子二聚体的量不超过1%,由于含量太少使得辐照后离子液体的红外和NMR 谱图没有发生明显的变化(红外和NMR 的谱图省略).同时,咪唑环上有-CF 3取代的离子液体呈棕色或黄色,18而辐照后的离子液体[C 4mim][NTf 2]也呈棕黄色,结合ESI-MS 的结果,我们推断含氟的辐解产物也可能是有色物质之一.4结论以60Co 为辐照源,我们利用UV-Vis 、荧光光谱和ESI-MS 等表征手段,系统研究了γ辐照后[C n mim][NTf 2]离子液体中有色物质的来源.研究发现咪唑阳离子C(1)-烷基链长度增加,颜色加深,而C(2)位上的H 被甲基取代则起较好的抑制作用,颜色加深明显减弱.同时该类离子液体可以通过臭氧脱色.因此,γ辐照后[C n mim][NTf 2]产生的有色物质主要为C(1)-烷基链辐解产生的含双键的咪唑阳离子,咪唑阳离子二聚体和由阴离子辐解产生的-CF 3取代阳离子的含氟化合物;此外辐照后离子液体聚集数增加也会引起颜色加深.该工作将有助于更深入地理解[C n mim][NTf 2]这类核燃料循环中研究最多的离子液体的辐射化学行为.Signal peak [C 4mim(-H 2)]+[C 4mim]+[C 4mim-F]+[C 4mim-CF 3]+[(C 4mim)2[NTf 2]+M[C 4mim]+m /z 1371313915713207556558400kGy,Ar;M=[C 4mim][NTf 2]表1[C 4mim][NTf 2]辐照后的阳离子ESI-MS 分析结果Table 1Analysis of electrospray ionization mass spectrometry (ESI-MS)for [C 4mim][NTf 2]after radiolysis图6[C 4mmim][NTf 2]在不同激发波长下(λex )的荧光光谱Fig.6Fluorescence spectra of [C 4mmim][NTf 2]with different excitation wavelengths (λex )(A)0kGy;(B)400kGy,ArVol.29 Acta Phys.-Chim.Sin.2013References(1)Dai,S.;Ju,Y.H.;Barnes,C.E.Dalton Transactions1999,8,1201.(2)Allen,D.;Baston,G.;Bradley,A.E.;Gorman,T.;Haile,A.;Hamblett,I.;Hatter,J.E.;Healey,M.J.F.;Hodgson,B.;Lewin, R.;Lovell,K.V.;Newton,B.;Pitner,W.R.;Rooney,D.W.;Sanders,D.;Seddon,K.R.;Sims,H.E.;Thied,R.C.GreenChemistry2002,4,152.doi:10.1039/b111042j(3)Berthon,L.;Nikitenko,S.I.;Bisel,I.;Berthon,C.;Faucon,M.;Saucerotte,B.;Zorz,N.;Moisy,P.Dalton Transactions2006,21,2526.(4)Qi,M.Y.;Wu,G.Z.;Li,Q.M.;Luo,Y.S.Radiation Physicsand Chemistry2008,77,877.doi:10.1016/j.radphyschem.2007.12.007(5)Yuan,L.Y.;Peng,J.;Xu,L.;Zhai,M.L.;Li,J.Q.;Wei,G.S.Radiation Physics and Chemistry2009,78,1133.doi:10.1016/j.radphyschem.2009.07.003(6)Yuan,L.Y.;Peng,J.;Zhai,M.L.;Li,J.Q.;Wei,G.S.RadiationPhysics and Chemistry2009,78,737.doi:10.1016/j.radphyschem.2009.03.064(7)Howett,S.E.;Joseph,J.M.;Noel,J.J.;Wren,J.C.Journal ofColloid and Interface Science2011,361,338.doi:10.1016/j.jcis.2011.05.034(8)Jagadeeswara,R.C.;Venkatesan,K.A.;Tata,B.V.R.;Nagarajan,K.;Srinivasan,T.G.;Vasudeva Rao,P.R.RadiationPhysics and Chemistry2011,80,643.doi:10.1016/j.radphyschem.2011.01.012(9)Paul,A.;Mandal,P.K.;Samanta,A.Chemical Physics Letters2005,402,375.doi:10.1016/j.cplett.2004.12.060(10)Buist,D.;Williams,N.J.;Reibenspies,J.H.;Hancock,R.D.Inorganic Chemistry2010,49,5033.doi:10.1021/ic100131z (11)Shkrob,I.A.;Marin,T.W.;Chemerisov,S.D.;Hatcher,J.L.;Wishart,J.F.The Journal of Physical Chemistry B2011,115,3889.doi:10.1021/jp200305b(12)Fu,H.Y.;Xing,Z.G.;Cao,X.Y.;Wu,G.Z.Chinese ScienceBulletin2012,57,2752.doi:10.1007/s11434-012-5129-8 (13)Le Rouzo,G.;Lamouroux,C.;Dauvois,V.;Dannoux,A.;Legand,S.;Durand,D.;Moisy,P.;Moutiers,G.DaltonTransactions2009,No.31,6175.(14)Yuan,L.Y.;Peng,J.;Li,J.Q.;Zhai,M.L.Acta Phys.-Chim.Sin.2010,26,981.[袁立勇,彭静,李久强,翟茂林.物理化学学报,2010,26,981.]doi:10.3866/PKU.WHXB20100423(15)Binetti,E.;Panniello,A.;Triggiani,L.;Tommasi,R.;Agostiano,A.;Curri,M.L.;Striccoli,M.The Journal of PhysicalChemistry B2012,116,3512.doi:10.1021/jp300517h(16)Fernandes,A.M.;Rocha,M.A.A.;Freire,M.G.;Marrucho,I.M.;Coutinho,J.A.P.;Santos,L.M.N.B.F.The Journal ofPhysical Chemistry B2011,115,4033.doi:10.1021/jp201084x (17)Huang,W.;Chen,S.M.;Liu,Y.S.;Fu,H.Y.;Wu,G.Z.Radiation Physics and Chemistry2011,80,573.doi:10.1016/j.radphyschem.2010.12.012(18)Xiao,J.C.;Shreeve,.Chem.2005,70,3072.doi:10.1021/jo0501083624。
AZ MIF开发者的中文名字:高对比度、超高纯度TMAH基础开发者,适用于各种先进IC和厚层照相应用
APPLICATIONAZ MIF developers are high contrast, ultra-high purity tetramethyl-ammonium hydroxide (TMAH) based photoresist developers formulated for a wide range of advanced IC and thick photoresist applications. •Surfactant enhanced and surfactant free options •Industry leading normality control •Wide range of normality available•High purity, low particulate formulations•Multiple bulk and non-bulk packaging optionsPROCESSINGGENERAL PROCESSING GUIDELINESAZ MIF developers should be used at room temperature in puddle, spray, or batch immersion processing mode. Variations in develop time, developer temperature, and substrate temperature will result in inconsistent develop uniformity and will affect process repeatability/reproducibility. It is important to monitor and control these variables.When processed in batch immersion mode, MIF developer bath life will be limited by the volume of dissolved photoresist in solution and by carbonate uptake from the fab environment. Bath change out frequency should be specified by thenumber of substrates processed and by elapsed time since the last bath change. The maximum number of substrates that may be processed through a given bath will depend upon the photoresist thickness, the % of substrate surface covered, and the volume of the developer tank.MerckPeRFoRmaNce MaTeRIaLstechnical datasheet AZ® Organic DevelopersMetal Ion Free (TMAH) Photoresist DevelopersWhen not in use, developer tanks should be covered to minimize evaporation and the rate of carbonate uptake. Inert gas blankets (dry N2 for example) may also be used to isolate developer tanks from the fab environment. In general, immersion tanks should be changed at least every 24 hours (or sooner if the maximum number of substrates processed is reached).BATH AGITATIONMild agitation of immersion developer tanks may improve wafer-to-wafer develop uniformity and photo speed when batch processing substrates.PUDDLE DEVELOPINGDue to their lower surface tension, surfactant enhanced developers improve substrate wetting and facilitate puddle formation using lower dispense volumes than typical surfactant free developers. Complete development of patterns in thick photoresist films (> 3.0µm) may require multiple developer puddles. Increased normality developers and/or aggressive surfactants can improve dissolution rates and reduce develop time for thick photoresist films (see application guide section of this publication).RINSINGUse de-ionized water only to rinse wafers post develop and to “quench” the developer activity. Spray pressure or bath agitation during rinsing may reduce post develop defect density by minimizing redeposited surface particles.DEVELOPER APPLICATIONS GUIDE0.26N (2.38%) TMAH DEVELOPERS0.26N TMAH developers are the industry standard for advanced integrated circuit (IC) production and general lithography.AZ 300MIF DeveloperAZ 300MIF is an ultra-high purity, general purpose, surfactant free 0.26N TMAH developer featuring class leading normality control and ppb level metals content. Recommended for puddle, spray, and immersion applications.AZ 726MIF DeveloperAZ 726MIF is a surfactant enhanced 0.26N TMAH developer optimized for puddle develop processes.AZ 917MIF DeveloperAZ 917 MIF is a surfactant enhanced 0.26N developer formulated to improve photo speed in puddle or immersion develop processes with no loss of contrast or selectivity. Improves photo speed by 10-20% vs. AZ 726MIF.AZ 2026 MIF DeveloperAZ 2026 MIF developer contains different surfactants which also have an impact on dissolution rate of photoresist. Dark erosion is higher than with AZ 726 MIF, however this helps to avoid scrumming, which mainly is observed when the photoresist is processed on steppers without applying a post-exposure-bake (PEB).CUSTOM NORMALITY TMAH DEVELOPERSCustom normality developers may be desirable in cases where the develop rate or selectivity provided by 0.26N materials is inadequate. Reduced normality developers can improve selectivity to unexposed resist and increased normality developers will reduce the required exposure dose and/or develop time for thick resist processing.AZ 422 MIF DeveloperAZ 422 MIF developer is a reduced normality (0.215N) surfactant free developer engineered to maximize dissolution selectivity and process control.AZ 435MIF DeveloperAZ 435 MIF developer is a surfactant free, increased normality (0.35N) TMAH developer optimized to improve photo speed for medium thick photoresist processing (5-10µm thick) while maintaining good process control. Recommended for use with AZ 9200 and AZ P4000 series photoresists.AZ® Organic DevelopersAZ 405 MIF DeveloperAZ 405 MIF developer is an aggressive, surfactant enhanced, high normality developer (0.405N) designed for thick photoresist processing (>15µm thick). This developer provides a metal ion free alternative to the sodium or potassium based developers typically employed in thick resist processing. Recommended for use with AZ 9260, AZ 50XT, and AZ P4620 photoresists.AZ 2033 MIF developerAZ 2033 MIF developer contains high TMAH (3.0% TMAH), which is specially designed for improved compatibility with the AZ 8100 Series Photoresist.Developer Normality SurfactantAZ 300 MIF developer0.26N NoAZ 726 MIF developer0.26N YesAZ 927 MIF developer0.26N YesAZ 2026 MIF developer0.26N YesAZ 2033 MIF developer0.33N YesAZ 422 MIF developer0.215N NoAZ 435 MIF developer0.35N NoAZ 405 MIF developer 0.405N YesAZ 732c MIF developer0.30N YesProducts are warranted to meet the specifications set forth on their label/packaging and/or certificate of analysis at the time of shipment or for the expressly stated duration. EMD MAKES NO REPRESENTATION OR WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE REGARDING OUR PRODUCTS OR ANY INFORMATION PROVIDED IN CONNECTION THEREWITH. Customer is responsible for and must independently determine suitability of EMD´s products for customer’s products, intended use and processes, including the non -infringement of any third parties´intellectual property rights. EMD shall not in any event be liable for incidental, consequential, indirect, exemplary or special damages of any kind resulting from any use or failure of the products: All sales are subject to EMD’s complete Terms and Conditions o f Sale. Prices are subject to change without notice. EMD reserves the right to discontinue products without prior notice.EMD, EMD Performance Materials, AZ, the AZ logo, and the vibrant M are trademarks of Merck KGaA, Darmstadt, Germany.North America:EMD Performance Materials 70 Meister AvenueSomerville, NJ USA 08876(908) 429-3500Germany:Merck Performance Materials (Germany) GmbH Wiesbaden, Germany +49 611 962 4031Korea:Merck Performance Materials (Korea) Ltd.Seoul, Korea+82 2 2056 1316Singapore:Merck Performance Materials Pte. Ltd.Jurong East, Singapore +65 68900629Taiwan:Merck Performance Materials Co. Ltd.Hsinchu, Taiwan+886 3 5970885#375Japan:Merck Performance Materials G. K.Tokyo, Japan+81 3 5453 5062China:Merck Electronic Materials Shanghai, China+86 (21) 2083 2362AZ® Organic DevelopersMATERIALS COMPATIBILITY and HANDLINGTMAH containing developers are compatible with all standard semiconductor processing equipment designed to handle high pH aqueous solutions.Note: Contaminating inorganic developer baths or lines withtetramethylammonium hydroxide (TMAH) based metal-ion-free developers, even at the parts-per-million level, will neutralize the dissolution activity of the inorganic developer process. Use extreme caution when changing developing equipment from a metal-ion-free to an inorganic process.TMAH containing developers should be avoided in cases where slight etching of an aluminum layer cannot be tolerated. 0.26N TMAH developers will etch typical deposited aluminum substrate layers at ~100Å/min.Recommended personal protective gear during handling includes eye protection, apron, caustic resistant gloves. Refer to the current version of the SDS for information on exposure hazards. STORAGEStore AZ MIF Developers in a cool, dry location in sealed original containersaway from sunlight and incompatibles. Do not expose to excessive temperatures or moisture. Recommended storage temperature is >0C. Do not freeze. Empty containers may contain harmful residue. DISPOSALAZ MIF Developers are compatible with typical facility acid/base drain lines and materials. For disposal other than via facility solvent drains, refer to the current product SDS and to local regulations.。
IGA-介绍
IGA-002 系统
--------气体/蒸气吸附系统
IGA-002 系统
--------气体/蒸气吸附系统
o 用于从真空到吸附质蒸气压的蒸气吸附 o 内置储液罐和传输系统 o 防冷凝保护 o 用于气体排出的高传导真空系统 o 实验压力控制低至10-3 mbar o 精确控制压力,真正静态吸附 o 安托因方程参数已输入软件 o 蒸气压力计算器
10
5
0 0
Concentration (wt-%)
Sorption of R-134A on Norit at 60oC 60 ℃时R-134A在Norit上的吸附
Adsorption 吸附 Desorption 解吸
200
400
600
800
1000
1200
Pressure (Millibars)
86次/分钟,确保真正静态吸附的 压力恒定 ⊕ DSMS(动态取样质谱)接口
The IGA product range
o IGA-001
单路气体吸附
o IGA-002
单路气体+静态蒸气吸附
o IGA-003
动态多组分吸附-气体吸附
o IGA100
综合吸附系统-动态多组分吸附+静态蒸气吸附
(IGA001+IGA002+IGA003)
45
40
35
吸附 30 摩尔 25 浓度
20
Wt-%
15
10
5
0 0
Concentration (wt-%)
Water Sorption on BPL Carbon at 22oC 22℃ 时水在BPL碳上的吸附
Imidazolium salts and the use of these ionic liqui
专利名称:Imidazolium salts and the use of these ionic liquids as a solvent and as a catalyst发明人:Chauvin, Yves,Magna, Lionel,Niccolai, Gerald, Peter,Basset, Jean-Marie申请号:EP00403008.6申请日:20001027公开号:EP1201657B1公开日:20040506专利内容由知识产权出版社提供摘要:New 1,2,3- or 1,2,3,4- or 1,2,3,4,5- substituted imidazolium salts and their uses as solvent in catalyzed organic reactions, as well as compositions containing them and a transition metal compound. They can be used in the following reactions : the telomerisation of conjugated dienes, the dimerisation of olefins, the oligomerisation of olefins, the polymerization of olefins, the alkylation of olefins, the hydrogenation of olefins, the olefin metathesis, the hydroformylation of olefins, the ring-closing metathesis of olefins, the ring-opening metathesis polymerisation of olefins, the symetric or asymetric epoxidation of olefins (including heteroatom substituted olefins) and the cyclopropanation of olefins, the condensation reaction, the hydrogenation reaction, the isomerization reaction, the Suzuki cross-coupling reactions, the amination reaction, the partial oxidation of alkancs, the kinetic resolution of racemic mixtures, the hydrogenation of imines, the hydrogenation of ketones, the transfer hydrogenation and the hydroxylation of aromatic organic compounds.申请人:CENTRE NAT RECH SCIENT地址:FR国籍:FR代理机构:Colombet, Alain André更多信息请下载全文后查看。
新型质子交换膜综述
HT-PEMFC
• Challenges
• Adopted approaches • Future design concept
• Example
Challenges of HT-PEMFC
• 问题:高温(100-200℃)下,低湿度会引起较大的欧姆 损失,降低工作电压、能量和效率。聚合物膜中水蒸发导 致低质子导电率。[5] • 要求:低材料成本、100℃以上具有高质子导电率和良好 的水保持率、10年的耐久性。
新型质子交换膜 ——高温PEM
姓名:
燃料电池用质子交换膜种类[1]
1、全氟磺酸膜 2、非全氟化质子交换膜 3、无氟化质子交换膜 4、复合膜 5、高温膜 6、碱性膜 7、全陶瓷质子交换膜
[1]Liu Zhixiang, Qian Wei, Guo Jianwei, et al. Proton Exchange Membrane Fuel Cell Materials[J]. Progress in Chemistry,2011,23(3/2):487-500.
Adopted approaches for HT-PEMFC
2. 在膜中,使用非水、低挥发性溶剂取代水作为质子受体。 如磷酸(PA)、咪唑(imidazole)、丁基甲基三氟咪唑 (butyl methyl imidazolium triflate)。 • PA掺杂的膜和电极(PA作为离子交联聚合物)的组合, 提高了质子导电率。 3. 固态质子导体 • 固态物质传导质子,而之前的方法中,液体溶剂压的必要条件,但不具有对 由燃料产生的杂质的耐受性。而低湿度下的膜不 需要增压,可以有效抵抗杂质的损害。
其它
• 增加扩散速率:接触面扩散速率随着温度 的升高而增大。高温下水汽的蒸发能够增 大暴露的表面积,从而允许更多的反应物 扩散到反应界面。 • 技术成本限制:低温下需要较多的电催化 剂。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
LCME, Université de Savoie, Savoie Technolac, 73376 Le Bourget du Lac Cedex, France LPTE, Université Mentouri, Constantine 25000, Algeria ISTO, CNRS-Université d’Orléans, 45071 Orléans Cedex 2, France
Chemical Engineering Journal 209 (2012) 13–19
Contents lists available at SciVerse ScienceDirect
Chemical Engineering Journal
journal homepage: /locate/cej
⇑ Corresponding author. Tel.: +33 (0)4 79 75 81 22; fax: +33 (0)4 79 75 86 74.
E-mail address: laurence.reinert@univ-savoie.fr (L. Reinert). 1385-8947/$ - see front matter Ó 2012 Elsevier B.V. All rights reserved. /10.1016/j.cej.2012.07.128
of ionic liquids may have an impact on the environment [5]. It is thus needed to find solutions for their removal. Like other organic wastes, RTILs can be adsorbed through different mechanisms by various adsorbents, as example activated carbons [6], layered zirconium phosphates [7] and nano-silica [8]. The adsorption capacity of natural soils [9] and sediments [10,11] is limited and strongly dependent on their composition. Since recently, several researches reported the intercalation of various ionic liquids into the interlamellar spaces of clays. Kaolinite was used for the adsorption of an ethyl-pyridinium chloride [12] and pyrrolidinium halides [13]. However, as the direct intercalation was unsuccessful, urea and DMSO pre-intercalated kaolinites had to be prepared before the RTILs intercalation. Smectites were modified by adsorption of mono-cationic and di-cationic ionic liquids [14] in order to produce suitable matrices for the adsorption of the tetracycline pollutant drug. Sodium montmorillonites were used for the intercalation of many RTILs, as example imidazolium [15–17], pyridinium [18] or phosphonium salts [19]. The aim of these studies was to produce fillers for the elaboration
1. Introduction Room Temperature Ionic liquids (RTILs) are organic salts with low melting points (<100 °C) and thermally stable [1]. Due to their extremely low vapour pressures [2], they constitute an attractive alternative to traditional solvents and are thus widely used as green solvents for various applications [1,3,4]. RTILs are formed by the combination of nitrogen, phosphorus or sulphur containing organic cations (for example alkylimidazolium, alkylpyridinium, alkylphosphonium or alkylammonium, etc.) with organic or inorÀ À À À ganic anions (BFÀ 4 ; PF6 ; CF3 COO ; Cl ; Br , etc.). It is well known that many ionic liquids are soluble in water. A foreseen industrial use may thus be a source of pollution as they can be released in the environment via industrial liquid effluents. Many recent researches highlighted that the toxicity and ecotoxicity
Adsorption of imidazolium and pyridinium ionic liquids onto montmorillonite: Characterisation and thermodynamic calculations
Laurence Reinert a,⇑, Khaled Batouche b, Jean-Marc Lévêque a, Fabrice Muller c, Jean-Michel Bény c, Brahim Kebabi b, Laurent Duclaux a
a r t i c l e
i n f o
a b s t r a c t
Five first generation ionic liquids (RTILs: BMImCl, OMImCl, AMImCl, BPyBr and OPyBr) were intercalated into the layered structure of a Na-montmorillonite by dispersion in aqueous solutions ([RTIL] 6 20 mmol LÀ1). For all ionic liquids, the intercalation expanded the spacing of the silicate layers, as measured by X-ray diffraction. FTIR, thermogravimetric analyses and sodium titrations of the solutions after intercalation proved the adsorption of the RTILs through a cation exchange mechanism. Adsorption isotherms, done at pH = 7 and at 25 °C, displayed that the maximum adsorption capacity of the substrates was closely linked to the nature of the organic cation and the length of the alkyl chain (BPyBr > OPyBr $ AMImCl $ BMImCl > OMImCl). For the five RTILs, calculated parameters obtained from the adsorption isotherms studied at three temperatures (25 °C, 40 °C and 55 °C) concluded to an endothermic and spontaneous adsorptioAll rights reserved.
h i g h l i g h t s
" Adsorption isotherms of pyridinium and imidazolium cations onto montmorillonite. " Determination of the thermodynamics parameters of the cationic exchange. " Cationic exchange capacity influenced by the steric size of cations.
14
L. Reinert et al. / Chemical Engineering Journal 209 (2012) 13–19
of nanocomposites, as ionic liquids possess interesting thermal properties. Montmorillonite was also used for the adsorption of 1-n-alkylpyridinium bromides [20], adsorption isotherms were studied at room temperature to determine the influence of the length of the alkyl chain on the adsorption capacity of the clay. RTIL-intercalated clays can thus be used in various field, very recent researches specify the use of these organo-clays as supports for catalytic syntheses [18]. The aim of this present work is to study the adsorption capacity of a Na-montmorillonite towards various first generation ionic liquids which are water soluble and dissociated, enabling a cationic exchange between the clay and the chosen organic cations. The cation exchange capacity of montmorillonite typically ranges between 80 and 150 meq/100 g [21] making this material a suitable adsorbent for ionic liquids, through a cation exchange mechanism. Imidazolium chlorides and pyridinium bromides with butyl, octyl, or allyl chains were chosen to study the effect of the nature of cation and alkyl chain on adsorption. Adsorption isotherms were studied at three different temperatures to determine the thermodynamic parameters of adsorption.