数学物理方法-1第十一章典型例题
《数学物理方法》第十一章分离变量法
流
程
T Aexp(a2t)
X sin
x,
n l
图
un Tn (t)Xn ( x)
u u(x,t)
u Tn X n
28
1. 补充:三角函数的正交性
29
30
31
32
33
【例11.1.2】 设长为l 的均匀杆,两端绝热, 杆 内初始温度分布为(x), 求杆内温度随时间的 变化规律 解 定解问题为
将尝试解 y = erx 代入方程得 r2 - 2 = 0 特征根为±,
将r = ±代入尝试解得方程的二个特解, 其线性组合即为通解 y = c1ex+c2e-x . (1)
12
2.方程 y"+ 2y = 0 的通解有三种形式.将尝试解
y = erx 代入方程得 r2 + 2 = 0 特征根为±i, 将r = ±i 代入尝试解得方程的二个特解,其线 性组合即为通解
(uy1+vy2)"
= (u"y1+2u'y1'+ uy1") + (v"y2+2v'y2'+ vy2")
p(uy1+vy2)'= p(u'y1+ uy1')+ p(v'y2+ vy2') q(uy1+vy2)
19
→ (u"y1 +2u'y1'+ uy1")+ p(u'y1 +uy1') + quy1 + (v"y2 +2v'y2'+ vy2")+ p(v'y2+ vy2')
高等数学第四册第三版数学物理方法答案(完整版)
高等数学 第四册(第三版) 数学物理方法 答案(完整版)第一章 复数与复变函数(1)1.计算)(1)2;i i i i i -=-=-()122(12)(34)(2)5102122.;345(34)(34)591655i i i i i i i i i i i i +-++--+++=+=-=---+-+5551(3).;(1)(2)(3)(13)(3)102i i i i i i i ===------4222(4).(1)[(1)](2)4;i i i -=-=-=-1122())]a bi =+=112224sin )]()(cossin );22i a b i θθθθ=+=++3.设1z=2;z i =试用三角形式表示12z z 及12z z 。
解:121cossin;(cos sin );44266z i z i ππππ=+=+121155[cos()sin()](cos sin );2464621212z z i i ππππππ=+++=+ 122[cos()sin()]2(cos sin );46461212z i i z ππππππ=-+-=+11.设123,,z z z 三点适合条件1230z z z ++=及1231;z z z ===试证明123,,z z z 是一个内接于单位圆z =1的正三角形的顶点。
证明:1230;zz ++=z 123231;312;;z z z z z z z z z ∴=--=--=--122331;z z z z z z ∴-=-=-123,,z z z ∴所组成的三角形为正三角形。
1231z z z ===123,,z z z ∴为以z 为圆心,1为半径的圆上的三点。
即123z ,z ,z 是内接于单位圆的正三角形。
.17.证明:三角形内角和等于π。
证明:有复数的性质得:3213213arg;arg ;arg ;z z z z z z αβγ---=== 21z z z z -•-arg(1)2;k αβγπ∴++=-+0;k ∴=;αβγπ∴++=第一章 复数与复变函数(2)7.试解方程()4400z a a +=>。
数学物理方法习题
第一章 分离变量法1、求解定解问题:200000000,(01),||0,,(0),|(),(),|0,(0).tt xx x x l t t u a u x u u n h l x x l n u h l l x x l l n l n u x l ====-=<<==⎧≤≤⎪⎪⎪=⎨-≤≤⎪-⎪⎪⎩=≤≤(P-223) 2、长为l 的弦,两端固定,弦中张力为T ,在距一端为0x 的一点以力0F 把弦拉开,然后撤出这力,求解弦的震动。
[提示:定解问题为200000000,(0),(0,)(,)0,,(0),(,0)(),(),|0.tt xx t t u a u x l u t u l t F l x x x x T l u x F x l x x x l T lu =-=<<==-⎧<<⎪⎪=⎨⎪-<<⎪⎩= ] (P-227)3、求解细杆导热问题,杆长l ,两端保持为零度,初始温度分布20|()/t u bx l x l ==-。
[定解问题为220200,()(0),||0,|()/.t xx x x l t k u a u a x l C u u u bx l x l ρ===⎧-==≤≤⎪⎪⎪==⎨⎪=-⎪⎪⎩] (P-230) 4、求解定解问题2220,0,0220,0.03sin ,0.00u u a x l t t x u u x x l x u u A t l t t π⎧∂∂⎪-=<<>⎪∂∂⎪==⎨==⎪∂⎪===⎪∂=⎩4、长为l 的均匀杆,两端受压从而长度缩为(12)l ε-,放手后自由振动,求解杆的这一振动。
[提示:定解问题为20000,(0),||0,2|2(),|0.tt xx x x x x l t t t u a u x l u u u x l u ε====⎧-=<<⎪==⎪⎪⎨=-⎪⎪=⎪⎩](P-236) 5、长为l 的杆,一端固定,另一端受力0F 而伸长,求解杆在放手后的振动。
2023年大学_《高等数学》第四册(数学物理方法)课后习题答案下载
2023年《高等数学》第四册(数学物理方法)课后习题答案下载《高等数学》第四册内容简介第一篇复变函数论第一章复数与复变函数第一节复数1.1.1. 复数域1.1.2. 复平面1.1.3. 复数的模与幅角1.1.4. 复数的乘幂与方根第二节复变函数的基本概念1.2.1. 区域与约当曲线1.2.2. 复变函数的概念1.2.3. 复变函数的极限与连续性第三节复球面与无穷远点1.3.1. 复球面1.3.2. 闭平面上的几个概念习题第二章解析函数第一节解析函数的概念及哥西一黎曼条件 2.1.1. 导数的定义2.1.2. 哥西一黎曼条件2.1.3. 解析函数的定义第二节解析函数与调和函数的关系2.2.1. 共轭调和函数的求法2.2.2. 共轭调和函数的几何意义第三节初等解析函数2.3.1. 初等单值函数2.3.2. 初等多值函数习题第三章哥西定理哥西积分第一节复变积分的概念及其简单性质3.1.1. 复变积分的定义及其计算方法3.1.2. 复变积分的简单性质第二节哥西积分定理及其推广3.2.1. 哥西积分定理3.2.2. 不定积分3.2.3. 哥西积分定理推广到复围线的情形第三节哥西积分公式及其推广3.3.1. 哥西积分公式3.3.2. 解析函数的无限次可微性3.3.3. 模的最大值原理哥西不等式刘维尔定理摩勒纳定理第四节解析函数在平面场中的应用3.4.1. 什么叫平面场3.4.2. 复位势3.4.3. 举例习题第四章解析函数的幂级数表示第一节函数项级数的基本性质4.1.1. 数项级数4.1.2. 一致收敛的函数项级数第二节幂级数与解析函数4.2.1. 幂级数的敛散性4.2.2. 解析函数的幂级数表示第三节罗朗级数4.3.1. 双边幂级数的收敛圆环4.3.2. 解析函数的罗朗展式4.3.3. 罗朗展式举例第四节单值函数的孤立奇点4.4.1. 孤立奇点的`三种类型4.4.2. 可去奇点……习题第五章残数及其应用第六章保角变换第二篇数学物理方程第七章一维波动方程的付氏解第八章热传导方程的付氏解第九章拉普拉斯方程的圆的狄利克雷问题的付氏解第十章波动方程的达朗贝尔解第十一章数学物理方程的解的积分方式第十二章定解问题的适定性第十三章付里叶变换第十四章拉普拉斯变换第三篇特殊函数第十五章勒让德多项式球函数第十六章贝塞耳函数柱函数第十七章厄密多项式和拉盖尔多项式附录《高等数学》第四册目录本书内容为数学物理方法,包括复变函数论、数学物理方程、积分变换和特殊函数等部分,可供综合大学和师范学院物理类专业作为教材。
“数学物理方法”第11章作业解答
数学物理方法第11章作业解答第346页 4. 半径为高为的圆柱体0ρL 上下底温度为零度侧面(0ρρ=u)分布为Lz z f /)(=底和侧面保持零度上底温度分布为2)(ρρ=f 求柱体内各点的稳恒温度分布解采用柱坐标系原点在下底心定解问题020000,()z z Lu u u u f ρρρρ===∆=====由柱面的其次边条知µ≥01µ>一般解()cos (,,)~())sin m m J x m x N x m e ϕρϕϕ= u z∵边条与无关ϕ∴m=0 0ρ→∵即0x→m N →∞应舍去mN 00(,)~))(n n n u z J J A B ee ρ)∴=⋅+∑其中由柱面第一类齐次边条决定µn 00)J =02(0)0n n x µρ ∴=(0)n x 是的第n 个零点0()Jx2µ=0, 考虑到m =0 00.u A B z ∴=+不不能满足第一类边条000A B ∴==综合得0(,))()n n nu z J A B eρ=⋅+∑代入底面边条(0)(0)0(0)01021)0(2)n n n nn x L x Ln n x B J eB e ρρρρρ∞=∞−=+= += ∑∑ n n (A A (1) {同P 236例}上面两式展成傅立叶贝塞尔级数再对比系数()(0)(0)000(0)200022(0)0002n n n x L x L n n n B x J d e B e J x ρρρρρρρ−+= ⋅ += ′∫n n A A ρρ ()()(0)43004022(0)002 =.n x nx J x dx J x ρρ⋅′∫见书上P334例一 ()()()()(0)232011042(0)02=.42n x nx J x xJ x x J x J x ρ ⋅−+ ′0()()()()23(0)(0)(0)(0)01142(0)02=.4n n n n nx J x x J x J x ρ ⋅−′ 解得n B =−n A ()()204(0)(0)(0)(0)1041n n n n x x L x J x shρρ−=n A 使用了01J J ′=−最后()()(0)(0)00204(0)(0)0(0)1(0)(0)01041(,)(n n x z x z n n n n n n x x u z e e J x L x J x sh ρρρρρρρ∞−=− =−∑⋅[ (0)(0)20(0)(0)(0)(0)2110142[1()()n n n n n nn x zsh x J x Lx J x x shρρρρρ∞==−∑() ]====∆====L z u u u u L z z f u L P L z z /0,0( 0./)(., 1. 000 361ρρρ柱坐标系解定解问题温度求解柱体内各点的稳恒为分布侧面上下底温度为零度高为匀质圆柱半径为()z L n L n I Ln I n z u Ln I n n L n L L n I zdz L n z L n z n L L n I z L n d z n L Ln I zdzL n L z L L n I B L z z L n L n I B z Ln L n I B z u B A zB A u m n Ln L L B L A I A I A z B z A I u K m x m m z z x K x I u n n L L L L n n n n n n n nn n n n n n n n n n n n n n n m m m πρπρππρρππππρππππρπππρππρππρππρπρµπννννρνρνγννρνρϕνρϕϕννµµνsin)()(2)1(),)1()(2)(cos 1)(2cos cos 1)(2 )(cos 1)(2 sin 2)(1/sin )(sin )(),000)2)2,1(,0sin 0sin cos )(0 0)()sin cos )((00)(sin cos sin cos )()(~010000110000000000000001010000000⋅⋅−=−⋅=⋅−⋅⋅= −−⋅⋅=⋅−⋅⋅=⋅=====+=======+⋅=⇒=+=∴→=∴=<≤∴∑∫∫∫∑∑∑∑∑++∞=∞=最后得由侧面边条综合由底面边条知时考虑到得为了得到非零解必须得定由上下底齐次边条决其中项时应有截舍去无关由于边条为时上下底面为齐次边条 ∵∵分离变数得球坐标系解本定解问题为处温度变化情况使他冷却求解球内各而把球面温度保持零度初始温度为均质球半径为)()(4.2372===∆−==rfuuuaurfrPtrrt至此即可最后得即代入边条得的边条应舍去不能满足时舍去部分没有了时得无关与无关所以由于本问题与满足()sin(),2,1sin)))~2~1,),(),(22222222222222222trannnnnntaknnntaknnntaktakltaktakerrnrrnctrunrnkrkrkrkjerkjcerkjcukrucceeruknekrjukmlrvrvvkvvetrvtruππππϕθϕθϕθ−−−−−−−∑∑∑=======∴=====≠====+∆=tranranrrnnnnerrnrdrrrnrfr rt rukrkrjdrrrrnjdrrrrnjrfcrrnjcrfc2222102221sinsin)(2),(sin)()()()()(:ππππππ−∞=∞=⋅⋅⋅====∫∑∫∫∑整理后代入由初条定满足分离变数可得解本定解问题为处温度变化情况使他冷却求解球内各而把球面温度保持零度初始温度为均质球半径为0,),(),(cos )(00cos )(5.2020372220=+∆====∆−−==v k v v e t r v t r u r f u u u a u r f r P t a k t r r tθθ至此即可个解的第是方程其中即即代入边界条件得可知对此初始条件应舍去不能满足舍去时考虑到舍去时考虑到可得无关所以由于本问题与( )(cos )(),,( 0)(cos sin cos sin )( 0)()(cos )(1,cos )()(cos ~,0)(cos )(cos ~10)2)(cos ~010),,()(222222022221110020000211111t a k n n n n n n n ta knn n ta kl l r r l l ta k l l l ta k l l l n e P r k j c t r u n x tgx x r xk kr tgkr kr kr kr kr x xx x x j r k j e P r k j c u l r f e P kr j u uP r e P r u r r k e P kr j u r r k m r v r v −∞=−−=−+−∑∑=∴==∴==−−===∴=∴==∞→∞→=∞→∞→≠==θθθθθθθθθϕ∵20023021020232022322122121011)(23)(22 )(22)(2)()()(cos )(cos )(:−⋅⋅=⋅⋅= ===∫∫∫∫∑∞=r k r k j r k j r k r k j r k rdr r k j k dr r j drr r k j drr r k j r f c r k j c r f c n n n n n n r n nr ar an n r n n n n n πππθθ因为由初条定系数[][]drr r k j r f e P r k j r k j r t r u r k j r r k j r k r r k j r k n r t a k n n n n n n n n 210120013020030202103020230)()()(cos )()(2),,()(2)(22 )(22 022∫∑−⋅=⋅=⋅⋅=⋅=θθππ最后---end---。
11.2 贝塞尔方程
2
d R dx
2
2
x
dR dx
x m
2
2
R 0
(11.4.1)
数学物理方法
令 i x , y ( ) R ( x ) 代入上式,则得到贝塞尔方程
y y m
2 2 2
y0
(11.4.2)
令 i x , 即可得到虚宗量贝塞尔方程的解。 定义虚宗量贝塞尔方程的解具有如下形式
解:采用柱坐标系,极点在下底中心, z 轴沿圆柱的轴, 定解问题表为
2u 0 u 0, 0 u z 0 f 1 ( ), u
zL
f2 ( )
本例是圆柱内部的拉普拉斯方程定解问题, 柱侧是齐次的第 二类边界条件,故考虑 0 的情况。
况应舍弃。 故把特解叠加起来,有
v
Ap I0 (
p L
) sin
p z L
p 1
为确定系数,将上式代入柱侧的边界条件 q0 p p p z I '0 ( 0 ) sin Ap
p 1
L
L
L
k
数学物理方法
例 2 半径 0 ,高 L 的导体圆柱壳,用不导电的介质将柱壳 的上下底面和侧面隔离开,柱壳侧面电势为 u 0 z / L ,上底 面电势为 u 1 ,下底面接地,求柱壳外电势分布
v [ A J 0 ( ) B N 0 ( )]e
a t
2
A J 0 ( 1 ) B J 0 ( 1 ) 0 代入边界条件, ,从而解 AJ 0 ( 2 ) BJ 0 ( 2 ) 0
出本征值 ,从而定出相应系数,得解。
高中物理数学物理法技巧和方法完整版及练习题
高中物理数学物理法技巧和方法完整版及练习题一、数学物理法1.如图所示,一半径为R 的光滑绝缘半球面开口向下,固定在水平面上.整个空间存在磁感应强度为B 、方向竖直向下的匀强磁场.一电荷量为q (q >0)、质量为m 的小球P 在球面上做水平的匀速圆周运动,圆心为O ′.球心O 到该圆周上任一点的连线与竖直方向的夹角为θ(02πθ<<).为了使小球能够在该圆周上运动,求磁感应强度B 的最小值及小球P相应的速率.(已知重力加速度为g )【答案】min 2cos m g B q R θ=cos gRv θθ=【解析】 【分析】 【详解】据题意,小球P 在球面上做水平的匀速圆周运动,该圆周的圆心为O’.P 受到向下的重力mg 、球面对它沿OP 方向的支持力N 和磁场的洛仑兹力f =qvB ①式中v 为小球运动的速率.洛仑兹力f 的方向指向O’.根据牛顿第二定律cos 0N mg θ-= ②2sin sin v f N mR θθ-= ③ 由①②③式得22sin sin 0cos qBR qR v v m θθθ-+=④由于v 是实数,必须满足222sin 4sin ()0cos qBR qR m θθθ∆=-≥ ⑤由此得2cos m gB q R θ≥⑥可见,为了使小球能够在该圆周上运动,磁感应强度大小的最小值为min 2cos m gB q R θ=⑦此时,带电小球做匀速圆周运动的速率为min sin 2qB R v m θ=⑧由⑦⑧式得sin cos gRv θθ=⑨2.如图所示,圆心为O 1、半径4cm R =的圆形边界内有垂直纸面方向的匀强磁场B 1,边界上的P 点有一粒子源,能沿纸面同时向磁场内每个方向均匀发射比荷62.510C/kg qm=⨯、速率5110m/s v =⨯的带负电的粒子,忽略粒子间的相互作用及重力。
其中沿竖直方向PO 1的粒子恰能从圆周上的C 点沿水平方向进入板间的匀强电场(忽略边缘效应)。
数学物理方法习题及答案
数学物理⽅法习题及答案数学物理⽅法习题第⼀章:应⽤⽮量代数⽅法证明下列恒等式 1、3r ?= 2、0r ??=3、()()()()()A B B A B A A B A B =?-?-?+?4、21()0r ?=5、()0A = 第⼆章:1、下列各式在复平⾯上的意义是什么? (1)0;2Z a Z b z z -=--=(2)0arg4z i z i π-<<+; 1Re()2z =2、把下列复数分别⽤代数式、三⾓式和指数式表⽰出来。
1;1i i e ++3、计算数值(a 和b 为实常数,x 为实变数)sin5ii ? sin sin()iaz ib za ib e -+4、函数1W z =将z 平⾯的下列曲线变为W 平⾯上的什么曲线?(1)224x y += (2)y x =5、已知解析函数()f z 的实部(,)u x y 或虚部(,)x y υ,求解析函数。
(1)22sin ;,(0)0;,(1)0x u e y u x y xy f u f ?==-+===;(2)(00)f υ==6、已知等势线族的⽅程为22x y +=常数,求复势。
第三章:1、计算环路积分:2211132124sin4(1).(2).11sin (3).(4).()231(5).(1)(3)zz z i z z z z z e dz dzz z ze dz dzz z z dzz z ππ+=+====-+--+-2、证明:21()!2!n n z n l z z e d n i n ξξπξξ=其中l 是含有0ξ=的闭合曲线。
3、估计积分值222iidz z +≤?第四章: 1、泰勒展开(1) ln z 在0z i = (2)11ze-在00z = (3)函数211z z -+在1z = 2、(1)1()(1)f z z z =-在区域01z <<展成洛朗级数。
(2)1()(3)(4)f z z z =--按要求展开为泰勒级数或洛朗级数:①以0z =为中⼼展开;②在0z =的邻域展开;③在奇点的去⼼邻域中展开;④以奇点为中⼼展开。
数学物理方法课件-11 球函数
2
2
又
f ( ,) Am ( ) cosm Bm ( ) sin m m=0
Am
(
)
1
m
2
f ( ,) cosmd
0
Bm
(
)
1
2 0
f ( ,) sin md
易判断,Bm ( ) 0,且m 0或2.
故
f ( ,) Am ( ) cosm
m0,2
比较知
m
0时,A0 (
)
3 2
sin 2
Pl
(x)
1
2
2 3
xi
2
l
1 x2 cos d ( )
1 2
3
2
xi
2
l
1 x2 cos d
1
2
0
2
0
3
2
1
2
0
1
2
0
2
1
3 2
2
1
xi
1 x2 cos
l
d
1
l
2 x i 1 x2 cos d
2 0
2 0
1
l
2 x i 1 x2 cos d ( )
x2)
(m
2) x 2
v
代入连带勒让德方程得
(1
x
2
)
m 2
1
v
2mx(1
m
x2) 2
v
m(1
x
2
)
m 2
1
(1
x2)
(m
2) x 2
v
2 x(1
x2
)
m 2
v
数学物理方法第四版课后习题答案
数学物理方法第四版课后习题答案数学物理方法是一门综合性的学科,它既包含了数学的抽象思维和逻辑推理,又融合了物理的实证观察和实验验证。
对于学习数学物理方法的学生来说,课后习题是非常重要的一部分,通过解答习题可以巩固所学的知识,提高问题解决能力。
本文将为读者提供《数学物理方法第四版》课后习题的答案,帮助读者更好地理解课本内容。
第一章:数学物理方法的基础1.1 习题答案:a) 由于是一元函数,所以可以将其表示为幂级数的形式:f(x) = a0 + a1x + a2x^2 + ...将f(x)代入微分方程,整理得到:a2 + (a3 - a1)x + (a4 - 2a2)x^2 + ... = 0由于等式左侧是一个幂级数,所以等式两边的每一项系数都为零,解得:a2 = 0a3 - a1 = 0a4 - 2a2 = 0...解得:an = 0 (n为偶数)an = an-2/n(n-1) (n为奇数)b) 将f(x)代入微分方程,整理得到:2a2 + (3a3 - a1)x + (4a4 - 2a2)x^2 + ... = 0a2 = 0a3 - a1 = 0a4 - 2a2 = 0...解得:an = 0 (n为偶数)an = an-2/(n+1)(n+2) (n为奇数)1.2 习题答案:a) 根据题意,设矩形的长为L,宽为W,则有:2L + 2W = 100LW = A解得:L = 50 - WW(50 - W) = AW^2 - 50W + A = 0由于W为矩形的宽度,所以W > 0,根据二次方程的性质,判别式D = 2500 - 4A > 0解得:A < 625b) 根据题意,设矩形的长为L,宽为W,则有:2L + 2W = 100解得:L = 50 - WW(50 - W) = AW^2 - 50W + A = 0由于W为矩形的宽度,所以W > 0,根据二次方程的性质,判别式D = 2500 - 4A ≥ 0解得:A ≤ 625第二章:向量分析2.1 习题答案:a) 根据题意,设向量A的分量为(A1, A2, A3),向量B的分量为(B1, B2, B3),则有:A ×B = (A2B3 - A3B2, A3B1 - A1B3, A1B2 - A2B1)A ·B = A1B1 + A2B2 + A3B3解得:A ×B = (1, -1, 2)A ·B = 3b) 根据题意,设向量A的分量为(A1, A2, A3),向量B的分量为(B1, B2, B3),则有:A ×B = (A2B3 - A3B2, A3B1 - A1B3, A1B2 - A2B1)A ·B = A1B1 + A2B2 + A3B3A ×B = (1, -1, 2)A ·B = 0以上是《数学物理方法第四版》第一章和第二章部分习题的答案,希望读者通过这些答案能够更好地理解课本内容,提高问题解决能力。
高中物理高考物理数学物理法(一)解题方法和技巧及练习题
高中物理高考物理数学物理法(一)解题方法和技巧及练习题一、数学物理法1.如右图所示,一位重600N 的演员,悬挂在绳上.若AO 绳与水平方向的夹角为37︒,BO 绳水平,则AO 、BO 两绳受到的力各为多大?若B 点位置往上移动,则BO 绳的拉力如何变化?(孩子:你可能需要用到的三角函数有:3375sin ︒=,4cos375︒=,3374tan ︒=,4373cot ︒=)【答案】AO 绳的拉力为1000N ,BO 绳的拉力为800N ,OB 绳的拉力先减小后增大. 【解析】试题分析:把人的拉力F 沿AO 方向和BO 方向分解成两个分力,AO 绳上受到的拉力等于沿着AO 绳方向的分力,BO 绳上受到的拉力等于沿着BO 绳方向的分力.根据平衡条件进行分析即可求解.把人的拉力F 沿AO 方向和BO 方向分解成两个分力.如图甲所示由平衡条件得:AO 绳上受到的拉力为21000sin 37OA GF F N ===oBO 绳上受到的拉力为1cot 37800OB F F G N ===o若B 点上移,人的拉力大小和方向一定不变,利用力的分解方法作出力的平行四边形,如图乙所示:由上图可判断出AO 绳上的拉力一直在减小、BO 绳上的拉力先减小后增大.2.在地面上方某一点分别以和的初速度先后竖直向上抛出两个小球(可视为质点),第二个小球抛出后经过时间与第一个小球相遇,要求相遇地点在抛出点或抛出点以上,改变两球抛出的时间间隔,便可以改变值,试求(1)若,的最大值 (2)若,的最大值【答案】(1)(2)22212v v v t g g-∆=-【解析】 试题分析:(1)若,取最大值时,应该在抛出点处相遇 ,则最大值(2)若,取最大值时,应该在第一个小球的上抛最高点相遇,解得,分析可知,所以舍去最大值22212v v v t g -∆=-考点:考查了匀变速直线运动规律的应用【名师点睛】本题的解题是判断并确定出△t 取得最大的条件,也可以运用函数法求极值分析.3.如图所示,质量为m=1kg 的物块与竖直墙面间动摩擦因数为=0.5,从t=0的时刻开始用恒力F 斜向上推物块,F 与墙面间夹角=37°,在t=0的时刻物块速度为0.(1)若F=12.5N ,墙面对物块的静摩擦力多大? (2)若F=30N ,物块沿墙面向上滑动的加速度多大?(3)若要物块保持静止,F 至少应为多大?(假设最大静摩擦力等于同样正压力时的滑动摩擦力,F 的计算结果保留两位有效数字)【答案】(1)0f =(2)25/a m s =(3)9.1F N = 【解析】试题分析:(1)设f 向上,37Fcos f mg ︒+=得0f =(2)根据牛顿第二定律可得cos37sin 37F F mg ma μ︒-︒-=,得25/a m s =(3)当物块即将下滑时,静摩擦最大且向上,cos37sin 37F F mg μ︒+︒=,得9.1F N =考点:考查了摩擦力,牛顿第二定律【名师点睛】在计算摩擦力时,首先需要弄清楚物体受到的是静摩擦力还是滑动摩擦力,如果是静摩擦力,其大小取决于与它反方向上的平衡力大小,与接触面间的正压力大小无关,如果是滑动摩擦力,则根据公式F N μ=去计算4.某校物理兴趣小组决定举行遥控赛车比赛,比赛路径如图所示.可视为质点的赛车从起点 A 出发,沿水平直线轨道运动L 后,由B 点进人半径为R 的光滑竖直半圆轨道,并通过半圆轨道的最高点C ,才算完成比赛.B 是半圆轨道的最低点.水平直线轨道和半圆轨道相切于B 点.已 知赛车质量m= 5kg ,通电后以额定功率P =2W 工作,进入竖直半圆轨道前受到的阻力恒为F 1=0.4N ,随后在运动中受到的阻力均可不计,L = 10.0m ,R = 0. 32m ,g 取l0m/s 2.求:(1)要使赛车完成比赛,赛车在半圆轨道的B 点对轨道的压力至少为多大? (2)要使赛车完成比赛,电动机至少工作多长时间?(3)若电动机工作时间为t 0=5s 当半圆轨道半径为多少时赛车既能完成比赛且飞出的水平距离最大?水平距离最大是多少? 【答案】(1)30N (2) 4s (3) 1.2m 【解析】试题分析:(1)赛车恰能过最高点时,根据牛顿定律:解得由B点到C 点,由机械能守恒定律可得:2211222B c mv mv mg R =+⋅a 在B 点根据牛顿定律可得:联立解得:54m/s B v gR ==则:630N F mg == (2)对赛车从A 到B 由动能定理得:解得:t=4s(3)对赛车从A 到C 由动能定理得:200122f Pt F L mg R mv --⋅=赛车飞出C 后有:解得:所以 当R=0.3m 时x 最大, x max =1.2m考点:牛顿第二定律;动能定理;平抛物体的运动.5.2016年7月5日,美国宇航局召开新闻发布会,宣布已跋涉27亿千米的朱诺号木星探测器进入木星轨道。
高中物理数学物理法(一)解题方法和技巧及练习题含解析
高中物理数学物理法(一)解题方法和技巧及练习题含解析一、数学物理法1.小华站在水平地面上,手握不可伸长的轻绳一端,绳的另一端系有质量为m 的小球,甩动手腕,使球在竖直平面内做圆周运动。
当球某次运动到最低点时,绳突然断掉,球飞行水平距离d 后落地,如图所示。
已知握绳的手离地面高度为d ,手与球之间的绳长为34d ,重力加速度为g 。
忽略手的运动半径和空气阻力。
(1)问绳能承受的最大拉力多大?(2)改变绳长,使球重复上述运动,若绳仍在球运动到最低点时断掉,要使球抛出的水平距离最大,绳长应为多少?最大水平距离为多少?【答案】(1)113mg ;(2)2d 23。
【解析】 【分析】 【详解】(1)设绳断后球飞行的时间为t ,由平抛运动规律有 竖直方向21142d gt = 水平方向D =v 1t解得v 12gd设绳能承受的最大拉力大小为F max ,这也是球受到绳的最大拉力的大小,球做圆周运动的半径为34R d =由圆周运动向心力公式,有F max -mg =21mv R得F max =113mg(2)设绳长为l ,绳断时球的速度大小为v 3,绳承受的最大拉力不变,有F max -mg =m 23v l解得v 3=83gl 绳断后球做平抛运动,竖直位移为y=d -l水平位移为x ,时间为t 1,由平抛运动规律有213112d l gt x v t -=,=得x =4()3l d l 当l =2d时,x 有最大值 x max =23d2.质量为M 的木楔倾角为θ,在水平面上保持静止,质量为m 的木块刚好可以在木楔上表面上匀速下滑.现在用与木楔上表面成α角的力F 拉着木块匀速上滑,如图所示,求:(1)当α=θ时,拉力F 有最小值,求此最小值; (2)拉力F 最小时,木楔对水平面的摩擦力. 【答案】(1)mg sin 2θ (2)12mg sin 4θ 【解析】 【分析】对物块进行受力分析,根据共点力平衡,利用正交分解,在沿斜面方向和垂直于斜面方向都平衡,进行求解采用整体法,对m 、M 构成的整体列平衡方程求解. 【详解】(1)木块刚好可以沿木楔上表面匀速下滑时,mg sin θ=μmg cos θ,则μ=tan θ,用力F 拉着木块匀速上滑,受力分析如图甲所示,则有:F cos α=mg sin θ+F f ,F N +F sin α=mg cos θ, F f =μF N联立以上各式解得:()sin 2cos mg F θθα=-.当α=θ时,F 有最小值,F min =mg sin 2θ.(2)对木块和木楔整体受力分析如图乙所示,由平衡条件得,F f ′=F cos(θ+α),当拉力F 最小时,F f ′=F min ·cos 2θ=12mg sin 4θ. 【点睛】木块放在斜面上时正好匀速下滑隐含摩擦系数的数值恰好等于斜面倾角的正切值,当有外力作用在物体上时,列平行于斜面方向的平衡方程,结合数学知识即可解题.3.一定质量的理想气体,由状态A 沿直线变化到状态B ,如图所示.已知在状态A 时,温度为15℃,且1atm ≈105P a ,求:①状态B 时的温度是多少开尔文? ②此过程中气体对外所做的功?③此过程中气体的最高温度是多少开尔文? 【答案】①576B T K =②900J ③m T =588K 【解析】 【详解】 ①A AB BA BP V P V T T =, 解得:576B T K =②气体外所做的功可由P —V 图的面积计算,()25131042109002W J J -=⨯⨯⨯+⨯= ③图中AB 的直线方程为21433P V =-+,则221433PV V V =-+, 由数学知识可知,当V =3.5L 时,PV 最大,对应的温度也最高,且()24.53m PV atmL =根据理想气体状态方程可得:()mA A A mPV P V T T =, 解得m T =588K4.在一次国际城市运动会中,要求运动员从高为H 的平台上A 点由静止出发,沿着动摩擦因数为μ的滑道向下运动到B 点,B 端有一长度可不计的光滑圆弧连接,末端恰好水平,运动员最后落在水池中,设滑道的水平距离为L ,B 点的高h (小于H )可由运动员自由调节(210m/s g =),求:(1)运动员到达B 点的速度与高度h 的关系;(2)要使运动员全过程的水平运动距离达到最大,B 点的高度h 应调为多大;对应的最大水平距离max s 为多大?(3)若图中H =4m ,L =5m ,动摩擦因数0.2μ=,则全过程的水平运动距离要达到7m ,h 值应为多少?(已知5 2.24≈)【答案】(1)()2B v g H h L μ=--(2)max 2H Ls L H L μμ-=+-,(3)1 2.62m h =或20.38m h =【解析】 【分析】 【详解】(1)设AB 与水平面夹角为θ,A 运动到B 过程,克服摩擦阻力做功为cos cos Lmg mgL μθμθ⋅= 由A 运动到B 过程,由动能定理得21()2B mg H h mgL mv μ--=则()2B v g H h L μ=--(2)物体做平抛运动,则0x v t =,212h gt =,所以 ()2x h H h L μ=--当H h L h μ--=,即2H Lh μ-=时x 有最大值为max x H L μ=-对应的最大水平距离为max s L H L μ=+-(3)由(2)可知2()x H L h h μ=--代入数据得2310h h -+=即135m 2.62m 2h +=≈ 235m 0.38m h -=≈5.如图所示,MN 是一个水平光屏,多边形ACBOA 为某种透明介质的截面图。
高考物理数学物理法(一)解题方法和技巧及练习题
高考物理数学物理法(一)解题方法和技巧及练习题一、数学物理法1.如图所示,在竖直边界1、2间倾斜固定一内径较小的光滑绝缘直管道,其长度为L ,上端离地面高L ,下端离地面高2L.边界1左侧有水平向右的匀强电场,场强大小为E 1(未知),边界2右侧有竖直向上的场强大小为E 2(未知)的匀强电场和垂直纸面向里的匀强磁场(图中未画出).现将质量为m 、电荷量为q 的小球从距离管上端口2L 处无初速释放,小球恰好无碰撞进入管内(即小球以平行于管道的方向进入管内),离开管道后在边界2右侧的运动轨迹为圆弧,重力加速度为g . (1)计算E 1与E 2的比值;(2)若小球第一次过边界2后,小球运动的圆弧轨迹恰好与地面相切,计算满足条件的磁感应强度B 0;(3)若小球第一次过边界2后不落到地面上(即B >B 0),计算小球在磁场中运动到最高点时,小球在磁场中的位移与小球在磁场中运动时间的比值.(若计算结果中有非特殊角的三角函数,可以直接用三角函数表示)【答案】(131;(23(23)m gL -;(3)36gL︒【解析】 【分析】根据题意,粒子先经过电场,做匀加速直线运动,在进入管中,出来以后做匀速圆周运动,画出物体的运动轨迹,再根据相关的公式和定理即可求解。
【详解】(1)设管道与水平面的夹角为α,由几何关系得:/21sin 2L L L α-== 解得:30︒=α由题意,小球在边界1受力分析如下图所示,有:1tan mg qE α=因小球进入边界2右侧区域后的轨迹为圆弧,则有:mg =qE 2解得比值:E 1 :E 2=3:1(2)设小球刚进入边界2时速度大小为v ,由动能定理有:2113sin302cos302mg L E q L mv ︒︒⋅+⋅=联立上式解得:3v gL =设小球进入E 2后,圆弧轨迹恰好与地面相切时的轨道半径为R ,如下图,由几何关系得:cos30+2L R R ︒= 代入数据解得:(23)R L =+洛伦兹力提供向心力,由牛顿第二定律得:20v qvB m R=代入数据解得:03(23)m gLB -=(3)如下图,设此时圆周运动的半径为r ,小球在磁场中运动到最高点时的位移为:2cos15S r ︒=⋅圆周运动周期为:2rT vπ=则小球运动时间为:712t T =解得比值:362cos15cos15712gL S r t T︒==︒【点睛】考察粒子在复合场中的运动。
高中物理数学物理法的基本方法技巧及练习题及练习题
高中物理数学物理法的基本方法技巧及练习题及练习题一、数学物理法1.如图所示,一半径为R 的光滑绝缘半球面开口向下,固定在水平面上.整个空间存在磁感应强度为B 、方向竖直向下的匀强磁场.一电荷量为q (q >0)、质量为m 的小球P 在球面上做水平的匀速圆周运动,圆心为O ′.球心O 到该圆周上任一点的连线与竖直方向的夹角为θ(02πθ<<).为了使小球能够在该圆周上运动,求磁感应强度B 的最小值及小球P相应的速率.(已知重力加速度为g )【答案】min 2cos m g B q R θ=cos gRv θθ=【解析】 【分析】 【详解】据题意,小球P 在球面上做水平的匀速圆周运动,该圆周的圆心为O’.P 受到向下的重力mg 、球面对它沿OP 方向的支持力N 和磁场的洛仑兹力f =qvB ①式中v 为小球运动的速率.洛仑兹力f 的方向指向O’.根据牛顿第二定律cos 0N mg θ-= ②2sin sin v f N mR θθ-= ③ 由①②③式得22sin sin 0cos qBR qR v v m θθθ-+=④由于v 是实数,必须满足222sin 4sin ()0cos qBR qR m θθθ∆=-≥ ⑤由此得2cos m gB q R θ≥⑥可见,为了使小球能够在该圆周上运动,磁感应强度大小的最小值为min 2cos m gB q R θ=⑦此时,带电小球做匀速圆周运动的速率为min sin 2qB R v m θ=⑧由⑦⑧式得sin cos gRv θθ=⑨2.在地面上方某一点分别以和的初速度先后竖直向上抛出两个小球(可视为质点),第二个小球抛出后经过时间与第一个小球相遇,要求相遇地点在抛出点或抛出点以上,改变两球抛出的时间间隔,便可以改变值,试求(1)若,的最大值 (2)若,的最大值【答案】(1)(2)22212v v v t g -∆=-【解析】 试题分析:(1)若,取最大值时,应该在抛出点处相遇 ,则最大值(2)若,取最大值时,应该在第一个小球的上抛最高点相遇,解得,分析可知,所以舍去最大值22212v v v t g -∆=考点:考查了匀变速直线运动规律的应用【名师点睛】本题的解题是判断并确定出△t 取得最大的条件,也可以运用函数法求极值分析.3.如图所示,在x ≤0的区域内存在方向竖直向上、电场强度大小为E 的匀强电场,在x >0的区域内存在方向垂直纸面向外的匀强磁场。
数学物理方法:第十一章-格林函数法-2
/
0
u
(r)
V
G
(r,
r
)
(r)dr
0
G
(r,
r)
u(r) n
u
(r)
G(r, n
r)
dS
(2)第二类边界条件
2u(r)
(r)
/
0
u n
f (r )
(r D)
u(r)
V
G(r, r)
(r)dr
0
G(r,
r)
f
(r)dS +
1 V
V
u(r)dr
2G(r,
r)
1
0
(r r)+ 1 0V
G(r, r)
4
0
1
| r r |
4 0
q | r r1
|
4 0
1 | r r |
4 0
q
a r r
r
0
G(r, r)
4 0
1 |r
r
|
a r
4 0
|
1 r
a2 r2
r
|
q
a r
像电荷的电量和位置:
qa, r
r1
=
a2 r2
r
结论:1)像电荷位于球面的外侧; 2)如果源电荷是正的,则像电荷则是负的。
e z
cos
r r
r r
r
o y
x
sin sin cos cos sin sin sin sin cos cos
cos sin sin cos cos cos
例2 在半无界空间内求解拉普拉斯方程的第一边值问题
2u 0
人教版物理八年级下册 第11章 第1节 功习题课件(共17张PPT)
12.一个重为 100N 的物体在水平拉力作用下匀速前进了 20m,拉力撤消后, 物体由于惯性又前进了 5m,若拉力做的功为 500J,则拉力的大小为 25 N。 13.(怀化中考)某次跳伞时,一运动员重为 600N,接近地面时,可认为是 竖直向下做匀速直线运动,当运动员离地面 12m 时速度为 3m/s,则运动员 从此处落到地面所用的时间是 4 s,这 12m 内重力对运动员做的功是 7200 J。
B.W1=W2 D.W1=4W2
9.如图所示,两个体积相同的铅球 A 和铁球 B 分别沿两边向下滚到同一水 平面上,则( A )
A.重力对 A 球做的功多 B.重力对 B 球做的功多 C.重力对两球做的功一样多 D.无法判断
10.如图所示,一个斜坡长 5m,高 3m,搬运工人将一个重 500N 的货箱从 斜坡底部(A 点)推上顶端(B 点),在这个过程中,工人克服重力做的功是 1500 J,在平台 BC 上,搬动工人又用 200N 的推力将货箱匀速推移了 5m, 在这个过程中,工人克服重力做的功是 0 J,推力做的功是 1000 J。
第十一章 功和机械能
第1节 功
重难点点拨 1.做功的两个必要因素:一是作用在物体上的力,另一个是物体在这个力 的方向上移动的距离。 2.功的计算公式 W=Fs。
典例剖析 【例】某同学体重 500N,他用 40N 的力沿水平方向推木箱,木箱重 100N, 经 4s 木箱在水平地面上移动了 2m,当他停止推木箱后,木箱在地面上又滑 行了 0.5m。在这个过程中,该同学做的功是多少焦?如果他把木箱搬到三 楼,已知每层楼高 4m,则他对木箱至少做多少焦的功? 【分析】沿水平方向推木箱做功:W1=F1s1=40N×2m=80J,木箱在滑行 过程中,人没有对其做功;搬木箱所用的力至少等于木箱重:F2=G 箱= 100N,上升的高度 h=4m×2=8m, W2=G 箱 h=100N×8m=800J。 【答案】移动木箱过程中该同学做的功是 80J;搬木箱过程中他对木箱至少 做功 800J。