完整版正比例和反比例练习题
正反比例练习题及答案
正反比例练习题及答案一、选择题1. 某工厂生产零件,每小时生产零件数与生产时间成反比例。
如果工厂在4小时内生产了120个零件,那么在1小时内可以生产多少个零件?A. 30B. 60C. 120D. 2402. 一个水池的容积是固定的,水管注水的速度与注满水池所需的时间成什么比例?A. 正比例B. 反比例C. 不成比例D. 无法确定3. 某商品的总成本与生产数量成反比例,当生产数量为100时,总成本为5000元。
如果生产数量增加到200,总成本是多少?A. 2500元B. 5000元C. 10000元D. 无法确定4. 某学校学生人数与每个学生分得的图书数量成反比例。
如果学校有200名学生,每人分得5本书,那么当学生人数增加到400时,每人分得多少本书?A. 2.5本B. 5本C. 10本D. 无法确定5. 某工厂的总产量与工作时间成正比例。
如果工厂在8小时内生产了800个单位的产品,那么在4小时内可以生产多少个单位的产品?A. 200B. 400C. 800D. 1600答案:1. B 2. B 3. A 4. A 5. B二、填空题6. 某工厂的工作效率与所需时间成________比例,如果工作效率提高到原来的2倍,那么所需时间将减少到原来的________。
7. 某书店的图书销售量与销售价格成________比例,如果销售价格提高到原来的1.5倍,销售量将减少到原来的________。
8. 某产品的生产成本与生产数量成________比例,如果生产数量增加到原来的3倍,生产成本将增加到原来的________。
9. 某工厂的总产量与工作时间成________比例,如果工作时间减少到原来的一半,总产量将减少到原来的________。
10. 某学校的图书数量与学生人数成________比例,如果学生人数增加到原来的4倍,图书数量将增加到原来的________。
答案:6. 反,1/2 7. 反,2/3 8. 正,3 9. 正,1/2 10. 正,4三、判断题11. 某商品的单价与销售数量成反比例,这种说法是正确的。
正比例 、反比例练习题
正比例、反比例练习题一、填空。
1.如果工作时间一定,那么工作总量与工作效率成()比例关系。
2.如果工作总量一定,那么工作时间与工作效率成()比例关系。
3.汽车的耗油量一定,油箱中汽油的数量与行驶的路程成()比例关系。
4.出售小麦的单价一定,出售小麦总量与总钱数成()比例关系。
5.体操比赛的总人数一定,每排人数与排数成()比例关系。
6.一个长方形的长是5厘米,长方形的宽与面积之间的关系如下图。
看图填空。
⑴长方形的宽与面积成()比例关系。
⑵当长方形的宽是3厘米时,面积是()平方厘米。
⑶当长方形的宽是7厘米时,面积是()平方厘米。
⑷当长方形的面积是30平方厘米时,宽是()厘米。
⑸估计宽是3.5厘米时,面积是()平方厘米。
⑹估计面积是32.5厘米时,宽是()厘米。
二、判断下面每题中的两种量是否成比例?成什么比例?说明理由。
1.甲、乙两地的路程一定,骑自行车从甲地到乙地的时间和速度。
2.工程队施工的效率一定,施工的时间和施工总量。
3.一辆汽车行驶的速度一定,这辆汽车的载重量和行驶的总路程。
4.圆柱的底面积一定,这个圆柱的高和体积。
5.机器零件的合格率一定,合格零件数量与残次品零件数量。
6.李红作100道口算题,每分种作题的数量和所用的时间。
7.分数值一定,分数的分子与分母8.梯形的面积一定时,上底和下底的和与高三、选择符合要求的答案,把题号填在括号里。
1.小红的年龄一定,那么小红的身高与体重()。
①成正比例关系②成反比例关系③不成比例关系2.一个三角形的面积一定,这个三角形的底与高()。
①成正比例关系②成反比例关系③不成比例关系3.长方形的(),它的长和面积成正比例。
A.周长一定B.宽一定C.面积一定4.圆柱体体积一定,()和高成反比例。
A.底面半径B.底面积C.表面积5.若ab=c,当c一定时a和b();当a一定时b和c();当b一定时a和c()。
A、成正比例B、成反比例C、不成比例关系四、一批钢材每吨0.4万元。
(完整版)正反比例练习题
正反比例练习题(1)一、判断下面两种相关联的量成不成比例,如果成比例,成什么比例。
11、分数的大小一定,它的分子和分母()比例。
12、全班人数一定,出勤人数和出勤率()比例。
13、正方体一个面的面积和它的表面积()比例。
14、在一定的时间里,做一个零件所用的时间和做零件的个数()比例。
15、圆的半径和面积()比例。
16、圆锥体的高一定,圆锥的底面半径和它的体积()比例。
17、4X=8Y,X和Y()比例。
18、车轮的直径一定,所行的路程和车轮的转数()比例。
19、圆柱的底面半径一定,圆柱的高和圆柱的体积()比例。
20、分数值一定,分子和分母()比例。
21、正方形的边长和面积()比例。
22、小麦的总重量一定,出粉率和面粉的重量()比例。
23、三角形的面积一定,底和高()比例。
24、要行一段路程,已行的和未行的路程()比例。
25、长方形的长一定,宽和周长()比例。
26、圆的半径和周长()比例。
27、总产量一定,单产量和数量()比例。
28、在同一时间里,杆高和影长()比例。
29、做一项工程,工作效率和工作时间()比例。
30、汽车从甲地到乙地,行车时间和速度()比例。
二、判断题,对的打√,错的打ⅹ。
1、速度和时间成反比例。
()2、圆的半径一定,圆的面积和兀不成比例()3、三角形的底一定,它的面积和高不成比例。
()4、正方形的边长和面积成正比例。
()5、出盐率一定,盐的重量和海水的重量成正比例。
()正反比例练习题(2)一、判断。
1、方砖的边长一定,要铺地面积和用砖块数成正比例()2、用瓷砖铺地,要用的砖数一定,要铺地的平方米数和每平方米用砖的数量成正比例()3、要铺地的总面积一定,每块方砖的边长与需要的块数成正比例()4、一个比例的两个内项分别是25和0.4,它的两个外项的积一定是10。
()5、梯形的面积一定,高和上下底的和成反比例()6、圆的半径一定,圆的面积和兀不成比例()7、加工时间一定,加工零件个数和加工每个零件所需的时间成反比例()8、南京到北京,所行驶的路程和速度不成比例()9、出盐率一定,盐的重量和海水重量成正比例。
正比例反比例练习题
正比例反比例练习题一、正比例关系练习题1. 甲地的人口与时间之间存在着正比例关系,已知2010年时甲地的人口为500万人,而2020年时甲地的人口为600万人。
求2015年时甲地的人口数量。
2. 小明用固定的速度每小时跑5公里,已知小明连续跑了3个小时,求小明跑的总路程。
3. 某机构对某公司年度销售额与广告费用之间的关系进行研究,数据表明销售额与广告费用呈正比例关系,当广告费用为200万元时,销售额为1600万元。
问当广告费用为350万元时,销售额是多少?4. 某工厂生产零件的速度与机器运行时间存在正比例关系,已知机器连续运行10小时可以生产240个零件。
求机器连续运行16小时可以生产多少个零件?5. 一位股民投资了某只股票,大约过了一年,他发现自己的投资金额翻了6倍。
如果他最初投资了8万元,求现在他的投资金额有多少。
二、反比例关系练习题1. 甲地的公交车以固定的速度行驶,已知当车速为30千米/小时时,需要5小时才能到达目的地,求当车速为60千米/小时时,需要多长时间才能到达目的地。
2. 某机器完成一项任务需要的时间与工人数量之间存在反比例关系,已知当有6名工人时,任务可以在8个小时内完成,求如果只有3名工人,需要多长时间才能完成任务。
3. 某水泥厂生产水泥的速度与工人数量之间存在反比例关系,已知当有8名工人时,水泥厂可以生产200吨水泥,求如果只有4名工人,水泥厂可以生产多少吨水泥。
4. 某车间生产零件的速度与工人数量之间存在反比例关系,已知当有10名工人时,车间可以生产600个零件,求如果只有5名工人,车间可以生产多少个零件。
5. 甲地离某市的距离与到达市区所需时间之间存在反比例关系,已知距离为60千米时需要1个小时到达市区,求距离为30千米时需要多长时间才能到达市区。
以上所列的练习题涉及到了正比例关系和反比例关系,通过解题可以巩固对正比例关系和反比例关系的理解,并提高解决实际问题的能力。
在实际生活和工作中,我们常常会遇到各种与比例关系相关的问题,因此掌握好这些知识对我们的学习和工作都具有重要意义。
正比例反比例练习题
正比例反比例练习题正反比例练题一、选择、填空。
1、如果3a=4b,那么a∶b=()。
A、3∶4B、4∶3C、3a∶4b2、下面不成比例的是()。
A、正方形的周长和边长。
B、某同学从家到学校的步行速度和所用时间。
C、圆的体积和表面积。
3、下列各式中(a、b均不为),a和b成反比例的是()。
A、a×8=b5B、9a=6bC、a×13 -1÷b= 0D、a+710=b4、如果y=15x,x和y成()比例;如果y=15/x,x和y成()比例。
5、如果Y = 8X,X和Y成()比例;如果Y = 8/X,X和Y成()比例。
348、在一个比例式中,两个外项的积是最小的质数,其中一个内项是3,另一个外项是()。
9、相遇问题,时间一定,速度和路程成()比例。
如果甲、乙两车的速度比是7:9,相遇时,甲、乙两车行过的路程比是()。
10、货车的速度是客车的40%。
货、客两车同时从甲、乙两地相向而行,经过2小时相遇。
相遇时,货车与客车行过的路程的比是():()。
11、假如x÷y=712×2,那末x和XXX()比例;假如x:4=5:y,那末x和XXX()比例。
12、圆的半径与圆周长()。
A、成正比例B、成反比例C、不成比例D、没有关系13、互为倒数的两个数,它们一定成()。
A、正比例B、反比例C、不成比例D、无法判断14、小王的身高与体重成()。
A、正比例B、反比例C、不成比例D、没法判断15、总时间一定,要制造的零件总数和制造每个零件所用的时间成()比例.16、两个齿轮啮合转动时转速和齿数成()比例..17、房间面积一定,每块地板砖的面积与用砖的块数成()比例..18、汽车行驶时每公里的耗油量一定,所行驶的距离和耗油总量成()比例..19、糖水的重量一定,糖的重量和水的重量成()比例.20、大豆的出油率一定,大豆的数量和出油的数量成()比例21、总是相等的两个量成()比例.二、判断。
年级正比例和反比例比例练习题
年级正比例和反比例比例练习题
正比例和反比例是数学中重要的概念,在年级研究中经常会遇到这两种类型的题目。
以下是一些年级正比例和反比例比例练题,希望能帮助你更好地理解这两种关系。
正比例题目
1. 一辆汽车以每小时60公里的速度行驶,求2小时内汽车行驶的路程。
解答:
设汽车行驶的路程为x公里,则根据正比例关系可得:
60公里/1小时 = x公里/2小时
解方程得:x = 60 * 2 = 120公里
2. 小明去超市买苹果,苹果的单价是每个2元。
如果小明买了5个苹果,他要支付的金额是多少?
解答:
设小明支付的金额为y元,则根据正比例关系可得:
2元/1个 = y元/5个
解方程得:y = 2 * 5 = 10元
反比例题目
1. 一辆车以每小时60公里的速度行驶,行驶1小时后发现油
箱中的油量减少了1/6。
求这辆车油箱的容量。
解答:
设油箱的容量为z升,则根据反比例关系可得:
60公里/1小时 = z升/1/6升
解方程得:z = 60 * (1/6) = 10升
2. 5个工人需要3天时间完成一项任务,如果再增加3个工人,那么完成该任务需要多少天?
解答:
设完成任务需要的天数为t天,则根据反比例关系可得:
5个工人/3天 = 8个工人/t天
解方程得:t = 3 * 5 / 8 = 1.875天,约等于1.88天
以上是一些年级正比例和反比例比例练题的解答,在解题过程中需要注意明确所给的条件,并正确运用正比例和反比例的概念。
希望这些题目对你的研究有所帮助!。
正比例反比例练习试题
正比例反比例练习题1、圆的面积和圆的半径成正比例。
()2、圆的面积和圆的半径的平方成正比例。
()3、圆的面积和圆的周长的平方成正比例。
()4、正方形的面积和边长成正比例。
()5、正方形的周长和边长成正比例。
()6、长方形的面积一定时,长和宽成反比例。
()7、长方形的周长一定时,长和宽成反比例。
()8、三角形的面积一定时,底和高成反比例。
()9、梯形的面积一定时,上底和下底的和与高成反比例。
()10、圆的周长和圆的半径成正比例。
()二:选择题。
1.根据表格判断数量间的比例关系。
时间(小时) 2 3 5 7 8 ...路程(千米)100 150 250 350 400 ...时间与路程()A.成正比例.B.成反比例.3.不成比例.2.圆柱体底面积与高()A.成正比例.b.成反比例.c.不成比例圆柱体底面积300 200 150 120 100圆柱的高 2 3 4 5 6三.看图填空.1.根据规律判断比例关系,并填空。
X 2 3 5 () 10 ...y ()4.5 7.5 12 ()...X与Y成().A.正比例B.反比例.X 2 3 5 ()10 ...Y () 4 2.4 12 () ...X与Y()A.正比例.B.反比例3.选择填空.A除以B=C,当C一定时A和B();当A一定时B和C();当B一定时A和C()A.成正比例.b.成反比例。
四.判断对错.1.路程一定,速度和时间成正比例。
()2.一堆煤的总量不变,烧去的煤与剩下的煤成反比例。
()3.花生的出油率一定,花生的重量与榨出花生油的重量成正比例。
()4.平行四边形的面积不变,它的底与高成反比例。
()五、选择题。
1.长方形的________,它的长和面积成正比例。
A.周长一定。
B.宽一定。
C.面积一定。
2.圆柱体体积一定,______和高成反比例。
A.底面半径.B.底面积.C.表面积.六.应用题。
1.工厂制作一种零件,现在每个零件所用的时间由革新前的8分钟减少到3分钟,原来制造60个的时间现在能生产多少个?(用比例方法解答)2.一个晒盐场用500千克的海水可以晒15千克盐;照这样的计算,用100吨海水可以晒多少吨盐?(用比例方法解答)正比例和反比例”过关测试题一、对号入座1、35:()=20÷16==()%=()(填小数)2、因为X=2Y,所以X:Y=():(),X和Y成()比例。
(完整版)正比例和反比例练习题及答案
正比例和反比例练习题及答案一、对号入座。
1、35:=20÷16==%=2、因为X=2Y,所以X:Y=:,X和Y成比例。
3、一个长方形的长比宽多20%,这个长方形的长和宽的最简整数比是。
4、向阳小学三年级与四年级人数比是3:4,三年级人数比四年级少% 四年级比三年级多%5、甲乙两个正方形的边长比是2:3,甲乙两个正方形的周长比是,甲乙两个正方形的面积比是。
6、一个比例由两个比值是2的比组成,又知比例的外项分别是1.2和5,这个比例是。
7、已知被减数与差的比是5:3,减数是100,被减数是。
8、在一幅地图上量得甲乙两地距离6厘米,乙丙两地距离8厘米;已知甲乙两地间的实际距离是 120千米,乙丙两地间的实际距离是千米;这幅地图的比例尺是。
9、从2:8、1.6:和:这三个比中,选两个比组成的比例是。
10、一块铜锌合金重180克,铜与锌的比是2:3,锌重克。
如果再熔入30克锌,这时铜与锌的比是。
二、明辨是非。
1、一项工程,甲队40天可以完成,乙队50天可以完成。
甲乙两队的工作效率比是4:5。
2、圆柱体与圆锥体的体积比是3:1,则圆柱体与圆锥体一定等底等高。
3、甲数与乙数的比是3:4,甲数就是乙数的。
4、比的前项和后项同时乘以同一个数,比值不变。
5、总价一定,单价和数量成反比例。
6、实际距离一定,图上距离与比例尺成正比例。
7、正方体体积一定,底面积和高成反比例。
8、订阅《今日泰兴》的总钱数和份数成正比例。
三、选择题。
1、把一个直径4毫米的手表零件,画在图纸上直径是8厘米,这幅图纸的比例尺是。
A、1:B、2:1C、1:20D、20:12、已知=1.2、=1.2,所以X和Y比较。
A、X大B、YC、一样大3、如果A×2=B÷3,那么A:B=。
A、2:B、3:C、1:D:14、一个三角形的三个内角的度数比是2:3:4,这个三角形是。
A、锐角三角形B、直角三角形C、钝角三角形5、体积和高都相等的圆柱体和圆锥体,它们底面积的比是。
小学数学正比反比练习题
小学数学正比反比练习题正文:一、正比例关系练习题1. 小明每天骑自行车上学,他的速度和用时的关系是什么?如果他以每小时15公里的速度骑行,那么骑行5小时能够走多远?2. 一辆汽车以每小时80公里的速度行驶,行驶4小时后,它能够走多远?3. 将正比例关系列为函数的形式:设x是小明骑自行车所花费的时间(小时),y是他骑行的距离(公里),写出函数y和x之间的关系式。
4. 小明骑自行车到山上游玩,用时与距离的关系是正比例关系。
他用时2小时到达离家20公里的山脚,那么他用时3小时能够到达离家多远的山脚?5. 一辆汽车以每小时60公里的速度行驶,行驶2小时15分钟后,它能够走多远?二、反比例关系练习题1. 公司A生产一批产品需要5个工人工作3天完成,那么如果只有3个工人参与生产,需要多少天才能完成?2. 某项工程由6个工人完成,需要12天,如果增加工人的数量,能否缩短工期?为什么?3. 设x是某项工程所需要的工人数,y是完成这项工程所需的天数。
当工人数增加时,工期缩短了吗?写出x和y之间的关系式。
4. 利用反比例关系解决实际问题:某项工程由10个工人完成,需要20天。
如果只有5个工人参与工作,那么需要多少天才能完成?5. 公司A和公司B生产某种产品,两个公司的产能成反比例关系。
如果公司B的产能是公司A的2倍,那么公司B需要多久才能完成和公司A一样多的产品?结语:通过以上练习题,我们可以更好地理解小学数学中的正比例关系和反比例关系。
掌握了这两种关系的概念和求解方法,我们可以更好地应用于实际生活中的问题求解。
希望同学们能够通过不断地练习,加深对正反比例关系的理解和运用能力。
正比例与反比例练习题
正比例与反比例练习题1. 小明每天骑自行车上学,他发现骑行的时间和他的速度成正比。
如果他以每小时10公里的速度骑行,那么上学的时间是多少?解答: 假设骑行的时间是 x 小时,则速度和时间成正比,可以表示为 10/x = k,其中 k 是比例系数。
根据比例关系可得,x = 10/k。
由题意可知,当速度为10公里/小时时,上学时间为x小时,代入公式得到:x = 10/k。
因此,上学的时间为 10/k 小时。
2. 某工厂生产零件的速度和工人数量成正比。
如果有8个工人能够在5小时内生产完500个零件,那么10个工人需要多长时间才能生产1000个零件?解答: 假设生产零件的时间是 x 小时,则工人数量和时间成正比,可以表示为 8/5 = 10/x。
通过交叉乘积得到方程 8x = 50,解得 x = 6.25。
因此,10个工人需要6.25小时才能生产完1000个零件。
3. 小红做作业的速度和作业量成反比。
如果她能够在12小时内完成180页的作业,那么她在4小时内能完成多少页的作业?解答: 假设完成作业的页数是 y 页,则速度和作业量成反比,可以表示为 180/12 = y/4。
通过交叉乘积得到方程 180*4 = 12y,解得 y = 60。
因此,小红在4小时内能完成60页的作业。
4. 某项任务由8个工人在10天内完成,如果增加到12个工人,需要多少天才能完成同样的工作?解答: 假设完成任务的时间是 x 天,则工人数量和时间成反比,可以表示为 8*10 = 12*x。
通过交叉乘积得到方程 80 = 12x,解得 x = 6.67。
因此,增加到12个工人需要6.67天才能完成同样的工作。
由于天数不能为小数,可以向上取整,并得出需要7天才能完成。
5. 某车辆的速度和行驶时间成反比。
如果车辆以每小时80公里的速度行驶,那么行驶1000公里需要多长时间?解答: 假设行驶的时间是 y 小时,则速度和时间成反比,可以表示为 80/y = k,其中 k 是比例系数。
(完整版)正比例与反比例的意义练习题
正比例与反比例的练习题一、填空。
1.k x y ,y 与x 是成( )的量,它们的关系叫做( )关系。
2.A :B =C ,如果( )一定,A 与B 成正比例。
3.a ×b =c ,当a 一定时,( )和( )成正比例,当b 一定时,( )和( )成正比例。
4.单价书总价=本数,书的总价和单价成( )比例;本数书总价=单价,书的总价和本数成( )比例;单价×本数=书的总价,书的单价和本数成( )比例。
5.a b=c ,当b 是不变量时,a 和c 成( )比例。
6.从甲地到乙地,所用的时间和速度成( )比例。
7.路程、速度、时间之间存在着以下关系:当( )一定时,( )和( )成( )关系; 当( )一定时,( )和( )成( )关系; 当( )一定时,( )和( )成( )关系。
8.一百米赛跑,跑的( )和( )成( )比例。
9.长方形的长是A ,宽是B ,面积是S ,则S =A ×B 。
如果A 一定,那么B 和S 成( )比例;如果B 一定,那么A 和S 成( )比例;如果S 一定,那么A 和B 成( )比例;二、判断。
1.正方体的棱长和它的体积成正比例。
( )2.a是b的40%,a和b成正比例。
()3.一个平行四边形的底是8cm,它的面积和高成正比例。
()4.在同圆或等圆里,圆的周长和直径成正比例。
()5.小红有20本练习本,用完的本数与剩下的本数。
()6.食堂购进煤的总量一定,每天的用煤量与用的天数。
()7.长方形的周长一定,它的长和宽。
()4.长方体的体积一定,底面积与高。
()三、选择题。
1.表示X和y成正比例关系的是()。
2xA.x—y=4B.y×x=100C.x+y=24D.y=52.下面每组中的两个量,成正比例的量是()。
A.长方形的面积一定,长和宽B.男工人数一定,女工人数和全车间人数C. 时间一定,路程和速度D.日产量一定,生产总量和剩下的天数3.正方形的边长和周长()。
正比例反比例练习题
正比例反比例练习题一、选择题1. 已知A和B成正比例,若A=3时,B=9,则当A=6时,B的值为多少?A. 18B. 12C. 24D. 362. 某工厂的产量与工作时间成正比例,若工作8小时产量为160件,则工作10小时的产量是多少?A. 200B. 180C. 160D. 2203. 反比例函数y=1/x的图象上,当x=2时,y的值为多少?A. 0.5B. 1C. 2D. 44. 甲乙两地之间的距离是固定的,若汽车速度与所需时间成反比例,汽车以60公里/小时的速度行驶需要2小时,则以40公里/小时的速度行驶需要多少时间?A. 3B. 4C. 6D. 85. 已知反比例函数y=k/x,当x=3时,y=2,则k的值为多少?A. 6B. 5C. 3D. 2二、填空题6. 若A和B成正比例,比例系数为5,当A=10时,B的值为_________。
7. 某商品的单价与购买数量成反比例,若单价为10元时,购买数量为20件,则单价为20元时,购买数量为_________。
8. 已知正比例函数y=kx,当x=4时,y=8,则k的值为_________。
9. 反比例函数y=6/x的图象上,当x=3时,y的值为_________。
10. 若速度与时间成反比例,且当速度为5米/秒时,时间为10秒,则当速度为10米/秒时,时间为_________。
三、解答题11. 某工厂生产某种零件,其生产效率与所需时间成反比例。
若生产100个零件需要2小时,请回答:(1) 写出该工厂生产零件的反比例函数关系式。
(2) 若该工厂需要生产200个零件,需要多少时间?12. 某城市出租车的计价规则是:起步价为10元,之后每公里收费2元。
若乘客行驶了15公里,请计算乘客需要支付的费用。
13. 已知正比例函数y=kx,其中k=4,求当x=5时,y的值。
14. 某学校规定,学生的体育成绩与学习时间成正比例。
若学生学习2小时,体育成绩为80分,则学习3小时时,体育成绩为多少?15. 某工厂的产量与工作时间成正比例,若工作8小时产量为160件,求该工厂的产量与工作时间的正比例系数。
完整版)正比例和反比例练习题
完整版)正比例和反比例练习题1.圆的面积和圆的半径成正比例。
正确。
因为圆的面积公式为πr²,半径r增大,面积也会增大,成正比例关系。
2.圆的面积和圆的半径的平方成正比例。
错误。
圆的面积公式为πr²,半径r的平方与面积成正比例。
3.圆的面积和圆的周长的平方成正比例。
错误。
圆的面积和周长没有直接的正比例关系。
4.正方形的面积和边长成正比例。
正确。
正方形的面积公式为a²,边长a增大,面积也会增大,成正比例关系。
5.正方形的周长和边长成正比例。
正确。
正方形的周长公式为4a,边长a增大,周长也会增大,成正比例关系。
6.长方形的面积一定时,长和宽成反比例。
正确。
长方形的面积公式为lw,面积一定,长和宽成反比例关系。
7.长方形的周长一定时,长和宽成反比例。
错误。
长方形的周长公式为2(l+w),周长一定时,长和宽没有直接的反比例关系。
8.三角形的面积一定时,底和高成反比例。
正确。
三角形的面积公式为1/2bh,面积一定,底和高成反比例关系。
9.梯形的面积一定时,上底和下底的和与XXX反比例。
错误。
梯形的面积和上下底线段之和与高没有直接的反比例关系。
10.圆的周长和圆的半径成正比例。
正确。
圆的周长公式为2πr,半径r增大,周长也会增大,成正比例关系。
11.一个因数不变,积与另一个因数成正比例。
错误。
一个因数不变时,积与另一个因数成反比例关系。
12.长方形的长一定,宽和面积成正比例。
错误。
长方形的长一定时,宽和面积成反比例关系。
13.大米的总量一定,吃掉的和剩下的成反比例。
正确。
大米的总量不变,吃掉的越多,剩下的越少,成反比例关系。
14.圆的半径和周长成正比例。
正确。
圆的周长公式为2πr,半径r增大,周长也会增大,成正比例关系。
15.分数的分子一定,分数值和分母成反比例。
正确。
分数的值为分子除以分母,分子一定时,分数值与分母成反比例关系。
16.铺地面积一定,方砖的边长和所需块数成反比例。
正比例和反比例-练习题
正比例和反比例-1班级姓名一、选择题.1.下列X和Y成反比例关系的是()+Y=== 2.下列说法正确的是()3.圆的周长和直径()4.下列各数量关系中,成正比例关系的有()5.路程一定,所走路程和剩下路程()6.工作效率不断提高,工作总量和工作时间()7.在路程一定的情况下,速度与时间()8.下列各式中(a、b均不为0),a和b成反比例的是()×=b 9.成正比例的两种量在变化时的规律是它们的()一定.10.出油率一定,香油的质量和芝麻的质量()二、填空题.11.圆锥体的高一定,底面积与体积成正比例._______ .(判断对错)12.(a和b是两个非0自然数,如果b=3a,则a、b的最大公因数是_________ ,最小公倍数是_________ ;a和b成_________ 比例.13.长方形的周长一定,它的长和宽成正比例._________ .(判断对错)14.圆的面积与它的半径成正比例._________ .(判断对错)15.x+y=ky(k一定)则x与y不成比例._________ .(判断对错)16.圆的面积与直径的平方成正比例._________ .(判断对错)17.两种相关联的量,一定成比例关系._________ .(判断对错)18.甲、乙、丙三人走同一段路,所用的时间比为3:4:5,那么甲、乙、丙三人的速度比为(_________ :_________ :_________ ).19.正方形的周长与边长成_________ 比例.圆的面积和半径_________ 比例.20.自行车行走的里程一定,车轮的转数和车轮的直径成反比例.________ .(判断对错)三、解答题.21.某车间为了能高质量准时完成一批齿轮订单,对车间工人提前进行了加工齿轮效率的测试,经过统计测算,平均每个工人加工齿轮效率情况如图:(1)根据图象判断,加工齿轮的个数和天数成_________ 比例.(2)加工小齿轮的效率比大齿轮高百分之几?(3)已知这个车间有工人85人,1个大齿轮和3个小齿轮配为一套,为了使大小齿轮能成套出厂,如果你是车间主任,怎样安排这85名工人最合理?22.公共汽车里的投币箱贴有“2元/人”.(1)把下表填写完整.(2)根据表中的数据,在下图中描出车费和上车的人数所对应的点,再把它们按顺序连起来.(3)你发现哪个量与哪个量成什么比例?请说明理由.(4)如果用y表示车费,用x表示人数,则y= _________ .23.圆锥体积一定,底面积和高成反比例._________ .(判断对错)24.总路程一定,已行路程和未行路程成反比例_________ (判断对错).25.一辆汽车行驶的路程所用的时间统计如下:(1)汽车行驶的路程与所用的时间成_________ 关系.(2)从(0,0)开始描点,画出折线统计图(行驶路程与所用时间关系的图象).(3)从图象中看出汽车行200km需要_________ 小时.26.直径一定,圆的周长与π成正比例._________ .(判断对错)27.烧一堆煤,每天烧煤量和烧煤的天数成反比例._________ .(判断对错)28.竹子是世界上生长最快的植物.据观察,竹子24小时可以生长约72厘米.如果每小时是匀速生长的,你能完成下面的表格吗?29.甲乙两车行驶的路与时间的关系如图:①从图中可以看出,甲车行驶路程与行驶时间成_________ 比例关系.②如果甲、乙两车从A、B两地同时出发,相向而行,经过5小时相遇.则A、B两地相距多少千米?30.李芳和孙超两家都买了同一种牌子的同一款轿车,这种汽车行驶的路程和耗油量如下:(1)从统计表中可以发现:汽车“行驶路程与“耗油量”成_________ 比例关系.(2)根据统计表中的数据,在图1的统计图中描点连线.(3)一次李芳的爸爸开车到杭州开会,看油表的数据如图2,根据统计表的数据推断,汽车大约行了_________ 千米.(4)“五一”节,孙超的爸爸带全家开车去旅游,出发前后的路程表数如下图,根据统计表的数据推断,汽车耗油_________ 升.。
正比例和反比例练习题
正比例和反比例练习题下面每题中的两个量,哪些成正比例,哪些成反比例,哪些不成比例?1.铅笔单价一定,购买铅笔的数量和总价。
()2.用60元去购买笔记本,笔记本的单价和可以购买的数量。
()3.在同一时间测得的不同物体的高度和它的影长。
()4.正方形的周长和边长。
()5.正方形的面积和边长。
()6.用一批纸装订练习本,每本练习本的页数和装订的本数。
()7.装配一批计算机,每天装配的台数和需要的天数。
()8.长方形的面积一定,长方形的长和宽。
()9.长方形的周长一定,长方形的长和宽。
()10.小明的年龄和体重。
()11.修一条路,已经修了的米数和未修的米数。
()12.给一个房间的地面铺砖,每块砖的面积和铺砖的块数。
()13.圆的直径与半径。
()14.圆的直径与周长。
()15圆的面积与半径。
()16.圆的面积与半径的平方。
()17.圆的直径一定,周长与圆周率。
()18.看一本书,每天看的页数和需要的天数。
()19.看一本书,已看的页数和未看的页数。
()20.三角形的底边一定,它的面积和高。
()21.圆柱体的体积一定,底面积和高.()22.圆锥的底面积一定,体积和高.()23.车轮的直径一定,所行驶的路程和车轮的转数.()24.比的前项一定,比值和后项.()25.长方体的体积一定,它的底面积和高.()26.一个因数一定,积和另一个因数.()27.正方体的表面积和一个面的面积。
()28. Xy=6 ,x和y ()29.A=3B A和B ( )30.每块砖的面积一定,房间的面积和砖的块数。
()31.把一个底面周长为25.12分米,高为5分米的圆柱体削成一个体积最大的正方体,正方体的体积是多少?。
正比例反比例经典题型
正比例反比例经典题型一、选择题(每题3分,共30分)1. 下面两种相关联的量,不成正比例关系的是()。
A. 一个人的年龄和体重。
B. 正方形的周长和边长。
C. 路程和时间(速度一定时)。
D. 圆柱的底面积一定,体积和高。
答案:A。
解析:一个人的年龄和体重不是成比例关系,年龄增长体重不一定按照固定比例变化;而正方形周长÷边长 = 4(一定),是正比例关系;路程÷时间=速度(一定),是正比例关系;圆柱体积÷高 = 底面积(一定),是正比例关系。
2. 当()时,x和y成反比例关系。
A. x+y = 5B. xy = 5C. x÷y = 5D. y = 5x答案:B。
解析:如果xy = k(k为常数且k≠0),那么x和y 成反比例关系,这里xy = 5符合反比例关系的定义;x + y=5不是比例关系;x÷y = 5即x = 5y是正比例关系;y = 5x也是正比例关系。
3. 长方形的面积一定,长和宽()。
A. 成正比例B. 成反比例C. 不成比例D. 无法确定答案:B。
解析:因为长方形面积 = 长×宽,面积一定,也就是长和宽的乘积是固定值,所以长和宽成反比例关系。
4. 下面成正比例关系的是()。
A. 圆的面积和半径B. 圆的周长和半径C. 圆锥的体积和高(底面积一定时)。
D. B和C答案:D。
解析:圆的面积÷半径的平方=π(一定),但圆的面积和半径不成正比例;圆的周长÷半径= 2π(一定),是正比例关系;圆锥体积÷高= 1/3×底面积(底面积一定时),是正比例关系,所以圆的周长和半径、圆锥的体积和高(底面积一定时)成正比例关系。
5. 已知y = 8x,x和y()。
A. 成正比例B. 成反比例C. 不成比例D. 无法确定答案:A。
解析:y÷x = 8(一定),所以x和y成正比例关系。
6. 一本书的总页数一定,已经看的页数和未看的页数()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一.判断
圆的面积和圆的半径成正比
例。
2、圆的面积和圆的半径的平方成正比例。
3、圆的面积和圆的周长的平方成正比例。
4、正方形的面积和边长成正比例。
5、正方形的周长和边长成正比例。
6、长方形的面积一定时,长和宽成反比例。
7、长方形的周长一定时,长和宽成反比例。
三角形的面积一定时,底和高成反比例。
9、梯形的面积一定时,上底和下底的和与高成反比例。
10、圆的周长和圆的半径成正比例。
11.一个因数不变,积与另一个因数成正比例.
12.长方形的长一定,宽和面积成正比例.
13.大米的总量一定,吃掉的和剩下的成反比例.
14.圆的半径和周长成正比例.
15.分数的分子一定,分数值和分母成反比例.
16.铺地面积一定,方砖的边长和所需块数成反比例. 仃.铺地面积一定,方砖面积和所需块数成反比例.
18.除数一定,被除数和商成正比例.
19.分母一定,分子和分数值成正比例(20•圆的面积一定,圆周率与半径成反比例(21 •出勤率一定,实际出勤人数和应出勤人数成反比例(
22•小明跳高的高度与他的身高成反比例(23•铺地面积一定,每块砖的面积与需要的块数成反比例(24.比的前项一定,比的后项和比值成反比例(25.文具盒的单价一定,买文具盒的个数和总价成正比例
26•水稻产量一定,水稻的种植面积和总产量成反比例
(27•—堆货物一定,运出的和剩下的成正比例( 28•汽车行驶的速度一定,行驶的时间和路程成正比例
29.比值一定,比的前项和后项成正比例()。
30煤的总量一定,每天的烧煤量和烧的天数成正比例
(31 •李叔叔从家到工厂,骑车的速度和所需要的时间成反比例
32玉华做12道练习题,做完的与没做的题成正比例()。
33•长方形面积疋, 它的长和宽成正比例()。
34•长方形的周长一定时,长和宽成反比例。
35•三角形的面积一定时,底和高成反比例。
36•车轮直径一定,所行路程和车轮的转数成反比例(
37.直角三角形的两个锐角成反比例(38•—个因数(不为零)
一定,积和另一个因数成正比例(39同样的书,买的本数和钱数成正比例(。
二、判断下面各题中的两个量成什么比例,并说明理由。
1、订《少先队员》的份数和总钱数。
2、三角形的面积一定,底和高。
3、总人数一定,行数和每行人数。
4、总价疋, 单价和数量。
5、购买同一种钢笔的数量和总价。
6、正方形的周长与它的边长。
7、圆的面积与它的半径。
&圆的周长与它的半径。
9、圆柱的侧面积一定,它的底面积周长与高。
10、长方形的长一定,它的面积与宽。
11>被减数一定,减数和差。
12、总人数一定,每行人数和行数。
13、长方体的底面积一定,体积和高。
14、路程一定,已走的路程和剩下的路程。
15、百米赛跑中,跑步速度和所用时间。
16、车轮的转数一定时,车轮的直径和行驶的路程。
17
、
x=2y,(X、y不为0)那么x和y.
18、大豆的出油率疋, 大豆的数量和出油的数
量。
19、分数值一定,分子和分母。
20、一个加数一定,另一个加数与和。
21、路程一定, 速度和时间。
22、圆柱的底面积疋, 它的体积与
高。
23、看一本故事书,每天看的页数和所剩下的页数。
24、圆锥的体积一定,它的底面积与高。
35•三角形的高一定,底和面积.
25、购买苹果的总价一定,购买苹果的千克数和单
价。
36用、乙两数互为倒数,甲数和乙数
26、正方体的棱长与表面积。
37•铺地的总面积一定,每块砖的面积与需要的块数成正比例.
27 .时间一定,每小时织布的米数和织布总米数. 38•班级学生的总人数一定,出勤率与缺勤率成正比例.
28•平行四边形面积一定,它的底和高. 三、填空:
29.分子一定,分母和分数值. 1
、
每块砖的面积一定,铺地面积与块数成(
定
,
)比
例。
30•报纸的单价一定,总价与订阅的份数. 2
、
年级总人数一定,每班人数与班数成()比
例。
31.正方形的周长和边长. 3
、
被除数一定,商和除数成()比例。
32•正方形的边长和面积. 4
、
糖水的含糖率一定,糖和水成()比例。
定
,
33•路程一定,车轮的直径与车轮的转数. 5
、
三角形的面积定
,
它的底和高()比例。
34.被成数一定,成数与差. 6、如果=y, (x不为0),那么x和y成()比例。