输入输出端口控制实验

合集下载

P1口输入输出实验

P1口输入输出实验

.实验一P1口输入输出一.实验目的1)进一步熟习51单片机外面引脚线路连结;2)考证常用的51指令;3)学习简单的编程方法;4)掌握单片机全系统调试的过程及方法;5)学习P1口的相关功能作用以及使用方法。

二.实验说明P1口因为有内部上拉电阻,没有高阻抗输入状态,称为准双向口。

作为输出口时,不需要在片外接上拉电阻,P1口“读引脚”输入时,一定先向锁存器写1;三.实验内容P1口做输出口,接八只发光二极管,编写程序,使发光二极管循环点亮。

、作输进口接两个拨动开关,、作输出口,接两个发光二极管,编写程序读取开关状态,将此状态,在发光二极管上显示出来四.实验原理以实验机上74LS273做输出口,接八只发光二极管,编写程序,使发光二极管循环点亮。

循环时间由准时器控制。

五.实验流程六.实验源程序ORG0000H;程序进口AJMP RIGHT ;跳向标号RIGHT处ORG0030H;程序RIGHT:MOVR0,#08H;置移位次数.MOV A,#0FFH ;置全1CLRC;将Cy清零RIGHT1:RRC A;因为进位Cy=0,因此带进位的循环右移会出现灯的亮灭MOV P1,A;输出至P1口,控制LEDCALL DELAY;调用延时子程序DJNZ R0,RIGHT1 ;R0-1,不为0则转移到标号 RIGHT1处AJMP RIGHT ;绝对转移至RIGHT处;*****************************************************************************;/*延时子程序*/;*****************************************************************************;使用不断的跳转来实现延时,DELAY:MOV R5,#10DELAY1:MOV R6,#50DELAY2:MOV R7,#250DJNZ R7,$DJNZ R6,DELAY2;R6-1,不为0则转移至DELAY2,履行2*200*10us DJNZR5,DELAY1 ;R5-1,不为0则转移至DELAY1,履行2*10usRET;退出子程序履行END七.硬件设计(1)P1口某一I/O口线反转输出电路P1口输出电路八.实验连结图.九.原理:十.仿真器的置步:仿真模式置:8752模式。

gpio实验报告总结

gpio实验报告总结

GPIO实验报告总结一、实验目的与背景本次GPIO实验的主要目的是深入了解GPIO(General Purpose Input/Output)接口的工作原理和应用,通过实际操作和数据分析,提高对嵌入式系统硬件接口的理解和掌握。

实验背景是基于当前嵌入式系统在各种应用中的普及,GPIO 接口作为其中重要的硬件接口,对于理解嵌入式系统的运作方式具有重要意义。

二、GPIO基础知识GPIO接口是一种通用输入输出接口,它允许CPU与外部设备或传感器进行通信。

通过设置GPIO引脚的电平状态,CPU可以向外部设备发送数据,同时也可以接收外部设备发送的数据。

在嵌入式系统中,GPIO接口被广泛应用于各种硬件设备的控制和数据采集。

三、实验设备与工具本次实验使用的设备包括开发板、杜邦线、电源适配器、串口调试工具等。

其中,开发板提供了丰富的GPIO接口和外设接口,方便我们进行实验操作。

串口调试工具用于实时监控和调试实验过程。

四、实验步骤与操作连接实验设备:将开发板与电源适配器连接,为开发板提供稳定的电源。

使用杜邦线连接开发板的GPIO接口和外设接口,确保连接可靠。

编写程序:根据实验要求,编写相应的程序代码。

在程序中,我们需要配置GPIO引脚的工作模式(输入或输出),并控制引脚的电平状态进行数据传输。

下载程序:将程序代码下载到开发板中,启动程序。

实验操作:通过串口调试工具观察程序的运行状态和GPIO引脚的电平变化。

根据实验要求,进行相应的操作,如读取传感器数据、控制外部设备等。

记录数据:在实验过程中,记录关键步骤的实验数据和结果,以便后续分析和解释。

五、实验数据与结果通过实验操作,我们获得了以下数据和结果:GPIO引脚配置成功,可以正常工作在输入或输出模式。

通过GPIO接口成功读取了传感器数据,数据准确无误。

通过GPIO接口成功控制了外部设备,实现了预期的功能。

在实验过程中,记录了详细的实验数据和结果,包括GPIO引脚的电平状态、传感器数据、外部设备控制状态等。

DSP实验指导书输入输出

DSP实验指导书输入输出
c)点击File,选择Load Program,选中所要下载的*.out文件,点击“OK”则系统将可执行文件下载到实验板上的片外程序区中。之后就可对程序进行调试仿真。
7).程序单步执行
按F8,就可观察到程序单步运行的状态,并可观察D2的发光情况。
8).程序全速运行
按F5,就可观察到程序在全速运行状态下,D2的发光情况。并用示波器观察I/O管脚的波形。如果D2的闪烁不明显,可修改延时子程序。
GEL_MapAdd(0x1000,1,0xF000,1,1);/* External SRAM */
}
menuitem "F2407 DEBUGGER";
hotmenu flash_disable()
{
*(int *)SCSR2 = MP;
}
hotmenu flash_enable()
{
*(int *)SCSR2 = MC;
delay(1000);/* 延时子程序 */
delay(1000);/* 延时子程序 */
asm(" clrcxf");
*PADATDIR=*PADATDIR&0x0FF00;// IOPA端口设置为输出方式
*PBDATDIR=*PBDATDIR&0x0FF00;
*PCDATDIR=*PCDATDIR&0x0FF00;
}
SECTIONS
{
.vectors:>VECS PAGE 0
.text:>FLASH PAGE 0
.cinit :>FLASH PAGE 0
.data :>FLASH PAGE 0
.stack :>B0 PAGE 1

i0口输入输出实验报告

i0口输入输出实验报告

竭诚为您提供优质文档/双击可除i0口输入输出实验报告篇一:实验二I-o口输入、输出实验报告单片机实验报告2姓名学号时间地点实验题目I/o口输入、输出实验一、实验目的1.学习I/o口的使用方法。

2.学习延时子程序、查表程序的编写和使用。

二、实验仪器和设备pc机、wAVe软件、仿真器+仿真头、实验板、电源等。

三、实验说明本实验1通过单片机的I/o口控制LeD的亮灭,从而观察I/o口的输出。

实验2通过单片机的I/o口接受按键动作信息,然后通过LeD和数码管指示。

通过本实验学生可以掌握单片机I/o口输入输出的控制方法,同时也可以掌握单片机延时子程序、查表程序的编写和调试方法。

要求预先编写好程序并通过伟福仿真软件调试。

四、实验内容1、p0口做输出口,接八只LeD,编写程序,使LeD循环点亮,间隔0.5秒。

2、p1.0--p1.7作输入口接拨动开关s0--s7;p0.0--p0.7作输出口,接发光二极管L1—L8,编写程序读取开关状态,将此状态在对应的发光二极管上显示出来,同时将开关编号(0—7)显示在LeD数码管上。

编程时应注意p1作为输入口时应先置1,才能正确读入值。

五、实验电路连线p0.0----LeD0p1.0-----s0p0.1----LeD1p1.1-----s1p 0.2----LeD2p1.2-----s2p0.3----LeD3p1.3------s3p 0.4----LeD4p1.4------s4p0.5----LeD5p1.5------s5 p0.6----LeD6p1.6------s7p0.7----LeD7p1.7------s8 实验1:p0口循环点灯实验2:p1、p0口输入输出agfbabcdefgh(dp)eh(dp)实验2:LeD数码管各段与I/o的连接dcp2.0p2.1p2.2p2.3p2.4p2.5p2.6p2.7六、程序框图及程序p0口循环点灯oRg0000hmoVA,#07FhLp:moVp0,ARRALcALLDeLAYLcALLDeLAYsJmpLpDeLAY:moVR2,#0FAhL1:moVR3,#0FAhL2:DJnZR3,L2DJnZR2,L 1ReT;设定程序汇编起始地址;设置初始值01111111;点亮LeD0;将A里面的值循环右移一位;调用延时子程序;循环点亮LeD灯;0.25s的延时程序;2*250=500us;500*250*2=250000us;返回主程序p1口输入/输出oRg0000Loop:moVA,p1cJneA,0FFh,LeDsJmpLoopLeD:moVp0, AAcALLDeLAYmoVR5,#00hLoop1:RRcAJncLoop2IncR5sJmpLoo p1Loop2:moVDpTR,#TAbmoVA,R5;设定起始地址;读p1口;查询是否有按键按下;等待;有键按下,将值读入p0;调用延时子程序;置计数初值=0;输入右移1位;若cy=0,则数码显示;cy=1,则计数加1;跳回继续移位;所查表的首地址赋给DpTR;计数值做偏移量moVp1,#0FFh;p1口置1moVcA,@A+DpTRmoVp2,A;显示相应按键值sJmpLoopTAb:Db60h,0DAh,0F2h,66h;Db0b6h,0beh,0e0h,0Feh;DeLAY:moVR2,#0FAhL1:moVR3,#0FAhL2:DJnZR3,L2DJnZR2,L1ReT;0.25s的延时程序;2*250=500us;500*250*2=250000us;返回主程序七、思考题1、实验1欲改变LeD循环的方向程序应如何修改?循环的时间间隔由什么决定?写出间隔时间为1秒的延时程序并说明计算方法。

实验二 IO口的输入与输出

实验二  IO口的输入与输出
实验一 软件和硬件的认识
主讲人:
宋淇
一、实验目的:
了解IO口的结构 熟源自IO口的特性 掌握IO口的控制二、实验仪器:

ATmage16实验板 一块 ISP单片机下载线 一条 PC机 一台
三、实验原理:
作为通用数字I/O 使用时,AVR 所有的I/O 端口都具有真正的读- 修改 - 写功能。这意味着用SBI 或CBI 指令改变某些管脚的方向( 或者是端口电 平、禁止/ 使能上拉电阻) 时不会改变其他管脚的方向( 或者是端口电平、 禁止/ 使能上拉电阻)。输出缓冲器具有对称的驱动能力,可以输出或吸收 大电流,直接驱动LED。所有的端口引脚都具有与电压无关的上拉电阻。 并有保护二极管与VCC 和地相连,如 Figure23 所示。在控制I/O时,分别 由方向寄存器DDRX与数据寄存器PORTX控制I/O的状态,如下表。
Figure 23. I/O 引脚等效原理图
所有的寄存器和位以通用格式表示:小写的“x” 表示端口的序号, 而小写的“n” 代表位的序号。但是在程序里要写完整。例如,PORTB3 表示端口B 的第3 位,而本节的通用格式为PORTxn。物理I/O 寄存器和 位定义列于P63“I/O 端口寄存器的说明” 。 每个端口都有三个I/O 存储器地址: 数据寄存器 – PORTx、 数据方向 寄存器 – DDRx 和端口输入引脚地址– PINx。数据寄存器和数据方向寄 存器为读/ 写寄存器,而端口输入引脚为只读寄存器。但是需要特别注 意的是,对PINx 寄存器某一位写入逻辑"1“ 将造成数据寄存器相应位的 数据发生"0“ 与“1“ 的交替变化。当寄存器MCUCR 的上拉禁止位PUD 置位时所有端口引脚的上拉电阻都被禁止。
端口引脚配置图

实验一 开关量输入输出实验

实验一  开关量输入输出实验

实验一开关量输入输出实验
一、实验要求
1.利用ATC89C51单片机的P1口作开关量输出口,连接8个LED发光二极管;
2.在单步模式(debug菜单下的step over,F10)下,循环点亮这8个LED管(流水灯);
3.画出AT89C51实现上述功能的完整电路图,包括单片机电源、复位电路、晶振电路和控制电路。

4.完成全部程序和电路调试工作。

5. 先在proteus下运行程序,有时间再尝试用keil 与proteus联调。

二、实验目的
1.掌握AT89C51单片机的最基本电路的设计;
2.了解单片机I/O端口的使用方法;
三、设计提示
1. 硬件电路图
可参考switch controll.DSN,请删除无关电路。

2. 程序框架
start:
mov r0,0
again:
….. ;从tab表中获取相应数值(请补充相应指令)
mov p1,a
inc r0 ;r0+=1
jmp again
tab: db 01h,02h,04h,08h,10h,20h,40h,80h; 数值表(具体数值可自行修改)
feh,fdh,fbh,f7h,efh,dfh,bfh,7fh
(db是伪指令,定义一个byte的内容单元,上述的语句是定义了包含8个元素的数组,每个元素占据1个byte)。

end
四、主要元件。

P1、P3口输入输出实验

P1、P3口输入输出实验

实验二 P1、P3口输入输出实验一、实验目的进一步熟悉keil仿真软件、proteus仿真软件的使用。

了解并熟悉单片机I/O口和LED灯的电路结构,学会构建简单的流水灯电路。

掌握C51中单片机I/O口的编程方法和使用I/O口进行输入输出的注意事项。

二、实验原理MCS-51系列单片机有四组8位并行I/O口,记作P0、P1、P2和P3。

每组I/O口内部都有8位数据输入缓冲器、8位数据输出锁存器及数据输出驱动等电路。

四组并行I/O端口即可以按字节操作,又可以按位操作。

当系统没有扩展外部器件时,I/O端口用作双向输入输出口;当系统作外部扩展时,使用P0、P2口作系统地址和数据总线、P3口有第二功能,与MCS-51的内部功能器件配合使用。

P1口的位结构如图1所示。

P1口用作双向输入输出端口。

这时图中多路开关的控制信号为低电平,输出与锁存器的反向输出端相连,同时上面的场效应管由于与门输出为低电平而截止。

三、实验设备与器件硬件:微机、单片机仿真器、单片机实验板、连线若干软件:KEIL C51单片机仿真调试软件,Proteus系列仿真调试软件四、实验内容及结果分析用Proteus仿真软件设计流水灯电路,分别实现下列功能:P3口作为输入口读取开关状态,P1口作为输出口,连续运行程序,发光二极管显示开关状态。

如果是下载式实验仪,在程序装载前,必须使P3口的拨动开关处于高电平状态。

并且不能单步调试,只能连续执行。

完整的电路图如图所示。

2)利用keil软件编写相应的程序:a、运行keil 2软件,启动后,点击Project菜单新建项目,如图6所示。

b 、新建项目后,选择仿真单片机的型号,如图7所示:c、单击File菜单的“New”新建程序文件,再右击“Source Group1”添加文件,如图 8、图9所示:d、在软件的程序编写界面编写相应的程序。

点击按钮运行程序,确认无误后,点击,图5 完整电路图图6 新建项目界面图7 单片机型号选择图8 新建程序文件图9 添加文件在弹出的窗口中选择Output 选项卡,勾选选项,之后点击按钮,最后再点击按钮,生成hex 文件。

io口实验报告

io口实验报告

io口实验报告IO口实验报告引言:IO口(Input/Output Port)是计算机硬件中的一种通信接口,用于与外部设备进行数据交互。

本实验旨在通过对IO口的实际应用,深入了解IO口的原理和使用方法。

一、实验目的通过本次实验,我们的目标是掌握IO口的基本原理和操作方法,了解IO口在计算机系统中的重要性,并能够熟练地使用IO口进行数据输入和输出。

二、实验装置本次实验所需的装置包括一台计算机、IO口接口板、连接线和外部设备(如LED灯、按钮等)。

三、实验过程1. 连接IO口接口板将IO口接口板与计算机通过连接线连接好,并确保连接稳固。

接口板上通常会有标识,根据标识将连接线插入正确的接口。

2. 配置IO口参数打开计算机,并进入操作系统。

根据计算机型号和操作系统的不同,配置IO口参数的具体步骤可能会有所不同。

一般来说,可以通过设备管理器或者控制面板中的设备设置选项来进行配置。

3. 进行IO口输入实验将一个按钮连接到IO口接口板的输入端口上。

通过编写简单的程序代码,实现当按钮按下时,计算机能够读取到IO口的输入信号,并作出相应的反应,如显示一个提示信息或者改变屏幕上的图像。

4. 进行IO口输出实验将一个LED灯连接到IO口接口板的输出端口上。

通过编写程序代码,实现当计算机发出IO口的输出信号时,LED灯能够亮起。

可以尝试不同的输出信号模式,如闪烁、渐变等,以观察LED灯的不同反应。

5. 拓展实验除了按钮和LED灯,还可以尝试连接其他外部设备,如蜂鸣器、温度传感器等,以进一步探索IO口的应用。

通过编写相应的程序代码,实现与这些设备的交互,并观察其效果。

四、实验结果与分析通过以上实验操作,我们可以得到以下实验结果:1. IO口输入实验:当按下按钮时,计算机能够读取到IO口的输入信号,并作出相应的反应。

这说明IO口能够实现数据的输入,为计算机提供外部信息。

2. IO口输出实验:当计算机发出IO口的输出信号时,LED灯能够亮起。

按键控制led灯实验报告

按键控制led灯实验报告

按键控制led灯实验报告实验目的:通过按键控制 LED 灯的开关来学习Arduino 基本输入输出控制技术。

实验器材:1. Arduino UNO 控制板 1 块2. 面包板 1 个3. LED 灯 1 个4. 220 Ω 电阻 1 个5. 杜邦线若干6. 按钮 1 个实验原理:本次实验的原理是使用Arduino 板的数字输入输出端口来实现按键控制 LED 的开关。

Arduino 是一款开源的电子平台,由一块基于单片机的电路板和一份开源的IDE(集成开发环境)组成。

Arduino 具有开放的硬件和软件平台,不仅具有通用性,还可以根据需求加装各种功能扩展板(如:无线、驱动器、传感器等)。

这里的数字输入输出端口(Digital Input/Output Pins)是非常重要的部分,它可以-产生数字的输出信号(输出模式);或者可以读取数字的输入信号(输入模式)。

在Arduino的编程中,数字输入输出端口的参考代码如下:digitalWrite(pin, value); //输出信号value = digitalRead(pin); //输入信号其中pin 代表的是数字输入输出端口的编号,value 代表的是数字输出端口的值(HIGH 或LOW)或数字输入端口的读取值(HIGH 或 LOW)。

实验步骤:1. 连接 Arduino 控制板和面包板,将 LED 灯通过220 Ω 电阻与面包板负极相连,正极连接至D13 端口;2. 在面包板中插入一个按钮,连接至 D2 端口,同时与地端连接;3. 开启 ArduinoIDE 编辑器,在 ArduinoIDE 编辑器中输入以下代码:void setup () {pinMode (led, OUTPUT);pinMode (button, INPUT);}void loop () {int buttonState = digitalRead (button);if (buttonState == HIGH) {digitalWrite (led, HIGH);} else {digitalWrite (led, LOW);}}4. 将 Arduino 控制板通过 USB 线连接至个人电脑,上传上述代码,并打开串口监视器,即可看到 LED 灯的开关情况。

实验三P3.3口输入、P1口输出实验

实验三P3.3口输入、P1口输出实验

实验三 4.1 P3.3口输入、P1口输出实验系别专业:电子系12级电信2班学号:3121003210姓名:李书杰指导老师:刘志群老师4.1.1 实验要求1. 复习Keil C51调试硬件的操作方法。

2. 复习单片机作为通用I/O口的注意事项。

3. 复习单片机操作I/O口的程序设计方法。

4.1.2 实验设备PC 机一台,TD-NMC+教学实验系统4.1.3 实验目的1. 熟悉单片机仿真实验软件Keil C51调试硬件的方法。

2. 了解P3、P1口作通用I/O口的使用方法。

3. 掌握延时子程序的编写和使用方法。

4. 了解单片机对简单I/O的扩展方法。

4.1.4 实验内容实验1根据TD-NMC+实验平台的单元电路,构建一个硬件系统,并编写实验程序实现如下功能:将P1口的低4位定义为输出,高4位定义为输入,数字量从P1口的高4位输入,从P1口的低4位输出控制发光二极管的亮灭。

程序如下:KEY:MOV P1,#0F0H ;令所有行为低电平KEY1:MOV R7,#0FFH ;设置计数常数DJNZ R7,KEY1 ;延时MOV A, P1 ;读取P1口的列值ANL A,#0F0H ;判别有键值按下吗?CPL A ;求反后,有高电平就有键按下JZ EKEY ;无键按下时退出LCALL DEL20 ms ;延时20 ms去抖动SKEY:MOV A,#00 ;下面进行行扫描,1行1行扫MOV R0,A ;R0作为行计数器,开始为0MOV R1,A ;R1作为列计数器,开始为0MOV R3 #0FEH ;R3暂存行扫描字,低4位为行扫描字SKEY2:MOV A,R3MOV P1,A ;输出行扫描字,高4位全1NOPNOPNOPMOV A,P1 ;读列值MOV R1,A ;暂存列值ANL A,#0F0H ;取列值CPL A ;高电平则有键闭合S123:JNZ SKEY3 ;有键按下转SKEY3INC R0 ;行计数器加1SETB C ;准备将行扫描左移1位,;形成下一行扫描字,C=1保证输出行扫描字中高4位全为1,;为列输入作准备,低4位中只有1位为0MOV A,R3 ;R3带进位C左移1位RLC AMOV R3,A ;形成下一行扫描字→R3MOV A,R0CJNE A,#04H,SKEY1 ;最后一行扫(4次)完了吗?EKEY:RET;列号译码SKEY3:MOV A,R1JNB ACC.4,SKEY5JNB ACC.5,SKEY6JNB ACC.6,SKEY7JNB ACC.7,SKEY8AJMP EKEYSKEY5:MOV A,#00HMOV R2,A ;存0列号AJMP DKEYSKEY6:MOV A,#01HMOV R2,A ;存1列号AJMP DKEYSKEY7:MOV A,#02HMOV R2,A ;存2列号AJMP DKEYSKEY8:MOV A,#03HMOV R2,A ;存3列号AJMP DKEY;键位置译码DKEY:MOV A,R0 ;取行号ACALL DECODEAJMP EKEY;键值(键号)译码DECODE:MOV A,R0 ;取行号送AMOV B,#04H ;每一行按键个数MUL AB ;行号×按键数ADD A,R2 ;行号×按键数+列号=键值RET实验2根据TD-NMC+实验平台的单元电路,构建一个硬件系统,并编写实验程序实现如下功能:将P3.3口作状态输入口(接一个逻辑开关,即拨码开关),P1口做输入口(接八只发光二极管D0~D7)。

单片机实验报告2

单片机实验报告2

《单片机应用系统设计》实验报告院系:仪器科学与工程学院专业:测控技术与仪器实验室:机械楼5楼同组人员:评定成绩:审阅教师:硬件实验一I/O口输入/输出及控制实验Ⅰ、I/O口输入/输出实验一、实验目的1、学习单片机I/O口的使用方法2、学习延时子程序的编写和使用二、实验内容1、I/O口输出:P1口做输出口,接八只发光二极管,编写程序让发光二极管循环点亮。

2、I/O口输入/输出:P1.0、P1.1做输入口接两个拨动开关;P1.2、P1.3做输出口,接两个发光二极管。

编写程序读取开关状态,将此状态在发光二极管上显示出来。

编程时应注意P1.0、P1.1作为输入口时应先置1,才能正确读入值。

三、实验步骤1、I/O口输出硬件连接连线连接孔1 连接孔21 P1.0 L02 P1.1 L13 P1.2 L24 P1.3 L35 P1.4 L46 P1.5 L57 P1.6 L68 P1.7 L7MCS51的P1口循环点灯2、I/O口输入/输出硬件连接连线连接孔1 连接孔21 K4 P1.02 K5 P1.13 P1.2 L44 P1.3 L5MCS51的P1口输入/输出3、实验说明(1)对于MCS51,P1口是准双向口。

它作为输出口时与一般的双向口使用方法想同;但准双向口用作输入口时,因其结构特点必须对它置“1”,否则读入的数据容易产生错误。

(2)8051延时子程序的延时计算问题,对于程序DELAY:MOV R6, #0HMOV R7, #0HDELAYLOOP:DJNZ R6, DELAYLOOPDJNZ R7, DELAYLOOPRET查指令表可知MOV和DJNZ指令均需两个指令周期,在12MHz晶振时,一个机器周期时间为:12/12MHZ=1ms,该延时子程序延时:(256X255+2)X2X1us=130ms。

4、分别连接硬件并执行相关程序,记录结果。

四、提高要求修改I/O口输出程序,先1、3、5、7灯亮,延时后2、4、6、8灯亮,交替点亮。

单片机实验指导书

单片机实验指导书

目录实验一P1口输入、输出实验 (2)实验二继电器控制实验 (8)实验三音频控制实验 (11)实验四程序调试 (14)实验五5LED静态串行显示实验 (16)实验六6LED动态扫描显示实验 (21)实验七查询式键盘实验 (28)实验八阵列式键盘实验 (36)实验九计数器实验 (47)实验十定时器实验 (49)实验十一外部中断实验 (54)实验一P1口输入、输出实验一、实验目的1、学习P1口的使用方法2、学习延时子程序的编写和使用二、实验说明P1口是准双向口,它作为输出口时与一般的双向口使用方法相同。

由准双向口结构可知当P1口用作输入口时,必须先对口的锁存器写“1”,若不先对它写“1”,读入的数据是不正确的。

三、实验内容及步骤实验(一):用P1口做输出口,接八位逻辑电平显示,程序功能使发光二极管从右到左轮流循环点亮。

1、使用单片机最小应用系统1模块。

关闭该模块电源,用扁平数据线连接单片机P1口与八位逻辑电平显示模块。

2、用串行数据通信线连接计算机与仿真器,把仿真器插到模块的锁紧插座中,请注意仿真器的方向:缺口朝上。

3、打开Keil uVision2仿真软件,首先建立本实验的项目文件,接着添加P1_A.ASM源程序,进行编译,直到编译无误。

4、进行软件设置,选择硬件仿真,选择串行口,设置波特率为38400。

5、打开模块电源和总电源,点击开始调试按钮,点击RUN按钮运行程序,观察发光二极管显示情况。

发光二极管单只从右到左轮流循环点亮。

实验(二):用P1.0、P1.1作输入接两个拨断开关,P1.2、P1.3作输出接两个发光二极管。

程序读取开关状态,并在发光二极管上显示出来。

1、用导线分别连接P1.0、P1.1到两个拨断开关,P1.2、P1.3到两个发光二极管。

2、添加 P1_B.ASM源程序,编译无误后,运行程序,拨动拨断开关,观察发光二极管的亮灭情况。

向上拨为熄灭,向下拨为点亮。

四、流程图及源程序1.流程图2.源程序:(一)实验一ORG 0000HLJMP STARTORG 0030HSTART: MOV A, #0FEHMOV R2,#8OUTPUT: MOV P1,ARL AACALL DELAYDJNZ R2,OUTPUTLJMP STARTDELAY: MOV R6,#0MOV R7,#0DELAYLOOP:;延时程序DJNZ R6,DELAYLOOPDJNZ R7,DELAYLOOPRETEND(二)实验二KEYLEFT BIT P1.0 ;定义KEYRIGHT BIT P1.1LEDLEFT BIT P1.2LEDRIGHT BIT P1.3ORG 0000HLJMP STARTORG 0030HSTART: SETB KEYLEFT ;欲读先置一SETB KEYRIGHTLOOP: MOV C,KEYLEFTMOV LEDLEFT,CMOV C,KEYRIGHTMOV LEDRIGHT,CLJMP LOOPEND五、思考题(1)对于本实验延时子程序Delay: MOV R6,0MOV R7, 0DelayLoop:DJNZ R6,DelayLoopDJNZ R7,DelayLoopRET如使用12MHz晶振,粗略计算此程序的执行时间为多少?六、电路图实验二继电器控制实验一、实验目的1、学习I/O端口的使用方法2、掌握继电器的控制的基本方法3、了解用弱电控制强电的方法二、实验说明现代自动控制设备中,都存在一个电子电路的互相连接问题,一方面要使电子电路的控制信号能控制电气电路的执行元件(电动机,电磁铁,电灯等),另一方面又要为电子线路和电气电路提供良好的电气隔离,以保护电子电路和人身的安全。

微机原理实验报告

微机原理实验报告

微机原理实验报告微机原理实验报告班级:自动化72组员梁慕佳 07054031张乐 07054033张林鹏 07054034实验一:8255 并行接口实验1 实验目的1. 学习并掌握8255 的工作方式及其应用;2. 掌握8255 典型应用电路的接法。

2 实验设备PC机一台,TD-PITE 实验装置一套。

3 实验内容1. 基本输入输出实验。

编写程序,使8255 的A口为输入,B口为输出,完成拨动开关到数据灯的数据传输。

要求只要开关拨动,数据灯的显示就发生相应改变。

2. 流水灯显示实验。

编写程序,使8255 的A口和B口均为输出,数据灯D7~D0由左向右,每次仅亮一个灯,循环显示,D15~D8与D7~D0 正相反,由右向左,每次仅点亮一个灯,循环显示。

4 实验原理并行接口是以数据的字节为单位与I/O 设备或被控制对象之间传递信息。

CPU和接口之间的数据传送总是并行的,即可以同时传递8 位、16 位或32 位等。

8255可编程外围接口芯片是Intel公司生产的通用并行I/O 接口芯片,它具有A、B、C三个并行接口,用+5V单电源供电,能在以下三种方式下工作:方式0--基本输入/输出方式、方式1--选通输入/输出方式、方式2--双向选通工作方式。

8255的内部结构及引脚如图2-6-1 所示,8255工作方式控制字和C口按位置位/复位控制字格式如图2-6-2所示。

图2-6-1 8255内部结构及外部引脚图图2-6-2 8255控制字格式5 实验步骤1. 基本输入输出实验本实验使8255 端口A工作在方式0 并作为输入口,端口B工作在方式0 并作为输出口。

用一组开关信号接入端口A,端口B 输出线接至一组数据灯上,然后通过对8255 芯片编程来实现输入输出功能。

具体实验步骤如下述:(1)实验接线图如图2-6-3所示,按图连接实验线路图;(2)编写实验程序,经编译、连接无误后装入系统;(3)运行程序,改变拨动开关,同时观察LED 显示,验证程序功能。

IO口控制实验

IO口控制实验

实验名称:单片机I/O口控制实验实验目的:利用单片机的P1口作为I/O口,学会利用P1口作为输入和输出口。

实验原理:一、 C51的IO口系统:P0~P3端口功能总结:(1)P0~P3口都是并行I/O口,但P0口和P2口,还可用来构建系统的数据总线和地址总线,所以在电路中有一个MUX,以进行转换。

而P1口和P3口无构建系统的数据总线和地址总线的功能,因此,无MUX。

P0口的MUX的一个输入端为“地址/数据”信号。

P2口的MUX的一个输入信号为“地址”信号。

(2)在4个口中只有P0口是一个真正的双向口,P1~P3口都是准双向口。

原因:P0口作数据总线使用时,需解决芯片内外的隔离问题,即只有在数据传送时芯片内外才接通;不进行数据传送时,芯片内外应处于隔离状态。

为此,P0口的输出缓冲器应为三态门。

P0口中输出三态门是由两只场效应管(FET)组成,所以是一个真正的双向口。

P1~P3口,上拉电阻代替P0口中的场效应管,输出缓冲器不是三态的-准双向口。

(3)P3口的口线具有第二功能,为系统提供一些控制信号。

因此P3口增加了第二功能控制逻辑。

这是P3口与其它各口的不同之处。

二、C51的中断系统单片机能及时地响应和处理单片机外部事件或内部事件所提出的中断请求。

1.五个中断请求源:(1)INT0*—外部中断请求0,由引脚INT0*输入,中断请求标志为IE0。

(2)INT1*—外部中断请求1,由引脚INT1*输入,中断请求标志为IE1。

(3)定时器/计数器T0溢出中断请求,中断请求标志为TF0。

(4)定时器/计数器T1溢出中断请求,中断请求标志为TF1。

(5)串行口中断请求,中断请求标志为TI或RI。

由特殊功能寄存器TCON和SCON的相应位锁存。

2.中断控制:中断允许寄存器IE:CPU对中断源的开放或屏蔽,由片内的中断允许寄存器IE控制。

字节地址为A8H,可位寻址。

IE对中断的开放和关闭为两级控制。

总的开关中断控制位EA(IE.7位):EA=0,所有中断请求被屏蔽。

GPIO实验报告

GPIO实验报告

GPIO实验报告一、实验目的1.了解GPIO(通用输入/输出)的基本概念和原理。

2.掌握GPIO的接口配置和使用方法。

3.学会使用GPIO控制外部设备。

二、实验器材1. Raspberry Pi开发板2.杜邦线3.LED灯4.电阻5.面包板三、实验原理GPIO(General Purpose Input/Output)即通用输入/输出,是Raspberry Pi开发板上常用的一种数字接口类型,用于与外部设备进行数据交互。

GPIO接口可以配置为输入或输出模式,通过读取或写入电平状态来完成与外部设备的通信。

四、实验内容1. 连接电路:首先将LED灯连接到Raspberry Pi开发板的GPIO引脚上。

使用杜邦线将LED的正极连接到GPIO引脚,负极连接到开发板的接地引脚。

添加适当的电阻来限制电流。

2. 配置GPIO引脚:在Raspberry Pi上通过编程配置相应的GPIO引脚。

选择要使用的引脚,并将其设置为输出模式。

3. 点亮LED灯:使用编程语言(例如Python)控制GPIO引脚的电平状态,将引脚设置为高电平(3.3V),以点亮LED灯。

4.熄灭LED灯:将GPIO引脚的电平状态设置为低电平(0V),以熄灭LED灯。

五、实验步骤1.使用杜邦线将LED的正极连接到任意一个GPIO引脚(例如GPIO18),将负极连接到开发板的接地引脚。

添加一个适当的电阻。

2. 在Raspberry Pi上打开终端,进入编程环境(例如Python)。

3. 配置GPIO引脚。

在Python环境中,可以使用RPi.GPIO库来配置GPIO引脚。

导入库并设置GPIO引脚为输出模式,代码示例如下:```import RPi.GPIO as GPIOGPIO.setmode(GPIO.BCM)GPIO.setup(18, GPIO.OUT)```4. 点亮LED灯。

使用GPIO.output(函数将GPIO引脚设置为高电平,代码示例如下:```GPIO.output(18, GPIO.HIGH)```5. 熄灭LED灯。

STM32实验报告

STM32实验报告

STM32实验报告一、实验目的本次实验的目的是了解并掌握STM32单片机的基本使用方法,学习如何通过编程控制STM32来完成一系列操作,包括输入输出控制、定时器控制等。

二、实验器材和材料1.STM32单片机开发板B数据线3. 开发环境:Keil uVision 5(或其他适用于STM32的编程软件)三、实验过程1. 配置开发环境:安装Keil uVision 5,并将STM32单片机开发板与计算机连接。

2.创建一个新的工程,并选择适当的芯片型号。

3.对芯片进行配置:选择适合的时钟源,设置GPIO端口等。

4.编写程序代码:根据实验要求,编写相应的程序代码。

5. 编译程序:在Keil uVision中进行编译,生成可执行文件。

6.烧录程序:将生成的可执行文件烧录到STM32单片机中。

7.调试与测试:连接各种外设并进行测试,检查程序功能的正确性。

8.实验结果分析:根据测试结果,分析并总结实验结果。

四、实验结果在本次实验中,我成功完成了以下几个实验任务:1.输入输出控制:通过配置GPIO端口为输入或输出,我成功实现了对外部开关、LED 等外设的控制。

通过读取外部开关的状态,我能够进行相应的逻辑操作。

2.定时器控制:通过配置并启动定时器,我成功实现了定时中断的功能。

可以通过定时中断来触发一系列事件,比如定时更新数码管的显示,控制电机的运动等。

3.串口通信:通过配置UART串口模块,我成功实现了与计算机的串口通信。

可以通过串口与计算机进行数据的收发,实现STM32与计算机的数据交互。

五、实验总结通过本次实验,我对STM32单片机的使用方法有了更深入的了解。

学会了如何配置GPIO端口、定时器、串口等,掌握了相应的编程技巧。

此外,还学会了如何进行调试和测试,检查程序功能的正确性。

通过实验的实际操作,我对STM32的各项功能有了更深入的理解。

需要注意的是,在实验过程中,我遇到了一些问题,比如代码编写错误、烧录问题等,但经过仔细分析和调试,最终都得到了解决。

单片机P1口输入输出实验

单片机P1口输入输出实验
•9
单片机P1口输入输出实 验
单片机可靠的复位是保证单片机正常运行的关键因素。 因此,在设计复位电路时,通常要使RST引脚保持10ms以 上的高电平。当RST从高电平变为低电平之后,单片机就从 0000H地址开始执行程序。本电路是上电自动复位。
将8个LED接在单片机P1端口的P1.0-P1.7引脚上,注意 LED有长短两个引脚,分别表示正负极,其中较短的负极接 单片机,较长的为正极,通过限流电阻R与Vcc相连。
单片机P1口输入输出实 验
单片机端口是集数据输入缓冲、数据输出驱动及 锁存等多项功能一体I/O的电路,特别是把握它准 双向、多功能的特点。单片机4个并行端口是P0、 P1、P2、P3。本实验只讨论P1端口。
1、实验目的
通过实验了解P1口作为输入输出方式使用 时,CPU对P1口操作方式。
•1
单片机P1口输入输出实 2、验实验要求(1)、2)为必做,3)为选做)
•11
单片机P1口输入输出实验
图3 P1端口的一位结构
•12
单片机P1口输入输出实验
5、程序设计
P1口输出控制程序的设计主要包括控制输出程序设计与延时程序设计。 (1)输出控制:当P1.5端口输出低电平,即P1.5=0,这时LED亮,反 之,LED灭,可以使用P1.5=0指令使P1.5端口输出低电平,同样利用指 令使P1.5端口输出高电平。
灭;
状态3:8个LED发光二极管
全灭后,从左右两边开始同时点亮LED发光二极管,全亮
后,8个LED发光二极管再明暗一起闪烁2次 ?
•3
单片机P1口输入输出实 验
3、实验设备与仪器 单片机应用与仿真开发实验台,PC机,
E6000/L仿真器+POD-51仿真头、 Wave软硬件仿真软件。

实验二单片机IO口的使用

实验二单片机IO口的使用

实验二单片机IO口的使用实验目的:掌握单片机IO口的使用方法,了解IO口的输入输出功能。

一、实验介绍在单片机系统中,IO口是通过端口来实现与外部设备的通信。

IO口可以用来输入控制信号或者输出数据信号,是单片机与外部世界交互的重要接口。

二、实验器材与工具1.单片机开发板2.扁平灯泡3.蜂鸣器4.电阻、电容等元器件5.逻辑分析仪三、实验步骤1.简单的IO口输出实验将一个扁平灯泡连接到单片机的一个IO口上,并将该IO口配置为输出模式。

实验中,可以通过控制该IO口的高低电平来控制灯泡的亮灭。

2.IO口输入实验将一个开关连接到单片机的一个IO口上,并将该IO口配置为输入模式。

实验中,可以读取该IO口的电平状态,来判断开关的状态。

3.组合实验将多个扁平灯泡和开关连接到单片机的IO口上,并通过控制和读取IO口的电平状态来实现各种功能。

可以实现灯泡的闪烁、扁平灯泡的亮度调节、蜂鸣器的控制等功能。

四、实验原理1.IO口模式设置单片机内部有寄存器用于控制IO口的工作模式。

通过设置相应的寄存器来将指定的IO口配置为输入或者输出模式。

2.IO口输出控制IO口的输出控制是通过操作相应的寄存器来实现的。

输出操作可以将指定的IO口设置为高电平或者低电平。

3.IO口输入读取IO口的输入读取也是通过操作相应的寄存器来实现的。

读取操作可以获取指定IO口的电平状态,以判断外部设备的状态。

五、实验总结通过这次实验,我学会了单片机IO口的配置与使用方法。

IO口是单片机与外部设备交互的重要接口,掌握了IO口的使用方法后,可以实现各种功能,如灯光控制、开关检测等。

同时,我也了解到了IO口的原理和应用场景,为以后的电子设计打下了基础。

gpio实验心得

gpio实验心得

gpio实验心得
GPIO实验心得
GPIO是指通用输入输出端口,是单片机中非常重要的一个部分。

在学习单片机的过程中,GPIO的实验是必不可少的一部分。

在我的学习过程中,我也进行了一些GPIO实验,下面是我的心得体会。

GPIO实验需要我们掌握一些基本的电路知识,比如电阻、LED等。

在实验中,我们需要将这些元件与单片机的GPIO口连接起来,才能进行实验。

因此,我们需要了解这些元件的特性,以及如何正确地连接它们。

GPIO实验需要我们掌握一些基本的编程知识。

在实验中,我们需要编写程序来控制GPIO口的状态,比如将GPIO口设置为输出模式,然后将其输出高电平或低电平。

因此,我们需要了解如何编写简单的程序,并且需要了解一些基本的语法和函数。

GPIO实验需要我们具备一定的实验能力。

在实验中,我们需要正确地连接电路,编写正确的程序,并且需要进行一些调试工作。

因此,我们需要具备一定的实验经验和实验能力,才能顺利地完成GPIO实验。

总的来说,GPIO实验是一项非常重要的实验,它可以帮助我们更好地了解单片机的工作原理,掌握一些基本的电路知识和编程知识,提高我们的实验能力。

在我的学习过程中,我通过GPIO实验,不
仅学到了很多知识,还提高了我的实验能力和动手能力。

因此,我认为GPIO实验是非常有意义的,值得我们认真学习和探索。

cpth实验仪寄存器实验原理

cpth实验仪寄存器实验原理

cpth实验仪寄存器实验原理CPTH实验仪寄存器实验原理导语:CPTH实验仪是一种常用于电子实验室的仪器,它通过寄存器的原理实现了对电路信号的检测和测量。

本文将从CPTH实验仪的寄存器实验原理角度进行介绍,以便更好地理解和应用该仪器。

一、寄存器的基本概念寄存器是一种用于存储和处理数据的电子元件,它由若干个触发器组成。

触发器是一种能够存储和改变电平状态的电路,具有稳定性和记忆性。

寄存器可以存储二进制数据,并在需要的时候输出给其他电路进行处理。

二、CPTH实验仪的结构和功能CPTH实验仪主要由输入端口、寄存器、控制电路和输出端口组成。

输入端口用于接收待测信号,寄存器用于存储信号,控制电路用于控制寄存器的工作状态,输出端口用于输出存储的信号。

三、CPTH实验仪的寄存器实验原理在CPTH实验仪中,寄存器起到了存储和处理信号的重要作用。

它通过触发器的工作原理实现了对信号的稳定存储和输出。

1. 触发器的工作原理触发器是寄存器的基本组成单元,它由若干个逻辑门电路组成。

常见的触发器有RS触发器、D触发器、JK触发器等。

触发器的工作原理是根据输入信号的不同,改变输出信号的状态。

2. 寄存器的工作原理寄存器是由多个触发器级联而成的电路,它的输入端口接收待测信号,输出端口输出存储的信号。

当待测信号进入寄存器时,寄存器的控制电路将信号存储到相应的触发器中。

寄存器的控制电路还可以控制寄存器的工作模式,如并行加载、串行加载、并行输出、串行输出等。

3. CPTH实验仪的寄存器实验原理CPTH实验仪通过控制寄存器的工作状态,实现了对电路信号的检测和测量。

它可以将待测信号存储到寄存器中,并通过输出端口输出给其他电路进行处理。

同时,CPTH实验仪还可以通过控制电路实现对寄存器的工作模式和加载/输出方式的选择。

四、CPTH实验仪的应用范围CPTH实验仪广泛应用于电子实验室中的电路测试和故障诊断。

它可以用于测量电路的电压、电流、频率等参数,对电路进行分析和判断。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一.实验目的
1、熟悉Keil C的使用方法,掌握Proteus中ISIS智能原理图输入系统的使用方法。

2、掌握单片机I/O的控制方法。

二.实验原理
I/O口是单片机与外界联系的通道。

它可对各类外部信号(模拟量、开关量、频率信号)进行检测、判断、处理,并可控制各类外部设备。

单片机通过I/O口感知外部世界的存在,而外界也通过I/O口感知单片机的存在。

51单片机共有4个准双向的8位并行I/O端口,分别记为P0、P1、P2、P3,其中输出锁存器属于特殊功能寄存器。

端口的每一位均由锁存器、输出驱动器和输入缓冲器组成,这些端口除了按字节输入输出外,还可以按位寻址,便于位控功能的实现。

4个I/O口中,P0、P2口为双功能端口,当单片机片外扩展存储器时,P0口作为单片机系统复用的地址/数据总线使用,P2口用作地址总线;P1口是单功能的I/O口,引脚输入时,必须先向锁存器写1;由于51单片机的引脚数目有限,因此在P3口电路中增加了引脚的第二功能。

三.实验内容
用P1口作为输出口,接8位用作逻辑电平显示的发光二极管。

设计程序使发光二极管从上到下循环轮流点亮。

实验电路原理图如下:
图1 输入输出端口控制实验电路原理图
四.实验过程
1、打开Proteus ISIS编辑环境,按下表所列的元件清单添加元件。

2、按实验要求在KeilC中创建项目,编辑、编译程序。

源程序如下:
org 00h
loop: mov a,#0feh
mov r2,#8
output: mov p1,#0ffh
mov p1,a
rl a
lcall delay
djnz r2,output
ljmp loop
delay: mov r5,#0ffh
d1: mov r6,#0ffh
d2: djnz r6,d2
djnz r5,d1
ret
end
3、将编译生成的目标码文件(后缀为.Hex)传入Proteus的实验电路中。

3、再按下列图示的参数修改元件的参数:
4.按上面的参数修改好之后,便可以在Proteus ISIS仿真环境中运行程序,观察实验运行结果并记录。

五.实验结果
用软件Proteus ISIS依照实验要求依次画出电路图,差错检查修正后最终得到的电路元件图如图所示:
当程序及元件一切检查无误之后便可以运行得出结果了,如下图所示:
如上图所示,则是第4个发光二极管被点亮。

而下图里的则是第7个发光二极管被点亮。

这些发光二极管是从上到下依次被点亮的。

六.实验小结
本次试验与前几次实验相应的又增加的画图部分,比较起来,难点基本就在画图部分,只要画图部分准确无误,然后把源程序编译所生成的16进制文件,链接添加到电路板的元件设置中,然后便可以开始运行看到“流水灯”了。

通过本次实验我熟悉了Proteus中ISIS智能原理图输入系统的使用方法。

也学会了一些Keil和Proteus的联合使用的基本方法,关键就在于在Keil中编译好源程序,然后再将编译生成的十六进制文件导入Proteus中的CPU里,之后就简单了,当然第一次这么结合使用,难免会遇到诸多问题,但是最终在和同学们的讨论中得到了解决,对这两个软件的使用又得到了进一步的认识以及使用。

相信在以后的实验以及实践应用中会起到重要的作用。

相关文档
最新文档