北京海淀区2021届高三第一学期期中练习数学参考答案

合集下载

2020-2021第一学期海淀区高三数学期中试题及答案

2020-2021第一学期海淀区高三数学期中试题及答案

4 / 47 2 海淀区 2020~2021 学年第一学期期中练习高三数学参考答案2020.11一、选择题共 10 小题,每小题 4 分,共 40 分。

题号 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 答案ACCDBCABAB二、填空题共 5 小题,每小题 5 分,共 25 分。

题号 (11)(12)(13) (14)(15)答案2-3253 41 2π 3 π32 三、解答题共 6 小题,共 85 分。

(16)(本小题共 14 分)解:(Ⅰ)由正弦定理得:b sin B =c .sin C因为 sin B = 2sin C , 所以 b = 2c .因为 cos A = 3, 0 < A < π ,4所以 sin A =因为 S = ,= 7 .4所以 S = 1 bc sin A = 1 ⨯ 2c 2⨯ sin A = 2 2所以 c 2 = 4 .7 .所以 c = 2 .(Ⅱ)由(Ⅰ)知 b = 2c .因为 cos A = 3,4所以 a 2 = b 2 + c 2 - 2bc cos A = 4c 2 + c 2 - 4c 2 ⨯ 3= 2c 2 .4所以 a = 2c .所 以 a= .c(17)(本小题共 14 分)解:(Ⅰ)设等差数列{a n } 的公差为 d ,则 a n = a 1 + (n -1)d .数学答案 第 1 页(共 10 页)1- cos 2 A⎩ 因为 a 5 = 9 , a 3 + a 9 = 22 ,⎧a 1 + 4d = 9, 所以 ⎨2a+ 10d = 22. ⎩ 1⎧a 1 = 1,解得: ⎨d = 2.所以 a n = 2n -1 .(Ⅱ)选择①②设等比数列{a n } 的公比为 q .因为 b 1 = a 1 , b 3 = a 1 + a 2 ,所以 b 1 = 1, b 3 = 4 .因为 S 3 = 7 ,所以 b 2 = S 3 - b 1 - b 3 = 2 . 所 以 q =b 2= 2 .b 1b (1 - q n ) 所以 S n = 1= 2n -1 .1 - q因为 S n < 2020 ,所以 2n -1 < 2020 . 所以 n ≤ 10 .即n 的最大值为10 .选择①③设等比数列{a n } 的公比为 q .因为 b 1 = a 1 , b 3 = a 1 + a 2 ,所以 b 1 = 1, b 3 = 4 . 所以 q 2 =b 3= 4 , q = ±2 .b 1因为 b n +1 > b n ,数学答案 第 2 页(共 10 页)所以 q = 2 .b (1 - q n ) 所以 S n = 1= 2n -1 .1 - q因为 S n < 2020 ,所以 2n -1 < 2020 . 所以 n ≤ 10 .即n 的最大值为10 .选择②③设等比数列{a n } 的公比为 q .因为 S 3 = 7 , b 1 = 1,所以 1 + q + q 2 = 7 . 所以 q = 2 ,或 q = -3 .因为 b n +1 > b n , 所以 q = 2 .b (1 - q n )所 以 S n = 11 - q= 2n -1 .因 为 S n < 2020 ,所以 2n -1 < 2020所以 n ≤ 10 .即n 的最大值为10 .(18)(本小题共 14 分)解:(Ⅰ)因为e x > 0 ,由 f (x ) = e x (2x 2 - 3x ) > 0 ,得2x 2 - 3x > 0 . 所以 x < 0 ,或 x > 3 .2所以 不等式 f (x ) > 0 的解集为{x x < 0, 或 x > 3}.2(Ⅱ)由 f (x ) = e x (2x 2 - 3x ) 得: f '(x ) = e x (2x 2 + x - 3)数学答案 第 3 页(共 10 页)= e x(2x + 3)(x -1) .令f '(x) = 0 ,得x =1 ,或x =-3 (舍).2f (x) 与f '(x) 在区间[0, 2] 上的情况如下:x0 (0,1)1(1, 2) 2f '(x)- 0 +f (x) 0 ↘-e ↗2e2所以当x = 1 时,f (x) 取得最小值 f (1) =-e ;当x = 2 时,f (x) 取得最大值f (2) = 2e2.(19)(本小题共14 分)解:(Ⅰ)因为所以所以y = sin x 的单调递减区间为[2kπ +π, 2kπ +3π] (k ∈Z ).2 22kπ +π≤x +π≤ 2kπ +3π , k ∈Z .2 6 22kπ +π≤x ≤ 2kπ +4π , k ∈Z .3 3所以函数f (x) 的单调递减区间为[2kπ +π, 2kπ +4π] (k ∈Z ).3 3(Ⅱ)因为所以因为所以f (x) = 2sin(x +π) ,6f (x -π) = 2sin x .6g(x) =f (x) f (x -π) ,6g(x) = 4sin(x +π)sin x6= 4(3sin x +1cos x)sin x2 2= 2 3 sin2x + 2 cos x sin x= 3 (1- cos 2x)+ sin 2x= 2sin(2x -π) +33 .因为0 ≤x ≤m ,所 以-π≤ 2x -π≤ 2m -π .3 3 3因为g(x) 的取值范围为[0, 2 + 3] ,数学答案第 4 页(共10 页)所以 sin(2x -π) 的取值范围为[-33,1].2所 以 π≤ 2m -π≤4π.2 3 3解得: 5π≤m ≤5π .12 6所以m 的最大值为5π. 6(20)(本小题共14 分)解:由 f (x) =ax3- 3ax2+ 2 + 4a 可得: f '(x) = 3ax2- 6ax = 3ax(x - 2) .(Ⅰ)当a =-1 时,f (3) =-2 , f '(3) =-9 .所以曲线y =f (x) 在点(3, f (3)) 处的切线方程为y =-9x + 25 .(Ⅱ)①当a = 0 时,f (x) = 2 在R 上不具有单调性.②当a > 0 时,令 f '(x) = 0 得 x1= 0, x2= 2 .f (x) 与f '(x) 在区间(-∞, +∞) 上的情况如下:x(-∞,0)0(0, 2)2(2, +∞)f '(x)+ 0- 0+f (x)极大值极小值所以 a ≥ 2 .③当a < 0 时,f (x) 与f '(x) 在区间(-∞, +∞) 上的情况如下:x(-∞,0)0(0, 2)2(2, +∞)f '(x)- 0+ 0-f (x)极小值极大值所以 a + 3 ≤ 0 ,即a ≤-3 .综上所述,a 的取值范围是(-∞, -3] [2, +∞) .(Ⅲ)先证明: f (x1) +f (x2 ) ≥ 4 .由(Ⅱ)知,当a > 0 时,f (x) 的递增区间是(-∞,0) ,(2, +∞) ,递减区间是(0, 2) .因为 x1+x2> 2 ,不妨设 x1≤x2,则 x2> 1.数学答案第 5 页(共10 页)m - 4 a< a n 0 2 2 2 ①若 x 1 ≤ 0 ,则 x 2 > 2 - x 1 ≥ 2 .所以 f (x 1) + f (x 2) > f (x 1) + f (2 - x 1) = 4 + 4a > 4 .②若 x 1 > 0 ,因为 x 2 > 1,所以 f (x 1) + f (x 2 ) ≥ f (2) + f (2) = 4 ,当且仅当 x 1 = x 2 = 2 时取等号. 综上所述,f (x 1) + f (x 2 ) ≥ 4 .再证明: f (x 1) + f (x 2 ) 的取值范围是[4, +∞) .假设存在常数 m ( m ≥ 4 ),使得对任意 x 1 + x 2 > 2 , f (x 1) + f (x 2) ≤ m .取 x = 2 ,且 x > 2 + ,则1 2f (2) + f (x ) = 2 + ax 3 - 3ax 2 + 2 + 4a= 2 + ax (x - 2)2 + a (x - 2)2 + 2 > a (x - 2)2 + 4 > m ,2 222与 f (x 1) + f (x 2) ≤ m 矛盾.所以 f (x 1) + f (x 2 ) 的取值范围是[4, +∞) .(21)(本小题共 15 分)解:(Ⅰ)取i =1, j = 2 ,则存在a k ( 2 < k < 4 ),使得 a k = 2a 2 - a 1 ,即 a 3 = 2a 2 - a 1 .因为 a 1 = a = 3 , a 2 = b = 5 ,所以 a 3 = 2a 2 - a 1 = 7 .(Ⅱ)假设{a n } 中仅有有限项为0 ,不妨设 a m = 0 ,且当 n > m 时,a n 均不为0 ,则m ≥ 2 .取i = 1, j = m ,则存在a k ( m < k < 2m ),使得a k = 2a m - a 1 = 0 ,与 a k ≠ 0 矛盾.(Ⅲ)①当a < b 时,首先证明数列{a n } 是递增数列,即证∀n ∈ N * , a n < a n +1恒成立.若不然,则存在最小的正整数 n 0 ,使得a n ≥ a n +1 ,且 a 1 < a 2 <.显然 n 0 ≥ 2 .取 j = n 0 ,i = 1, 2, , n 0 -1,则存在a k ( n 0 < k < 2n 0 ),使得数学答案 第 6 页(共 10 页)。

2021-2022学年北京市海淀区高三上学期期中练习数学试卷 含答案

2021-2022学年北京市海淀区高三上学期期中练习数学试卷 含答案

2021北京海淀高三(上)期中数学一、选择题共10小题,每小题4分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

1.(4分)在复平面内,复数(2)z i i =+对应的点的坐标为()A .(1,2)B .(1,2)-C .(2,1)D .(2,1)-2.(4分)已知向量(,2)a x =,(1,1)b =- ,若//a b ,则(x =)A .1B .1-C .2D .2-3.(4分)已知全集{1U =,2,3,4},集合{1}A =,(){3}U A B = ð,则集合B 可能是()A .{4}B .{1,4}C .{2,4}D .{1,2,3}4.(4分)已知命题:(0,)p a ∀∈+∞,12a a+>,则p ⌝是()A .(0,)a ∃∈+∞,12a a +>B .(0,)a ∃∉+∞,12a a +>C .(0,)a ∃∈+∞,12a a+D .(0,)a ∃∉+∞,12a a +5.(4分)下列函数中,是奇函数且在其定义域上为增函数的是()A .sin y x=B .||y x x =C .tan y x =D .1y x x=-6.(4分)“a b c >>”是“ab ac >”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7.(4分)已知等比数列{}n a 的公比为q .若{}n a 为递增数列且20a <,则()A .1q <-B .10q -<<C .01q <<D .1q >8.(4分)将函数sin 2y x =的图像向右平移6π个单位,得到函数()f x 的图像,则下列说法正确的是()A .()sin(26f x x π=-B .3x π=-是函数()f x 的图像的一条对称轴C .()f x 在[,63ππ-上是减函数D .()f x 在5[,]1212ππ-上是增函数9.(4分)下列不等关系中正确的是()A .52322ln ln ln +>B .113232ln ln <-<C .231ln ln ⋅>D .3322ln ln <10.(4分)如图,A 是轮子外边沿上的一点,轮子半径为0.3m .若轮子从图中位置向右无滑动滚动,则当滚动的水平距离为2.2m 时,下列描述正确的是()(参考数据:721.991)π≈A .点A 在轮子的左下位置,距离地面约为0.15m B .点A 在轮子的右下位置,距离地面约为0.15m C .点A 在轮子的左下位置,距离地面约为0.26m D .点A 在轮子的右下位置,距离地面约为0.04m 二、填空题共5小题,每小题5分,共25分。

2021届北京市海淀区高三上学期期中练习理科数学试卷

2021届北京市海淀区高三上学期期中练习理科数学试卷

2021年北京市海淀区高三上学期期中练习理科数学试卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.设集合1{|}A x x >=∈R ,{|12}B x x =∈-R ≤≤,则AB =( )(A )[1,)-+∞ (B )(1,)+∞ (C )(1,2] (D )[1,1)- 2.已知向量(2,1)=-a ,(3,)x =b . 若3⋅=a b ,则x =( ) (A )6 (B )5 (C )4 (D )33.若等比数列{}n a 满足135a a +=,且公比2q =,则35a a +=( ) (A )10 (B )13 (C )20 (D )25 4.要得到函数sin 23y x π⎛⎫=+ ⎪⎝⎭的图象,只需将函数sin 2y x =的图象( ) A .向右平移6π个单位 B .向右平移3π个单位 C .向左平移3π个单位 D .向左平移6π个单位 5.设131()2a =,21log 3b =,2log 3c =,则( )(A )a b c >> (B )c a b >> (C )a c b >> (D )c b a >> 6. 设,a b ∈R ,则“0ab >且a b >”是“11a b<”的( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件7.已知函数,0,()0.x x f x x -<=≥若关于x 的方程()(1)f x a x =+有三个不相等的实数根,则实数a 的取值范围是( ) A .1[,)2+∞B .(0,)+∞C .(0,1)D .1(0,)28.设等差数列{}n a 的前n 项和为n S .在同一个坐标系中,()n a f n =及()n S g n =的部分图象如图所示,则( )(A )当4n =时,n S 取得最大值 (B )当3n =时,n S 取得最大值 (C )当4n =时,n S 取得最小值 (D )当3n =时,n S 取得最小值二、填空题 9.设复数1iz i=-,则z =_____________. 10.已知函数2x ay +=的图象关于y 轴对称,则实数a 的值是 .11.ππ(sin )d x x x -+=⎰________.12.为净化水质,向一个游泳池加入某种化学药品,加药后池水中该药品的浓度C (单位:mg /L )随时间t (单位:h )的变化关系为2204tC t =+,则经过_______h 后池水中药品的浓度达到最大.13.如图所示,在△ABC 中,D 为BC 边上的一点, 且2BD DC =.若(,)AC mAB nAD m n R =+∈,则____m n -=.14.已知函数()sin()f x A x ωϕ=+(,,A ωϕ是常数,0,0A ω>>)的最小正周期为π,设集合M ={直线l l 为曲线()y f x =在点00(,())x f x 处的切线,0[0,π)x ∈}.若集合M 中有且只有两条直线互相垂直,则ω= ;A = .三、解答题15.(本小题满分13分)已知函数π()sin sin()3f x x x =-+. (Ⅰ)求π()2f 的值;(Ⅱ)求()f x 的单调递增区间.16.(本小题满分13分)已知{}n a 是各项均为正数的等比数列,112a =,且132,,a a a -成等差数列.(Ⅰ)求{}n a 的通项公式;(Ⅱ)求数列{}n a n -的前n 项和n S .17. 如图所示,在四边形ABCD 中,∠D =2∠B ,且AD =1, CD =3,cos B =(1)求△ACD 的面积;(2)若BC =AB 的长.18.(本小题满分14分)已知函数1ln 2)(2+-=x x a x f . (Ⅰ)若1a =,求函数()f x 的单调递减区间;(Ⅱ)若0a >,求函数()f x 在区间[1,)+∞上的最大值; (Ⅲ)若0)(≤x f 在区间),1[+∞上恒成立,求a 的最大值. 19.(本小题满分13分)已知数列{}n a 的前n 项和(1)(1,2,3,)2n n n a S n +==. (Ⅰ)求1a 的值;(Ⅱ)求证:1(2)1(1)(2)n n n a n a n --+=-≥; (Ⅲ)判断数列{}n a 是否为等差数列,并说明理由. 20.设函数()2151623f x x x =++, L 为曲线():C y f x =在点11,12⎛⎫- ⎪⎝⎭处的切线.(Ⅰ)求L 的方程.(Ⅱ)当15x <-时,证明:除切点11,12⎛⎫- ⎪⎝⎭之外,曲线C 在直线L 的下方. (Ⅲ)设1x , 2x , 3x R ∈,且满足1233x x x ++=-,求()()()123f x f x f x ++的最大值.参考答案1.C 【解析】试题分析:()1,A =+∞,[]1,2B =-,通过数轴表示可知,两个集合的公共部分为{}|12x R x ∈<≤,即(]1,2,故选C考点:集合的运算. 2.D 【解析】试题分析:根据平面向量坐标下的运算法则,可知()23163a b x x ⋅=⨯+-=-=,求解方程可以得到3x =,故选D. 考点:平面向量的数量积. 3.C 【解析】试题分析:方法一:根据观察,数列可以为1,2,4,8,16,....,即12n n a -=,那么3541620a a +=+=.方法二:对于()223513134a a a q a q a a +=+=+,又135a a +=,则354520a a +=⨯=. 方法三:对于213111145a a a a q a a +=+=+=,解方程可得,11a =,那么通项12n n a -=,可知34a =,516a =,则3520a a +=. 故选C.考点:1等比数列的基本性质;2等比数列的通项公式. 4.D 【分析】直接根据三角函数的图象平移规则得出正确的结论即可; 【详解】解:函数sin 2sin 236y x x ππ⎡⎤⎛⎫⎛⎫=+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,∴要得到函数sin 23y x π⎛⎫=+ ⎪⎝⎭的图象,只需将函数sin 2y x =的图象向左平移6π个单位. 故选:D . 【点睛】本题考查三角函数图象平移的应用问题,属于基础题. 5.B 【解析】试题分析:对于1312a ⎛⎫=⎪⎝⎭,则01a <<;对于21log 3b =,则0b <;对于2log 3c =,则1c >,那么可得01b a c <<<<,那么c a b >>,故选B. 考点:1对数的单调性;2指数函数. 6.A 【解析】试题分析:对于“0ab >且a b >”的充分性考核,可以有两种方法:第一种方法可以采用函数()1f x x =,由于0ab >,可知,a b 同号,对于函数()1f x x=而言,在(),0-∞和()0,+∞这两个区间单调递减,由于a b >,则()()f a f b <,即11a b<.第二种方法单纯使用不等式性质,由于a b >,左右分别先同时除以a ,再同时除以b ,由于0ab >,则,a b 同号,若均大于0,则两次除法不变号,可得11b a>;若,a b 同时大于0,则两次除法变了两次号,最终并没有变化,同样11b a>,那么可知条件“0ab >且a b >”具有充分性。

2021届海淀区高三期中数学试卷及答案

2021届海淀区高三期中数学试卷及答案

2014届海淀区高三期中数学试卷及答案数 学(理科) 2013.11本试卷共4页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

一、选择题:本大题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

1. 已知集合{1,1,2}A =-,{|10}B x x =+≥,则A B =( A )A. {1,1,2}-B. {1,2}C. {1,2}-D. {2}2. 下列函数中,值域为(0,)+∞的函数是( C )A. ()f x =B. ()ln f x x =C. ()2x f x =D. ()tan f x x =3. 在ABC ∆中,若tan 2A =-,则cos A =( B )B.D. 4. 在平面直角坐标系xOy 中,已知点(0,0),(0,1),(1,2),(,0)O A B C m -,若//OB AC ,则实数m 的值为( C )A. 2-B. 12-C. 12D. 25.若a ∈R ,则“2a a >”是“1a >”的( B )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件6. 已知数列{}n a 的通项公式2(313)nn a n =-,则数列的前n 项和n S 的最小值是( B ) A. 3SB. 4SC. 5SD. 6S7. 已知0a >,函数2πsin ,[1,0),()21,[0,),x x f x ax ax x ⎧∈-⎪=⎨⎪++∈+∞⎩若11()32f t ->-,则实数t 的取值范围为( D ) A. 2[,0)3- B. [1,0)- C. [2,3) D. (0,)+∞8. 已知函数sin cos ()sin cos x xf x x x+=,在下列给出结论中:① π是()f x 的一个周期;② ()f x 的图象关于直线x 4π=对称; ③ ()f x 在(,0)2π-上单调递减. 其中,正确结论的个数为( C ) A. 0个B.1个C. 2个D. 3个二、填空题:本大题共6小题,每小题5分,共30分。

2021北京海淀区高三数学上学期期中测试及答案

2021北京海淀区高三数学上学期期中测试及答案
第二部分(非选择题 共 110 分)
二、填空题共 5 小题,每小题 5 分,共 25 分。
(11)已知 是数列{ }的前项和. 若 = 2,则2 =_________.
( + 1) , < 1,
(12)已知函数() = { 2
则函数()的零点个数为________.
第③组条件: AB 边上的高ℎ = √3 , = 3.
注:如果选择的条件不符合要求,第(Ⅱ)问得 0 分;如果选择多个符合要求的条件分
别解答,按第一个解答计分.
(20)
(本小题共 14 分)
设函数() = ( 2 − 3 + ), ∈ R.
(Ⅰ)当 = −9时,求函数()的单调增区间;
动,则当滚动的水平距离为 2.2m 时,下列选
项中,关于点的描述正确的是
(参考数据:7 ≈ 21.991)
A. 点在轮子的左下位置,距离地面约为 0.15m
B. 点在轮子的右下位置,距离地面约为 0.15m
C. 点在轮子的左下位置,距离地面约为 0.26m
D. 点在轮子的右下位置,距离地面约为 0.04m
要求的一项。
(1)在复平面内,复数 = (2 + )对应的点的坐标为
A. (1,2)
B.(−1,2)
C. (2,1)
D.(2, −1)
(2)已知向量a = (, 2), b = (−1,1). 若a//b,则 =
A. 1
B.−1
C. 2
D.−2
(3)已知全集 = {1,2,3,4},集合 = {1}, ( ∪ ) = {3}.则集合可能是
(5)下列函数中,是奇函数且在其定义域上为增函数的是
A. =

【高三】精品解析:北京市海淀区2021届高三上学期期中考试(数学理)

【高三】精品解析:北京市海淀区2021届高三上学期期中考试(数学理)

【高三】精品解析:北京市海淀区2021届高三上学期期中考试(数学理)试卷说明:北京市海淀区2021届高三上学期期中考试数学理题第Ⅰ卷(共40分)一、选择题:本大题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

1.已知集合,,则( )A. B. C. D.]2.下列函数中,值域为的函数是( )A. B. C. D.3.在中,若,则=( )A.B.C.D.【答案】B【解析】试题分析:因为,在中,若,所以,,,故选B.考点:任意角的三角函数4.在平面直角坐标系中,已知点,若,则实数的值为( )A. B. C. D. 5.若,则“”是“”的()A. 充分而不必要条件 B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件6.已知数列的通项公式,则数列的前项和的最小值是()A. B. C. D. 【答案】B7.已知,函数若,则实数的取值范围为()A. B.C.D. 8.已知函数,在下列给出结论中:①是的一个周期;②的图象关于直线对称;③在上单调递减.其中,正确结论的个数为()A. 0个B.1个C. 2个D. 3个【答案】C【解析】试题分析:因为,,第Ⅱ卷(共90分)二、填空题:本大题共6小题,每小题5分,共30分。

9.___________.【答案】2【解析】试题分析:,故答案为2.考点:定积分的计算10.已知数列为等比数列,若,则公比____________.11.已知,则的大小关系为____________.12..函数的图象如图所示,则______________,__________.13.已知是正三角形,若与向量的夹角大于,则实数的取值范围是__________.【答案】【解析】试题分析:建立如图所示坐标系,不妨设,则,所以,,14.定义在上的函数满足:①当时,;②.设关于的函数的零点从小到大依次为.若,则 ________ ;若,则________________.【答案】14,【解析】试题分析:因为,定义在上的函数满足:①当时,;②.所以,的构成规律是:对于任意整数,在每一个区间,,,且在此区间满足;当时,的零点从小到大依次为,……,所以,当时,的零点从小到大依次满足,所以,考点:分段函数,函数的零点,等比数列的求和.三、解答题: 本大题共6小题,共80分。

【数学】北京市海淀区2021届高三上学期期中考试考试题(解析版)

【数学】北京市海淀区2021届高三上学期期中考试考试题(解析版)

北京市海淀区2021届高三上学期期中考试考数学试题第一部分(选择题 共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1. 已知集合{|30}A x x =-≤,{0,2,4}B =,则A B =( )A. {0,2}B. {0,2,4}C. {}3x x ≤D. {}03x x ≤≤【答案】A【解析】集合{|30}{|3}A x x x x =-≤=≤,{0,2,4}B =,则A B ={}0,2故选:A.2. 已知向量(,2)a m =,(2,1)b =-. 若//a b ,则m 的值为( ) A. 4 B. 1C. -4D. -1【答案】C【解析】因为//a b ,所以40m --=,解得4m =- 故选:C.3. 命题“0x ∃>,使得21x ≥”的否定为( ) A. 0x ∃>,使得21x < B. 0x ∃≤,使得21x ≥ C. 0x ∀>,都有21x < D. 0x ∀≤,都有21x <【答案】C【解析】命题“0x ∃>,使得21x ≥”的否定为“0x ∀>,都有21x <” 故选:C4. 设a ,b R ∈,且0a b <<,则( )A.11a b< B.b a a b> C.2a b+> D.2b a a b+> 【答案】D 【解析】0a b <<,11a b∴>,故A 错;0a b <<,22a b∴>,即220,0b a ab -<>,可得220b a b a a b ab --=<,b a a b ∴<,故B 错;0a b <<,02a b +∴<0>,则2a b+<,故C 错;0a b <<,0,0b a a b ∴>>,2b a a b +>=,等号取不到,故D 正确;故选:D.5. 下列函数中,是偶函数且在区间(0,)+∞上为增函数的是( ) A. 2ln y x = B. 3||y x =C. 1y x x=-D. cos y x =【答案】B 【解析】对于A ,2ln y x =的定义域为(0,)+∞,故不是偶函数,故A 错误;对于B ,()3f x x =的定义域为R ,关于原点对称,且()()33f x x x f x -=-==,∴3y x =是偶函数,且根据幂函数的性质可得在(0,)+∞上为增函数,故B 正确;对于C ,()1f x x x=-的定义域为{}0x x ≠,关于原点对称,且()()11f x x x f x x x ⎛⎫-=--=--=- ⎪-⎝⎭,故1y x x =-是奇函数,故C 错误; 对于D ,cos y x =在(0,)+∞有增有减,故D 错误. 故选:B.6. 已知函数()ln 4f x x x =+-,在下列区间中,包含()f x 零点的区间是( ) A. (0,1) B. (1,2)C. (2,3)D. (3,4) 【答案】C【解析】函数()ln 4f x x x =+-,是增函数且为连续函数, 又f (2)ln2240=+-<,f (3)ln3340=+->,可得()()230f f <所以函数()ln 4f x x x =+-包含零点的区间是(2,3). 故选:C .7. 已知数列{}n a 的前n 项和为n S ,且1(),2,3,n n S a n ==,则2020a =( )A. 0B. 1C. 2020D. 2021【答案】A【解析】当1n =时,11a S =,当2n ≥时,11n n n n n a S S a a --=-=-, 所以10n a -=,即1220200a a a ==⋅⋅⋅==, 故选:A.8. 已知函数sin()y A x ωϕ=+的部分图象如图所示,将该函数的图象向左平移()0t t >个单位长度,得到函数()y f x =的图象若函数()y f x =为奇函数,则t 的最小值是( )A.12πB.6π C.4π D.3π 【答案】B【解析】由图象可得6x π=时,函数sin()y A x ωϕ=+的函数值为0,即()6k k Z ωπϕπ+=∈,()6k k Z ωπϕπ∴=-+∈,sin()6y A x k ωπωπ∴=-+,将此函数向左平移()0t t >个单位得,()sin ()6f x A x t k ωπωπ⎡⎤=+-+⎢⎥⎣⎦,又因为()f x 为奇函数,11()6t k k k Z ωπωππ∴-+=∈,11(,)6k kt k Z k Z ππω-∴=+∈∈,因为0t >min 6t π∴=.故选:B .9. 设x ,y 是实数,则“01x <<,且01y <<”是“22log log 0x y +<”的( ) A. 充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件 D. 既不充分也不必要条件【答案】A【解析】】若“01x <<,且01y <<”,则01xy <<,2222log log log log 10x y xy +=<=, 所以“01x <<,且01y <<”是“22log log 0x y +<充分条件;若22log log 0x y +<,则2222log log log log 10x y xy +=<=,可得01xy <<,但得不出“01x <<,且01y <<”,如116x =,2y =可得22log log 0x y +<,所以 22log log 0x y +<得不出“01x <<,且01y <<”,所以“01x <<,且01y <<”是“22log log 0x y +<充分不必要条件; 故选:A.10. 对于函数()f x ﹐若集合()(){}0,x x f x f x >=-中恰有k 个元素,则称函数()f x 是“k 阶准偶函数”.若函数21,()2,xx a f x x x a ⎧⎛⎫≤⎪ ⎪=⎨⎝⎭⎪>⎩是“2阶准偶函数”,则a 的取值范围是( ) A. (),0-∞ B. [)0,2C. [)0,4D. [)2,4【答案】B【解析】根据题意,函数21,()2,xx af x x x a ⎧⎛⎫≤⎪ ⎪=⎨⎝⎭⎪>⎩是“2阶准偶函数”,则集合()(){}0,x x f x f x >=-中恰有2个元素.当0a <时,函数21,()2,xx a f x x x a ⎧⎛⎫≤⎪ ⎪=⎨⎝⎭⎪>⎩有一段部分为2,y x x a =>,注意的函数2y x 本身具有偶函数性质,故集合()(){}0,x x f x f x >=-中不止有两个元素,矛盾,当0a >时,根据“2阶准偶函数”的定义得()f x 的可能取值为2x 或12x⎛⎫ ⎪⎝⎭,()f x -为122-⎛⎫= ⎪⎝⎭xx ,故当122xx ⎛⎫= ⎪⎝⎭,该方程无解,当22x x =,解得2x =或4x =,故要使得集合()(){}0,x x f x f x >=-中恰有2个元素,则需要满足2a <,即02a <<;当0a =时,函数21,0()2,0xx f x x x ⎧⎛⎫≤⎪ ⎪=⎨⎝⎭⎪>⎩,()f x 的取值为2x ,()f x -为122-⎛⎫= ⎪⎝⎭xx ,根据题意得22x x =满足恰有两个元素,故0a =满足条件. 综上,实数a 的取值范围是[)0,2. 故选:B.第二部分(非选择题 共110分)二、填空题共5小题,每小题5分,共25分. 11. 若复数(1)z i i =+,则||z = _______.【解析】由题意得:2(1)1z i i i i i =+=+=-+,所以z ==12. 已知tan 24πα⎛⎫-= ⎪⎝⎭,则tan α=________. 【答案】-3.【解析】因为tan 24πα⎛⎫-= ⎪⎝⎭,所以tan 12tan 31tan ααα-=⇒=-+.13. 已知等差数列{}n a 的前n 项和为n S .若19a =,公差2d =-,则n S 的最大值为_______. 【答案】25 【解析】19a =,2d =-,912112na n n令0n a ≥,解得112n ≤,又*n N ∈,则15n ≤≤ n S 的最大值为554592252S故答案为:25.14. 在边长为2的正三角形ABC 中,M 是BC 的中点,D 是线段AM 的中点. ①若BD xBA yBC =+,则x y +=_______; ②BD BM ⋅= _______.【答案】 (1). 34(2). 1 【解析】①M 是BC 的中点,∴12BMBC , D 是AM 的中点,∴11112224BD BA BM BA BC =+=+, 12x ∴=,14y =,故34x y +=. ②ABC ∆是边长为2的正三角形,M 是BC 的中点,AM BC ∴⊥,且1BM =,∴2cos 1BD BM BD BM DBM BM ⋅=⋅⋅∠==.故答案:34,1.15. 唐代李皋发明了“桨轮船”,这种船是原始形态的轮船,是近代明轮航行模式之先导.如图,某桨轮船的子的半径为3m ,它以1rad/s 的角速度逆时针旋转.轮子外边沿有一点P ,点P 到船底的距离是H (单位:m ),轮子旋转时间为t (单位:s ). 当0t =时,点P 在轮子的最高点处.①当点P 第一次入水时,t =__________;②当t t =0时,函数()H t 的瞬时变化率取得最大值,则0t 的最小值是________. 【答案】 (1).23π (2). 32π【解析】(1)当0t =时,点P 在轮子最高点处,由图可知,轮船距离船底1m ,半径3m ,设为r ,则cos 13cos 4,0H r t r t t =++=+≥,当点P 第一次入水时,水面高 2.5m ,即2.5H =,代入3cos 4H t =+得,1cos 2t =-,第一次入水即在满足1cos 2t =-的情况下满足现实条件0t ≥后可取的最小值,23t π=(2)瞬时变化率取得最大值,即'()H t 最大,'()3sin H t t =-,当3sin 3t -=时,瞬时变化率取得最大值,此时,0t 的最小值为32π 故答案为:①23π;②32π三、解答题共6小题,共85分.解答应写出文字说明、演算步骤或证明过程. 16. 在△ABC 中,sin 2sin B C =,3cos 4A =.(1)若△ABC ,求c 的值; (2)求ac的值. 解:(1)由正弦定理得:sin sin b cB C=. 因为sin 2sin B C =,所以2b c =.因为3cos4A=,0Aπ<<,所以27sin1cosA A=-=,因为S=211sin2sin22S bc A c A==⨯⨯=,所以24c=,所以2c=;(2)由(1)知2b c=,因为3cos4A=,所以222222232cos4424a b c bc A c c c c=+-=+-⨯=,所以a=,所以ac=17. 已知等差数列{}n a满足59a=,3922a a+=.(1)求{}n a的通项公式;(2)等比数列{}n b的前n项和为n S,且11b a=,再从条件①、条件②、条件③这三个条件中任选择两个作为已知条件,求满足2020nS<的n的最大值.条件①:312b a a=+;条件②:37S=;条件③:1n nb b+>.解:(1)设等差数列{}n a的公差为d,则()11na a n d+-=,因为59a=,3922a a+=,所以1492102ta da d+=⎧⎨+=⎩,解得:112ad=⎧⎨=⎩所以21na n=-;(2)(I)选择①②设等比数列{}n b的公比为q,因为11b a=,312b a a=+,所以11b=,34b=,因为37S=,所以23132b S b b=--=,所以212b q b ==,所以1(1)211n n n b q S q-==--, 因为2020n S <,所以212020n -≤, 所以10n ≤,即n 的最大值为10. (II )选择①③设等比数列{}n b 的公比为q , 因为11b a =,312b a a =+, 所以11b =,34b =,所以2314b q b ==,2q =±, 因为1n n b b +>,所以2q,所以1(1)211n n n b q S q-==--, 因为2020n S <,所以212020n -<, 所以10n ≤.即n 的最大值为10. 选择②③设等比数列{}n b 的公比为q 因为37S =,11b =, 所以217q q ++=. 所以2q,或3q =-.因为1n n b b +>,所以2q.所以1(1)211n n n b q S q-==-- 因为2020n S <,所以212020n -< 所以10n ≤.即n 的最大值为10.18. 已知函数2()(23)x f x e x x =-. (1)求不等式()0f x >的解集;(2)求函数()f x 在区间[0,2]上的最大值和最小值. 解:(1)因为0x e >,由()2(0)23xf x e x x =->,得2230x x ->.所以0x <或32x >. 所以不等式()0f x >的解集为{|x 0x <或32x ⎫>⎬⎭; (2)由()223()xf x e x x =-得:2()(23)x f x e x x '=+-()()231xex x =+-.令()0f x '=,得1x =,或32x =-(舍). ()f x 与()f x '在区间[0,2]上的情况如下:所以当1x =时,()f x 取得最小值()1f e =-; 当2x =时,()f x 取得最大值()222f e =.19. 已知函数π()2sin 6f x x ⎛⎫=+⎪⎝⎭. (1)求()f x 的单调递减区间;(2)设π()()6g x f x f x ⎛⎫=- ⎪⎝⎭. 当[0,]x m ∈时,()g x 的取值范围为0,2⎡⎣,求m 的最大值.解:(1)令322262πππk πx k π+≤+≤+,k Z ∈. 所以42233ππk πx k π+≤≤+,()k Z ∈.所以函数()f x 的单调递减区间42,2()33k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦. (2)()()4sin sin 66g x f x f x x x ππ⎛⎫⎛⎫=-=+ ⎪ ⎪⎝⎭⎝⎭14cos sin 2x x x ⎫=+⎪⎝⎭22cos sin x x x =+cos2)sin 2x x =-+2sin 23x π⎛⎫=-+ ⎪⎝⎭因为0x m ≤≤, 所以22333x m πππ-≤-≤-.因为()g x 的取值范围为0,2⎡+⎣,所以sin 23x π⎛⎫- ⎪⎝⎭的取值范围为2⎡⎤-⎢⎥⎣⎦所以42233m πππ≤-≤. 解得:55126m ππ≤≤. 所以m 的最大值为56π.20. 已知三次函数32()324f x ax ax a =-++.(1)当1a =-时,求曲线()y f x =在点(3,(3))f 处的切线方程; (2)若函数()f x 在区间(,3)a a +上具有单调性,求a 的取值范围; (3)当0a >时,若122x x +>,求12()()f x f x +的取值范围.解:由()32324f x ax ax a =-++可得:2()363(2)f x ax ax ax x '=-=-(1)当1a =-时,(3)2f =-,(3)9f '=-.所以曲线( )y f x =在点()()3,3f 处的切线方程为925y x =-+.(2)由已知可得0a ≠①当0a >时,令()0f x '=得0x =,22x =.()f x 与()f x '在区间(),-∞+∞_上的情况如下:因为()f x 在(),3a a +上具有单调性,所以2a ≥.②当0a <时,()f x 与()'f x 在区间(),-∞+∞上的情况如下:因为()f x 在(),3a a +上具有单调性, 所以30a +≤,即3a ≤-. 综上所述,a 的取值范围是(][),32,-∞-+∞.(3)先证明:()()12 4f x f x +≥.由(2)知,当0a >时,()f x 的递增区间是(),0-∞,()2,+∞,递减区间是(0,2). 因为122x x +>,不妨设12x x ≤,则21>x . ①若10x ≤,则2122x x >-≥.所以()()()()12112444f x f x f x f x a +>+-=+>. ②若1>0x ,因为21>x ,所以()()12()()224f x f x f f +≥+=,当且仅当122x x ==时取等号.综上所述,12())4(f x f x +≥.再证明:12()()f x f x +的取值范围是[4,)+∞.假设存在常数()4m m ≥,使得对任意122x x +>,()()12f x f x m +≤.取12x =,且22x >+则 ()()3222222324f f x ax ax a+=+-++2222222()()222()224ax x a x a x m =+-+-+>-+>,与()()12f x f x m +≤矛盾.所以12()()f x f x +的取值范围是[4,)+∞.21. 已知{}n a 是无穷数列,1a a =,2a b =且对于{}n a 中任意两项i a ,()j a i j <在{}n a 中都存在一项(2)k a j k j <<,使得2k j i a a a =-. (1)若3a =,5b =求3a ; (2)若0a b ,求证:数列{}n a 中有无穷多项0;(3)若ab ,求数列{}n a 的通项公式.解:(1)取1i =,2j =,则存在24)k a k <<(,使得3212a a a =-,即3212a a a =-. 因为13a a ==,25a b ==,所以32127a a a =-=.(2)假设{}n a 中仅有有限项为0,不妨设0m a =,且当n m >时,n a 均不为0,则2m ≥.取1i =,j m =,则存在2)k a m k m <<(,使得120k m a a a =-=,与0k a ≠矛盾.(3)①当a b <时,首先证明数列{}n a 是递增数列,即证*n N ∀∈,1n n a a +<恒成立. 若不然,则存在最小的正整数0n ,使得001n n a a +≥,且012 n a a a <<<.显然02n ≥.取0j n =,1i =,2,…,01n -,则存在00(2k a n k n <<),使得02k n i a a a =-.因为00000121222n n n n n a a a a a a a -->->>->,所以012n a a -,022n a a -,…,0012n n a a --这01n -个不同数恰为01n a +,02n a +,…,021n a -这01n -项.所以001n n a a +>与001n n a a +≤矛盾. 所以数列{}n a 是递增数列.再证明: (1)()n a a n b a =+--,1,2,3,n= 记,d b a =- 即证(1)n a a n d =+-,1,2,3,n=当1,2n =时,结论成立.假设存在最小的正整数0,m 使得 (1)n a a n d =+-对任意01n m ≤≤恒成立, 但010,m a a m d +≠+则02m ≥. 取0j m =,1,2,i =,01m -,则存在()002k a m k m <<,使得02k m i a a a =-因为数列{}n a 是递增数列, 所以00012121m m m a a a a a +-<<<<<<.所以0600121222m m m m a a a a a a --<<-<-.因为0012m m a a --,…022m a a -,012m a a -这01m -个数恰为01m a +,02m a +,…021m a -这01m -项.所以()()004110002212m m m a a a a m d a m d a m d +-=-=+--+-=+⎡⎤⎡⎤⎣⎦⎣⎦, 与10n m a a m d +≠+矛盾.所以 (1)()n a a n b a =+--,1,2,3,n=②当a b >时,令n n b a =-,1,2,3,n =,则1b a =-,2b b =-,且12<b b .对于{}n b 中任意两项i b ,()j b i j <,的因为对任意i a ,()j a i j <,存在(2),k a j k j <<使得2k j i a a a =-, 所以()2k j i a a a -=---,即存在(2),k b j k j <<使得2k j i b b b =-. 因此数列{}n b 满足题设条件.由① 可知(1)()n b a n a b =-+--,1,2,3,,n =所以(1)()n a a n b a =+--,1,2,3,n =综上所述,(1)()n a a n b a =+--,1,2,3,n =经检验,数列{}n a 满足题设条件.。

北京市海淀区2021届高三数学上学期期中练习试题 理(含解析)

北京市海淀区2021届高三数学上学期期中练习试题 理(含解析)

2021-2021年海淀高三年级第一学期期中考试数学(理)试卷解析【试卷结构与特点】本次次海淀区的期中考试范围与往年大体一致,即:集合、函数、三角函数、平面向量、解三角形和数列。

1.本次考试的试题结构和高考的试题结构一致,即选择题8个,每题5分,填空题6个,每题5分,解答题6个,其中4题13分,另外两题14分(高考中14分的题目为立体几何和解析几何,本次期中并未涉及这两个知识内容)。

2.试卷整体难度与去年类似,可是难易程度的散布与去年期中考试不同,更类似于2021年的高考真题的难度散布,即常规大体问题的难度下降,产生了很多“送分题”;可是中档问题考核方向不变,可是考核方式有所改变,增强了知识方式之间的综合和深切明白得知识后的灵活视同;关于难题而言,从命题和设问的角度能够看出,依旧本着考察数学思想、思维方式的方向,同时鼓舞归纳猜想的特点依旧在其中,想完成问题,需要对概念和方式有明确的熟悉,而不是简单经历。

值得注意的是,第8题和第14题的题目难度有所下降,同时,第20题也与往常不同,并非是以组合数学为核心的问题,而变成了函数和不等式的综合考核,但思维方式类似。

3.由于具有以上特点,本次考试相较之前的考试具有了更好的区分度,靠着关于题目“熟悉”才能入手的考生无法在这次考核中取得较高的分数,加倍强调了知识和概念的明白得,和方式背后隐含的数学思想。

通过以上分析,高三的数学温习,题海战术与高考的要求是相违抗的,是一种低效的温习方式。

应在对基础知识和概念的明白得上多下功夫,试探和总结与做题并重,专门是要注重对重要数学思想和思维方式的训练和体会。

【试卷分析】一、选择题部份1.设集合{}|1A x R x=∈>,{}|12B x R x=∈-≤≤,那么A B=()A.[)1,-+∞ B.()1,+∞ C.(]1,2 D.[)1,1-【分析】此题考查集合的表示与运算,难度不大,把握表示方式、了解运算概念即可解决。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档