固体物理期末考试试卷
初中固体物理试题及答案
初中固体物理试题及答案一、选择题(每题2分,共20分)1. 固体物质的分子排列特点是:A. 无规则排列B. 规则排列C. 部分规则排列D. 完全无序排列答案:B2. 固体物质的分子间作用力是:A. 引力B. 斥力C. 引力和斥力D. 无作用力答案:C3. 下列物质中,属于晶体的是:A. 玻璃B. 橡胶C. 食盐D. 沥青答案:C4. 晶体与非晶体的主要区别在于:A. 颜色B. 形状C. 熔点D. 分子排列答案:D5. 固体物质的熔化过程需要:A. 吸收热量B. 放出热量C. 保持热量不变D. 无法判断答案:A6. 固体物质的硬度与下列哪项因素有关:A. 分子间作用力B. 分子质量C. 分子体积D. 分子形状答案:A7. 固体物质的导电性与下列哪项因素有关:A. 分子间作用力B. 分子运动速度C. 电子的自由移动D. 分子的排列方式答案:C8. 晶体的熔点与下列哪项因素有关:A. 晶体的纯度B. 晶体的颜色C. 晶体的形状D. 晶体的密度答案:A9. 固体物质的热膨胀现象说明:A. 分子间距离不变B. 分子间距离减小C. 分子间距离增大D. 分子间距离先增大后减小答案:C10. 固体物质的热传导性与下列哪项因素有关:A. 分子间作用力B. 分子运动速度C. 电子的自由移动D. 分子的排列方式答案:A二、填空题(每空1分,共20分)1. 固体物质的分子排列特点是________,而非晶体物质的分子排列特点是________。
答案:规则排列;无规则排列2. 固体物质的熔化过程中,分子间________,分子间距离________。
答案:作用力减弱;增大3. 晶体的熔点与________有关,而非晶体没有固定的熔点。
答案:晶体的纯度4. 固体物质的硬度与分子间________有关,分子间作用力越强,硬度越大。
答案:作用力5. 固体物质的热膨胀现象是由于温度升高,分子间距离________。
答案:增大三、简答题(每题10分,共30分)1. 简述晶体与非晶体的区别。
高校物理专业固体物理学期末考试试卷及答案
高校物理专业固体物理学期末考试试卷及答案一、选择题(每题2分,共40分)1. 下列哪种材料是典型的固体?A. 水B. 空气C. 玻璃D. 油2. 表征物质导电性质的关键因素是:A. 导热系数B. 形变C. 导电子数D. 电阻率3. 相互作用力程远大于它的大小尺度的物质状态是:A. 液体B. 气体C. 等离子体D. 固体4. 根据原子内部粒子组织排列方式的不同,将固体分为晶体和非晶态,以下哪种属于非晶态?A. 钻石B. 石英C. 玻璃D. 铜5. 材料的抗拉强度指的是:A. 材料在拉伸过程中发生断裂的能力B. 材料的硬度C. 材料的耐磨性D. 材料的延展性(以下为第6题至第40题的选项省略)二、填空题(每题3分,共30分)1. 固体的最基本由原子、分子或离子组成的单位结构叫作_____________。
2. 点阵是固体晶体结构中原子、离子或分子的_____________组成的排列方式。
3. 若一堆物体在某种温度下开始熔化,则该温度即为该物质的_____________点。
4. 固体由于结构的紧密性,其密度通常较_____________。
5. 金属中导电电子为材料的_____________。
6. 非晶态材料的特点是_____________无规律的原子组织结构。
(以下为第7题至第30题的空格省略)三、问答题(共30分)1. 简述固体物理学研究的基本内容和意义。
解答:固体物理学研究的基本内容主要包括固体材料的结构、性质和应用等方面。
它通过研究固体的微观结构和宏观性质,探索物质内部的相互作用和运动规律,从而深入了解固体物质的特性和行为。
固体物理学的研究对于提高材料的功能和性能具有重要意义。
通过深入研究固体的结构和性质,我们可以开发出更好的材料,改善材料的导电、导热、机械强度等性能,为社会发展和工业生产提供重要支持。
同时,固体物理学的研究还能够为其他领域的科学研究提供基础和支撑,如电子学、光学、磁学等。
固体物理期末试题及答案
固体物理期末试题及答案一、选择题(每题5分,共20分)1. 下列关于晶体的说法,错误的是:A. 晶体具有规则的几何外形B. 晶体内部原子排列是无序的C. 晶体具有各向异性D. 晶体具有固定的熔点答案:B2. 电子在金属中的自由运动是金属导电的主要原因,这种现象称为:A. 金属键B. 离子键C. 共价键D. 范德华力答案:A3. 半导体材料的导电性介于导体和绝缘体之间,这是因为:A. 半导体材料中的电子不能自由移动B. 半导体材料中的电子在特定条件下才能自由移动C. 半导体材料中的电子数量少于导体D. 半导体材料中的电子数量多于绝缘体答案:B4. 根据泡利不相容原理,一个原子轨道中最多可以容纳的电子数是:A. 1个B. 2个C. 4个D. 8个答案:B二、填空题(每题5分,共20分)1. 晶体的三种基本类型是________、________和________。
答案:单晶体、多晶体、非晶体2. 根据能带理论,固体中的能带可以分为________和________。
答案:导带、价带3. 固体物理中,费米能级是指在绝对零度时,电子占据的最高能级,其对应的温度是________。
答案:0K4. 根据德布罗意波理论,物质粒子也具有波动性,电子的波长与其动量成________关系。
答案:反比三、简答题(每题10分,共30分)1. 简述布拉格定律及其在晶体结构分析中的应用。
答案:布拉格定律是指当X射线或电子波以一定角度入射到晶体表面时,如果满足nλ=2d*sinθ的条件,其中n为整数,λ为波长,d为晶面间距,θ为入射角,那么会发生衍射现象。
这个定律在晶体结构分析中非常重要,因为它允许科学家通过测量衍射角来确定晶体的晶面间距和晶体结构。
2. 解释什么是超导现象,并简述其应用。
答案:超导现象是指某些材料在低于临界温度时,电阻突然降为零的现象。
这意味着在超导状态下,电流可以在材料内部无损耗地流动。
超导现象的应用非常广泛,包括但不限于磁悬浮列车、粒子加速器中的超导磁体、以及医疗成像设备如MRI。
固体物理期末考试题及答案
固体物理期末考试题及答案一、选择题(每题2分,共20分)1. 晶体中原子排列的周期性结构被称为:A. 晶格B. 晶胞C. 晶面D. 晶向答案:A2. 描述固体中电子行为的基本理论是:A. 经典力学B. 量子力学C. 相对论D. 电磁学答案:B3. 以下哪项不是固体物理中的晶体缺陷:A. 点缺陷B. 线缺陷C. 面缺陷D. 体缺陷答案:D4. 固体物理中,晶格振动的量子称为:A. 声子B. 光子C. 电子D. 空穴答案:A5. 以下哪个不是固体的电子能带结构:A. 价带B. 导带C. 禁带D. 散射带答案:D二、简答题(每题10分,共30分)6. 解释什么是晶格常数,并举例说明。
晶格常数是晶体中最小重复单元的尺寸,通常用来描述晶体的周期性结构。
例如,立方晶系的晶格常数a是指立方体的边长。
7. 简述能带理论的基本概念。
能带理论是量子力学在固体物理中的应用,它描述了固体中电子的能量分布。
在固体中,电子的能量不是连续的,而是分成一系列的能带。
价带是电子能量较低的区域,导带是电子能量较高的区域,而禁带是两带之间的能量区域,电子不能存在。
8. 什么是费米能级,它在固体物理中有什么意义?费米能级是固体中电子的最高占据能级,它与温度有关,但与电子的化学势相等。
在绝对零度时,费米能级位于导带的底部,它决定了固体的导电性质。
三、计算题(每题15分,共30分)9. 假设一个一维单原子链的原子质量为m,相邻原子之间的弹簧常数为k。
求该链的声子频率。
解:一维单原子链的声子频率可以通过下面的公式计算:\[ \omega = 2 \sqrt{\frac{k}{m}} \]10. 给定一个半导体的电子亲和能为Ea,工作温度为T,求该半导体在该温度下的费米-狄拉克分布函数。
解:费米-狄拉克分布函数定义为:\[ f(E) = \frac{1}{e^{\frac{E-E_F}{kT}} + 1} \] 其中,E是电子的能量,E_F是费米能级,k是玻尔兹曼常数,T 是温度。
固体物理期末测验试卷
9
。
10. 扩散是物质内部由于热运动而导致原子或分子迁移的过程,扩散从微观上讲,实际上是。
二.简答题(共10分,每题5分)
1.在研究晶格振动问题中,爱因斯坦模型和德拜模型的物理思想是什么?
2.在能带理论中,近自由电子近似模型和紧束缚近似模型的物理思想是什么?
三.计算题(共60分,每题10分)
固体物理期末测验试卷
————-—————-—--———-———————-———-—— 作者:
—-—---—--——————-——-—-—————————-- 日期:
固体物理学期末考试卷
一。 填空题(共30分,每题3分)
1.固体结合的四种基本形式为:、、
、.
2.共价结合有两个基本特征是:和。
3.结合能是指:
1。 证明: 体心立方晶格的倒格子是面心立方; 面心立方晶格的倒格子是体心立方。
2.证明:倒格子矢量垂直于密勒指数为 的晶面系。
3.证明两种一价离子(如NaCl)组成的一维晶格的马德隆常数为:
α= 2ln2
4. 设三维晶格的光学振动在q=0附近的长波极限有
求证:频率分布函数为
5.设晶体中每个振子的零点振动能为,试用德拜模型求晶体的零点振动能。
6。 电子周期场的势能函数为
其中a=4b,ω为常数
(1) 试画出此势能曲线,并求其平均值。
(2) 用近自由电子近似模型求出晶体的第一个及第二个带隙宽度.
。
4.晶体中的表示原子的平衡位置,晶格振动是指在格点附近的振动。
5.作简谐振动的格波的能量量子称为,若电子从晶格获得 q能量,称为,若电子给晶格 q能量,称为。
6。 Bloch定理的适用范围(三个近似)是指:、
、.
固体物理学考试题及答案
固体物理学考试题及答案一、选择题(每题2分,共20分)1. 固体物理学中,描述晶体中原子排列的周期性规律的数学表达式是()。
A. 布洛赫定理B. 薛定谔方程C. 泡利不相容原理D. 费米-狄拉克统计答案:A2. 固体中电子的能带结构是由()决定的。
A. 原子的核外电子B. 晶体的周期性势场C. 原子的核电荷D. 原子的电子云答案:B3. 在固体物理学中,金属导电的原因是()。
A. 金属中存在自由电子B. 金属原子的电子云重叠C. 金属原子的价电子可以自由移动D. 金属原子的电子云完全重叠答案:C4. 半导体材料的导电性介于导体和绝缘体之间,这是因为()。
A. 半导体材料中没有自由电子B. 半导体材料的能带结构中存在带隙C. 半导体材料的原子排列无序D. 半导体材料的电子云完全重叠答案:B5. 固体物理学中,描述固体中电子的波动性的数学表达式是()。
A. 薛定谔方程B. 麦克斯韦方程C. 牛顿第二定律D. 热力学第一定律答案:A6. 固体中声子的概念是由()提出的。
A. 爱因斯坦B. 德拜C. 玻尔D. 费米答案:B7. 固体中电子的费米能级是指()。
A. 电子在固体中的最大能量B. 电子在固体中的最小能量C. 电子在固体中的平均水平能量D. 电子在固体中的动能答案:A8. 固体物理学中,描述固体中电子的分布的统计规律是()。
A. 麦克斯韦-玻尔兹曼统计B. 费米-狄拉克统计C. 玻色-爱因斯坦统计D. 高斯统计答案:B9. 固体中电子的能带理论是由()提出的。
A. 薛定谔B. 泡利C. 费米D. 索末菲答案:D10. 固体中电子的跃迁导致()的发射或吸收。
A. 光子B. 声子C. 电子D. 质子答案:A二、填空题(每题2分,共20分)1. 固体物理学中,晶体的周期性势场是由原子的______产生的。
答案:周期性排列2. 固体中电子的能带结构中,导带和价带之间的能量区域称为______。
答案:带隙3. 金属导电的原因是金属原子的价电子可以______。
高校物理专业固体物理期末试卷及答案
高校物理专业固体物理期末试卷及答案一、选择题(每题5分,共30分)1. 以下哪个不是固体物理的研究对象?A. 电荷的导体中的传播B. 物质的晶体结构C. 电子的运动D. 液体的流动性质答案:D2. 在固体物理中,布拉格方程是用来描述什么现象的?A. 光的干涉现象B. 电子的散射现象C. 磁场的分布现象D. 热传导现象答案:A3. 阻塞模型是固体物理中用来解释材料导电性的模型,它主要考虑了以下哪些因素?A. 电子的散射和杨氏模量B. 电子的散射和晶格缺陷C. 杨氏模量和晶体结构D. 晶格缺陷和电子的能带结构答案:B4. 下列哪个参数不是用来描述固体物理中晶格振动的特性?A. 固体的杨氏模量B. 固体的居里温度C. 固体的声速D. 固体的谐振子频率答案:A5. 铁磁体和反铁磁体的主要区别在于它们的:A. 热传导性质B. 磁化曲线形状C. 磁化方向D. 磁化温度答案:C6. 固体物理中的光栅是一种重要的实验工具,它主要用来:A. 进行晶体的结构分析B. 测定材料的电导率C. 测量固体的磁性D. 研究固体的光学性质答案:D二、填空题(每题10分,共40分)1. 固体物理中用于描述材料导电性的基本参量是电阻率和______。
答案:电导率2. 布拉格方程为d*sin(θ) = n*λ中,d表示晶格的______。
答案:间距3. 固体物理中描述材料磁性的基本参量是磁矩和______。
答案:磁化强度4. 固体物理研究中,振动频率最低的模式被称为______模式。
答案:基态5. 根据阻塞模型,材料的电导率与温度的关系满足______定律。
答案:维恩三、简答题(每题20分,共40分)1. 什么是固体物理学中的费米面?它对材料的性质有什么影响?答案:费米面是能带理论中的一个重要概念,表示能量等于费米能级的电子所占据的状态的集合,它将占据态与未占据态分界开来。
费米面对材料的性质有很大影响,如电导率、热导率等。
带有较高电子密度的材料,其费米面形状趋于球形;而低电子密度材料,费米面呈现出不规则的形状。
大学固体物理试题及答案
大学固体物理试题及答案一、选择题(每题5分,共20分)1. 下列关于晶体结构的描述,错误的是:A. 晶体具有规则的几何外形B. 晶体内部的原子排列是无序的C. 晶体具有各向异性D. 晶体具有固定的熔点答案:B2. 固体物理中,描述电子在晶格中运动的方程是:A. 薛定谔方程B. 牛顿运动方程C. 麦克斯韦方程D. 热力学第一定律答案:A3. 固体中,电子能带的宽度与下列哪个因素有关?A. 电子的电荷B. 电子的质量C. 晶格的周期性D. 电子的自旋答案:C4. 金属导电的原因是:A. 金属内部存在自由电子B. 金属内部存在空穴C. 金属内部存在离子D. 金属内部存在分子答案:A二、填空题(每题5分,共20分)1. 晶体的周期性结构可以用_________来描述。
答案:晶格常数2. 能带理论中,电子在能带之间跃迁需要吸收或释放_________。
答案:光子3. 根据泡利不相容原理,一个原子轨道内最多可以容纳_________个电子。
答案:24. 半导体的导电性介于金属和绝缘体之间,其原因是半导体的_________较窄。
答案:能带间隙三、简答题(每题10分,共30分)1. 简要说明什么是费米能级,并解释其在固体物理中的重要性。
答案:费米能级是指在绝对零度时,电子占据的最高能级。
在固体物理中,费米能级是描述电子分布状态的重要参数,它决定了固体的导电性、磁性等物理性质。
2. 解释为什么金属在常温下具有良好的导电性。
答案:金属具有良好的导电性是因为其内部存在大量的自由电子,这些电子可以在电场作用下自由移动,形成电流。
3. 什么是超导现象?请简述其物理机制。
答案:超导现象是指某些材料在低于某一临界温度时,电阻突然降为零的现象。
其物理机制与电子之间的库珀对形成有关,这些库珀对在低温下能够无阻碍地流动,从而实现零电阻。
四、计算题(每题15分,共30分)1. 假设一个一维晶格,晶格常数为a,电子的有效质量为m*,求电子在第一能带的最低能级。
固体物理期末复习真题
(c)对初基矢量 a1, a 2, a3 互相正交的晶体点阵,有
d ( hkl ) 1 h k l a a a 1 2 3
2 2 2
八、在量子固体中,起主导作用的排斥能是原子的零点能。考虑晶态 4He 一个非常粗 略的一维模型,即每个氦原子局限在长为 L 的线段上,把线段 L 取为基态波函数 的半波长, (a)试求每个粒子的零点动能; (b)推导维持该线度不发生膨胀所需要的力的表达式; (c)在平衡时,动能所导致的膨胀倾向被范德瓦尔斯作用所平衡。如果非常粗 略地给出最近邻间的范德瓦尔斯能为 u ( L) 1.6 L6 10 60 erg ,其中 L 以 cm 表示, 求 L 的平均值。 九、 (a)证明对于波矢为 K ,频率为 的格波 u s ue i ( sKa t ) 一维单原子点阵的总动量 为 P( K ) iMue it e isKa ;
5
三十四. 在金属自由电子的模型中,假定传导电子可以近似看作是自由电子气,电子 数密度为 n,驰豫时间为 ,试导出金属电导率的表达式
m * 为电子有效质量.
ne 2 m*
三十五. 对三维晶体, 利用德拜模型,求
1、高温时 0 ~ D 范围内的声子总数,并证明晶格热振动能与声子总数成正比; 2、极低温时 0 ~ D 范围内的声子总数,并证明晶格热容与声子总数成正比。
q F U 0 kBT ln k T q B
其中 U 0 为系统平衡时的结合能. 三十三. 一维晶格基矢为 ai ,假设其晶体势是由围绕原子的一系列矩形势阱所组成, 每个阱的深度都是 V0 ,宽度 a 5 .用近自由电子模型计算前三个能隙,并比较这些 能隙的数值.
研究生《固体物理》期末考试试卷
2018-2019学年第一学期研究生《固体物理》期末考试试卷专业: 学号: 姓名:题号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 总分 得分 阅卷人1.(5 分)原子单位中如何把Schrodinger 方程无量纲化,其中能量单位和长度单位是什么?2.(5 分)He 原子的哈密顿量如何写,将具体表达式写出来。
3.(5 分)简述密度泛函理论的两个定理(Hohenberg-Kohn Theorems ),并证明第一个定理。
4.(5 分)Kohn-Sham 方法,将总能量中所有不能精确计算的能量称为交换关联能,说明交换关 联能具体包含的能量部分。
5.(10 分)通过总能量对波函数求变分,推导单电子Schrodinger 方程——Kohn-Sham 方程。
6.(10 分)证明赝势的算符形式是一个投影算符的形式:ps ˆ,,lV l m V l m =;简单说明原子赝势要满足的四个基本条件;如果要金刚石和石墨烯两种材料的结合能,在计算中,如何选取两种体系中C 原子的赝势。
7.(5 分)总能量仅是电荷密度的泛函,为何还要用 K-S 方程求波函数? 8.(5 分)说明有效势中的发散项是如何相消的。
9.(5 分)说明总能量中的发散项是如何相消的?10.(5 分)说明什么是平面被基底下的 k -抽样与动能截断。
11.(10 分)平面波基底下计算非周期体系要采用超级原胞,选取超级原胞的原则是什么,说明计算分子、表面性质、掺杂体系如何选取超级原胞?12.(5 分)说明什么是离子 Pulay 力,选取平面波基底函数和局域化轨道基底函数,计算离子受力有何不同。
13.(5 分)从求解 Kohn-Sham 方程可得到哪些基本物理量?从总能量表达式可得到哪些基本物理量?14.(15 分)说明二维单层石墨烯属于何种布拉菲格子,写出它们的晶体的基元、原胞的基矢,并写出基元中原子在原胞中的坐标。
写出石墨烯的紧束缚 Hamiltonian 的矩阵元,π 电子能带的 ()E k 关系。
固体物理考试试题
固体物理考试试题一、选择题(每题 3 分,共 30 分)1、晶体具有规则的几何外形,其根本原因是()A 晶体中原子的规则排列B 晶体内能最小C 晶体具有周期性D 以上都是2、下列哪种晶体结构不属于布拉菲晶格()A 面心立方B 体心立方C 简单立方D 金刚石结构3、晶体的结合能是指()A 把晶体拆散成单个原子所需要的能量B 把晶体拆散成单个分子所需要的能量C 把晶体变成气态所需要的能量D 以上都不对4、金属中电子的能量分布遵循()A 麦克斯韦玻尔兹曼分布B 费米狄拉克分布C 玻尔兹曼分布D 以上都不是5、晶格振动的量子化能量单元称为()A 光子B 声子C 电子D 以上都不是6、绝缘体和半导体的能带结构的主要区别在于()A 禁带宽度不同B 导带中的电子数目不同C 价带中的电子数目不同D 以上都不是7、以下哪种材料属于半导体()A 铜B 硅C 银D 铝8、晶体中的位错属于()A 点缺陷B 线缺陷C 面缺陷D 体缺陷9、对于 X 射线衍射,布拉格方程为()A 2d sinθ =nλB d sinθ =nλC 2d cosθ =nλD d cosθ =nλ10、超导体的基本特性是()A 零电阻和完全抗磁性B 高电阻和完全抗磁性C 零电阻和部分抗磁性D 高电阻和部分抗磁性二、填空题(每题 2 分,共 20 分)1、晶体按对称性可分为个晶系,种布拉菲晶格。
2、晶体中的原子结合方式有、、、等。
3、能带理论中,满带不导电,而未满带中的能够导电。
4、晶格振动的频率具有分布规律。
5、固体比热的爱因斯坦模型和德拜模型的主要区别在于对的处理不同。
6、晶体中的扩散机制主要有、等。
7、铁磁性材料的磁化曲线具有、等特点。
8、半导体中的施主杂质能提供,受主杂质能提供。
9、热膨胀现象的微观本质是。
10、非晶态固体的短程有序,长程。
三、简答题(每题 8 分,共 40 分)1、简述晶体中原子间的相互作用与结合能的关系。
2、解释什么是费米面,以及它在金属物理中的意义。
西南科技大学固体物理期末考试试卷
西南科技大学200 ——200 学年第1学期《固体物理》期末考试试卷(A卷)一、名词解释(每小题2分,共10分)1.单晶--整块晶体内原子排列的规律完全一致的晶体称为单晶体。
2.肖特基缺陷—晶体内格点原子扩散到表面,体内留下空位。
3.简谐近似:晶体中粒子相互作用势能泰勒展开式中只取到二阶项的近似。
4.色散关系:晶格振动中ω和q之间的关系。
5.能态密度:给定体积的晶体,单位能量间隔内所包含的电子状态数。
二、单项选择题(每小题2分,共20分)1. B ;2. D;3. A;4. B;5.B;6. A;7.C;8.D;9.A ;10.D三. 填空(每空1分,共10分)1.声学、声学、光学。
2.饱和性、方向性。
3.(4d,33/2d,3/6d。
4.能量守恒、准动量守恒。
四、判断对错(每小题2分,共10分)1.×;2. √;3.×;4. ×;5.×五、简述及问答题(每小题6分,共30分)1.试述晶态、非晶态、准晶、多晶和单晶的结构特征。
答:晶态固体材料中的原子有规律的周期性排列,或称为长程有序(1分)。
非晶态固体材料中的原子不是长程有序地排列,但在几个原子的范围内保持着有西南科技大学200 ——200 学年第1学期《固体物理》期末考试试卷(A 卷)序性,或称为短程有序(1分)。
准晶态是介于晶态和非晶态之间的固体材料,其特点是原子有序排列,但不具有平移周期性(1.5分)。
另外,晶体又分为单晶体和多晶体:整块晶体内原子排列的规律完全一致的晶体称为单晶体(1分);而多晶体则是由许多取向不同的单晶体颗粒无规则堆积而成的(1.5分)。
2. 棱(刃)位错和 螺位错分别与位错线的关系如何?答:棱(刃)位错:滑移方向垂直位错线(3分)。
螺位错:滑移方向平行位错线(3分)。
3. 晶体中声子数目是否守恒?答:频率为叫ωi 的格波的(平均)声子数为i i )/()1()1B k T n e ωω=-(4分)即每一个格波的声子数都与温度有关,因此,晶体中声子数目不守恒(1分),它随温度的改变而改变(1分)。
固体物理-期末考试
一、概念、简答1。
晶体,非晶体,准晶体;(p1,p41,p48)答:理想晶体中原子排列十分规则,主要体现是原子排列具有周期性,或称为长程有序,而非晶体则不具有长程的周期性。
,因此不具有长程序,但非晶态材料中原子的排列也不是杂乱无章的,仍保留有原子排列的短程序.准晶态:具有长程序的取向序而没有长程序的平移对称序;取向序具有晶体周期性所不能容许的点群对称性,沿取向序对称轴的方向具有准周期性,有两个或两个以上的不可公度特征长度按着特定的序列方式排列.2. 布拉菲格子;(p11)答:布拉菲格子是一种数学上的抽象,是点在空间中周期性的规则排列,实际晶格可以看成在空间格子的每个格点上放有一组原子,它们相对位移为r,这个空间格子表征了晶格的周期性叫布拉菲格子。
3。
原胞,晶胞; (p11)答:晶格的最小周期性单元叫原胞.晶胞:为了反映晶格的对称性,选取了较大的周期单元,我们称晶体学中选取的单元为单胞。
4.倒格子,倒格子基矢;(p16)5。
独立对称操作:m、i、1、2、3、4、6、6.七个晶系、十四种布拉伐格子;(p35)答:7。
第一布里渊区:倒格子原胞答:在倒格子中取某一倒格点为原点,做所有倒格矢G的垂直平分面,这些平面将倒格子空间分成许多包围原点的多面体,其中与原点最近的多面体称为第一布里渊区。
8。
基矢为的晶体为何种结构;若又为何种结构?解:计算晶体原胞体积:由原胞推断,晶体结构属体心立方结构。
若则由原胞推断,该晶体结构仍属体心立方结构。
9。
固体结合的基本形式及基本特点。
(p49p55、57p67p69答:离子型结合以离子而不是以原子为结合的单位,共价结合是靠两个原子各贡献一个电子,形成所谓的共价键,具有饱和性和方向性。
金属性结合的基本特点是电子的共有化,在晶体内部一方面是由共有化电子形成的负电子云,另一方面是侵在这个负电子云中的带正点的各原子实。
范德瓦尔斯结合往往产生于原来有稳固电子结构的原子或分子间,是一种瞬时的电偶极矩的感应作用。
固体物理期末考试题
1.5、证明倒格子矢量112233G hb h b h b =++垂直于密勒指数为123()hh h 的晶面系。
证明:因为33121323,a a a a CA CB h h h h =-=- ,112233G hb h b h b =++利用2i j ij a b πδ⋅=,容易证明12312300h h h h h h G CA G CB ⋅=⋅=所以,倒格子矢量112233G hb h b h b =++垂直于密勒指数为123()hh h 的晶面系。
1.6、对于简单立方晶格,证明密勒指数为(,,)h k l 的晶面系,面间距d 满足:22222()d a h k l =++,其中a 为立方边长;并说明面指数简单的晶面,其面密度较大,容易解理。
解:简单立方晶格:123a a a ⊥⊥ ,123,,a ai a aj a ak ===由倒格子基矢的定义:2311232a a b a a a π⨯=⋅⨯ ,3121232a a b a a a π⨯=⋅⨯ ,1231232a a b a a a π⨯=⋅⨯倒格子基矢:123222,,b i b j b k a a a πππ===倒格子矢量:123G hb kb lb =++ ,222G h i k j l k a a aπππ=++晶面族()hkl 的面间距:2d Gπ= 2221()()()h k l a a a =++ 22222()a d h k l =++ 面指数越简单的晶面,其晶面的间距越大,晶面上格点的密度越大,单位表面的能量越小,这样的晶面越容易解理。
牛顿运动方程2221212121222(2)(2)n n n n n n n n m M μβμμμμβμμμ+-+++=---=---N 个原胞,有2N 个独立的方程设方程的解[(2)]2[(21)]21i t na q n i t n aq n Ae Be ωωμμ--++==,代回方程中得到22(2)(2cos )0(2cos )(2)0m A aq B aq A M B βωβββω⎧--=⎪⎨-+-=⎪⎩ A 、B 有非零解,2222cos 02cos 2m aq aqM βωβββω--=--,则12222()4{1[1sin ]}()m M mM aq mM m M ωβ+=±-+两种不同的格波的色散关系1222212222()4{1[1sin ]}()()4{1[1sin ]}()m M mM aq mM m M m M mM aq mM m M ωβωβ+-+=+-++=--+一个q 对应有两支格波:一支声学波和一支光学波.总的格波数目为2N.当M m =时4cos 24sin 2aq m aq m βωβω+-==,两种色散关系如图所示: 长波极限情况下0q →,sin()22qa qa≈, (2)q mβω-=与一维单原子晶格格波的色散关系一致.色散关系图:3.7、设三维晶格的光学振动在q=0附近的长波极限有20()q Aq ωω=- 求证:()1/2023/21(),4V f A ωωωωωπ=-<;0()0,f ωωω=>. 解()11222200000()0,0Aq f Aq q A ωωωωωωωωωω>-=>=<⇒-=⇒=-时,依据()3()2,()()2q q Vdsq Aq f q ωωωπ∇=-=∇⎰,并带入上边结果有()()()()()()()1/21/200331/2223/201142()222q Vds V A V f A Aq ωπωωωωωππωωπ=⋅=⋅-=⋅-∇- 3.8、有N 个相同原子组成的面积为S 的二维晶格,在德拜近似下计算比热,并论述在低温极限比热正比与2T 。
固体物理 期末考试测试期末试卷
1卷号:AXXXX 大学二OO 八 —二OO 九 学年第 二 学期期末考试固体物理 试题( 光信息科学与技术 专业用)注意:学号、姓名和所在年级班级不写、不写全或写在密封线外者,试卷作废。
一、名词解释(3分×5=15分) 1。
空间点阵 2.声子3。
弗兰克尔缺陷 4。
金属接触电势差 5。
能带二、问答题(5分×5=25分)6。
面心立方是什么结构?画出面心立方中的原胞图,并写出每个原胞基矢321,,→→→a a a ,计算原胞的体积。
设原胞的边长为a 。
7。
晶体按结合力性质,可以分为哪几种类型?说明每种晶体的特点。
8.什么是玻恩—卡门边界条件?设一维原子链长为L ,由该条件得出波矢k 的可能取值。
9。
什么是面缺陷中孪晶和孪晶界,作出示意图说明。
10。
在处理晶体中电子的运动时,把多体问题简化为单电子运动形成能带理论时,共作了哪些简化,请说明。
三、计算证明题(10分×6=60分)11.六角晶胞的基矢为→→→→→→→→=+-=+=k c c j a i ab j a i a a ,223,223,求其倒格基矢.12.设一维简单原子链如图,晶格常数为a ,最近邻原子之间的作用力为)(1n n x x f --=+β,推导原子链中格波的色散关系)(q ωω=13.晶体中原子数为N,产生一个肖脱基缺陷所需要的能量为u ,由平衡时自由能F=U-TS 取极值的条件,推导平衡时缺陷的数量n 的表达式。
14.考虑电荷密度为ρ的球形背景正电荷,电子在该球形电荷中振荡,计算该振荡的角频率ω15.紧束缚方法中,电子能量∑→→•-+=nn s i R k i J C E E )ex p(,对于面心立方,晶格常数为a ,计算面心立方晶体中电子的能量。
16。
已知一维晶体的电子能带可以写为)2cos 81cos 87()(22ka ka ma hk E +-=求:(1)电子在k 态时的速度;(2)能带顶和能带底的有效质量。
固体物理期末卷子
一、1.半导体的迁移率比金属高,为什么金属导电性更好?2.用能带理论解释为什么绝缘体满带不导电,导体半满带导电。
3.什么是bloch电子,它所遵循的bloch定律是什么4.Drude和索莫非模型的区别?请写出他们各自的电子热容。
5.设在t=0时,除能带E和G的位置以外,所有的态都被充满,此时能带中的电流为零。
在外加电场E下,在单位时间△t下,电子空轨道可向前或向后走一步(如从E走到F 或是走到D处)。
若沿K x方向上加一电场E,1)试画出空穴能带,并标明经过2△t后空穴所在位置;2)写出电流密度大小,已知电子在G处的速度可写为v(G)。
(v为向量)6.金属有离子有电子,请问在常温下那个对热容贡献更大?对热导率呢?请说明理由。
二、作业5,第3题;(2018年改为作业5-4)三、(1)证明受主热电离p=√NaNc exp(-Ea/2KbT);(2)求化学势μ(利用上面的表达式和本征半导体的p公式相等)。
四、作业7,第1题改版:银的密度为10.5g/cm3,原子质量是107.87,在绝对零度下。
(1)求每个电子的平均能量;(2)银的体积弹性模量要求:写出公式推导过程,再代入计算。
五、作业8,第3题与第5题结合一简立方晶体,a=3埃,沿着FBZ 的[100]方向的紧束缚的能带具有如下形式:(1)计算并画出电子在这个方向的群速度。
(2)计算简单立方FBZ 的中心Г点和面心X 点处的有效质量。
(3)如果在x 方向上施加5 伏/米的外电场,每个原胞含一个价电子,在不考虑碰撞的情况下,计算电子沿[100]方向由费米面运动至带顶所需的时间。
(注意不同于作业改成了费米面)20172018。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
固体物理学期末考试卷
一. 填空题(共30分,每题3分)
1.固体结合的四种基本形式为:、、
、。
2.共价结合有两个基本特征
是: 和。
3.结合能是
指:。
4.晶体中的表示原子的平衡位置,晶格振动是
指在格点附近的振动。
5.作简谐振动的格波的能量量子称为,若电子从晶格获得 q能量,称为,若电子给晶格 q能量,称为。
6. Bloch定理的适用范围(三个近似)是
指:、
、。
7.图1为固体的能带结构示意图,请指出图(a)
为,
图(b)为,图(c)为。
图1
8.晶体缺陷按范围分类可分为、、。
9.点缺陷对材料性能的影响主要为:、
、
、。
10. 扩散是物质内部由于热运动而导致原子或分子迁移的过程,扩散从微观上讲,实际上是。
二.简答题(共10分,每题5分)
1.在研究晶格振动问题中,爱因斯坦模型和德拜模型的物理思想是什么?
2.在能带理论中,近自由电子近似模型和紧束缚近似模型的物理思想是什么?
三.计算题(共60分,每题10分)
1. 证明: 体心立方晶格的倒格子是面心立方; 面心立方晶格的倒格子是体心立方。
2.证明:倒格子矢量垂直于密勒指数为的晶面系。
3.证明两种一价离子(如NaCl)组成的一维晶格的马德隆常数为:
α= 2ln2
4. 设三维晶格的光学振动在q=0附近的长波极限有
求证:频率分布函数为
5.设晶体中每个振子的零点振动能为,试用德拜模型求晶体的零点振动能。
6. 电子周期场的势能函数为
其中a=4b,ω为常数
(1) 试画出此势能曲线,并求其平均值。
(2) 用近自由电子近似模型求出晶体的第一个及第二个带隙宽度。