线性规划运输问题
运筹学(第四版):第3章 运输问题
x11 x12 x1n x21 x22 x2n xm1 xm2 xmn
u1 1 1 1
u2
um
1
1
1
1
1
1
m行
v1 1
1
1
v2 1
vn
1
1
1
1
1
n行
5
第1节 运输问题的数学模型
该系数矩阵中对应于变量xij的系数向量Pij,其分量中除第i个和 第m+j个为1以外,其余的都为零。即
21
2.2 最优解的判别
判别的方法是计算空格(非基变量)的检验数cij−CBB-1Pij, i,j∈N。因运输问题的目标函数是要求实现最小化,故当 所有的cij−CBB-1Pij≥0时,为最优解。下面介绍两种求空格 检验数的方法。 1.闭回路法; 2.位势法
22
2.2 最优解的判别
1.闭回路法
2.1 确定初始基可行解
第二步:从行或列差额中选出最大者,选择它所在行或列 中的最小元素。在表3-10中B2列是最大差额所在列。B2列 中最小元素为4,可确定A3的产品先供应B2的需要。得表311
销 地 B1 B2 B3 B4 产
加工厂
量
A1
7
A2
4
A3
6
9
销量 3 6 5 6
18
2.1 确定初始基可行解
销 地 B1 B2 B3 B4 产
加工厂
量
A1
A2
3
43 7
1
4
A3
6
39
销量
36 56
12
2.1 确定初始基可行解
用最小元素法给出的初始解是运输问题的基可行解,其理由为: (1) 用最小元素法给出的初始解,是从单位运价表中逐次地
线性规划运输问题
第四章 运输问题Chapter 4Transportation Problem§4.1 运输问题的定义设有同一种货物从m 个发地1,2,…,m 运往n 个收地1,2,…,n 。
第i 个发地的供应量(Supply )为s i (s i ≥0),第j 个收地的需求量(Demand )为d j (d j ≥0)。
每单位货物从发地i 运到收地j 的运价为c ij 。
求一个使总运费最小的运输方案。
我们假定从任一发地到任一收地都有道路通行。
如果总供应量等于总需求量,这样的运输问题称为供求平衡的运输问题。
我们先只考虑这一类问题。
图4.1.1是运输问题的网络表示形式。
运输问题也可以用线性规划表示。
设x ij 为从发地i 运往收地j 的运量,则总运费最小的线性规划问题如下页所示。
运输问题线性规划变量个数为nm 个,每个变量与运输网络的一条边对应,所有的变量都是非负的。
约束个数为m+n 个,全部为等式约束。
前m 个约束是发地的供应量约束,后n 个约束是收地的需求量约束。
运输问题约束的特点是约束左边所有的系数都是0或1,而且每一列中恰有两个系数是1,其他都是0。
运输问题是一种线性规划问题,当然可以用第一章中的单纯形法求解。
但由于它有特殊的结构,因而有特殊的算法。
在本章中,我们将在单纯形法原理的基础上,根据运输问题的特点,给出特殊的算法。
图4.1x x x x x x x x x d x x x d x x x d x x x s x x x s x x x s x x x .t .s x c x c x c x c x c x c x c x c x c z min mn2m 1m n22221n11211n mnn 2n122m 221211m 2111m mn2m 1m 2n222211n11211mn mn 2m 2m 1m 1m n 2n 222222121n 1n 112121111≥=++=++=++=++=+++=++=+++++++++++++=在运输问题线性规划模型中,令X =(x 11,x 12,…,x 1n ,x 21,x 22,…,x 2n ,……,x m1,x m2,…,x mn )TC =(c 11,c 12,…,c 1n ,c 21,c 22,…,c 2n ,……,c m1,c m2,…,c mn )T A =[a 11,a 12,…,a 1n ,a 21,a 22,…,a 2n ,……,a m1,a m2,…,a mn ]T=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎭⎪⎪⎬⎫⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡行行n m 111111111111111111b =(s 1,s 2,…,s m ,d 1,d 2,…,d n )T则运输问题的线性规划可以写成:min z=C TX s.t. AX =b X ≥0其中A 矩阵的列向量a ij =e i +e m+je i 和e m+j 是m+n 维单位向量,元素1分别在在第i 个分量和第m+j 个分量的位置上。
《管理运筹学》02-7运输问题
通过将问题分解为多个子问题,并应用分支定 界法等算法,可以找到满足所有约束条件的整 数解,实现运输资源的合理配置。
04运Leabharlann 问题的实际案例物资调拨案例
总结词
物资调拨案例是运输问题中常见的一种,主要涉及如何优化物资从供应地到需 求地的调配。
02
动态运输问题需要考虑运输过 程中的不确定性,如交通拥堵 、天气变化等,需要建立动态 优化模型来应对这些变化。
03
解决动态运输问题需要采用实 时优化算法,根据实际情况不 断调整运输计划,以实现最优 的运输效果。
多式联运问题
1
多式联运是指将不同运输方式组合起来完成一个 完整的运输任务,需要考虑不同运输方式之间的 衔接和配合。
生产计划案例
总结词
生产计划案例主要关注如何根据市场需求和生产能力制定合理的生产计划。
详细描述
生产计划案例需要考虑市场需求、产品特性、生产成本、生产周期等因素。通过 优化生产计划,可以提高生产效率、降低生产成本,并确保产品按时交付给客户 。
05
运输问题的扩展研究
动态运输问题
01
动态运输问题是指运输需求随 时间变化而变化的运输问题, 需要考虑时间因素对运输计划 的影响。
2
多式联运问题需要考虑不同运输方式的成本、时 间、能力等因素,需要建立多目标优化模型来平 衡这些因素。
3
解决多式联运问题需要采用混合整数规划或遗传 算法等算法,以实现多目标优化的效果。
逆向物流问题
1
逆向物流是指对废旧物品进行回收、处 理和再利用的物流活动,需要考虑废旧 物品的回收、分类、处理和再利用等环 节。
的情况。如果存在这些问题,就需要进行调整,直到找到最优解为止。
运筹学中的运输问题例题
运筹学中的运输问题例题运筹学中的运输问题例题在运筹学领域中,运输问题一直是研究的焦点之一。
它是一种经典的线性规划问题,旨在寻找最佳的物流运输方案,以最小化运输成本或最大化利润。
下面将给出几个运输问题的例题,以便更好地理解运筹学中的运输问题。
例题一:某物流公司需要将货物从A、B、C三个仓库分别运输到D、E、F 三个地点。
已知各仓库的存货数和各地点的需求量如下:仓库存货数地点需求量A 50 D 30B 70 E 40C 80 F 20已知运输成本矩阵如下:D E FA 5 7 9B 6 8 10C 4 6 8要求给出最佳的物流运输方案,并计算出最小的运输成本。
例题二:某公司有两个工厂,分别位于城市X和城市Y,需要向三个销售点分别运输产品。
已知两个工厂的产能和三个销售点的需求量如下:工厂产能销售点需求量X 60 P 18Y 80 Q 30R 22已知运输成本矩阵如下:P Q RX 6 5 9Y 8 7 6要求确定最佳的运输方案,并计算出最小的运输成本。
例题三:某电子产品制造商面临着将产品从几个工厂运输到多个供应商的问题。
已知各工厂的产能和各供应商的需求量如下:工厂产能供应商需求量F1 80 S1 30F2 60 S2 50F3 70 S3 20已知运输成本矩阵如下:S1 S2 S3F1 4 7 6F2 6 3 8F3 5 7 9寻找最优的运输方案,以满足供应商的需求,并计算出最小的运输成本。
以上是几个常见的运输问题例题,这些例题涵盖了不同规模和不同约束条件的情况,帮助我们了解运筹学中的运输问题的解决方法。
通过运用线性规划等方法,可以得出最佳的运输方案,实现物流运输的优化,减少成本,并提高效率。
运输问题不仅在物流行业中有广泛应用,也可在其他领域中找到类似的应用场景,例如生产调度、供应链管理等。
因此,掌握运输问题的解决方法对于提高运营效率和降低成本是非常重要的。
综上所述,通过解决运输问题例题,我们可以更深入地理解运筹学中的运输问题,并通过适当的模型和算法,找到最佳的运输方案,实现资源的合理配置和优化。
运筹学 第二章 运输问题
=
j
j = 1
(
(
这就是运输问题的数学模型,它包含 m·n 变量, m + n 个约束条件。如果用单纯形法求解,先得在各约 束条件上加入一个人工变量(以便求出初始基可行解)。 因此,即使是 m = 3 , n = 4 这样的简单问题, 变量数 就有19个之多,计算起来非常复杂。因此,我们有必 要针对运输问题的某些特点,来寻求更为简单方便的 求解方法。
销地产地
B1
B2
B3
B4
A1
x11
x12
A2
x21
x24
A3
x32
x34
x11 、 x12 、 x32 、 x34 、 x24 、 x21 构成一个闭回路. 这里有: i1 = 1 , i2 = 3 , i3 = 2;j1 = 1 ,j2 = 2 ,j3 = 4. 若把闭回路 的顶点在表中画出, 并且把相邻两个变量用一条直线相连 (今后就称这些直线为闭回路的边)。
第二节 表上作业法1. 表上作业法的基本概念与重要结论针对运输问题的数学模型结构的特殊性,它的约束方 程组的系数矩阵具有如下形式( 具体见下一张幻灯片 ),该 矩阵中, 每列只有两个元素为1,其余都是0。根据这个特 点,在单纯形法的基础上,创造出一种专门用来求解运输 问题的方法,这种方法我们称为表上作业法。运输问题也是一个线性规划问题,当用单纯形法进 行求解时,我们首先应当知道它的基变量的个数;其次, 要知道这样一组基变量应当是由哪些变量来组成。由运输 问题系数矩阵的形式并结合第一章单纯形算法的讨论可以 知道: 运输问题的每一组基变量应由 m+n-1个变量组成。 (即基变量的个数 = 产地个数 + 销售地个数 – 1) 进一步我 们想知道, 怎样的 m+n-1个变量会构成一组基变量?
运筹学:运输问题
运输问题运输问题(transportation problem)一般是研究把某种商品从若干个产地运至若干个销地而使总运费最小的一类问题。
然而从更广义上讲,运输问题是具有一定模型特征的线性规划问题。
它不仅可以用来求解商品的调运问题,还可以解决诸多非商品调运问题。
运输问题是一种特殊的线性规划问题,由于其技术系数矩阵具有特殊的结构,这就有可能找到比一般单纯形法更简便高效的求解方法,这正是单独研究运输问题的目的所在。
§1运输问题的数学模型[例4-1] 某公司经营某种产品,该公司下设A、B、C三个生产厂,甲、乙、丙、丁四个销售点。
公司每天把三个工厂生产的产品分别运往四个销售点,由于各工厂到各销售点的路程不同,所以单位产品的运费也就不同案。
各工厂每日的产量、各销售点每日的销量,以及从各工厂到各销售点单位产品的运价如表4-1所示。
问该公司应如何调运产品,在满足各销售点需要的前提下,使总运费最小。
表4-1设代表从第个产地到第个销地的运输量(;),用代表从第个产地到第个销地的运价,于是可构造如下数学模型:(;运出的商品总量等于其产量)(;运来的商品总量等于其销量)通过该引例的数学模型,我们可以得出运输问题是一种特殊的线性规划问题的结论,其特殊性就在于技术系数矩阵是由“1”和“0”两个元素构成的。
将该引例的数学模型做一般性推广,即可得到有个产地、个销地的运输问题的一般模型。
注意:在此仅限于探讨总产量等于总销量的产销平衡运输问题,而产销不平衡运输问题将在本章的后续内容中探讨。
(;运出的商品总量等于其产量)(;运来的商品总量等于其销量)供应约束确保从任何一个产地运出的商品等于其产量,需求约束保证运至任何一个销地的商品等于其需求。
除非负约束外,运输问题约束条件的个数是产地与销地的数量和,即;而决策变量个数是二者的积,即。
由于在这个约束条件中,隐含着一个总产量等于总销量的关系式,所以相互独立的约束条件的个数是个。
第3章 运输问题
第3章 运输问题判断下列说法是否正确:03100011运输问题是一种特殊的线性规划模型,因而求解结果也可能出现下列四种情况之一:有唯一最优解,无穷多最优解,无界解,无可行解; 03100021在运输问题中,只要给出一组含(m +N -1)个非零的ij x ,且满足1niji j xa ==∑,1mij j i x b ==∑,就可以作为一个初始基可行解;03100031表上作业法实质就是求解运输问题的单纯形法;03100041按最小元素法(或伏格尔法)给出的初始基可行解,从每一个空格出发可以找出而且仅能找出唯一的闭合回路;03100051运输问题就是指商品的调运问题;03100061产地数与销地数相等的运输问题时产销平衡运输问题; 03100071运输问题的数学模型是线性规划模型。
03100081运输问题中的产地产量之和与销地之和一定相等 03100091运输问题约束方程中独立方程个数少于m+n 个。
简答题03200011试述运输问题数学模型的特征,为什么模型(m +n )个约束中最多只能有(m +n -1)个是独立的?03200021、如何把一个产销不平衡的运输问题(含产大于销和销大于产)转化为产销平衡的运输问题?03200031.简述运输问题的特点03200041.试述表上作业法在运输问题的求解中的应用 03200051.“最小元素法”和“伏格尔”法的基本思想及基本操作。
03200061.闭合回路的构成以及利用闭合回路法求检验数的基本操作。
03200071.利用位势法求检验数以及利用闭合回路进行方案调整的基本操03301011 用最小元素法求下列运价及供需表给出的运输问题的初始调运方案。
03301021用最小元素法求下列运价及供需表给出的运输问题的初始调运方案。
03301041 求解下列运输问题的最优解:03301071 应用最小元素法求解初始解的方法解下面的产销不平衡运输模型。
销地1的需求量必须03302011 考虑下列运输问题:(1(2)把问题化为线形规划问题,用单纯形法求解。
数学建模_线性规划_运输问题lingo程序
X15 20.00000 0.000000
X16 0.000000 5.000000
X21 0.000000 7.000000
X22 0.000000 2.000000
X23 0.000000 17.00000
X24 0.000000 6.000000
X25 10.00000 0.000000
2 0.000000 -2.000000
3 0.000000 -6.000000
4 0.000000 -5.000000
5 0.000000 -1.000000
6 0.000000 0.000000
7 0.000000 -6.000000
8 0.000000 -4.000000
9 0.000000 -7.000000
MinZ=20x11+15x12+16x13+5x14+4x15+7x16+17x21+15x22+33x23+12x24+8x25+6x26+9x31+12x32+18x33+16x34+30x35+13x36+12x41+8x42+11x43+27x44+19x45+14x46+7x52+10x53+21x54+10x55+32x56+6x64+11x65+13x66
运输点1接收点1运输点23020接收点2运输点33040接收点3运输点41020接收点4运输点520接收点540运输点6接收点6这样的方案费用最小为1620
运筹学 06-线性规划运输问题
产销平衡表
门市部 B1 B2 B3 B4 加工厂
A1 A2 A3 销量
3656
单位:吨
产量
7 4 9 20
门市部 B1 B2 B3 B4
加工厂
A1
3 11 3 10
A2
1 92 8
A3
7 4 10 5
单位运价表 单位:元/吨
解:1.确定初始方案:
(最小元素法基本思想:从单位运价表上最小的运价开始 确定产销关系,以此类推,直到给出初始方案为止)
①从运价表上找出最小运价C21=1, A2 先保证供应B1 ,X21=3,
划去运价表上B1 列;
②再从运价表上其余元素中找到最小的运价C23=2,加工厂A2
应供给B3, X23=1,划去A2行;
③再从运价表上其余
门市部
B1 B2 B3 B4
元素中找到最小的运价
加工厂
C13=3,所以A1先保证供 应B3 , B3 尚缺4单位, 因此X13=4,划去B3 列。
1
(ⅰ)门有市部数格是B1基变B2量,B共3 B4 加工厂 m+n-1=3+4-1=6个
空格是A1非基变3量,1共1划去3m+1n0=7条
线;A2
1 92 8
(ⅱ)A3如果填7上一个4 运量10之后5能同
A3
6
3
时划去两条线(一行与一列),就 须在所划单去位运的价该表行或单该位列:元任/意吨 位置
初始方案运费
A3
B2 B3 B4 43
1
6
3
门市部 加工厂
B1 B2 B3 B4
A1
3 11 3 10
A2
1 92 8
A3
7 4 10 5
线性规划算法在运输问题中的应用
线性规划算法在运输问题中的应用1.前言线性规划是优化问题中的经典方法,它可以求解各种约束条件下的最优解,具有广泛的应用领域,其中之一就是在运输问题中。
本篇文章将会介绍线性规划算法在运输问题中的应用。
2.运输问题的概述运输问题指的是在不同生产地到不同销售地之间物资的转运方案问题。
一般情况下,都是要求在一定情况下,物资的总运输成本最低,因此这个问题就可以转化为一个线性规划问题。
我们可以用各种算法来求解这个线性规划问题,例如单纯形法、对偶单纯形法、内点法等。
3.运输问题的建模要把运输问题转化为线性规划问题,首先要建立一个合适的模型。
通常我们会假设存在 m 个生产地和 n 个销售地,将其分别标记为 i 和 j(i=1, 2, …, m, j=1, 2, …, n)。
同时,我们还需要知道每个生产地的产量(a_i)、每个销售地的销售需求(b_j)和每个单位物资的运输成本(c_ij)。
假设我们还有一个变量,表示从第 i 个生产地到第 j 个销售地所转移的物资量为x_ij,则我们可以设计如下的线性规划模型:min ∑i=1m∑j=1nc_ijx_ijs.t. ∑j=1nb_jx_ij = a_i, i = 1, 2, …, m∑i=1ma_ix_ij = b_j, j = 1, 2, …, nx_ij ≥ 0, i = 1, 2, …, m, j = 1, 2, …, n其中,第一个约束条件表达的是每个生产地的产量必须全部转移到销售地;第二个约束条件表达的是每个销售地需要满足的需求必须从生产地得到满足;第三个约束条件表达的是转移的物资量必须非负。
我们需要通过求解上述线性规划问题来确定每个变量的取值以及满足目标函数的最小值。
4.应用实例在现实生活中,许多企业都会面临着运输问题。
例如,一些工业公司需要从不同的原材料生产地将材料转移到不同的生产线上,然后将成品运输到各个销售地点。
在这个过程中,经常需要决策如何分配货物,选择哪些物流线路等问题。
第3章+线性规划(运输问题)
18
销地
1
2
3
4 供应量
9 12 9
6
1
40
10
50 10
产
7 2
地
6 3
需求量 40
3
7
7
30
30
5
9 11
30
20
40 60 20
30
30
60 30 50
20
x11,x12,x22,x23,x33,x346个变量构成一个基本初始可行解。 19
1 2 3 … n 供应
1 c11
出2
发 地
c21 …
m cm1
成本 cij
c1n s1 c2n s2 ……
cmn sm
需求 d1
到达地 dn ∑
4
运输问题
引例:设某电视机厂有三个分厂,生产同 一种彩色电视机,供应该厂在市内的四个 门市部销售。已知三个分厂的日生产能力 分别是50,60,50台,四个门市部的日销量 分别为40,40,60,20台。从各个分厂运往 各门市部的运费如下表所示,试安排一个 运费最低的运输计划。
16
平衡运输问题的表上作业法
(一)运输问题初始可行解的获得
西北角法——从西北角的第一格开始安排运输 计划
具体步骤
17
平衡运输问题的表上作业法
具体步骤
取其相应的供应量和需求量中的最小值作为初始 基本可行解的第一个分量
如果第一个工厂的生产量大于第一个销售点的需求, 那么就由第一个工厂全部满足第一个销售点的需要, 工厂商品的剩余部分运八第二个销售点;
线性规划模型在运输问题中的应用分析
线性规划模型在运输问题中的应用分析随着全球经济一体化进程的加快,各国经济间的联系日益紧密,物流运输也变得越来越重要。
在大量物流运输问题中,解决物流损失、成本分配等问题是最为关键的。
而运输问题通常可以被视为线性规划模型的一种,线性规划模型在运输问题中的应用也越来越受到人们的重视。
一. 运输问题的例子举一个简单的例子来说明运输问题。
假设A、B、C、D四个城市分别有工厂、仓库和销售点,且有以下数据:每个工厂生产的产品数量、仓库容量、销售点需要的产品数量、从一点到另一点的运输成本。
现在需要确定应该从哪些工厂生产哪些产品、应该从哪个工厂运送到哪个仓库、从哪个仓库运往哪个销售点、以及每个运输路径运输的数量等问题。
二. 运输问题的特点运输问题的特点在于:一个A城市的工厂能够生产的产品也可以被B、C、D城市的销售点使用,一个仓库也可以从多个工厂和向多个销售点运输货物。
这种“源-汇”模式的数据结构称为运输网络。
而线性规划模型正好可以处理这种模型,它使用高效的算法寻找最佳运输方案,从而最大程度地降低成本和货物的损失。
三. 模型的基本要素在解决运输问题时,需要建立一个线性规划模型。
它包括以下基本要素:1. 决策变量决策变量是需要最终确定的,例如面对这种运输问题,决策变量可以是每个工厂、仓库和销售点的生产、储存和销售数量等。
2. 目标函数目标函数是要最小化的总成本、总损失等等。
3. 约束条件约束条件是必须满足的等式或不等式,例如每个工厂生产的产品数量应该大于等于零,每个销售点的需求量应该小于等于该点的能力。
4. 非负条件决策变量必须满足非负条件,例如每个工厂、仓库和销售点的数量应该大于等于零。
四. 模型求解线性规划模型的目标是在约束条件下,最优化目标函数。
求解过程中需要使用线性规划算法,这些算法通常都是利用单纯形法、内点法等,来建立单个目标函数的等式或不等式的优化模型。
五. 结论在现代物流运输中,运输问题是一种常见的问题,线性规划模型正好可以处理这种问题。
线性规划在运输问题中的应用
线性规划在运输问题中的应用一、介绍线性规划是优化方法中的一种常见方法,它主要是指寻求在满足一系列约束条件的情况下最大限度地提高某种目标函数的值。
在对各种运输问题进行建模时,线性规划也广泛应用。
在本文中,我们将着重探讨线性规划在运输问题中的应用。
二、定义运输问题在了解线性规划如何应用于运输问题之前,我们需要了解运输问题是什么。
运输问题一般涉及将商品从一个地方运送到另一个地方,并需要最小化或最大化成本或利润等目标。
该问题可以表示为一个线性规划模型,其中各种变量和约束条件可以很好地描述该问题。
三、线性规划模型对于一个标准的运输问题,我们所需要的是一个线性规划模型。
根据这个模型,我们可以了解如何在运输问题中使用线性规划。
如果我们将一个运输问题表示为线性规划模型,我们可以得到以下组成部分:1. 目标函数:可以是最小化或最大化。
2. 变量:这是我们需要确定的变量,例如商品的数量,货物的运输费用等。
3. 约束条件:这些是约束条件,需要满足的条件,例如运输货物的容量限制,客户需求等。
4. 非负约束:这是一个常数,它有助于确保变量始终为正。
通过深入分析运输问题,我们可以确保我们将所有变量和约束条件插入正确的目标函数。
在这里,目标函数是最小化或最大化,而变量和约束条件则会影响该函数的结果。
四、线性规划解决运输问题通过了解运输问题的不同参数,我们可以使用线性规划快速解决运输问题。
我们可以运用简单的算法来求解问题,包括单纯形法、内点法等。
例如,在运输问题中,我们经常利用单纯形法来确定目标函数的最优解。
通过单纯形法,我们可以找到目标函数的最佳解,并确定每个变量的最佳值。
然后,我们可以使用这些值来确定问题的解决方案,以实现最小化或最大化我们的目标函数。
五、实际应用线性规划在运输问题中的实际应用是广泛的。
例如,在制造业中,线性规划可用于优化生产线,减少运输成本,以及减少生产时间,提高生产效率等方面中。
类似地,在供应链管理方面,线性规划是一个重要的工具,可以用来优化存储、运输,以及供应等方面的成本。
运筹学07-运输问题
X
0
A3 X
X
1
6
0
销量 0
0
0
0
B1 B2 B3 B4 产量
A1 3
6
A2
2
3
A3
1
6
销量
• 首先是一个可行解 • 其次个数正好等于6 • 可以证明,这是一个基可行解,
B1 B2 B3 B4 产量
A1 3
6
2
9
A2
2
3
3
4
A3 销量
1
6
2
5
Z (0) 3*2 6*9 2*3 3*4 1* 2 6*5 110
• 也就是从运价表的西北角位置(即x11处) 开始,依次安排m个产地和n个销地之间 的运输业务,从而得到一个初始调运方 案,我们称这种方法为西北角法(或左 上角法).
说明
• 西北角法所遵循的规则纯粹是一种人为 的规定,没有任何理论依据和实际背 景.
• 但它容易操作,特别适合在计算机上编 程计算,因而仍不失为一种制定初始调 运方案的好方法,受到广大实际工作者 青睐.
• 在剩下最后一个空格时,只能填数(必 要时可取0)并画圈,以保证画圈的数为 m+n-1.
• 在某一行(或列)填最后一个数时,如 果行和列都同时饱和,则规定只划去该 行(或列)下次再遇到该列时,应写0并 画圈.
B1 B2 B3 B4 产量
A1 2
1
X
X
0
A2 X
0
5
X
0
A3 X
X
8
销量 0
0
2
6
1
7
8
A2
0
5
6
线性规划在运输问题中的应用
线性规划在运输问题中的应用一、引言线性规划是一种优化问题解决方法,应用广泛,特别是在生产和运输领域。
在运输问题中,线性规划可以用来最小化运输成本或最大化运输效益。
本文将探讨在运输问题中如何应用线性规划。
二、运输问题的定义运输问题是指在多个产地和多个销地之间运输商品的问题。
在一个运输问题中,首先需要确定每个产地和销地之间的运输费用,其次需要确定每个销地需要的商品数量和每个产地可供应的商品数量。
最终的目标是以最小的运输成本满足所有销售要求。
三、线性规划基础在运输问题中,线性规划可以用来最小化运输成本或最大化运输效益。
线性规划的目标是最小化或最大化一个线性函数,该函数的变量受到一组线性等式和不等式的限制。
线性规划的一般形式如下:最小值:c_1x_1 + c_2x_2 + ... + c_nx_n条件:a_{11}x_1 + a_{12}x_2 + ... + a_{1n}x_n ≤ b_1a_{21}x_1 + a_{22}x_2 + ... + a_{2n}x_n ≤ b_2 · ·· ·· ·a_{m1}x_1 + a_{m2}x_2 + ... + a_{mn}x_n ≤ b_m 其中,x1,x2,...,xn是变量;c1,c2,...,cn是线性函数的系数;b1,b2,...,bm是不等式的约束条件;a11,a21,...,amn是系数矩阵。
确定这些系数矩阵可以从运输问题的定义中得出。
四、线性规划在运输问题中的应用1. 单位运输费用法单位运输费用法是解决运输问题的一种简单方法。
这种方法的基本思路是计算每个产地和销地之间的单位运输费用,然后将费用乘以需要运输的商品数量得出总费用。
这种方法没有考虑到不同销地的供求关系,也没有考虑到生产和销售的实际情况。
2. 广义网络法广义网络法是一种用图表达模型的线性规划方法,它可以解决多个销地和多个产地之间的运输问题。
运筹学中的运输问题例题
在运筹学中,运输问题是一类经典的线性规划问题,涉及将有限数量的货物从多个供应点运输到多个需求点,并且对应的成本最小化或者利润最大化。
以下是一个运输问题的例题:
假设有三个供应点A、B和C,和四个需求点X、Y、Z和W。
每个供应点都有一定数量的货物可供运输,每个需求点需要一定数量的货物。
给定的成本矩阵代表从每个供应点到每个需求点的运输成本。
供应点的供应量和需求点的需求量以及成本矩阵如下:
供应量:
A: 80单位
B: 70单位
C: 60单位
需求量:
X: 50单位
Y: 40单位
Z: 30单位
W: 70单位
成本矩阵:
X Y Z W
A 4 6 8 9
B 5 7 10 12
C 6 8 11 14
问题是如何将货物从供应点运输到需求点,以使总运输成本最小化。
在这个例题中,可以使用线性规划方法来解决运输问题,通过确定每个供应点向每个需求点运输的数量来最小化总成本。
解决该问题的线性规划模型可以表示为:
最小化ΣΣ(cost(i, j) * x(i, j))
i j
满足以下约束条件:
1. 每个供应点的供应量不能超过其可供应的数量:Σx(i, j) ≤供应点i的供应量, for each i
2. 每个需求点的需求量必须得到满足:Σx(i, j) ≥需求点j的需求量, for each j
3. x(i, j) ≥0, for each i, j
其中,x(i, j) 表示从供应点i到需求点j运输的货物数量,cost(i, j) 表示从供应点i到需求点j的运输成本。
通过求解该线性规划模型,我们可以获得最优的货物运输方案,以最小化总运输成本。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章 运输问题Chapter 4Transportation Problem§4.1 运输问题的定义设有同一种货物从m 个发地1,2,…,m 运往n 个收地1,2,…,n 。
第i 个发地的供应量(Supply )为s i (s i ≥0),第j 个收地的需求量(Demand )为d j (d j ≥0)。
每单位货物从发地i 运到收地j 的运价为c ij 。
求一个使总运费最小的运输方案。
我们假定从任一发地到任一收地都有道路通行。
如果总供应量等于总需求量,这样的运输问题称为供求平衡的运输问题。
我们先只考虑这一类问题。
图4.1.1是运输问题的网络表示形式。
运输问题也可以用线性规划表示。
设x ij 为从发地i 运往收地j 的运量,则总运费最小的线性规划问题如下页所示。
运输问题线性规划变量个数为nm 个,每个变量与运输网络的一条边对应,所有的变量都是非负的。
约束个数为m+n 个,全部为等式约束。
前m 个约束是发地的供应量约束,后n 个约束是收地的需求量约束。
运输问题约束的特点是约束左边所有的系数都是0或1,而且每一列中恰有两个系数是1,其他都是0。
运输问题是一种线性规划问题,当然可以用第一章中的单纯形法求解。
但由于它有特殊的结构,因而有特殊的算法。
在本章中,我们将在单纯形法原理的基础上,根据运输问题的特点,给出特殊的算法。
图4.1x x x x x x x x x d x x x d x x x d x x x s x x x s x x x s x x x .t .s x c x c x c x c x c x c x c x c x c z min mn2m 1m n22221n11211n mnn 2n122m 221211m 2111m mn2m 1m 2n222211n11211mn mn 2m 2m 1m 1m n 2n 222222121n 1n 112121111≥=++=++=++=++=+++=++=+++++++++++++=在运输问题线性规划模型中,令X =(x 11,x 12,…,x 1n ,x 21,x 22,…,x 2n ,……,x m1,x m2,…,x mn )TC =(c 11,c 12,…,c 1n ,c 21,c 22,…,c 2n ,……,c m1,c m2,…,c mn )T A =[a 11,a 12,…,a 1n ,a 21,a 22,…,a 2n ,……,a m1,a m2,…,a mn ]T=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎭⎪⎪⎬⎫⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡行行n m 111111111111111111b =(s 1,s 2,…,s m ,d 1,d 2,…,d n )T则运输问题的线性规划可以写成:min z=C TX s.t. AX =b X ≥0其中A 矩阵的列向量a ij =e i +e m+je i 和e m+j 是m+n 维单位向量,元素1分别在在第i 个分量和第m+j 个分量的位置上。
A 矩阵中的行与运输网络中的节点对应,前m 行对应于发地,后n 行对应于收地;A 矩阵的列与运输网络中的边对应。
运输问题除了用网络表示及线性规划表示外,还可以用运输表表示:1 s12 s2……m s m12n表 4.1表的行与发地对应,列与收地对应。
第i行与第j列交叉的一格与网络的一条边对应(也就是与线性规划约束矩阵的一列对应),每一格的左上角小方格内的数字表明从相应的发地i到收地j的运价c ij,每一格右下角表明从相应的发地i到收地j的运量x ij。
表右方表明各发地的供应量s i,表下方表明各需求第的需求量d j。
每一行运量之和表示从该发地运往各收地的运量之和,它应该等于该发地的供应量;同样,每一列运量之和表示从各发地运往该收地的运量之和,它应该等于该收地的需求量。
例4.1以下的运输问题线性规划、网络图和运输表表示同一运输问题。
min z= 8x11+5x12+6x13+7x21+4x22+9x23s.t. x11+x12+x13=15x21+x22+x23=25x11+x21=10x12+x22=20x13+x23=10x11, x12, x13, x21, x22, x23≥01152 2510 20 10表 4.215102010§4.2 运输问题约束矩阵的性质4.2.1 约束矩阵的秩运输问题约束矩阵A 的秩为m+n-1。
证明:因为A 矩阵的前m 行和后n 行之和分别等于向量(1,1,…,1),因此秩A <m+n 。
考虑A 的一个子矩阵A ’=[a 1n ,a 2n ,…,a mn ,a 11,a 12,…,a 1n ],即A’=列列行行n m n m 111111111111⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡删除A ’中的第m+n 行和第m+n 列,得到A ’’=列列行行1n m 1n m 111111111--⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡容易看出,秩A ’’=m+n -1。
由此m+n-1=秩A ’’≤秩A’≤秩A<m+n即秩A =m+n-1。
在线性规划问题中,约束的系数矩阵要求行满秩的,为了使运输问题系数矩阵行满秩,在A 矩阵中增加一个列向量e m+n 形成增广矩阵[]⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡==+1000n m Ae A A 这样增广矩阵A 的秩就等于m+n ,因而是行满秩的。
并且A 中任何一个基矩阵,都必定包含单位向量e m+n 。
例4.2.1 设一个运输网络如右图,它的系数矩阵为3212123x 22x 21x 13x 12x 11xd d d s s 101010010001001111000000111⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=A增广矩阵为32121ex23x22x21x13x 12x 11x d d d s s 11001000010010000100101110000000111⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=A增加的单位列向量e m+n =e 5相当于在在网络图中增加一条边,它与收点3关联,但不与任何发点关联,这条边称为人工边。
设这条边上的运输量为x a ,增广运输问题对应于第三个收点的约束称为x 13+x 23+x a =d 3由于x13+x23=d3因此,对运输问题的任何一个可行解,都有x a=0。
4.2.2 A矩阵的单位模性质运输问题的系数矩阵A具有以下性质:A矩阵中任何一个k阶子矩阵A k(k=1,2,…m+n),都有det A k=0或±1。
证明:在A中任取一个k阶方阵A k,有以下三种情况:1、A k中任何一列都有两个1,这时A k上部的行属于A矩阵的前m行,而下部的行属于A矩阵的后n行,A k上部的各行之和以及A k下部各行之和都等于向量(1,1,…,1),因而A k的行线性相关,即det A k=0。
2、A k中至少有一列元素全为0,这时显然有det A k=0。
3、A k中至少有一列,其中只有一个1。
这时可以将det A k按这一列展开,设对应于这个1的代数余子式为A k-1,则有det A k=±det A k-1其中A k-1是k-1阶方阵。
对A k-1同样有det A k-1=0或者det A k-1=±det A k-2最后有det A k=0或者det A k=±det A k-1=±det A k-2=…=±det A1=0或±1。
4.2.3基矩阵的三角性设B是A的一个基,B中至少有一列只包含一个1,否则,det B=0不成为一个基。
将B的行列交换,总可以使B成为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=-+1n m T '01B P B 其中det B m+n-1≠0,因而Bm+n-1中也至少有一列只有一个1,对Bm+n-1再进行行列交换,得到 ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=-+2n m T T''001001B Q P B依次不断对剩下的方阵进行行列交换,最后可以得到⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=1010101R B 是一个上三角矩阵。
例4.2 设一个运输问题的系数增广矩阵为A =⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡2510152030d d d s s 111001001000010010111000000011132121ex 23x 22x 21x 13x 12x 11xb 取其中一个基⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=2510152030d d d s s 100110100000100000100110132121ax12x 11x 23x13x b B对B 进行行列交换,成为以下上三角矩阵⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=1015203025d d s s d 10000010000010001010001112121312x 11x 23x 13x ax b B 求解相应的方程组⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡1015203025x x x x x 1000100000100110100011112112313a 10x 15x 20x 30x x x 25x x x 1211231211132313a ====++=++由此得到x 12=10,x 11=15, x 23=20,x 13=5,x a =0由A 的基矩阵的三角性以及A 矩阵中仅含有元素0和1,可以知道,如果运输问题各发地的供应量和收地的需求量都是整数,运输问题的任何基础可行解都是整数,因而最优解也是整数。
§4.3 基在网络图和运输表中的表示从前一节已经知道,运输问题的一个基是由m+n 个列向量组成的,其中包括一个单位向量e m+n 。
在网络图上,这m+n 个列向量对应m+n 条边,其中与单位向量对应的是从最后一个收地出发的人工边。
网络图中的一个基具有以下性质:1、 一个基由m+n 条边组成,其中一条是人工边,其余m+n-1条边是原网络中的边。
2、 组成基的边不能形成闭合回路。
若不然,如果组成一个基的若干条边(i ,j ),(k ,j ),(i ,l ),(k ,l )组成一个闭合回路,则这些边对应的系数矩阵中的列向量a ij ,a kj ,a il ,a kl 的线性组合a ij -a kj +a il -a kl =(e i +e m+j )-(e k +e m+k )-(e i +e m+l )+(e k +e m+l )=0这些列向量线性相关,显然不能包含在一个基中。