2012年历年辽宁省各市初三数学中考分类解析专题4:图形的变换及答案
辽宁省各市2012年中考数学分类解析 专题8:平面几何基础
辽宁各市2012年中考数学试题分类解析汇编专题8:平面几何基础 锦元数学工作室 编辑一、选择题1. (2012辽宁鞍山3分)下列图形是中心对称图形的是【 】A .B .C .D .【答案】C 。
【考点】中心对称图形。
【分析】根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合。
因此,根据中心对称图形的定义可知:只有C 选项旋转180°后能和原来的图形重合。
故选C 。
2. (2012辽宁朝阳3分)如图,C 、D 分别EA 、EB 为的中点,∠E=300,∠1=1100,则∠2的度数为【 】A. 080B. 090C. 0100D. 0110 【答案】A 。
【考点】三角形中位线定理,平行线的性质,三角形外角性质。
【分析】∵C、D 分别EA 、EB 为的中点,∴CD∥AB。
∴∠ECD=∠2。
∵∠1是△ECD 的外角,∴∠E+∠ECD=∠1。
∵∠E=300,∠1=1100,∴∠ECD=1100-300=800。
故选A 。
3. (2012辽宁朝阳3分)下列图形中,既是轴对称图形又是中心对称图形的是【 】【答案】A。
【考点】轴对称图形和中心对称图形。
【分析】根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合。
因此,A. 既是轴对称图形又是中心对称图形,选项正确;B. 是轴对称图形不是中心对称图形,选项错误;C. 是中心对称图形不是轴对称图形,选项错误;D. 是轴对称图形不是中心对称图形,选项错误。
故选A。
4. (2012辽宁阜新3分)下列交通标志是轴对称图形的是【】A. B. C. D.【答案】A。
【考点】轴对称图形。
【分析】根据轴对称图形与,轴对称图形两部分沿对称轴折叠后可重合。
因此,只有选项A 符合。
故选择A。
5. (2012辽宁锦州3分)下列各图,不是轴对称图形的是【】【答案】A。
【考点】轴对称图形。
辽宁吉林黑龙江3省2011年中考数学试题分类解析4 图形的变换(含答案)
辽宁吉林黑龙江3省2011年中考数学专题4:图形的变换一、选择题1.(辽宁沈阳4分)左下图是五个相同的小正方体搭成的几何体,这几个几何体的主视图是【答案】C。
【考点】简单组合体的三视图。
【分析】仔细观察图形找到从正面看所得到的图形即可:从正面看易得下层有2个正方形,上层右边有一个正方形。
故选C。
2.(辽宁沈阳4分)下列图形是中心对称图形的是【答案】D。
【考点】中心对称图形。
【分析】根据中心对称图形的定义,在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合的图形的只有D,而A、B、C都不是。
故选D。
3(辽宁大连3分)图是由四个完全相同的正方体组成的几何体,这个几何体的左视图是【答案】C。
【考点】简单组合体的三视图。
【分析】仔细观察图形找到从左面看所得到的图形即可:从左面看易得下层有1个正方形,上层右边有1个正方形。
故选C。
4.(辽宁本溪3分)如图是某几何体得三视图,则这个几何体是A、球B、圆锥C、圆柱D、三棱体【答案】B。
【考点】由三视图判断几何体。
【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形:由于俯视图为圆形可得为球、圆柱、圆锥.主视图和左视图为三角形可得此几何体为圆锥。
故选B。
5.(辽宁丹东3分)一个正方体的每一个面都有一个汉子.其平面展开图如图所示,那么在该正方体中和“城”字相对的字是A.丹 B.东 C.创 D.联【答案】C。
【考点】几何图形展开。
【分析】根据正方体及其表面展开图的特点,让“城”字面不动,分别把各个面围绕该面折成正方体,其中面“城”与面“创”相对,面“丹”与面“四”相对,面“东”与面“联”相对。
故选C。
6.(辽宁抚顺3分)一个碗如图所示摆放,则它的俯视图是.【答案】C。
【考点】简单几何体的三视图。
【分析】仔细观察图形找到从上面看所得到的图形即可:从上面看易得只有1个圆形,而下面有一个看不见的圆形。
故选C。
7.(吉林省3分)如图所示,小华看到桌面上的几何体是由五个小正方体组成的,他看到的几何体的主视图是【答案】A。
数量和位置变化2012年辽宁中考题(含答案)
数量和位置变化2012年辽宁中考题(含答案)辽宁各市2012年中考数学试题分类解析汇编专题5:数量和位置变化一、选择题1. (2012辽宁鞍山3分)如图,在直角梯形ABCD中,AD∥BC,∠A=90°,AB=BC=4,DE⊥BC于点E,且E是BC中点;动点P从点E出发沿路径ED→DA→AB以每秒1个单位长度的速度向终点B运动;设点P的运动时间为t秒,△PBC的面积为S,则下列能反映S与t的函数关系的图象是【】A.B.C.D.【答案】B。
【考点】动点问题的函数图象。
【分析】分别求出点P在DE、AD、AB上运动时,S 与t的函数关系式,结合选项即可得出答案:根据题意得:当点P在ED上运动时,S= BC•PE=2t;当点P在DA上运动时,此时S=8;当点P在线段AB上运动时,S= BC(AB+AD+DE-t)=5-t。
结合选项所给的函数图象,可得B选项符合。
故选B。
2. (2012辽宁大连3分)在平面直角坐标系中,点P (-3,1)所在的象限为【】A.第一象限B.第二象限C.第三象限D.第四象限【答案】B。
【考点】平面直角坐标系中各象限点的特征。
【分析】根据平面直角坐标系中各象限点的特征,判断其所在象限,四个象限的符号特征分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)。
故点P(-3,1)位于第二象限。
故选B。
3. (2012辽宁沈阳3分)在平面直角坐标系中,点P (-1,2 )关于x轴的对称点的坐标为【】A.(-1,-2 )B.(1,-2 )C.(2,-1 )D.(-2,1 )【答案】A。
【考点】关于x轴对称的点的坐标特征。
【分析】关于x轴对称的点的坐标特征是横坐标相同,纵坐标互为相反数,从而点P (-1,2 )关于x轴对称的点的坐标是(-1,-2 )。
故选A。
4. (2012辽宁铁岭3分)如图,□ABCD的AD边长为8,面积为32,四个全等的小平行四边形对称中心分别在□ABCD的顶点上,它们的各边与□ABCD的各边分别平行,且与□ABCD相似.若小平行四边形的一边长为x,且0<x≤8,阴影部分的面积的和为y,则y与x之间的函数关系的大致图象是【】A. B. C. D.【答案】D。
2012届中考数学往年考点分类解析汇编:图形的变换
2012届中考数学往年考点分类解析汇编:图形的变换江苏13市2011年中考数学试题分类解析汇编专题4:图形的变换一、选择题 1. (无锡3分) 已知圆柱的底面半径为2cm,高为5cm,则圆柱的侧面积是 A.20 cm2 8.20 cm2 C.10 cm2 D.5 cm2 【答案】B。
【考点】图形的展开。
【分析】把圆柱的侧面展开,利用圆的周长和长方形面积公式得出结果:圆的周长= ,圆柱的侧面积=圆的周长×高= 。
故选B。
2.(常州、镇江2分)已知某几何体的一个视图(如图),则此几何体是 A.正三棱柱 B.三棱锥 C.圆锥 D.圆柱【答案】C。
【考点】几何体的三视图。
【分析】从基本图形的三视图可知:俯视图为圆的几何体为球,圆锥,圆柱,所以A和B选项错误;圆柱的主视图和俯视图是长方形,所以D选项错误;圆锥的主视图和俯视图是三角形,正确。
故选C。
3.(南京2分)如图是一个三棱柱,下列图形中,能通过折叠围成一个三棱柱的是【答案】B。
【考点】图形的展开与折叠。
【分析】根据三棱柱及其表面展开图的特点.三棱柱上、下两底面都是三角形得:A、折叠后有二个侧面重合,不能得到三棱柱;B、折叠后可得到三棱柱;C、折叠后有二个底面重合,不能得到三棱柱;D、多了一个底面,不能得到三棱柱。
故选B。
4.(南通3分)下列水平放置的几何体中,俯视图是矩形的为【答案】B。
【考点】几何体的三视图。
【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,由于A和D的俯视图是圆,B的俯视图是矩形,C的俯视图是三角形。
故选B。
5.(泰州3分)下图是一个几何体的三视图,则这个几何体是 A.圆锥 B.圆柱 C.长方体 D.球体【答案】A。
【考点】由三视图判断几何体。
【分析】从基本图形的三视图可知:圆锥的三视图是两个三角形,一个圆;圆柱的三视图是两个长方形,一个圆;长方体的三视图是三个长方形;球体的三视图是三个圆。
初中数学图形变换综合题探究专题(word版+详解答案)
图形变换综合题探究专题【考题研究】本专题主要包括图形的变换和相似形.其中轴对称图形、平移、中心对称图形的识别,相似三角形性质以填空和选择题为主,主要是考查对图形的识别和性质;图形的折叠、平移、旋转与几何图形面积相关的计算问题以填空题和解答题为主,主要是考查对几何问题的综合运用能力;而相似三角形的性质及判断定的应用往往还会结合圆或者解直角三角形等问题一并考查,主要是以解答题为主。
【解题攻略】图形的轴对称、平移、旋转是近年中考的新题型、热点题型,它主要考查学生的观察与实验能力,探索与实践能力,因此在解题时应注意以下方面:1.熟练掌握图形的轴对称、图形的平移、图形的旋转的基本性质和基本方法。
2.结合具体问题大胆尝试,动手操作平移、旋转,探究发现其内在规律是解答操作题的基本方法。
3.注重图形与变换的创新题,弄清其本质,掌握其基本的解题方法,尤其是折叠与旋转等。
【解题类型及其思路】1.变换中求角度注意平移性质:平移前后图形全等,对应点连线平行且相等.2.变换中求线段长时把握折叠的性质:折线是对称轴、折线两边图形全等、对应点连线垂直对称轴、对应边平行或交点在对称轴上.3.变换中求坐标时注意旋转性质:对应线段、对应角的大小不变,对应线段的夹角等于旋转角.4.变换中求面积,注意前后图形的变换性质及其位置等情况。
【典例指引】类型一【图形的平移】【典例指引1】1.两个三角板ABC,DEF按如图所示的位置摆放,点B与点D重合,边AB与边DE在同一条直线上(假设图形中所有的点、线都在同一平面内),其中,∠C=∠DEF=90°,∠ABC=∠F=30°,AC=DE=4 cm.现固定三角板DEF,将三角板ABC沿射线DE方向平移,当点C落在边EF上时停止运动.设三角板平移的距离为x(cm),两个三角板重叠部分的面积为y(cm2).(1)当点C落在边EF上时,x=________cm;(2)求y关于x的函数表达式,并写出自变量x的取值范围;(3)设边BC的中点为点M,边DF的中点为点N,直接写出在三角板平移过程中,点M与点N之间距离的最小值.【举一反三】如图①,将两块全等的三角板拼在一起,其中△ABC的边BC在直线l上,AC⊥BC且AC=BC;△EFP的边FP也在直线l上,边EF与边AC重合,EF⊥FP且EF=FP.(1)在图①中,通过观察、测量,猜想直接写出AB与AP满足的数量关系和位置关系,不要说明理由;(2)将三角板△EFP沿直线l向左平移到图②的位置时,EP交AC于点Q,连接AP、BQ.猜想写出BQ 与AP满足的数量关系和位置关系,并说明理由.类型二【图形的轴对称--折叠】【典例指引2】将一个直角三角形纸片放置在平面直角坐标系中,点,点,点.是边上的一点(点不与点,重合),沿着折叠该纸片,得点的对应点.(Ⅰ)如图①,当时,求点的坐标;(Ⅱ)如图②,当点落在轴上时,求点的坐标;(Ⅲ)当与坐标轴平行时,求点的坐标(直接写出结果即可).【举一反三】如图,在矩形ABCD中,点E在边CD上,将该矩形沿AE折叠,使点D落在边BC上的点F处,过点F作FG∥CD,交AE于点G,连接DG.(1)求证:四边形DEFG为菱形;(2)若CD=8,CF=4,求CEDE的值.类型三【图形的旋转】【典例指引3】如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.(1)求证:DE⊥AG;(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图2.①在旋转过程中,当∠OAG′是直角时,求α的度数;②若正方形ABCD的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.【举一反三】(1)(问题发现)如图1,在Rt△ABC中,AB=AC=2,∠BAC=90°,点D为BC的中点,以CD为一边作正方形CDEF,点E恰好与点A重合,则线段BE与AF的数量关系为(2)(拓展研究)在(1)的条件下,如果正方形CDEF绕点C旋转,连接BE,CE,AF,线段BE与AF的数量关系有无变化?请仅就图2的情形给出证明;(3)(问题发现)当正方形CDEF旋转到B,E,F三点共线时候,直接写出线段AF的长.类型四【图形的位似】【典例指引4】如图,二次函数y=x2﹣3x的图象经过O(0,0),A(4,4),B(3,0)三点,以点O为位似中心,在y轴的右侧将△OAB按相似比2:1放大,得到△OA′B′,二次函数y=ax2+bx+c(a≠0)的图象经过O,A′,B′三点.(1)画出△OA′B′,试求二次函数y=ax2+bx+c(a≠0)的表达式;(2)点P(m,n)在二次函数y=x2﹣3x的图象上,m≠0,直线OP与二次函数y=ax2+bx+c(a≠0)的图象交于点Q(异于点O).①连接AP,若2AP>OQ,求m的取值范围;②当点Q在第一象限内,过点Q作QQ′平行于x轴,与二次函数y=ax2+bx+c(a≠0)的图象交于另一点Q′,与二次函数y=x2﹣3x的图象交于点M,N(M在N的左侧),直线OQ′与二次函数y=x2﹣3x的图象交于点P′.△Q′P′M∽△QB′N,则线段NQ的长度等于.【举一反三】如图所示,网格纸中的每个小方格都是边长为1的正方形,我们把以格点间连线为边的三角形称为“格点三角形”,图中的△ABC是格点三角形.在建立平面直角坐标系后,点B的坐标为(-1,-1).(1)把△ABC向下平移5格后得到△A1B1C1,写出点A1,B1,C1的坐标,并画出△A1B1C1;(2)把△ABC绕点O按顺时针方向旋转180°后得到△A2B2C2,写出点A2,B2,C2的坐标,并画出△A2B2C2;(3)把△ABC以点O为位似中心放大得到△A3B3C3,使放大前后对应线段的比为1∶2,写出点A3,B3,C3的坐标,并画出△A3B3C3.【新题训练】1.在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(﹣4,5),(﹣1,3).(1)请在如图所示的网格平面内作出平面直角坐标系;(2)写出点B的坐标;(3)将△ABC向右平移5个单位长度,向下平移2个单位长度,画出平移后的图形△A′B′C′;(4)计算△A′B′C′的面积﹒(5)在x轴上存在一点P,使PA+PC最小,直接写出点P的坐标.2.如图(1),在平面直角坐标系中,点A,B的坐标分别为(﹣1,0),(3,0),将线段AB先向上平移2个单位长度,再向右平移1个单位长度,得到线段CD,连接AC,BD,构成平行四边形ABDC.(1)请写出点C的坐标为,点D的坐标为,S四边形ABDC;(2)点Q在y轴上,且S△QAB=S四边形ABDC,求出点Q的坐标;(3)如图(2),点P是线段BD上任意一个点(不与B、D重合),连接PC、PO,试探索∠DCP、∠CPO、∠BOP之间的关系,并证明你的结论.3.(问题情境)在综合实践课上,同学们以“图形的平移”为主题开展数学活动,如图①,先将一张长为4,宽为3的矩形纸片沿对角线剪开,拼成如图所示的四边形ABCD ,3AD =,4BD =,则拼得的四边形ABCD 的周长是_____.(操作发现)将图①中的ABE △沿着射线DB 方向平移,连结AD 、BC 、AF 、CE ,如图②.当ABE △的平移距离是12BE 的长度时,求四边形AECF 的周长. (操作探究)将图②中的ABE △继续沿着射线DB 方向平移,其它条件不变,当四边形ABCD 是菱形时,将四边形ABCD 沿对角线剪开,用得到的四个三角形拼成与其面积相等的矩形,直接写出所有可能拼成的矩形周长.4.如图,在66⨯的正方形方格中,每个小正方形的边长都为1,顶点都在网格线交点处的三角形,ABC V 是一个格点三角形.()1在图①中,请判断ABC V 与DEF V 是否相似,并说明理由;()2在图②中,以O 为位似中心,再画一个格点三角形,使它与ABC V 的位似比为2:1()3在图③中,请画出所有满足条件的格点三角形,它与ABC V 相似,且有一条公共边和一个公共角.5.已知:AD 是ABC ∆的高,且BD CD =.(1)如图1,求证:BAD CAD ∠=∠;(2)如图2,点E 在AD 上,连接BE ,将ABE ∆沿BE 折叠得到'A BE ∆,'A B 与AC 相交于点F ,若BE=BC ,求BFC ∠的大小;(3)如图3,在(2)的条件下,连接EF ,过点C 作CG EF ⊥,交EF 的延长线于点G ,若10BF =,6EG =,求线段CF 的长.图1. 图2. 图3. 6.如图,长方形OABC 在平面直角坐标系xOy 的第一象限内,点A 在x 轴正半轴上,点C 在y 轴的正半轴上,点D 、E 分别是OC 、BC 的中点,30∠=︒CDE ,点E 的坐标为()2,a .(1)求a 的值及直线DE 的表达式;(2)现将长方形OABC 沿DE 折叠,使顶点C 落在平面内的点'C 处,过点'C 作y 轴的平行线分别交x 轴和BC 于点F ,G .①求'C 的坐标;②若点P 为直线DE 上一动点,连接'PC ,当'PC D ∆为等腰三角形,求点P 的坐标.(说明:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半)7.如图1,四边形ABCD 的对角线AC ,BD 相交于点O ,OB=OD ,OC=OA+AB ,AD=m ,BC=n ,∠ABD+∠ADB=∠ACB .(1)填空:∠BAD与∠ACB的数量关系为________;(2)求mn的值;(3)将△ACD沿CD翻折,得到△A′CD(如图2),连接BA′,与CD相交于点P.若CD=5+12,求PC的长.8.如图,直线:y=﹣33x+4与x轴、y轴分别別交于点M、点N,等边△ABC的高为3,边BC在x轴上,将△ABC沿着x轴的正方向平移,在平移过程中,得到△A1B1C1,当点B1与原点O重合时,解答下列问题:(1)点A1的坐标为.(2)求△A1B1C1的边A1C1所在直线的解析式;(3)若以P、A1、C1、M为顶点的四边形是平行四边形,请直接写出P点坐标.9.已知:△ABC和△ADE均为等边三角形,连接BE,CD,点F,G,H分别为DE,BE,CD中点.(1)当△ADE绕点A旋转时,如图1,则△FGH的形状为,说明理由;(2)在△ADE旋转的过程中,当B,D,E三点共线时,如图2,若AB=3,AD=2,求线段FH的长;(3)在△ADE旋转的过程中,若AB=a,AD=b(a>b>0),则△FGH的周长是否存在最大值和最小值,若存在,直接写出最大值和最小值;若不存在,说明理由.10.综合与实践问题背景折纸是一种许多人熟悉的活动,将折纸的一边二等分、四等分都是比较容易做到的,但将一边三等分就不是那么容易了,近些年,经过人们的不懈努力,已经找到了多种将正方形折纸一边三等分的精确折法,最著名的是由日本学者芳贺和夫发现的三种折法,现在被数学界称之为芳贺折纸三定理.其中,芳贺折纸第一定理的操作过程及内容如下(如图1):操作1:將正方形ABCD对折,使点A与点D重合,点B与点C重合.再将正方形ABCD展开,得到折痕EF;操作2:再将正方形纸片的右下角向上翻折,使点C与点E重合,边BC翻折至B'E的位置,得到折痕MN,B'E与AB交于点P.则P即为AB的三等分点,即AP:PB=2:1.解决问题(1)在图1中,若EF与MN交于点Q,连接CQ.求证:四边形EQCM是菱形;(2)请在图1中证明AP:PB=2:l.发现感悟若E为正方形纸片ABCD的边AD上的任意一点,重复“问题背景”中操作2的折纸过程,请你思考并解决如下问题:(3)如图2.若DEAE=2.则APBP=;(4)如图3,若DEAE=3,则APBP=;(5)根据问题(2),(3),(4)给你的启示,你能发现一个更加一般化的结论吗?请把你的结论写出来,不要求证明.11.在平面直角坐标系中,四边形AOBC 是矩形,点(0,0)O ,点(5,0)A ,点(0,3)B .以点A 为中心,顺时针旋转矩形AOBC ,得到矩形ADEF ,点O ,B ,C 的对应点分别为D ,E ,F .(Ⅰ)如图①,当点D 落在BC 边上时,求点D 的坐标;(Ⅱ)如图②,当点D 落在线段BE 上时,AD 与BC 交于点H .①求证ADB AOB △△≌;②求点H 的坐标.(Ⅲ)记K 为矩形AOBC 对角线的交点,S 为KDE △的面积,求S 的取值范围(直接写出结果即可). 12.已知O 为直线MN 上一点,OP ⊥MN ,在等腰Rt △ABO 中,90BAO ∠=︒,AC ∥OP 交OM 于C ,D 为OB 的中点,DE ⊥DC 交MN 于E .(1) 如图1,若点B 在OP 上,则①AC OE (填“<”,“=”或“>”);②线段CA 、CO 、CD 满足的等量关系式是 ;(2) 将图1中的等腰Rt △ABO 绕O 点顺时针旋转α(045α︒<<︒),如图2,那么(1)中的结论②是否成立?请说明理由;(3) 将图1中的等腰Rt △ABO 绕O 点顺时针旋转α(),请你在图3中画出图形,并直接写出线段CA 、CO 、CD 满足的等量关系式 ;13.如图1,在中,,,点,分别在边,上,,连接,点,,分别为,,的中点.(1)观察猜想图1中,线段与的数量关系是,位置关系是;(2)探究证明把绕点逆时针方向旋转到图2的位置,连接,,,判断的形状,并说明理由;(3)拓展延伸把绕点在平面内自由旋转,若,,请直接写出面积的最大值.14.已知∠MAN=135°,正方形ABCD绕点A旋转.(1)当正方形ABCD旋转到∠MAN的外部(顶点A除外)时,AM,AN分别与正方形ABCD的边CB,CD的延长线交于点M,N,连接MN.①如图1,若BM=DN,则线段MN与BM+DN之间的数量关系是;②如图2,若BM≠DN,请判断①中的数量关系是否仍成立?若成立,请给予证明;若不成立,请说明理由;(2)如图3,当正方形ABCD旋转到∠MAN的内部(顶点A除外)时,AM,AN分别与直线BD交于点M,N,探究:以线段BM,MN,DN的长度为三边长的三角形是何种三角形,并说明理由.15.已知:如图,是由一个等边△ABE和一个矩形BCDE拼成的一个图形,其点B,C,D的坐标分别为(1,2),(1,1),(3,1).(1)直接写出E点和A点的坐标;(2)试以点B为位似中心,作出位似图形A1B1C1D1E1,使所作的图形与原图形的位似比为3∶1;(3)直接写出图形A1B1C1D1E1的面积.16.如图1,将长为10的线段OA绕点O旋转90°得到OB,点A的运动轨迹为»AB,P是半径OB上一动点,Q是»AB上的一动点,连接PQ.发现:∠POQ=________时,PQ有最大值,最大值为________;思考:(1)如图2,若P是OB中点,且QP⊥OB于点P,求»BQ的长;(2)如图3,将扇形AOB沿折痕AP折叠,使点B的对应点B′恰好落在OA的延长线上,求阴影部分面积;探究:如图4,将扇形OAB沿PQ折叠,使折叠后的弧QB′恰好与半径OA相切,切点为C,若OP=6,求点O到折痕PQ的距离.17.(本小题10分)将一个直角三角形纸片ABO,放置在平面直角坐标系中,点A(3,0),点B(0,1),点O(0,0).过边OA上的动点M(点M不与点O,A重合)作MN⊥AB于点N,沿着MN折叠该纸片,得顶点A的对应点A′.设OM =m,折叠后的△A′MN与四边形OMNB重叠部分的面积为S.图①(Ⅰ)如图①,当点A′与顶点B 重合时,求点M 的坐标;(Ⅱ)如图②,当点A′落在第二象限时,A′M 与OB 相交于点C ,试用含m 的式子表示S ; (Ⅲ)当S=324时,求点M 的坐标(直接写出结果即可). 18.如图1,一副直角三角板满足AB=BC ,AC=DE ,∠ABC=∠DEF=90°,∠EDF=30°操作:将三角板DEF 的直角顶点E 放置于三角板ABC 的斜边AC 上,再将三角板DEF 绕点E 旋转,并使边DE 与边AB 交于点P ,边EF 与边BC 于点Q . 探究一:在旋转过程中,(1)如图2,当1CEEA =时,EP 与EQ 满足怎样的数量关系?并给出证明; (2)如图3,当2CEEA=时,EP 与EQ 满足怎样的数量关系?并说明理由; (3)根据你对(1)、(2)的探究结果,试写出当CEm EA=时,EP 与EQ 满足的数量关系式为 ,其中m 的取值范围是 .(直接写出结论,不必证明) 探究二:若2CEEA=且AC=30cm ,连接PQ ,设△EPQ 的面积为S (cm 2),在旋转过程中: (1)S 是否存在最大值或最小值?若存在,求出最大值或最小值;若不存在,说明理由. (2)随着S 取不同的值,对应△EPQ 的个数有哪些变化,求出相应S 的值或取值范围.图形变换综合题探究专题【考题研究】本专题主要包括图形的变换和相似形.其中轴对称图形、平移、中心对称图形的识别,相似三角形性质以填空和选择题为主,主要是考查对图形的识别和性质;图形的折叠、平移、旋转与几何图形面积相关的计算问题以填空题和解答题为主,主要是考查对几何问题的综合运用能力;而相似三角形的性质及判断定的应用往往还会结合圆或者解直角三角形等问题一并考查,主要是以解答题为主。
全国各地2012年中考数学分类解析-专题54-图形的旋转变换
2012年全国中考数学试题分类解析汇编专题54:图形的旋转变换一、选择题1. (2012市3分)将下列图形绕其对角线的交点逆时针旋转900,所得图形一定与原图形重合的是【 】 (A )平行四边形 (B )矩形 (C )菱形 (D )正方形 【答案】D 。
【考点】旋转对称图形【分析】根据旋转对称图形的性质,可得出四边形需要满足的条件:此四边形的对角线互相垂直、平分且相等,则这个四边形是正方形。
故选D 。
2. (20123分)如图,把一个斜边长为2且含有300角的直角三角板ABC 绕直角顶点C 顺时针旋转900到△A 1B 1C ,则在旋转过程中这个三角板扫过的图形的面积是【 】A .π B.3 C .33+4π D .113+12π 【答案】D 。
【考点】旋转的性质,勾股定理,等边三角形的性质,扇形面积。
【分析】因为旋转过程中这个三角板扫过的图形的面积分为三部分扇形ACA 1、 BCD 和△ACD 计算即可:在△ABC 中,∠ACB=90°,∠BAC=30°,AB=2,∴BC=12AB=1,∠B=90°-∠BAC=60°。
∴22AC AB BC 3=-=。
∴ABC 13S BC AC 2∆=⨯⨯=。
设点B 扫过的路线与AB 的交点为D ,连接CD , ∵BC=DC ,∴△BCD 是等边三角形。
∴BD=CD=1。
∴点D 是AB 的中点。
∴ACD ABC 1133S S 22∆∆==⨯=S 。
∴1ACD ACA BCD ABC S S S ∆∆=++扇形扇形的面扫过积229036013331133604612πππππ⨯⨯⨯⨯=++=++=+()故选D。
3. (20124分)如图,将△ABC绕着点C顺时针旋转50°后得到△A′B′C′.若∠A=40°.∠B′=110°,则∠BCA′的度数是【】A.110° B.80° C.40° D.30°【答案】B。
辽宁省中考数学试题分类汇编)——图形的变换(含答案)
辽宁省数学中考试题分类——图形的变换一.轴对称图形(共1小题)1.(2019•铁岭)下面四个图形中,属于轴对称图形的是()A.B.C.D.二.关于x轴、y轴对称的点的坐标(共1小题)2.(2020•大连)平面直角坐标系中,点P(3,1)关于x轴对称的点的坐标是()A.(3,1)B.(3,﹣1)C.(﹣3,1)D.(﹣3,﹣1)三.轴对称-最短路线问题(共2小题)3.(2020•鞍山)如图,在平面直角坐标系中,已知A(3,6),B(﹣2,2),在x轴上取两点C,D(点C在点D左侧),且始终保持CD=1,线段CD在x轴上平移,当AD+BC 的值最小时,点C的坐标为.4.(2020•营口)如图,△ABC为等边三角形,边长为6,AD⊥BC,垂足为点D,点E和点F分别是线段AD和AB上的两个动点,连接CE,EF,则CE+EF的最小值为.四.翻折变换(折叠问题)(共3小题)5.(2020•盘锦)如图,在矩形ABCD中,AB=1,BC=2,点E和点F分别为AD,CD上的点,将△DEF沿EF翻折,使点D落在BC上的点M处,过点E作EH∥AB交BC于点H,过点F作FG∥BC交AB于点G.若四边形ABHE与四边形BCFG的面积相等,则CF的长为.6.(2020•葫芦岛)一张菱形纸片ABCD的边长为6cm,高AE等于边长的一半,将菱形纸片沿直线MN折叠,使点A与点B重合,直线MN交直线CD于点F,则DF的长为cm.7.(2020•沈阳)如图,在矩形ABCD中,AB=6,BC=8,对角线AC,BD相交于点O,点P为边AD上一动点,连接OP,以OP为折痕,将△AOP折叠,点A的对应点为点E,线段PE与OD相交于点F.若△PDF为直角三角形,则DP的长为.五.旋转的性质(共2小题)8.(2020•大连)如图,△ABC中,∠ACB=90°,∠ABC=40°.将△ABC绕点B逆时针旋转得到△A′BC′,使点C的对应点C′恰好落在边AB上,则∠CAA′的度数是()A.50°B.70°C.110°D.120°9.(2020•阜新)如图,在△ABC中,∠ABC=90°,AB=BC=2.将△ABC绕点B逆时针旋转60°,得到△A1BC1,则AC边的中点D与其对应点D1的距离是.六.作图-旋转变换(共1小题)10.(2020•阜新)如图,△ABC 在平面直角坐标系中,顶点的坐标分别为A (4,4),B (1,1),C (4,1).(1)画出与△ABC 关于y 轴对称的△A 1B 1C 1;(2)将△ABC 绕点O 1顺时针旋转90°得到△A 2B 2C 2,弧AA 2是点A 所经过的路径,则旋转中心O 1的坐标为 ;(3)求图中阴影部分的面积(结果保留π).七.几何变换综合题(共3小题)11.(2020•锦州)已知△AOB 和△MON 都是等腰直角三角形(√22OA <OM =ON ),∠AOB =∠MON =90°.(1)如图1:连AM ,BN ,求证:△AOM ≌△BON ; (2)若将△MON 绕点O 顺时针旋转,①如图2,当点N 恰好在AB 边上时,求证:BN 2+AN 2=2ON 2;②当点A,M,N在同一条直线上时,若OB=4,ON=3,请直接写出线段BN的长.12.(2020•葫芦岛)在等腰△ADC和等腰△BEC中,∠ADC=∠BEC=90°,BC<CD,将△BEC绕点C逆时针旋转,连接AB,点O为线段AB的中点,连接DO,EO.(1)如图1,当点B旋转到CD边上时,请直接写出线段DO与EO的位置关系和数量关系;(2)如图2,当点B旋转到AC边上时,(1)中的结论是否成立?若成立,请写出证明过程,若不成立,请说明理由;(3)若BC=4,CD=2√6,在△BEC绕点C逆时针旋转的过程中,当∠ACB=60°时,请直接写出线段OD的长.13.(2020•沈阳)在△ABC中,AB=AC,∠BAC=α,点P为线段CA延长线上一动点,连接PB,将线段PB绕点P逆时针旋转,旋转角为α,得到线段PD,连接DB,DC.(1)如图1,当α=60°时,①求证:P A=DC;②求∠DCP的度数;(2)如图2,当α=120°时,请直接写出P A和DC的数量关系.(3)当α=120°时,若AB=6,BP=√31,请直接写出点D到CP的距离为.八.平行线分线段成比例(共1小题)14.(2020•营口)如图,在△ABC中,DE∥AB,且CDBD =32,则CECA的值为()A .35B .23C .45D .32九.相似三角形的性质(共1小题)15.(2019•沈阳)已知△ABC ∽△A 'B 'C ',AD 和A 'D '是它们的对应中线,若AD =10,A 'D '=6,则△ABC 与△A 'B 'C '的周长比是( ) A .3:5B .9:25C .5:3D .25:9一十.相似三角形的判定与性质(共7小题)16.(2019•鞍山)如图,正方形ABCD 和正方形CGFE 的顶点C ,D ,E 在同一条直线上,顶点B ,C ,G 在同一条直线上.O 是EG 的中点,∠EGC 的平分线GH 过点D ,交BE 于点H ,连接FH 交EG 于点M ,连接OH .以下四个结论:①GH ⊥BE ;②△EHM ∽△FHG ;③BC CG=√2−1;④S △HOM S △HOG=2−√2,其中正确的结论是( )A .①②③B .①②④C .①③④D .②③④17.(2019•营口)如图,在△ABC 中,DE ∥BC ,AD AB=23,则S △ADE S 四边形DBCE的值是( )A .45B .1C .23D .4918.(2020•锦州)如图,在△ABC 中,D 是AB 中点,DE ∥BC ,若△ADE 的周长为6,则△ABC 的周长为 .19.(2020•大连)如图,矩形ABCD中,AB=6,AD=8,点E在边AD上,CE与BD相交于点F.设DE=x,BF=y,当0≤x≤8时,y关于x的函数解析式为.20.(2020•鞍山)如图,在菱形ABCD中,∠ADC=60°,点E,F分别在AD,CD上,且AE=DF,AF与CE相交于点G,BG与AC相交于点H.下列结论:①△ACF≌△CDE;②CG2=GH•BG;③若DF=2CF,则CE=7GF;④S四边形ABCG=√34BG2.其中正确的结论有.(只填序号即可)21.(2020•锦州)如图,▱ABCD的对角线AC,BD交于点E,以AB为直径的⊙O经过点E,与AD交于点F,G是AD延长线上一点,连接BG,交AC于点H,且∠DBG=12∠BAD.(1)求证:BG是⊙O的切线;(2)若CH=3,tan∠DBG=12,求⊙O的直径.22.(2020•朝阳)如图,以AB为直径的⊙O经过△ABC的顶点C,过点O作OD∥BC交⊙O于点D,交AC于点F,连接BD交AC于点G,连接CD,在OD的延长线上取一点E ,连接CE ,使∠DEC =∠BDC . (1)求证:EC 是⊙O 的切线;(2)若⊙O 的半径是3,DG •DB =9,求CE 的长.一十一.位似变换(共2小题)23.(2019•盘锦)如图,点P (8,6)在△ABC 的边AC 上,以原点O 为位似中心,在第一象限内将△ABC 缩小到原来的12,得到△A ′B ′C ′,点P 在A ′C ′上的对应点P ′的坐标为( )A .(4,3)B .(3,4)C .(5,3)D .(4,4)24.(2020•盘锦)如图,△AOB 三个顶点的坐标分别为A (5,0),O (0,0),B (3,6),以点O 为位似中心,相似比为23,将△AOB 缩小,则点B 的对应点B '的坐标是 .一十二.作图-位似变换(共2小题)25.(2020•朝阳)如图所示的平面直角坐标系中,△ABC 的三个顶点坐标分别为A (﹣3,2),B (﹣1,3),C (﹣1,1),请按如下要求画图:(1)以坐标原点O 为旋转中心,将△ABC 顺时针旋转90°,得到△A 1B 1C 1,请画出△A 1B 1C 1;(2)以坐标原点O为位似中心,在x轴下方,画出△ABC的位似图形△A2B2C2,使它与△ABC的位似比为2:1.26.(2020•丹东)如图,在平面直角坐标系中,网格的每个小方格都是边长为1个单位长度的正方形,点A,B,C的坐标分别为A(1,2),B(3,1),C(2,3),先以原点O为位似中心在第三象限内画一个△A1B1C1.使它与△ABC位似,且相似比为2:1,然后再把△ABC绕原点O逆时针旋转90°得到△A2B2C2.(1)画出△A1B1C1,并直接写出点A1的坐标;(2)画出△A2B2C2,直接写出在旋转过程中,点A到点A2所经过的路径长.一十三.相似形综合题(共1小题)27.(2020•营口)如图,在矩形ABCD中,AD=kAB(k>0),点E是线段CB延长线上的一个动点,连接AE,过点A作AF⊥AE交射线DC于点F.(1)如图1,若k=1,则AF与AE之间的数量关系是;(2)如图2,若k≠1,试判断AF与AE之间的数量关系,写出结论并证明;(用含k的式子表示)(3)若AD=2AB=4,连接BD交AF于点G,连接EG,当CF=1时,求EG的长.一十四.解直角三角形的应用(共1小题)28.(2020•鞍山)图1是某种路灯的实物图片,图2是该路灯的平面示意图,MN为立柱的一部分,灯臂AC,支架BC与立柱MN分别交于A,B两点,灯臂AC与支架BC交于点C,已知∠MAC=60°,∠ACB=15°,AC=40cm,求支架BC的长.(结果精确到1cm,参考数据:√2≈1.414,√3≈1.732,√6≈2.449)一十五.解直角三角形的应用-坡度坡角问题(共1小题)29.(2020•阜新)如图,为了了解山坡上两棵树间的水平距离,数学活动小组的同学们测得该山坡的倾斜角α=20°,两树间的坡面距离AB=5m,则这两棵树的水平距离约为m(结果精确到0.1m,参考数据:sin20°≈0.342,cos20°≈0.940,tan20°≈0.364).一十六.解直角三角形的应用-仰角俯角问题(共2小题)30.(2020•盘锦)如图,某数学活动小组要测量建筑物AB的高度,他们借助测角仪和皮尺进行了实地测量,测量结果如下表.测量项目测量数据测角仪到地面的距离CD=1.6m点D到建筑物的距离BD=4m从C处观测建筑物顶部A的仰角∠ACE=67°从C处观测建筑物底部B的俯角∠BCE=22°请根据需要,从上面表格中选择3个测量数据,并利用你选择的数据计算出建筑物AB(结果精确到0.1米,参考数据:sin67°≈0.92,cos67°≈0.39,tan67°≈2.36.sin22°的高度.≈0.37,cos22°≈0.93,tan22°≈0.40)(选择一种方法解答即可)31.(2020•葫芦岛)如图,小明利用学到的数学知识测量大桥主架在水面以上的高度AB,在观测点C处测得大桥主架顶端A的仰角为30°,测得大桥主架与水面交汇点B的俯角为14°,观测点与大桥主架的水平距离CM为60米,且AB垂直于桥面.(点A,B,C,M在同一平面内)(1)求大桥主架在桥面以上的高度AM;(结果保留根号)(2)求大桥主架在水面以上的高度AB.(结果精确到1米)(参考数据sin14°≈0.24,cos14°≈0.97,tan14°≈0.25,√3≈1.73)一十七.解直角三角形的应用-方向角问题(共5小题)32.(2020•大连)如图,小明在一条东西走向公路的O处,测得图书馆A在他的北偏东60°方向,且与他相距200m ,则图书馆A 到公路的距离AB 为( )A .100mB .100√2mC .100√3mD .200√33m33.(2020•朝阳)为了丰富学生的文化生活,学校利用假期组织学生到红色文化基地A 和人工智能科技馆C 参观学习如图,学校在点B 处,A 位于学校的东北方向,C 位于学校南偏东30°方向,C 在A 的南偏西15°方向(30+30√3)km 处.学生分成两组,第一组前往A 地,第二组前往C 地,两组同学同时从学校出发,第一组乘客车,速度是40km /h ,第二组乘公交车,速度是30km /h ,两组同学到达目的地分别用了多长时间?哪组同学先到达目的地?请说明理由(结果保留根号).34.(2020•锦州)如图,某海岸边有B ,C 两码头,C 码头位于B 码头的正东方向,距B 码头40海里.甲、乙两船同时从A 岛出发,甲船向位于A 岛正北方向的B 码头航行,乙船向位于A 岛北偏东30°方向的C 码头航行,当甲船到达距B 码头30海里的E 处时,乙船位于甲船北偏东60°方向的D 处,求此时乙船与C 码头之间的距离.(结果保留根号)35.(2020•丹东)如图,小岛C和D都在码头O的正北方向上,它们之间距离为6.4km,一艘渔船自西向东匀速航行,行驶到位于码头O的正西方向A处时,测得∠CAO=26.5°,渔船速度为28km/h,经过0.2h,渔船行驶到了B处,测得∠DBO=49°,求渔船在B处时距离码头O有多远?(结果精确到0.1km)(参考数据:sin26.5°≈0.45,cos26.5°≈0.89,tan26.5°≈0.50,sin49°≈0.75,cos49°≈0.66,tan49°≈1.15)36.(2020•营口)如图,海中有一个小岛A,它周围10海里内有暗礁,渔船跟踪鱼群由东向西航行,在B点测得小岛A在北偏西60°方向上,航行12海里到达C点,这时测得小岛A在北偏西30°方向上,如果渔船不改变方向继续向西航行,有没有触礁的危险?并说明理由.(参考数据:√3≈1.73)一十八.简单几何体的三视图(共1小题)37.(2020•阜新)下列立体图形中,左视图与主视图不同的是()A.正方体B.圆柱C.圆锥D.球一十九.简单组合体的三视图(共9小题)38.(2020•盘锦)如图中的几何体是由六个完全相同的小正方体组成的,它的主视图是()A.B.C.D.39.(2020•锦州)如图,是由五个相同的小立方体搭成的几何体,这个几何体的俯视图是()A.B.C.D.40.(2020•沈阳)如图是由四个相同的小立方块搭成的几何体,这个几何体的主视图是()A.B.C.D.41.(2020•营口)如图所示的几何体是由四个完全相同的小正方体搭成的,它的俯视图是()A.B.C.D.42.(2020•辽阳)如图是由一个长方体和一个圆锥组成的几何体,它的主视图是()A.B.C.D.43.(2019•铁岭)如图所示几何体的主视图是()A.B.C.D.44.(2019•盘锦)如图,是由4个大小相同的正方体组成的几何体,该几何体的俯视图是()A.B.C.D.45.(2019•朝阳)如图是由5个相同的小立方块搭成的几何体,这个几何体的左视图是()A.B.C.D.46.(2019•沈阳)如图是由五个相同的小立方块搭成的几何体,这个几何体的俯视图是()A.B.C.D.2019年、2020年 辽宁省数学中考试题分类(12)——图形的变换参考答案与试题解析一.轴对称图形(共1小题)1.【解答】解:A 、不属于轴对称图形,故此选项错误; B 、不属于轴对称图形,故此选项错误; C 、属于轴对称图形,故此选项正确; D 、不属于轴对称图形,故此选项错误; 故选:C .二.关于x 轴、y 轴对称的点的坐标(共1小题)2.【解答】解:点P (3,1)关于x 轴对称的点的坐标是(3,﹣1) 故选:B .三.轴对称-最短路线问题(共2小题)3.【解答】解:把A (3,6)向左平移1得A ′(2,6),作点B 关于x 轴的对称点B ′,连接B ′A ′交x 轴于C ,在x 轴上取点D (点C 在点D 左侧),使CD =1,连接AD , 则AD +BC 的值最小, ∵B (﹣2,2), ∴B ′(﹣2,﹣2),设直线B ′A ′的解析式为y =kx +b , ∴{−2k +b =−22k +b =6, 解得:{k =2b =2,∴直线B ′A ′的解析式为y =2x +2, 当y =0时,x =﹣1, ∴C (﹣1,0), 故答案为:(﹣1,0).4.【解答】解:过C作CF⊥AB交AD于E,则此时,CE+EF的值最小,且CE+EF的最小值=CF,∵△ABC为等边三角形,边长为6,∴BF=12AB=12×6=3,∴CF=2−BF2=√62−32=3√3,∴CE+EF的最小值为3√3,故答案为:3√3.四.翻折变换(折叠问题)(共3小题)5.【解答】解:设CF=x,CH=y,则BH=2﹣y,∵四边形ABHE与四边形BCFG的面积相等,∴2﹣y=2x,∴y=2﹣2x,由折叠知,MF=DF=1﹣x,EM=ED=CH=y=2﹣2x,∠EMF=∠D=90°,∴∠EMH+∠CMF=90°,∵∠C=90°,∴∠CMF+∠CFM=90°,∴∠EMH=∠MFC,∵∠EHM=∠C=90°,∴△EMH ∽△MFC , ∴EM MF=EH MC ,即2−2x 1−x=√(1−x)2−x 2,解得,x =38.经检验,x =38是原方程的解, 故答案为:38.6.【解答】解:①根据题意画出如图1:∵菱形纸片ABCD 的边长为6cm , ∴AB =BC =CD =AD =6, ∵高AE 等于边长的一半, ∴AE =3,∵sin ∠B =AEAB =12, ∴∠B =30°,将菱形纸片沿直线MN 折叠,使点A 与点B 重合, ∴BH =AH =3, ∴BG =BHcos30°=2√3,∴CG =BC ﹣BG =6﹣2√3, ∵AB ∥CD ,∴∠GCF =∠B =30°,∴CF =CG •cos30°=(6﹣2√3)×√32=3√3−3, ∴DF =DC +CF =6+3√3−3=(3√3+3)cm ; ②如图2,BE =AE =3, 同理可得DF =3√3−3.综上所述:则DF 的长为(3√3+3)或(3√3−3)cm . 故答案为:(3√3+3)或(3√3−3).7.【解答】解:如图1,当∠DPF =90°时,过点O 作OH ⊥AD 于H ,∵四边形ABCD 是矩形,∴BO =OD ,∠BAD =90°=∠OHD ,AD =BC =8, ∴OH ∥AB , ∴OH AB=HD AD=OD BD=12,∴OH =12AB =3,HD =12AD =4,∵将△AOP 折叠,点A 的对应点为点E ,线段PE 与OD 相交于点F , ∴∠APO =∠EPO =45°, 又∵OH ⊥AD ,∴∠OPH =∠HOP =45°, ∴OH =HP =3, ∴PD =HD ﹣HP =1; 当∠PFD =90°时,∵AB =6,BC =8,∴BD =√AB 2+AD 2=√36+64=10,∵四边形ABCD 是矩形,∴OA =OC =OB =OD =5,∴∠DAO =∠ODA ,∵将△AOP 折叠,点A 的对应点为点E ,线段PE 与OD 相交于点F ,∴AO =EO =5,∠PEO =∠DAO =∠ADO ,又∵∠OFE =∠BAD =90°,∴△OFE ∽△BAD ,∴OF AB =OE BD , ∴OF 6=510,∴OF =3,∴DF =2,∵∠PFD =∠BAD ,∠PDF =∠ADB ,∴△PFD ∽△BAD ,∴PD BD =DF AD , ∴PD 10=28,∴PD =52,综上所述:PD =52或1,故答案为52或1. 五.旋转的性质(共2小题)8.【解答】解:∵∠ACB =90°,∠ABC =40°,∴∠CAB=90°﹣∠ABC=90°﹣40°=50°,∵将△ABC绕点B逆时针旋转得到△A′BC′,使点C的对应点C′恰好落在边AB上,∴∠A′BA=∠ABC=40°,A′B=AB,∴∠BAA′=∠BA′A=12(180°﹣40°)=70°,∴∠CAA'=∠CAB+∠BAA′=50°+70°=120°.故选:D.9.【解答】解:连接BD、BD1,如图,∵∠ABC=90°,AB=BC=2,∴AC=√22+22=2√2,∵D点为AC的中点,∴BD=12AC=√2,∵△ABC绕点B逆时针旋转60°,得到△A1BC1,∴BD1=BD,∠DBD1=60°,∴△BDD1为等边三角形,∴DD1=BD=√2.故答案为√2.六.作图-旋转变换(共1小题)10.【解答】解:(1)如图,△A1B1C1为所作;(2)旋转中心O1的坐标为(2,0),故答案为(2,0);(3)设旋转半径为r,则r2=22+42=20,∴阴影部分的图形面积为:S阴影=14⋅πr2−12×2×4−12×2×2+12×1×1=5π−112.七.几何变换综合题(共3小题)11.【解答】(1)证明:如图1中,∵∠AOB=∠MON=90°,∴∠AOM=∠BON,∵AO=BO,OM=ON,∴△AOM≌△BON(SAS).(2)①证明:如图2中,连接AM.同法可证△AOM≌△BON,∴AM=BN,∠OAM=∠B=45°,∵∠OAB=∠B=45°,∴∠MAN=∠OAM+∠OAB=90°,∴MN2=AN2+AM2,∵△MON是等腰直角三角形,∴MN2=2ON2,∴NB2+AN2=2ON2.②如图3﹣1中,设OA交BN于J,过点O作OH⊥MN于H.∵△AOM≌△BON,∴AM=BN,∠OAM=∠OBN,∵∠AJN=∠BJO,∴∠ANJ=∠JOB=90°,∵OM=ON=3,∠MON=90°,OH⊥MN,∴MN=3√2,MH=HN═OH=3√2 2,∴AH=√OA2−OH2=42−(322)2=√462,∴BN=AM=MH+AH=√46+3√22.如图3﹣2中,同法可证AM=BN=√46−3√22.12.【解答】解:(1)DO⊥EO,DO=EO;理由:当点B旋转到CD边上时,点E必在边AC上,∴∠AEB=∠CEB=90°,在Rt△ABE中,点O是AB的中点,∴OE=OA=12AB,∴∠BOE=2∠BAE,在Rt△ABD中,点O是AB的中点,∴OD=OA=12AB,∴∠DOE=2∠BAD,∴OD=OE,∵等腰△ADC,且∠ADC=90°,∴∠DAC=45°,∴∠DOE=∠BOE+∠DOE=2∠BAE+2∠BAD=2(∠BAE+∠DAE)=2∠DAC=90°,∴OD⊥OE;(2)仍然成立,理由:如图2,延长EO到点M,使得OM=OE,连接AM,DM,DE,∵O是AB的中点,∴OA=OB,∵∠AOM=∠BOE,∴△AOM≌△BOE(SAS),∴∠MAO=∠EBO,MA=EB,∵△ACD和△CBE是等腰三角形,∠ADC=∠CEB=90°,∴∠CAD=∠ACD=∠EBC=∠BCE=45°,∵∠OBE=180°﹣∠EBC=135°,∴∠MAO=135°,∴∠MAD=∠MAO﹣∠DAC=90°,∵∠DCE=∠DCA+∠BCE=90°,∴∠MAD=∠DCE,∵MA=EB,EB=EC,∴MA=EC,∵AD=DC,∴△MAD≌△ECD,∴MD=ED,∠ADM=∠CDE,∵∠CDE+∠ADE=90°,∴∠ADM+∠ADE=90°,∴∠MDE=90°,∵MO=EO,MD=DE,∴OD=12ME,OD⊥ME,∵OE=12 ME,∴OD=OE,OD⊥OE;(3)①当点B在AC左侧时,如图3,延长EO到点M,使得OM=OE,连接AM,DM,DE,同(2)的方法得,△OBE≌△OAM(SAS),∴∠OBE=∠OAM,OM=OE,BE=AM,∵BE=CE,∴AM=CE,在四边形ABECD中,∠ADC+∠DCE+∠BEC+∠OBE+∠BAD=540°,∵∠ADC=∠BEC=90°,∴∠DCE=540°﹣90°﹣90°﹣∠OBE﹣∠BAD=360°﹣∠OBE=360°﹣∠OAM﹣∠BAD,∵∠DAM+∠OAM+∠BAD=360°,∴∠DAM=360°﹣∠OAM﹣∠BAD,∴∠DAM=∠DCE,∵AD=CD,∴△DAM≌△DCE(SAS),∴DM=DE,∠ADM=∠CDE,∴∠EDM=∠ADM+∠ADE=∠CDE+∠ADE=∠ADC=90°,∵OM=OE,∴OD=OE=12ME,∠DOE=90°,在Rt△BCE中,CE=√22BC=2√2,过点E作EH⊥DC交DC的延长线于H,在Rt△CHE中,∠ECH=180°﹣∠ACD﹣∠ACB﹣∠BCE=180°﹣45°﹣60°﹣45°=30°,∴EH=12CE=√2,根据勾股定理得,CH=√3EH=√6,∴DH=CD+CH=3√6,在Rt△DHE中,根据勾股定理得,DE=√EH2+DH2=2√14,∴OD=√22DE=2√7,②当点B在AC右侧时,如图4,同①的方法得,OD=OE,∠DOE=90°,连接DE,过点E作EH⊥CD于H,在Rt△EHC中,∠ECH=30°∴EH=12CE=√2,根据勾股定理得,CH=√6,∴DH=CD﹣CH=√6,在Rt△DHE中,根据勾股定理得,DE=2√2,∴OD=√22DE=2,即:线段OD的长为2或2√7.13.【解答】(1)①证明:如图1中,∵将线段PB绕点P逆时针旋转,旋转角为α,得到线段PD,∴PB=PD,∵AB =AC ,PB =PD ,∠BAC =∠BPD =60°,∴△ABC ,△PBD 是等边三角形,∴∠ABC =∠PBD =60°,∴∠PBA =∠DBC ,∵BP =BD ,BA =BC ,∴△PBA ≌△DBC (SAS ),∴P A =DC .②解:如图1中,设BD 交PC 于点O .∵△PBA ≌△DBC ,∴∠BP A =∠BDC ,∵∠BOP =∠COD ,∴∠OBP =∠OCD =60°,即∠DCP =60°.(2)解:结论:CD =√3P A .理由:如图2中,∵AB =AC ,PB =PD ,∠BAC =∠BPD =120°,∴BC =2•AB •cos30°=√3BA ,BD ═2BP •cos30°=√3BP ,∴BC BA =BD BP =√3,∵∠ABC =∠PBD =30°,∴∠ABP =∠CBD ,∴△CBD ∽△ABP ,∴CD PA =BC AB =√3,∴CD =√3P A .(3)过点D 作DM ⊥PC 于M ,过点B 作BN ⊥CP 交CP 的延长线于N . 如图3﹣1中,当△PBA 是钝角三角形时,在Rt △ABN 中,∵∠N =90°,AB =6,∠BAN =60°,∴AN =AB •cos60°=3,BN =AB •sin60°=3√3,∵PN =√PB 2−BN 2=√31−27=2,∴P A =3﹣2=1,由(2)可知,CD =√3P A =√3,∵∠BP A =∠BDC ,∴∠DCA =∠PBD =30°,∵DM ⊥PC ,∴DM =12CD =√32如图3﹣2中,当△ABP 是锐角三角形时,同法可得P A =2+3=5,CD =5√3,DM =12CD =5√32,综上所述,满足条件的DM 的值为√32或5√32. 故答案为√32或5√32. 八.平行线分线段成比例(共1小题)14.【解答】解:∵DE ∥AB ,∴CE AE =CD BD =32, ∴CE CA 的值为35,故选:A .九.相似三角形的性质(共1小题)15.【解答】解:∵△ABC ∽△A 'B 'C ',AD 和A 'D '是它们的对应中线,AD =10,A 'D '=6, ∴△ABC 与△A 'B 'C '的周长比=AD :A ′D ′=10:6=5:3.故选:C .一十.相似三角形的判定与性质(共7小题)16.【解答】解:如图,∵四边形ABCD 和四边形CGFE 是正方形,∴BC =CD ,CE =CG ,∠BCE =∠DCG ,在△BCE 和△DCG 中,{BC =CD ∠BCE =∠DCG CE =CG∴△BCE ≌△DCG (SAS ),∴∠BEC =∠BGH ,∵∠BGH +∠CDG =90°,∠CDG =∠HDE ,∴∠BEC +∠HDE =90°,∴GH ⊥BE .故①正确;∵△EHG 是直角三角形,O 为EG 的中点,∴OH =OG =OE ,∴点H 在正方形CGFE 的外接圆上,∵EF =FG ,∴∠FHG =∠EHF =∠EGF =45°,∠HEG =∠HFG ,∴△EHM ∽△FHG ,故②正确;∵△BGH ≌△EGH ,∴BH =EH ,又∵O 是EG 的中点,∴HO ∥BG ,∴△DHN ∽△DGC ,∴DN DC =HN CG ,设EC 和OH 相交于点N .设HN =a ,则BC =2a ,设正方形ECGF 的边长是2b ,则NC =b ,CD =2a ,∴b−2a 2a =a 2b ,即a 2+2ab ﹣b 2=0,解得:a =(﹣1+√2)b ,或a =(﹣1−√2)b (舍去),则2a 2b =√2−1, ∴BC CG =√2−1,故③正确;∵△BGH ≌△EGH ,∴EG =BG ,∵HO 是△EBG 的中位线,∴HO =12BG ,∴HO =12EG ,设正方形ECGF 的边长是2b ,∴EG =2√2b ,∴HO =√2b ,∵OH ∥BG ,CG ∥EF ,∴OH ∥EF ,∴△MHO ∽△MFE ,∴OM EM =OH EF =√2b 2b =√22, ∴EM =√2OM ,∴OM OE =(1+√2)OM =1+√2=√2−1, ∴S △HOMS △HOE =√2−1,∵EO =GO ,∴S △HOE =S △HOG ,∴S △HOMS △HOG =√2−1,故④错误,故选:A .17.【解答】解:∵DE ∥BC ,∴△ADE ∽△ABC ,∴S △ADE S △ABC =(AD AB )2=49, ∴S △ADE S 四边形DBCE =45,故选:A .18.【解答】解:∵DE ∥BC ,∴△ADE ∽△ABC ,∵D 是AB 的中点,∴AD AB =12, ∴△ADE 的周长△ABC 的周长=12 ∵△ADE 的周长为6,∴△ABC 的周长为12,故答案为:12.19.【解答】解:在矩形 中,AD ∥BC ,∴△DEF ∽△BCF ,∴DE BC =DF BF ,∵BD =√BC 2+CD 2=10,BF =y ,DE =x ,∴DF =10﹣y ,∴x 8=10−y y ,化简得:y =80x+8,∴y 关于x 的函数解析式为:y =80x+8, 故答案为:y =80x+8.20.【解答】解:∵ABCD 为菱形,∴AD =CD ,∵AE =DF ,∴DE =CF ,∵∠ADC =60°,∴△ACD 为等边三角形, ∴∠D =∠ACD =60°,AC =CD ,∴△ACF ≌△CDE (SAS ),故①正确;过点F 作FP ∥AD ,交CE 于P 点.∵DF =2CF ,∴FP :DE =CF :CD =1:3,∵DE =CF ,AD =CD ,∴AE =2DE ,∴FP :AE =1:6=FG :AG ,∴AG =6FG ,∴CE =AF =7GF ,故③正确;过点B 作BM ⊥AG 于M ,BN ⊥GC 于N ,∵∠AGE =∠ACG +∠CAF =∠ACG +∠GCF =60°=∠ABC ,即∠AGC +∠ABC =180°,∴点A 、B 、C 、G 四点共圆,∴∠AGB =∠ACB =60°,∠CGB =∠CAB =60°,∴∠AGB =∠CGB =60°,∴BM =BN ,又AB =BC ,∴△ABM ≌△CBN (HL ),∴S 四边形ABCG =S 四边形BMGN ,∵∠BGM =60°,∴GM=12BG,BM=√32BG,∴S四边形BMGN=2S△BMG=2×12×12BG×√32BG=√34BG2,故④正确;∵∠CGB=∠ACB=60°,∠CBG=∠HBC,∴△BCH∽△BGC,∴BCBG =BHBC=CHCG,则BG•BH=BC2,则BG•(BG﹣GH)=BC2,则BG2﹣BG•GH=BC2,则GH•BG=BG2﹣BC2,当∠BCG=90°时,BG2﹣BC2=CG2,此时GH•BG=CG2,而题中∠BCG未必等于90°,故②不成立,故正确的结论有①③④,故答案为:①③④.21.【解答】(1)证明:∵AB为⊙O的直径,∴∠AEB=90°,∴∠BAE+∠ABE=90°,∵四边形ABCD为平行四边形,∴四边形ABCD为菱形,∴∠BAE=12∠BAD,∵∠DBG=12∠BAD.∴∠BAE=∠DBG,∴∠DBG+∠ABE=90°,∴∠ABG=90°,∴BG是⊙O的切线;(2)∵∠ABG=∠AEB=90°,∠HAB=∠BAE,∴△ABH∽△AEB,∴AB2=AE•AH,∵tan∠DBG=1 2,∴设HE=x,则BE=2x,∵CH=3,∴AE=CE=3+x,∴AH=AE+HE=3+2x,∴AB2=(3+x)•(3+2x),∵AB2=BE2+AE2=(2x)2+(3+x)2,∴(3+x)•(3+2x)=(2x)2+(3+x)2,解得x=1或0(舍去),∴AB2=(3+1)(3+2)=20,∴AB=2√5,即⊙O的直径为2√5.22.【解答】解:(1)证明:如图,连接OC,∵AB是直径,∴∠ACB=90°,∵OD∥BC,∴∠CFE=∠ACB=90°,∴∠DEC+∠FCE=90°,∵∠DEC=∠BDC,∠BDC=∠A,∴∠DEC=∠A,∵OA=OC,∴∠OCA =∠A ,∴∠OCA =∠DEC ,∵∠DEC +∠FCE =90°,∴∠OCA +∠FCE =90°,即∠OCE =90°,∴OC ⊥CE ,又∵OC 是⊙O 的半径,∴CE 是⊙O 切线.(2)由(1)得∠CFE =90°,∴OF ⊥AC ,∵OA =OC ,∴∠COF =∠AOF ,∴CD̂=AD ̂, ∴∠ACD =∠DBC ,又∵∠BDC =∠BDC ,∴△DCG ∽△DBC ,∴DC DB =DG DC ,∴DC 2=DG •DB =9,∴DC =3,∵OC =OD =3,∴△OCD 是等边三角形,∴∠DOC =60°,在Rt △OCE 中tan60°=CE OC, ∴√3=CE 3, ∴CE =3√3.一十一.位似变换(共2小题)23.【解答】解:∵点P (8,6)在△ABC 的边AC 上,以原点O 为位似中心,在第一象限内将△ABC 缩小到原来的12,得到△A ′B ′C ′, ∴点P 在A ′C ′上的对应点P ′的坐标为:(4,3).故选:A.24.【解答】解:如图,∵△OAB∽△OA′B′,相似比为3:2,B(3.6),∴B′(2,4),根据对称性可知,△OA″B″在第三象限时,B″(﹣2,﹣4),∴满足条件的点B′的坐标为(2,4)或(﹣2,﹣4).故答案为(2,4)或(﹣2,﹣4).一十二.作图-位似变换(共2小题)25.【解答】解:(1)如图,△A1B1C1即为所求.(2)如图,△A2B2C2即为所求.26.【解答】解:(1)如图所示:点A1的坐标为(﹣2,﹣4);(2)如图所示:由勾股定理得OA =√12+22=√5,点A 到点A 2所经过的路径长为90×π×√5180=√5π2. 一十三.相似形综合题(共1小题)27.【解答】解:(1)AE =AF .∵AD =AB ,四边形ABCD 矩形,∴四边形ABCD 是正方形,∴∠BAD =90°,∵AF ⊥AE ,∴∠EAF =90°,∴∠EAB =∠F AD ,∴△EAB ≌△F AD (ASA ),∴AF =AE ;故答案为:AF =AE .(2)AF =kAE .证明:∵四边形ABCD 是矩形,∴∠BAD =∠ABC =∠ADF =90°,∴∠F AD +∠F AB =90°,∵AF ⊥AE ,∴∠EAF =90°,∴∠EAB +∠F AB =90°,∴∠EAB =∠F AD ,∵∠ABE +∠ABC =180°,∴∠ABE =180°﹣∠ABC =180°﹣90°=90°, ∴∠ABE =∠ADF .∴△ABE ∽△ADF ,∴AB AD =AE AF ,∵AD =kAB ,∴AB AD =1k , ∴AE AF =1k , ∴AF =kAE .(3)解:①如图1,当点F 在线段DC 上时,∵四边形ABCD 是矩形,∴AB =CD ,AB ∥CD ,∵AD =2AB =4,∴AB =2,∴CD =2,∵CF =1,∴DF =CD ﹣CF =2﹣1=1.在Rt △ADF 中,∠ADF =90°,∴AF =√AD 2+DF 2=√42+12=√17, ∵DF ∥AB ,∴∠GDF =∠GBA ,∠GFD =∠GAB , ∴△GDF ∽△GBA ,∴GF GA =DF BA =12, ∵AF =GF +AG ,∴AG =23AF =23√17. ∵△ABE ∽△ADF ,∴AE AF =AB AD =24=12, ∴AE =12AF =12×√17=√172. 在Rt △EAG 中,∠EAG =90°,∴EG =√AE 2+AG 2=(172)2+(2173)2=5√176, ②如图2,当点F 在线段DC 的延长线上时,DF =CD +CF =2+1=3,在Rt △ADF 中,∠ADF =90°,∴AF =√AD 2+DF 2=√42+32=5.∵DF ∥AB , ∵∠GAB =∠GFD ,∠GBA =∠GDF ,∴△AGB ∽△FGD ,∴AGFG =ABFD =23, ∵GF +AG =AF =5, ∴AG =2,∵△ABE ∽△ADF ,∴AEAF =AB AD =24=12, ∴AE =12AF =12×5=52,在Rt △EAG 中,∠EAG =90°,∴EG =√AE 2+AG 2=√(52)2+22=√412.综上所述,EG 的长为5√176或√412. 一十四.解直角三角形的应用(共1小题)28.【解答】解:如图2,过C 作CD ⊥MN 于D ,则∠CDB =90°,∵∠CAD =60°,AC =40(cm ),∴CD =AC •sin ∠CAD =40×sin60°=40×√32=20√3(cm ),∵∠ACB =15°,∴∠CBD =∠CAD ﹣∠ACB =45°,∴BC =√2CD =20√6≈49(cm ),答:支架BC 的长约为49cm .一十五.解直角三角形的应用-坡度坡角问题(共1小题)29.【解答】解:过点A 作水平面的平行线AH ,作BH ⊥AH 于H ,由题意得,∠BAH =α=20°,在Rt △BAH 中,cos ∠BAH =AH AB ,∴AH =AB •cos ∠BAH ≈5×0.940≈4.7(m ),故答案为:4.7.一十六.解直角三角形的应用-仰角俯角问题(共2小题)30.【解答】解:选择CD =1.6m ,BD =4m ,∠ACE =67°,过C 作CE ⊥AB 于E ,则四边形BDCE 是矩形,∴BE =CD =1.6m ,CE =BD =4m ,在Rt △ACE 中,∵∠ACE =67°,∴tan ∠ACE =AE CE , ∴AE 4≈2.36,∴AE ≈9.4m ,∴AB =AE +BE =9.4+1.6=11.0(m ),答:建筑物AB 的高度为11.0m .31.【解答】解:(1)∵AB 垂直于桥面,∴∠AMC =∠BMC =90°,在Rt △AMC 中,CM =60,∠ACM =30°,tan ∠ACM =AM CM, ∴AM =CM •tan ∠ACM =60×√33=20√3(米),答:大桥主架在桥面以上的高度AM 为20√3米;(2)在Rt △BMC 中,CM =60,∠BCM =14°,tan ∠BCM =BM CM ,∴MB =CM •tan ∠BCM ≈60×0.25=15(米),∴AB =AM +MB =15+20√3≈50(米)答:大桥主架在水面以上的高度AB 约为50米.一十七.解直角三角形的应用-方向角问题(共5小题)32.【解答】解:由题意得,∠AOB =90°﹣60°=30°,∴AB =12OA =100(m ),故选:A .33.【解答】解:作BD ⊥AC 于D .依题意得,∠BAE =45°,∠ABC =105°,∠CAE =15°,∴∠BAC =30°,∴∠ACB =45°.在Rt △BCD 中,∠BDC =90°,∠ACB =45°,∴∠CBD =45°,∴∠CBD =∠DCB ,∴BD =CD ,设BD =x ,则CD =x ,在Rt △ABD 中,∠BAC =30°,∴AB =2BD =2x ,tan30°=BD AD, ∴√33=x AD , ∴AD =√3x ,在Rt △BDC 中,∠BDC =90°,∠DCB =45°,∴sin ∠DCB =BD BC =√22,∴BC =√2x ,∵CD +AD =30+30√3,∴x +√3x =30+30√3,∴x =30,∴AB =2x =60,BC =√2x =30√2,第一组用时:60÷40=1.5(h);第二组用时:30√2÷30=√2(h),∵√2<1.5,∴第二组先到达目的地,答:第一组用时1.5小时,第二组用时√2小时,第二组先到达目的地.34.【解答】解:过D作DF⊥BE于F,∵∠ADE=∠DEB﹣∠A=60°﹣30°=30°,∴∠A=∠ADE,∴AE=DE,∵∠B=90°,∠A=30°,BC=40(海里),∴AC=2BC=80(海里),AB=√3BC=40√3(海里),∵BE=30(海里),∴AE=(40√3−30)(海里),∴DE=(40√3−30)(海里),在Rt△DEF中,∵∠DEF=60°,∠DFE=90°,∴∠EDF=30°,∴DF=√32DE=(60﹣15√3)(海里),∵∠A=30°,∴AD=2DF=120﹣30√3(海里),∴CD=AC﹣AD=80﹣120+30√3=(30√3−40)海里,答:乙船与C码头之间的距离为(30√3−40)海里.35.【解答】解:设B处距离码头O有xkm,在Rt△CAO中,∠CAO=26.5°,∵tan∠CAO=CO OA,∴CO=AO•tan∠CAO=(28×0.2+x)•tan26.5°≈2.8+0.5x(km),在Rt△DBO中,∠DBO=49°,∵tan∠DBO=DO BO,∴DO=BO•tan∠DBO=x•tan49°≈1.15x(km),∵DC=DO﹣CO,∴6.4=1.15x﹣(2.8+0.5x),∴x≈14.2(km).因此,B处距离码头O大约14.2km.36.【解答】解:没有触礁的危险;理由:如图,过点A作AN⊥BC交BC的延长线于点N,由题意得,∠ABE=60°,∠ACD=30°,∴∠ACN=60°,∠ABN=30°,∴∠ABC=∠BAC=30°,∴BC=AC=12海里,在Rt△ANC中,AN=AC•sin60°=12×√32=6√3海里,∵AN=6√3海里≈10.38海里>10海里,∴没有危险.一十八.简单几何体的三视图(共1小题)37.【解答】解:A.左视图与主视图都是正方形,故选项A不合题意;B.左视图是圆,主视图都是矩形,故选项B符合题意;C.左视图与主视图都是三角形;故选项C不合题意;D.左视图与主视图都是圆,故选项D不合题意;故选:B.一十九.简单组合体的三视图(共9小题)38.【解答】解:从正面看第一层是3个小正方形,第二层右边1个小正方形.故选:B.39.【解答】解:观察图形可知,这个几何体的俯视图是.故选:A.40.【解答】解:从几何体的正面看,底层是三个小正方形,上层的中间是一个小正方形.故选:D.41.【解答】解:从上面看易得俯视图:.故选:C.42.【解答】解:从正面看,“底座长方体”看到的图形是矩形,“上部圆锥体”看到的图形是等腰三角形,因此选项C的图形符合题意,故选:C.43.【解答】解:从正面可看到的图形是:故选:B.44.【解答】解:从上面看得到的图形是:故选:B.45.【解答】解:从左边看,从左往右小正方形的个数依次为:2,1.左视图如下:故选:C.46.【解答】解:从上面看易得上面一层有3个正方形,下面左边有一个正方形.故选:A.。
2012年6月最新整理全国各地中考数学模拟试题分类汇编 2--43.图形的变换
A(第1题图)图形的变换(图形的平移、旋转与轴对称)一、选择题1、(2012年浙江五模)将抛物线122--=x y 向上平移若干个单位,使抛物线与坐标轴有三个交点,如果这些交点能构成直角三角形,那么平移的距离为( ) A .23个单位 B .1个单位 C .21个单位 D .2个单位 答案:A2、(2012年浙江五模)如图,在Rt △ABC 中,AB =CB ,BO ⊥AC 于点O ,把△ABC 折叠,使AB落在AC 上,点B 与AC 上的点E 重合,展开后,折痕AD 交BO 于点F ,连结DE 、EF .下列结论:①tan ∠ADB =2;②图中有4对全等三角形; ③若将△DEF 沿EF 折叠,则点D 不一定落在AC 上;④BD =BF ; ⑤S 四边形DFOE = S △AOF ,上述结论中错误的个数是( )A .1个B .2个C .3个D .4个答案:B3、(2012年浙江绍兴八校自测模拟)下列图形不是..轴对称图形的是( ) A . B . C . D .答案:C4、(2012年浙江绍兴八校自测模拟)平面直角坐标系中,点A 的坐标为(4,3),将线段OA 绕原点O 逆时针旋转90°得到OA ′,则点A ′的坐标是( ) A .(-4,3) B .(-3,4) C .(3,-4) D .(4,-3) 答案:B5、(2012年浙江绍兴县一模)由左图所示的地板砖各两块所铺成的下列图案中,既是轴对称图形,又是中心对称图形的是( )答案:A6、(2012年浙江绍兴县一模)如图,△ABC 纸片中,AB =BC >AC ,点D 是AB 边的中点,点E在AC 上,将纸片沿DE 折叠,使点A 落在BC 边上的点F 处.则下列结论成立的个数有( )①△BDF 是等腰直角三角形; ②∠DFE =∠CFE ; ③DE 是△ABC 的中位线; ④BF +CE =DF +DE . A .1个 B .2个 C .3个 D . 4个 答案:B7、(2012年重庆外国语学校九年级第二学期期中)下列图形中不是..中心对称图形的是()答案:C8、(保沙中学2012二模)将矩形纸片ABCD 按如图所示的方式折叠,得到菱形AECF .若AB =3,则BC 的长为( )A .1B .2 C.2 D .3答案:B答案:C 10、(广州海珠区2012毕业班综合调研)下列图形中,不是中心对称图形的是( )A. B. C. D.答案:B 11、(广州海珠区2012毕业班综合调研)如图所示,已知在三角形纸片ABC 中,∠BCA =90°,第6题图∠BAC =30°,AB =6,在AC 上取一点E ,以BE 为折痕,使AB 的一部分与BC 重合,A 与BC 延长线上的点D 重合,则DE 的长度为( ) A .6B .3C .32 D答案:C12、(2012荆门东宝区模拟) 下列图案是部分汽车的标志,其中是中心对称图形的是(A. B.C.D.答案:A13、(2012江西高安)如图①~④是四种正多边形的瓷砖图案.其中,是轴对称图形但不是中心对称的图形为()A .①③B . ①④C .②③D .②④答案:A针方向旋转 90后的图形14、(2012广西北海市模拟)将图形 按顺时是····················( )答案:B 15、(2012江苏江阴市澄东一模 )下列五种图形:①平行四边形 ②矩形 ③菱形 ④正方形 ⑤等腰梯形.其中既是中心对称图形又是轴对称图形的共有多少种 ( ) A .2 B .3 C .4 D .5 答案:B16、(2012江苏南京市白下区一模)下列轴对称图形中,只用一把无刻度的直尺不能..画出对称轴的是 A .菱形B .矩形C .等腰梯形D .正五边形答案:B 17、(2012年济宁模拟)下列轴对称图形中,只有两条对称轴的图形是( )C① ② ③ ④DC B A A . B . C .D .答案:A18、(2012四川夹江县模拟)下列图形中,是中心对称图形的是( )答案:B19、(2012四川乐山市市中区毕业会考)点(-1,2)关于原点对称的点的坐标是 (A )(1,2) (B )(-1,-2) (C )(2,-1) (D )(1,-2) 答案:D20、(2012年河北一模)下列图形是中心对称图形的是( )答案:D21、(2012年荆州模拟)如图,在Rt △ABC 中,∠BAC =900,∠B =600,△A 11C B 可以由△ABC 绕点 A 顺时针旋转90得到(点B 1与点B 是对应点,点C 1与点C 是对应点),连接CC ’,则∠CC ’B ’的度数是( )。
中考数学专题训练第4讲几何初步、相交线、平行线(知识点梳理)
几何初步、相交线、平行线知识点梳理考点01 几何图形一、几何图形(一)几何图形的概念和分类1.定义:把从实物中抽象出的各种图形统称为几何图形.2.几何图形的分类:立体图形和平面图形。
(1)立体图形:图形的各部分不都在同一平面内,这样的图形就是立体图形,例如:长方体、圆柱、圆锥、球等。
立体图形按形状可分为:球、柱体(圆柱、棱柱)、椎体(圆锥、棱锥)、台体(圆台、棱台).按围成立体图形的面是平面或曲面可以分为:多面体(有平面围成的立体图形)、曲面体(围成立体图形中的面中有曲面)。
(2)平面图形:有些几何图形(如线段、角、三角形、圆、四边形等)的各部分都在同一平面内,称为平面图形.常见的平面图形有圆和多边形(三角形、四边形、五边形、六边形等)。
(二)从不同方向看立体图形:从正面看:正视图.从左面看:侧视图.从上面看:俯视图。
(三)立体图形的展开图:1.有些立体图形是由一些平面图形围成,把他们的表面沿着边剪开,可以展开形成平面图形。
2.立体图形的展开图的注意事项:(1)不是所有的立体图形都可以展开形成平面图形,例如:球不能展开形成平面图形. (2)不同的立体图形可展开形成不同的平面图形,同一个立体图形,沿不同的棱剪开,也可得到不同的平面图形。
(四)正方体的平面展开图正方体的展开图由6个小正方形组成,把正方体各种展开图分类如下:二、点、线、面、体1.体:长方体、正方体、圆柱体、圆锥体、球、棱锥、棱柱等都是几何体,几何体也简称体。
2.面:包围着体的是面,面有平的面和曲的面两种.3.线:面和面相交的地方形成线,线也分为直线和曲线两种.4.点:线和线相交的地方形成点。
5.所有的几何图形都是由点、线、面、体组成的,从运动的角度来看,点动成线,线动成面,面动成体。
考点02 直线、射线、线段一、直线1.直线的表示方法:(1)可以用直线上表示两个点的大写英文字母表示,可表示为直线AB或直线BA.(2)也可以用一个小写英文字母表示,例如直线m等.2.直线的基本性质:经过两点有一条直线,并且只有1条直线.简称:两点确定一条直线。
2012中考数学试题及答案分类汇编:图形的变换(1)
2012中考数学试题及答案分类汇编:图形的变换一、选择题1. (北京4分)下列图形中,即是中心对称又是轴对称图形的是A、等边三角形B、平行四边形C、梯形D、矩形【答案】D。
【考点】中心对称和轴对称图形。
【分析】根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合。
从而有A、是轴对称图形,不是中心对称图形.故本选项错误;B、是不是轴对称图形,是中心对称图形.故本选项错误;C、是轴对称图形,不是中心对称图形.故本选项错误;D、既是轴对称图形,又是中心对称图形.故本选项正确。
故选D。
2.(天津3分)下列汽车标志中,可以看作是中心对称图形的是【答案】A。
【考点】中心对称图形。
【分析】根据在平面内,一个图形绕某个点旋转180°,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形的定义,直接得出结果。
3.(天津3分)下图是一支架(一种小零件),支架的两个台阶的高度和宽度都是同一长度.则它的三视图是【答案】A。
【考点】几何体的三视图。
【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中:细心观察原立体图形的位置,从正面看,是一个矩形,矩形左上角缺一个角;从左面看,是一个正方形;从上面看,也是一个正方形。
故选A。
4.(河北省2分)将图1围成图2的正方体,则图1中的红心“”标志所在的正方形是正方体中的A、面CDHEB、面BCEFC、面ABFGD、面ADHG【答案】A。
【考点】展开图折叠成几何体。
【分析】由图1中的红心“”标志,可知它与等边三角形相邻,折叠成正方体是正方体中的面CDHE。
故选A。
5.(山西省2分)将一个矩形纸片依次按图(1)、图(2)的方式对折,然后沿图(3)中的虚线裁剪,最后将图(4)的纸再展开铺平,所得到的图案是【答案】A。
【考点】剪纸问题。
【分析】严格按照图中的顺序先向上再向右对折,从左下方角剪去一个直角三角形,展开得到结论。
无锡新领航教育辽宁省各市2012年中考数学分类解析 专题4:图形的变换
- 1 - 辽宁各市2012年中考数学试题分类解析汇编
专题4:图形的变换
锦元数学工作室 编辑
一、选择题
1. (2012辽宁鞍山3分)如图,下面是由四个完全相同的正方体组成的几何体,这个几何体的主视图是【 】
A .
B .
C .
D .
【答案】C 。
【考点】简单组合体的三视图。
【分析】根据主视图的定义,找到几何体从正面看所得到的图形即可:从正面可看到从左往右3列小正方形的个数依次为:1,1,1。
故选C 。
2. (2012辽宁本溪3分)如图所示的几何体的俯视图是【 】
A 、错误!未找到引用源。
B 、 错误!未找到引用源。
C 、错误!未
找到引用源。
D 、错误!未找到引用源。
【答案】B 。
【考点】简单组合体的三视图。
【分析】根据俯视图是从上面向下看得到的识图解答:
从上向下看,从左向右共3列,左边一列3个正方形,向右依次是一个正方形,且上齐。
故选B 。
3. (2012辽宁本溪3分)下列各网格中的图形是用其图形中的一部分平移得到的是【 】
A 、错误!未找到引用源。
B 、 错误!未找到引用源。
C 、错误!未找到引用源。
D 、错误!未找到引用源。
【答案】C 。
【考点】网格问题,利用平移设计图案。
【分析】根据平移及旋转的性质对四个选项进行逐一分析即可.
A 、是利用图形的旋转得到的,故本选项错误;。
辽宁省各市2012年中考数学分类解析 专题10 四边形
某某各市2012年中考数学试题分类解析汇编专题10:四边形一、选择题1. (2012某某某某3分)在菱形ABCD 中,对角线AC 、BD 相交于点O ,AB=5,AC=6,过点D 作AC的平行线交BC 的延长线于点E ,则△BDE 的面积为【 】A 、22B 、24C 、48D 、44【答案】B 。
【考点】菱形的性质,平行四边形的判定和性质,勾股定理和逆定理。
【分析】∵AD∥BE,AC∥DE,∴四边形ACED 是平行四边形。
∴AC=DE=6。
在Rt△BCO 中,2222AC BO AB AO AB =42⎛⎫=-=- ⎪⎝⎭,∴BD=8。
又∵BE=BC+CE=BC+AD=10,∴222DE BD BE +=。
∴△BDE 是直角三角形。
∴BDE 1S DE BD 242∆=⋅⋅=。
故选B 。
2. (2012某某某某3分)如图,菱形ABCD 中,AC =8,BD =6,则菱形的周长为【】【答案】A 。
【考点】菱形的性质,勾股定理。
【分析】设AC 与BD 相交于点O ,由AC=8,BD=6,根据菱形对角线互相垂直平分的性质,得AO=4,BO=3,∠AOB=900。
在Rt△AOB中,根据勾股定理,得AB=5。
根据菱形四边相等的性质,得AB=BC=CD=DA=5。
∴菱形的周长为5×4=20。
故选A。
3. (2012某某某某3分)如图,菱形ABCD的周长为24cm,对角线AC、BD相交于O点,E 是AD的中点,连接OE,则线段OE的长等于【】A.3cmB.4cmC.cmD.2cm【答案】A。
【考点】菱形的性质,三角形中位线定理。
【分析】∵菱形ABCD的周长为24cm,∴边长AB=24÷4=6cm。
∵对角线AC、BD相交于O点,∴BO=DO。
又∵E是AD的中点,∴OE是△ABD的中位线。
∴OE=12AB=12×6=3(cm)。
故选A。
4. (2012某某某某3分)如图,已知正方形ABCD的边长为4,点E、F分别在边AB、BC上,且AE=BF=1,CE、DF交于点O.下列结论:①∠DOC=90° , ②OC=OE,③tan∠OCD =43,④ODC BEOFS S∆=四边形中,正确的有【】个【答案】C 。
福建省各市2012年中考数学分类解析 专题4 图形的变换
某某9市2012年中考数学试题分类解析汇编专题4:图形的变换一、选择题1. (2012某某某某4分)左下图所示几何体的俯视图是【 】【答案】C 。
【考点】简单几何体的三视图。
【分析】找到从上面看所得到的图形即可:从上面看易得是一个圆,中间一点。
故选C 。
2. (2012某某某某4分)如图,矩形ABCD 中,A B=1,BC=2,把矩形ABCD 绕AB 所在直线旋转一 周所得圆柱的侧面积为【 】A .10πB .4πC .2πD .2【答案】B 。
【考点】矩形的性质,旋转的性质。
【分析】把矩形ABCD 绕AB 所在直线旋转一周所得圆柱是以BC=2为底面半径,A B=1为高。
所以,它 的侧面积为221=4ππ⋅⋅。
故选B 。
3. (2012某某某某4分)如图所示,水平放置的长方体底面是长为4和宽为2的矩形,它的主视图的面积为12,则长方体的体积等于【 】A .16B .24C .32D .48【答案】B。
【考点】简单几何体的三视图。
【分析】由主视图的面积=长×高,即高=12÷4=3;∴长方体的体积=长×高×宽=4×3×2=24。
故选B。
4. (2012某某某某4分)如图,正方形纸片ABCD的边长为3,点E、F分别在边BC、CD上,将AB、AD 分别和AE、AF折叠,点B、D恰好都将在点G处,已知BE=1,则EF的长为【】A.32B.52C.94D.3【答案】B。
【考点】翻折变换(折叠问题),正方形的性质,折叠的性质,勾股定理。
【分析】∵正方形纸片ABCD的边长为3,∴∠C=90°,BC=CD=3。
根据折叠的性质得:EG=BE=1,GF=DF。
设DF=x,则EF=EG+GF=1+x,FC=DC-DF=3-x,EC=BC-BE=3-1=2。
在Rt△EFC中,EF2=EC2+FC2,即(x+1)2=22+(3-x)2,解得:3x2 。
∴DF=32,EF=1+35=22。
东北地区中考数学试题(18套)分类解析汇编(16专题)专题12:几何三大变换问题
东北地区2012年中考数学试题(18套)分类解析汇编专题12:几何三大变换问题锦元数学工作室编辑一、选择题1. (2012辽宁本溪3分)下列各网格中的图形是用其图形中的一部分平移得到的是【】A、错误!未找到引用源。
B、错误!未找到引用源。
C、错误!未找到引用源。
D、错误!未找到引用源。
【答案】C。
【考点】网格问题,利用平移设计图案。
【分析】根据平移及旋转的性质对四个选项进行逐一分析即可.A、是利用图形的旋转得到的,故本选项错误;B、是利用图形的旋转和平移得到的,故本选项错误;C、是利用图形的平移得到的,故本选项正确;D、是利用图形的旋转得到的,故本选项错误。
故选C。
2. (2012辽宁锦州3分)如图,在△ABC中,AB=AC, AB+BC=8.将△ABC折叠,使得点A落在点B处,折痕DF分别与AB、AC交于点D、F,连接BF,则△BCF的周长是【】A. 8B. 16C. 4D. 10【答案】A。
【考点】折叠问题,折叠对称的性质。
【分析】由折叠对称的性质知,BF=AF。
∴BCF的周长=BC+CF+BF= BC+CF+AF= BC+AC=BC+AB=8。
故选A。
3. (2012辽宁铁岭3分)下列图形中,不是..中心对称的是【】A. B. C. D.【答案】C。
【考点】中心对称图形。
【分析】根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合。
因此,所给图形中不是..中心对称的是C。
故选C。
4. (2012辽宁铁岭3分)矩形纸片ABCD中,AB=4,AD=8,将纸片沿EF折叠使点B与点D 重合,折痕EF与BD相交于点O,则DF的长为【】A.3B.4C.5D.6【答案】C。
【考点】翻折变换(折叠问题),矩形的性质,勾股定理。
【分析】设DF=x,则BF=x,CF=8-x。
在Rt△DFC中,DF2=CF2+DC2,即x2=(8-x)2+42,解得:x=5,即DF的长为5。
故选C。
5. (2012辽宁鞍山3分)下列图形是中心对称图形的是【】A.B.C.D.【答案】C。
中考数学 专题17.1 图形的变换和投影视图(解析版)
17.1图形的变换和投影视图精选考点专项突破卷(一)考试范围:图形的变换和投影视图;考试时间:90分钟;总分:120分一、单选题(每小题3分,共30分)1.(2012·辽宁中考真题)下列交通标志是轴对称图形的是()A.B.C.D.2.(2019·江苏中考真题)下列图案中,是中心对称图形的是()A.B.C.D.∆绕点A顺时针旋转90︒到3.(2019·山东中考真题)如图,点E是正方形ABCD的边DC上一点,把ADE∆的位置.若四边形AECF的面积为20,DE=2,则AE的长为()ABFA.4 B.C.6 D.4.(2012·湖南中考真题)把等腰△ABC沿底边BC翻折,得到△DBC,那么四边形ABDC()A.是中心对称图形,不是轴对称图形B.是轴对称图形,不是中心对称图形C.既是中心对称图形,又是轴对称图形D.以上都不正确5.(2018·山东中考真题)下列图形中,既是轴对称又是中心对称图形的是()A.B.C.D.6.(2013·福建中考真题)如图,将Rt△ABC(其中∠B=35°,∠C=90°)绕点A按顺时针方向旋转到△AB1C1的位置,使得点C、A、B1在同一条直线上,那么旋转角等于()A.55°B.70°C.125°D.145°7.(2016·内蒙古中考真题)将点A(3,2)沿x轴向左平移4个单位长度得到点A′,点A′关于y轴对称的点的坐标是()A.(﹣3,2)B.(﹣1,2)C.(1,2)D.(1,﹣2)8.(2019·浙江中考真题)如图,下列关于物体的主视图画法正确的是()A.B.C.D.9.(2019·浙江中考真题)某露天舞台如图所示,它的俯视图是()A.B.C.D.10.(2013·四川中考真题)下面是一天中四个不同时刻两座建筑物的影子,将它们按时间先后顺序正确的是()A.(3)(1)(4)(2)B.(3)(2)(1)(4)C.(3)(4)(1)(2)D.(2)(4)(1)(3)二、填空题(每小题4分,共28分)11.(2015·青海中考真题)若点(a,1)与(﹣2,b)关于原点对称,则b a=_______.12.(2010·江苏中考模拟)如图,在直角坐标系中,已知点A(-3,0),B(0,4),对△OAB连续作旋转变换,依次得到三角形①,②,③,④,…,则三角形⑩的直角顶点的坐标为______________.13.(2019·山东中考模拟)在平面直角坐标系中,点A的坐标是(-1,2) .作点A关于x轴的对称点,得到点A1,再将点A1向下平移4个单位,得到点A2,则点A2的坐标是_________.14.(2018·江苏中考模拟)如图,圆柱形容器高为18cm,底面周长为24cm,在杯内壁离杯底4cm的点B 处有乙滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm与蜂蜜相对的点A处,则蚂蚁从外币A处到达内壁B处的最短距离为.15.(2019·湖北中考模拟)将一张长方形纸片按如图所示的方式折叠,BD、BE为折痕,若∠ABE=20°,则∠DBC为_____度.16.(2019·吉林中考模拟)如图,身高1.6米的小丽在阳光下的影长为2米,在同一时刻,一棵大树的影长为8米,则这棵树的高度为_____米.17.(2013·吉林中考模拟)如图是一个几何体的三视图,根据图中提供的数据(单位:㎝)可求得这个几何体的体积为.三、解答题一(每小题6分,共18分)18.(2018·吉林中考真题)图①、图②均是8×8的正方形网格,每个小正方形的顶点称为格点,线段OM、ON的端点均在格点上.在图①、图②给定的网格中以OM、ON为邻边各画一个四边形,使第四个顶点在格点上.要求:(1)所画的两个四边形均是轴对称图形.(2)所画的两个四边形不全等.19.(2012·广东中考真题)如图,在边长为1的正方形组成的网格中,△AOB的顶点均在格点上,点A、B 的坐标分别是A(3,2)、B(1,3).△AOB绕点O逆时针旋转90°后得到△A1OB1.(直接填写答案)(1)点A关于点O中心对称的点的坐标为;(2)点A1的坐标为;(3)在旋转过程中,点B经过的路径为弧BB1,那么弧BB1的长为.20.(2019·河北中考模拟)如图,△BAD是由△BEC在平面内绕点B旋转60°而得,且AB⊥BC,BE=CE,连接DE.(1)求证:△BDE≌△BCE;(2)试判断四边形ABED的形状,并说明理由.四、解答题二(每小题8分,共24分)21.(2019·广东初三月考)如图,在路灯下,小明的身高如图中线段AB所示,他在地面上的影子如图中线段AC所示,小亮的身高如图中线段FG所示,路灯灯泡在线段DE上.(1)请你确定灯泡所在的位置,并画出小亮在灯光下形成的影子.(2)如果小明的身高AB=1.6m,他的影子长AC=1.4m,且他到路灯的距离AD=2.1m,求灯泡的高.22.(2019·江苏初一期末)如图是由一些棱长都为1cm的小正方体组合成的简单几何体.(1)画该几何体的主视图、左视图和俯视图;(2)如果在这个几何体上再添加一些小正方体,并保持俯视图和左视图不变,最多可以再添加块小正方体.23.(2018·宁夏银川二中中考模拟)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣4,3)、B(﹣3,1)、C(﹣1,3).(1)请按下列要求画图:①将△ABC先向右平移4个单位长度、再向上平移2个单位长度,得到△A1B1C1,画出△A1B1C1;②△A2B2C2与△ABC关于原点O成中心对称,画出△A2B2C2.(2)在(1)中所得的△A1B1C1和△A2B2C2关于点M成中心对称,请直接写出对称中心M点的坐标.五、解答题三(每小题10分,共20分)24.(2016·辽宁中考模拟)(1)如图①,在正方形ABCD中,△AEF的顶点E,F分别在BC,CD边上,高AG与正方形的边长相等,求∠EAF的度数.(2)如图②,在Rt△ABD中,∠BAD=90°,AB=AD,点M,N是BD边上的任意两点,且∠MAN=45°,将△ABM 绕点A逆时针旋转90°至△ADH位置,连接NH,试判断MN2,ND2,DH2之间的数量关系,并说明理由.(3)在图①中,若EG=4,GF=6,求正方形ABCD的边长.25.(2018·广东中考模拟)(12分)如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.(1)求证:DE⊥AG;(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图2.①在旋转过程中,当∠OAG′是直角时,求α的度数;②若正方形ABCD的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
辽宁各市2012年中考数学试题分类解析汇编专题4:图形的变换一、选择题1. (2012辽宁鞍山3分)如图,下面是由四个完全相同的正方体组成的几何体,这个几何体的主视图是【】A. B. C. D.【答案】C。
【考点】简单组合体的三视图。
【分析】根据主视图的定义,找到几何体从正面看所得到的图形即可:从正面可看到从左往右3列小正方形的个数依次为:1,1,1。
故选C。
2. (2012辽宁本溪3分)如图所示的几何体的俯视图是【】A、错误!未找到引用源。
B、错误!未找到引用源。
C、错误!未找到引用源。
D、错误!未找到引用源。
【答案】B。
【考点】简单组合体的三视图。
【分析】根据俯视图是从上面向下看得到的识图解答:从上向下看,从左向右共3列,左边一列3个正方形,向右依次是一个正方形,且上齐。
故选B。
3. (2012辽宁本溪3分)下列各网格中的图形是用其图形中的一部分平移得到的是【】A、错误!未找到引用源。
B、错误!未找到引用源。
C、错误!未找到引用源。
D、错误!未找到引用源。
【答案】C。
【考点】网格问题,利用平移设计图案。
【分析】根据平移及旋转的性质对四个选项进行逐一分析即可.A、是利用图形的旋转得到的,故本选项错误;B、是利用图形的旋转和平移得到的,故本选项错误;C、是利用图形的平移得到的,故本选项正确;D、是利用图形的旋转得到的,故本选项错误。
故选C。
4. (2012辽宁朝阳3分)两个大小不同的球在水平面上靠在一起,组成如图所示的几何体,则该几何体的俯视图是【】A.两个外离的圆B. 两个相交的圆C. 两个外切的圆D. 两个内切的圆【答案】C。
【考点】简单组合体的三视图。
【分析】找到从上面看所得到的图形即可:从上面看易得该几何体的俯视图是两个外切的圆。
故选C。
5. (2012辽宁大连3分)下列几何体中,主视图是三角形的几何体是【】A. B. C. D.【答案】C。
【考点】简单几何体的三视图。
【分析】找到从正面看所得到的图形即可:从正面看,主视图是三角形的几何体是圆锥。
故选C。
6. (2012辽宁丹东3分)如图是一个几何体的三视图,则这个几何体是【】A.圆柱B.圆锥C.球D.三棱柱【答案】B。
【考点】由三视图判断几何体。
【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,由于俯视图为圆形可得为球、圆柱、圆锥,主视图和左视图为三角形可得此几何体为圆锥。
故选B。
7. (2012辽宁阜新3分)如图的几何体是由5个完全相同的正方体组成的,这个几何体的左视图是【】A. B. C. D.【答案】B。
【考点】简单组合体的三视图。
【分析】根据左视图是从左面看到的图形判定则可:从左边看去,左边是两个正方形,右边是一个正方形,故选B。
8. (2012辽宁锦州3分)如图,在△ABC中,AB=AC, AB+BC=8.将△ABC折叠,使得点A落在点B处,折痕DF分别与AB、AC交于点D、F,连接BF,则△BCF的周长是【】A. 8B. 16C. 4D. 10【答案】A。
【考点】折叠问题,折叠对称的性质。
【分析】由折叠对称的性质知,BF=AF。
∴BCF的周长=BC+CF+BF= BC+CF+AF= BC+AC=BC+AB=8。
故选A。
9. (2012辽宁沈阳3分)左下图是由四个相同的小立方块搭成的几何体,这个几何体的左视图是【】A. B. C. D.【答案】D。
【考点】简单组合体的三视图。
【分析】找到从左面看所得到的图形即可:从左往右小正方形的个数依次为:2,1。
故选D。
10. (2012辽宁铁岭3分)下列图形中,不是..中心对称的是【】【答案】C。
【考点】中心对称图形。
【分析】根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合。
因此,所给图形中不是..中心对称的是C。
故选C。
11. (2012辽宁铁岭3分)如图,桌面上是由长方体的茶叶盒与圆柱体的茶叶盒组成的一个立体图形,其左视图是【】【答案】D。
【考点】简单组合体的三视图。
【分析】圆柱体形状的茶叶盒的左视图是圆,长方体的茶叶盒的左视图是矩形,且圆位于矩形的上方。
故选D。
12. (2012辽宁铁岭3分)矩形纸片ABCD中,AB=4,AD=8,将纸片沿EF折叠使点B与点D重合,折痕EF与BD相交于点O,则DF的长为【】A.3B.4C.5D.6【答案】C。
【考点】翻折变换(折叠问题),矩形的性质,勾股定理。
【分析】设DF=x,则BF=x,CF=8-x。
在Rt△DFC中,DF2=CF2+DC2,即x2=(8-x)2+42,解得:x=5,即DF的长为5。
故选C。
13. (2012辽宁营口3分)如图是由8个棱长为1个单位的小立方体组成的立体图形,这个立体图形的主视图是【】【答案】D。
【考点】简单组合体的三视图。
【分析】找到从正面看所得到的图形即可:从正面看易得下层有4个正方形,中层有2个正方形,上层有1个正方形。
故选D 。
二、填空题1. (2012辽宁本溪3分)如图,用半径为4cm ,弧长为6πcm 的扇形围成一个圆锥的侧面,则所得圆锥的高为 ▲ _cm 。
【答案】7。
【考点】圆锥的计算,勾股定理。
【分析】先根据扇形的弧长求得圆锥的底面的半径,然后利用勾股定理求得圆锥的高即可设圆锥的底面半径为r ,∵弧长为6πcm,∴2πr=6π,解得:r=3cm 。
∵扇形的半径为4cm ,即圆锥的母线是4cm , ∴圆锥的高为22437-=(cm )。
2. (2012辽宁本溪3分)如图,矩形ABCD 中,点P 、Q 分别是边AD 和BC 的中点,沿过C 点的直线折叠矩形ABCD 使点B 落在线段PQ 上的点F 处,折痕交AB 边于点E ,交线段PQ 于点G ,若BC 长为3,则线段FG 的长为 ▲ 。
3. (2012辽宁朝阳3分)如图,△ABC 三个顶点都在5×5的网格(每个小正方形的边长均为1单位长度)的格点上,将△ABC 绕点C 顺时针旋转到△A′B′C 的位置,且A′、B′仍落在格点上,则线段AC 扫过的扇形所围成的圆锥体的底面半径是 ▲ 单位长度。
3。
【考点】圆锥的计算,弧长的计算,旋转的性质,勾股定理。
【分析】根据题意得:2222CA AB BC 2313++90133π⋅⋅。
设圆锥的半径为r ,则2πr=32,解得:r=34。
4. (2012辽宁大连3分)如图,矩形ABCD 中,AB =15cm ,点E 在AD 上,且AE =9cm ,连接EC ,将矩形ABCD 沿直线BE 翻折,点A 恰好落在EC 上的点A'处,则A'C = ▲ cm 。
5. (2012辽宁丹东3分)如图,边长为6的正方形ABCD内部有一点P,BP=4,∠PBC=60°,点Q为正方形边上一动点,且△PBQ是等腰三角形,则符合条件的Q点有▲ 个.【答案】5。
【考点】动点问题,正方形的性质,等腰三角形的判定,勾股定理,锐角三角函数定义,特殊角的三角函数值,线段中垂线的性质,等边三角形的判定。
【分析】如图,符合条件的Q点有5个。
当BP=BQ时,在AB,BC边上各有1点;当BP=QP时,可由锐角三角函数求得点P到AB的距离为2,到CD的距离为4,BC,CD,DA边上各有1点;到BC的距离为23,到AD的距离为623当BQ=PQ时,BP的中垂线与AB,BC各交于1点,故在AB,BC边上各有1点。
又当Q在BC边上时,由于△BPQ是等边三角形,故3点重合。
因此,符合条件的Q点有5个。
三、解答题1. (2012辽宁本溪12分)已知,在△ABC中,AB=AC。
过A点的直线a从与边AC重合的位置开始绕点A按顺时针方向旋转角错误!未找到引用源。
,直线a交BC边于点P(点P不与点B、点C重合),△BMN的边MN始终在直线a上(点M在点N的上方),且BM=BN,连接CN。
(1)当∠BAC=∠MBN=90°时,①如图a,当错误!未找到引用源。
=45°时,∠ANC的度数为_______;②如图b,当错误!未找到引用源。
≠45°时,①中的结论是否发生变化?说明理由;(2)如图c,当∠BAC=∠MBN≠90°时,请直接写出∠ANC与∠BAC之间的数量关系,不必证明。
【答案】解:(1)①450。
②不变。
理由如下过B、C分别作BD⊥AP于点D,CE⊥AP于点E。
∵∠BAC =90°,∴∠BAD+∠EAC=90°。
∵BD⊥AP,∴∠ADB =90°。
∴∠ABD+∠BAD=90°。
∴∠ABD=∠EAC。
又∵AB=AC,∠ADB =∠CEA=90°,∴△ADB≌△CEA(AAS)。
∴AD=EC,BD=AE。
∵BD是等腰直角三角形NBM斜边上的高,∴BD=DN,∠BND=45°。
∴BN=BD=AE。
∴DN-DE=AE-DE,即NE=AD=EC。
∵∠NEC =90°,∴∠ANC =45°。
(3)∠ANC =90°-12∠BAC。
【考点】等腰(直角)三角形的判定和性质,全等三角形的判定和性质,三角形内角和定理,圆周角定理。
【分析】(1)①∵BM=BN,∠MBN=90°,∴∠BMN=∠BNM=45°。
又∵∠CAN=45°,∴∠BMN=∠CAN。
又∵A B=AC,AN=AN,∴△BMN≌△CAN(SAS)。
∴∠ANC=∠BNM=45°。
②过B、C分别作BD⊥AP于点D,CE⊥AP于点E。
通过证明△ADB≌△CEA从而证明△CEN是等腰直角三角形即可。
(2)如图,由已知得:∠θ=1800-2∠ABC-∠1(∵AB=AC)=1800-∠2-∠6-∠1(∵∠BAC=∠MBN,BM=BN) =(1800-∠2-∠1)-∠6=∠3+∠4+∠5-∠6(三角形内角和定理)=∠6+∠5-∠6=∠5(∠3+∠4=∠ABC=∠6)。
∴点A、B、N、C四点共圆。
∴∠ANC =∠ABC ==90°-12∠BAC。
2. (2012辽宁朝阳10分)如图,四边形ABCD是正方形,点E是边BC上一动点(不与B、C重合)。
连接AE,过点E作EF⊥AE,交DC于点F。
(1)求证:△ABE∽△ECF;(2)连接AF,试探究当点E在BC什么位置时,∠BAE=∠EAF,请证明你的结论。
【答案】解:(1)证明:∵四边形ABCD是正方形,∴∠B=∠C=90°。
∴∠BAE+∠BEA=90°。
∵EF⊥AE,∴∠AEF=90°。
∴∠BEA+∠FEC=90°。
∴∠BAE=∠FEC。
∴△ABE∽△ECF。
(2)E是中点时,∠BAE=∠EAF。
证明如下:连接AF,延长AE于DC的延长线相交于点H,∵E为BC中点,∴BE=CE。