高考物理复习 专题能力训练8 电场性质及带电粒子在电场中的运动
2021届新高考物理二轮复习专题能力训练8 电场性质及带电粒子在电场中的运动 含解析
专题能力训练8 电场性质及带电粒子在电场中的运动(时间:45分钟 满分:100分)专题能力训练第19页一、选择题(本题共8小题,每小题7分,共56分。
在每小题给出的四个选项中,1~5题只有一个选项符合题目要求,6~8题有多个选项符合题目要求。
全部选对的得7分,选对但不全的得4分,有选错的得0分)1.(2019·全国卷Ⅰ)如图所示,空间存在一方向水平向右的匀强电场,两个带电小球P 和Q 用相同的绝缘细绳悬挂在水平天花板下,两细绳都恰好与天花板垂直,则( )A.P 和Q 都带正电荷B.P 和Q 都带负电荷C.P 带正电荷,Q 带负电荷D.P 带负电荷,Q 带正电荷答案:D解析:两个带电小球在匀强电场中均处于平衡状态,只有两小球带异种电荷、相互间为吸引力,才可能平衡。
小球P 带负电荷时,匀强电场提供的力与小球Q 对小球P 的吸引力抵消,合力为零,此时小球Q 带正电荷,匀强电场提供的力与小球P 对小球Q 的吸引力抵消,合力为零,故A 、B 、C 错误,D 正确。
2.(2019·天津卷)如图所示,在水平向右的匀强电场中,质量为m 的带电小球,以初速度v 从M 点竖直向上运动,通过N 点时,速度大小为2v ,方向与电场方向相反,则小球从M 运动到N 的过程( )A.动能增加12mv 2B.机械能增加2mv 2C.重力势能增加32mv 2D.电势能增加2mv 2答案:B解析:小球由M 到N 点过程动能增加量为ΔE k =12m (2v )2-12mv 2=32mv 2,选项A 错误;小球在竖直方向做上抛运动,竖直方向的位移为h=v 22g ,故克服重力做功为W=mgh=12mv 2,即重力势能增加12mv 2,选项C 错误;动能增加32mv 2,重力势能增加12mv 2,故机械能增加2mv2,选项B正确;根据能量守恒定律可知,电势能减小2mv2,选项D错误。
3.如图所示,匀强电场中有一圆,其平面与电场线平行,O为圆心,A、B、C、D为圆周上的四个等分点。
最新【通用版】高考物理考前专题训练《带电粒子在交变电场中的运动》(含答案)
【通用版】高考物理考前突破专题专题一、带电粒子在交变电场中的运动1.A 、B 两金属板平行放置,在t =0时刻将电子从A 板附近由静止释放(电子的重力忽略不计)。
分别在A 、B 两板间加上右边哪种电压时,有可能使电子到不了B 板【答案】B2.将如图交变电压加在平行板电容器A 、B 两极板上,开始B 板电势比A 板电势高,这时有一个原来静止的电子正处在两板的中间,它在电场力作用下开始运动,设A 、B 两极板的距离足够大,下列说法正确的是A .电子一直向着A 板运动B .电子一直向着B 板运动C .电子先向A 运动,然后返回向B 板运动,之后在A 、B 两板间做周期性往复运动D .电子先向B 运动,然后返回向A 板运动,之后在A 、B 两板间做周期性往复运动 【答案】D【解析】根据交变电压的变化规律,不难确定电子所受电场力的变化规律,从而作出电子的加速度a 、速度v 随时间变化的图线,如图所示,从图中可知,电子在第一个T 4内做匀加速运动,第二个T4内做匀减速运动,在这半个周期内,因初始B 板电势高于A 板电势,所以电子向B 板运动,加速度大小为eUmd 。
在第三个T 4内做匀加速运动,第四个T4内做匀减速运动,但在这半个周期内运动方向与前半个周期相反,向A 板运动,加速度大小为eUmd,所以,电子做往复运动,综上分析正确选项应为D 。
7.如图甲所示,真空室中电极K 发出的电子(初速度不计)经过电势差为U 1的加速电场加速后,沿两水平金属板C 、D 间的中心线射入两板间的偏转电场,最后打在荧光屏上。
C 、D 两板间的电势差U CD 随时间变化的图象如图乙所示,设C 、D 间的电场可看作匀强电场,且两板外无电场。
已知电子的质量为m 、电荷量为e (重力不计),C 、D 极板长为l ,板间距离为d ,偏转电压U 2,荧光屏距C 、D 右端的距离为l6,所有电子都能通过偏转电极。
(1)求电子通过偏转电场的时间t 0;(2)若U CD 的周期T =t 0,求荧光屏上电子能够到达的区域的长度; (3)若U CD 的周期T =2t 0,求到达荧光屏上O 点的电子的动能。
高考物理二轮复习专题三电场和磁场能力训练电场性质及带电粒子在电场中的运动
专题能力训练8 电场性质及带电粒子在电场中的运动(时间:45分钟满分:100分)一、选择题(本题共8小题,每小题7分,共56分。
在每小题给出的四个选项中,1~6题只有一个选项符合题目要求,7~8题有多个选项符合题目要求。
全部选对的得7分,选对但不全的得4分,有选错的得0分) 1.(2020·重庆模拟)一个正七边形七个顶点上各固定一个电荷量为q的点电荷,各电荷的电性如图所示,O点是正七边形的几何中心。
若空间中有一点M,且MO垂直于正七边形所在平面,则下列说法正确的是( )A.M点的电场强度方向是沿着OM连线,由O点指向M点B.M点的电场强度方向是沿着OM连线,由M点指向O点C.将一个负检验电荷从M点移动到无穷远处,电场力做正功D.将一个正检验电荷从M点移动到无穷远处,电场力做正功2.如图所示,匀强电场中的A、B、C三点构成一边长为a的等边三角形。
电场强度的方向与纸面平行。
电子以某一初速度仅在静电力作用下从B移动到A动能减少E0。
质子以某一初速度仅在静电力作用下从C移动到A动能增加E0,已知电子和质子电荷量绝对值均为e,则匀强电场的电场强度为( )A. B. C. D.3.如图所示,匀强电场中有一圆,其平面与电场线平行,O为圆心,A、B、C、D为圆周上的四个等分点。
现将某带电粒子从A点以相同的初动能向各个不同方向发射,到达圆周上各点时,其中过D点动能最大,不计重力和空气阻力。
则( )A.该电场的电场线一定是与OD平行B.该电场的电场线一定是与OB垂直C.带电粒子若经过C点,则其动能不可能与初动能相同D.带电粒子不可能经过B点4.真空中有一带电金属球,通过其球心的一直线上各点的电势φ分布如图,r表示该直线上某点到球心的距离,r1、r2分别是该直线上A、B两点离球心的距离。
根据电势图象(φ-r图象),下列说法正确的是( )A.该金属球可能带负电B.A点的电场强度方向由A指向BC.A点和B点之间的电场,从A到B,其电场强度可能逐渐增大D.电荷量为q的正电荷沿直线从A移到B的过程中,电场力做功W=q(φ2-φ1)5.电源和一个水平放置的平行板电容器、两个变阻器R1、R2和定值电阻R3组成如图所示的电路。
2022高考二轮复习 闯关导练热点8 电场的性质及带电粒子在电场中的运动
热点8电场的性质及带电粒子在电场中的运动一、选择题(1~7题为单项选择题,8~12题为多项选择题)1.[2020·浙江7月,8]空间P、Q两点处固定电荷量绝对值相等的点电荷,其中Q点处为正电荷,P、Q两点附近电场的等势线分布如图所示,a、b、c、d、e为电场中的5个点,设无穷远处电势为0,则( )A.e点的电势大于0B.a点和b点的电场强度相同C.b点的电势低于d点的电势D.负电荷从a点移动到c点时电势能增加2.真空中某点电荷的等势面示意如图,图中相邻等势面间电势差相等.下列说法正确的是( )A.该点电荷一定为正电荷B.P点的场强一定比Q点的场强大C.P点电势一定比Q点电势低D.正检验电荷在P点比在Q点的电势能大3.如图所示,在绝缘水平面上方存在着足够大的水平向右的匀强电场,带正电的小金属块以一定初速度从A 点开始沿水平面向左做直线运动,经长度L 到达B 点,速度变为零.此过程中,金属块损失的动能有23转化为电势能.金属块继续运动到某点C(图中未标出)时的动能和A 点时的动能相同,则金属块从A 开始运动到C 整个过程中经过的总路程为( )A .1.5LB .2LC .3LD .4L 4.[2020·浙江7月,6]如图所示,一质量为m 、电荷量为q(q>0)的粒子以速度v 0从MN 连线上的P 点水平向右射入大小为E 、方向竖直向下的匀强电场中.已知MN 与水平方向成45°角,粒子的重力可以忽略,则粒子到达MN 连线上的某点时( )A .所用时间为mv 0qEB .速度大小为3v 0C .与P 点的距离为22mv 2qED .速度方向与竖直方向的夹角为30° 5.[2020·东北三省四市教研联合体模拟]在直角坐标系xOy平面内存在一正点电荷Q,坐标轴上有A、B、C三点,OA=OB=BC=a,其中A点和B点的电势相等,O点和C点的电势相等,静电力常量为k,则下列说法正确的是( )A.点电荷Q位于O点B.O点电势比A点电势高C.C点的电场强度大小为kQ2a2D.将某一正试探电荷从A点沿直线移动到C点,电势能一直减小6.如图所示,匀强电场中的△PAB平面平行于电场方向,C点为AB的中点,D点为PB的中点.将一个带负电的粒子从P点移动到A点,电场力做功W PA=1.6×10-8 J;将该粒子从P点移动到B点,电场力做功W PB=3.2×10-8 J.下列说法正确的是( )A.直线PC为等势线B.若将该粒子从P点移动到C点,电场力做功为W PC=2.4×10-8 JC.电场强度方向与直线AD平行D.P点的电势高于A点的电势7.[2020·河北“五个一名校联盟”第一次诊断]如图所示,地面上某区域存在着水平向右的匀强电场,一个质量为m的带负电小球以水平向右的初速度v0,由O点射入该区域,刚好竖直向下通过竖直平面中的P点,已知连线OP与初速度方向的夹角为60°,重力加速度为g,则以下说法正确的是( )A.电场力大小为3mg 2B.小球所受的合外力大小为3mg 3C.小球由O点到P点用时3v0 gD.小球通过P点时的动能为52 mv208.真空中有两个固定的带正电的点电荷,电荷量不相等.一个带负电的试探电荷置于二者连线上的O 点时,仅在电场力的作用下恰好保持静止状态.过O点作两正电荷连线的垂线,以O点为圆心的圆与连线和垂线分别交于a、c和b、d,如图所示.以下说法正确的是( )A.a点电势低于O点B.b点电势低于c点C.该试探电荷在a点的电势能大于在b点的电势能D.该试探电荷在c点的电势能小于在d点的电势能9.[2020·云南第二次统一检测]如图所示,A、B、C、D、E是直角坐标系xOy中的五个点,其坐标分别为A(1,1),B(1,0),C(0,-1),D(-1,0),E(0,1).在坐标原点O和A点处分别放置一等量正、负点电荷,关于这些点的场强和电势,下列说法正确的是( )A.C点处的场强比E点处的场强大B.C点处的场强与D点处的场强大小相等C.C点处的电势比B点处的电势高D.C点处的电势与E点处的电势相等10.[2020·江苏卷,9]如图所示,绝缘轻杆的两端固定带有等量异号电荷的小球(不计重力).开始时,两小球分别静止在A、B位置.现外加一匀强电场E,在静电力作用下,小球绕轻杆中点O转到水平位置.取O点的电势为0.下列说法正确的有( )A.电场E中A点电势低于B点B.转动中两小球的电势能始终相等C.该过程静电力对两小球均做负功D.该过程两小球的总电势能增加11.现有一组方向平行于x轴的电场线,若从x轴的坐标原点由静止释放一个带电粒子,仅在电场力的作用下,该粒子沿着x轴的正方向从x1=0处运动到x2=1.2 cm处,其电势φ随位置x坐标变化的情况如图所示.下列有关说法正确的是( )A.在x轴上0~0.6 cm的范围内和0.6~1.2 cm的范围内电场的方向一定相反B.该粒子一定带正电C.在x轴上x=0.6 cm的位置,电场强度大小为零D .该粒子从x 1=0处运动到x 2=1.2 cm 处的过程中,电势能一直减小 12.[2020·四川广元市第二次统考]如图所示,在正点电荷Q 的电场中有A 、B 、C 、D 四个点,A 、B 、C 为直角三角形的三个顶点,D 为AC 的中点,∠A=30°,A 、B 、C 、D 四点的电场强度大小分别用E A 、E B 、E C 、E D 表示,已知E A =E C ,B 、C 两点的电场强度方向相同,点电荷Q 在A 、B 、C 三点构成的平面内.则( )A .E A =34E DB .点电荷Q 在D 点位置C .将一正点电荷q 从A 点沿直线移到C 点,电场力先做正功再做负功D .B 、A 两点和B 、C 两点间的电势差满足U BA =U BC 二、非选择题13.[2020·辽宁大连市第二次模拟]如图甲所示,将一倾角θ=37°的粗糙绝缘斜面固定在地面上,空间存在一方向沿斜面向上的匀强电场.一质量m =0.2 kg ,带电荷量q =2.0×10-3C 的小物块从斜面底端由静止释放,运动0.1 s 后撤去电场,小物块运动的v t 图象如图乙所示(取沿斜面向上为正方向),g =10 m/s 2.(sin 37°=0.6,cos 37°=0.8),求:(1)电场强度E 的大小;(2)小物块在0~0.3 s 运动过程中机械能增加量.14.如图,ABCD为竖直放在场强大小为E=104V/m的水平向右匀强电场中的绝缘光滑轨道,其中轨道BCD 部分是半径为R的半圆形轨道,轨道的水平部分与半圆相切于B点,A为水平轨道上的一点,而且AB=R =0.2 m,把一质量m=0.1 kg、带电荷量q=+1×10-4 C的小球放在水平轨道的A点由静止开始释放,小球在轨道的内侧运动(g取10 m/s2).求:(1)小球到达C点时对轨道压力是多大?(2)小球能否沿圆轨道到达D点?(3)若小球释放点离B的距离为1.0 m,则小球从D点飞出后落地点离B的距离是多少?(结果可以含有根号)热点8 电场的性质及带电粒子在电场中的运动1.答案:D解析:由等势线分布图可以确定该图为两等量异种点电荷电场的等势线分布图,两点电荷连线垂直平分线上处处电势为零,A 项错;电场线与等势线垂直,故a 、b 两点的电场强度方向不同,B 项错;Q 点处为正电荷,故垂直平分线左侧电势均大于零,右侧电势均小于零,所以b 点电势高于d 点电势,C 项错;又负电荷在电势高处电势能小,所以负电荷从a 点移到c 点时电势能增加,D 项对.2.答案:B解析:正电荷和负电荷周围的等势面都为一组同心球面,该点电荷不一定为正电荷,故A 错误;相邻等势面间电势差相等,P 点附近的等差等势面更加密集,故P 点的场强一定比Q 点的场强大,故B 正确;正电荷和负电荷周围的等势面都为一组同心球面,若为正点电荷,则P 点电势一定比Q 点电势高,故C 错误;从等势面的情况无法判断该点电荷为正点电荷还是负点电荷,无法判断P 点电势与Q 点电势的高低,就无法判断正检验电荷在P 点和在Q 点的电势能的大小,故D 错误.3.答案:D解析:根据题述,小金属块从A 运动到B ,克服摩擦力做功W f =13E k =F f L ,克服电场力做功W E =23E k =qEL.设小金属块从B 运动到C 经过的路程为x ,由动能定理,qEx -F f x =E k ,解得x =3L.金属块从A 开始运动到C 整个过程中经过的总路程为L +x =4L ,选项D 正确.4.答案:C解析:粒子从P 点垂直电场方向出发到达MN 连线上某点时,沿水平方向和竖直方向的位移大小相等,即v 0t =12at 2,a =Eq m ,解得t =2mv 0qE ,A 项错误;在该点,粒子沿电场方向的速度v =at =2v 0,所以合速度大小为v =2v 02+v 20=5v 0,B 项错误;该点到P 点的距离s =2x =2v 0t =22mv 2qE,C 项正确;由平行四边形定则可知,在该点速度方向与竖直方向夹角的正切值tan θ=v 02v 0=12,则θ≠30°,D 项错误.5.答案:C解析:因A 点和B 点的电势相等,O 点和C 点的电势相等,故A 、B 到点电荷的距离相等,O 、C 到点电荷的距离也相等,则点电荷位置如图所示,由图可知,A 项错误;因点电荷带正电,故离点电荷越近电势越高,则O 点电势比A 点电势低,故B 项错误;由图可知点电荷与C 点的距离r C = 2 a ,根据E =k Qr 2,得E C =kQ2a2,故C 项正确;由图可知,将正试探电荷从A 点沿直线移动到C 点,电势先升高再降低,故电势能先增大再减小,故D 项错误.6.答案:B解析:由于匀强电场中U =Ed ,则在某一直线方向上,电势沿直线方向均匀变化,由于D 点为PB 的中点,则W PD =W PB 2=1.6×10-8 J ,又知W PA =1.6×10-8J ,则A 、D 两点电势相等,故直线AD 为等势线,电场强度方向与直线AD 垂直,故A 、C 错误;由于电场力做功与路径无关,W AB =W AP +W PB =(-W PA )+W PB =1.6×10-8J ,从P 点移动到C 点,电场力做功W PC =W PA +W AC =W PA +W AB 2=2.4×10-8J ,故B 正确;根据W PA =-qU PA ,电场力对负电荷做正功,可知U PA <0,P 点的电势低于A 点的电势,故D 错误.7.答案:C解析:设OP =L ,从O 到P 水平方向做匀减速运动,到达P 点的水平速度为零;竖直方向做自由落体运动,则水平方向:Lcos 60°=v 02t ,竖直方向:Lsin 60°=12gt 2,解得:t =3v 0g,选项C 正确;水平方向F 1=ma =m v 0t =3mg 3,小球所受的合外力是F 1与mg 的合力,可知合力的大小F =mg 2+F 12=233mg ,选项A 、B 错误;小球通过P 点时的速度v P =gt =3v 0,则动能:E kP =12mv 2P =32mv 20,选项D 错误. 8.答案:BD解析:由题意可知O 点场强为零,所以a 、O 两点间场强方向是由a 指向O 的,所以φa >φO ,A 项错误;同理,φc >φO ,O 点与b 点间的电场强度有竖直向上的分量,所以φO >φb ,则φc >φb ,B 项正确;同理,φa >φb ,φc >φd ,又带负电的试探电荷在电势高处电势能较小,所以C 项错误,D 项正确.9.答案:BC解析:因+q 在E 、C 两点的场强大小相等,-q 在C 点的场强小于在E 点的场强,且两电荷在E 点的场强的夹角较小,则合场强较大,选项A 错误;由对称性可知,C 点处的场强与D 点处的场强大小相等,选项B 正确;+q 在B 、C 两点的电势相等;而-q 在C 点的电势比B 点高,可知C 点处的电势比B 点处的电势高,选项C 正确;若取无穷远处为零电势点,则E 点的电势等于零,而C 点的电势大于零,选项D 错误.10.答案:AB解析:沿电场线方向电势降低,则B 点的电势比A 点的电势高,A 正确;由对称性可知,两小球所处位置的电势的绝对值始终相等,则由E p =qφ可知两小球的电势能始终相等,B 正确;该过程中,带正电荷的小球所受的电场力方向向右,带负电荷的小球所受的电场力方向向左,则电场力对两小球均做正功,C 错误;电场力做正功,电势能减少,所以该过程中两小球的总电势能减少,D 错误.11.答案:BD解析:在x 轴上0~1.2 cm 的范围内,电势不断降低,由于电场线平行于x 轴,则知电场的方向一直沿x 轴正方向不变,故A 错误;粒子由静止开始沿x 轴的正方向运动,所受的电场力沿x 轴正方向,与电场方向相同,所以该粒子一定带正电,故B 正确;根据φ x 图象的斜率等于电场强度可知,该电场的电场强度不变,是匀强电场,则知在x 轴上x =0.6 cm 的位置,电场强度大小为E =⎪⎪⎪⎪⎪⎪ΔφΔx =300.6×10-2 V/m =5 000 V/m ,故C 错误;该粒子从x 1=0处运动到x 2=1.2 cm 处的过程中,电场力始终做正功,其电势能一直减小,故D 正确.12.答案:AD解析:点电荷Q 在A 、B 、C 三点构成的平面内,正点电荷Q 的电场中,E A =E C ,则正点电荷在AC 的中垂线上;又B 、C 两点的电场强度方向相同,则正点电荷在BC 的连线上,所以正点电荷的位置在图中O 点,故B 项错误;由几何关系得:r OD r OA =32,根据点电荷的场强公式E =k Q r 2可得,E A =34E D ,故A 项正确; 在正点电荷的电场中,离场源越远,电势越低,从A 点沿直线到C 点过程中,电势先升高后降低,则正点电荷q 从A 点沿直线移到C 点的过程中电势能先增大后减小,电场力先做负功再做正功,故C 项错误;A 、C 两点到正点电荷的距离相等,则φA =φC ,所以φB -φA =φB -φC ,B 、A 两点和B 、C 两点间的电势差满足U BA =U BC ,故D 项正确.13.答案:(1)3×103N/C (2)0.36 J解析:(1)加速时:a 1=Δv 1Δt 1=20 m/s 2 减速时:加速度大小a 2=⎪⎪⎪⎪⎪⎪Δv 2Δt 2=10 m/s 2 由牛顿第二定律得:Eq -mgsin θ-F f =ma 1mgsin θ+F f =ma 2联立得E =3×103N/C摩擦力F f =0.8 N(2)方法一:ΔE k =0ΔE p =mgxsin 37°x =0.3 mΔE=ΔE pΔE=0.36 J方法二:加速距离x 1=v 2t 1=0.1 m 减速距离x 2=v 2t 2=0.2 m 电场力做功W E =Eqx 1=0.6 J摩擦力做功W f =-F f (x 1+x 2)=-0.24 J物块在0~0.3 s 运动过程中机械能增加量ΔE=W E +W f =0.36 J.14.答案:(1)3 N (2)不能 (3)26-15 m解析:(1)由A 点到C 点应用动能定理有:Eq(AB +R)-mgR =12mv 2C 解得:v C =2 m/s设在C 点轨道对小球支持力为F N ,应用牛顿第二定律得:F N -Eq =m v 2C R得F N =3 N由牛顿第三定律知,小球在C 点对轨道的压力大小为3 N.(2)小球要通过D 点,必有mg≤m v 2D R设释放点距B 点的距离为x 时小球能通过D 点,由动能定理得:Eqx -mg·2R=12mv 2D 以上两式联立可得:x≥0.5 m.因AB<0.5 m故小球不能到达D 点.(3)释放点离B 点的距离x 1=1 m ,从释放点到D 点由动能定理得:Eqx 1-mg·2R=12mv′2D 解得:v′D =2 3 m/s从D 点飞出后水平方向做匀减速运动,加速度为a =Eq m =10 m/s 2 竖直方向做自由落体运动,设落地点离B 距离为x 2,由运动学知识可得2R =12gt 2,x 2=v′D t -12at 2 解得x 2=26-15 m.。
物理带电粒子在电场中的运动专项习题及答案解析及解析
物理带电粒子在电场中的运动专项习题及答案解析及解析一、高考物理精讲专题带电粒子在电场中的运动1.如图所示,光滑绝缘的半圆形轨道ABC 固定在竖直面内,圆心为O ,轨道半径为R ,B 为轨道最低点。
该装置右侧的14圆弧置于水平向右的足够大的匀强电场中。
某一时刻一个带电小球从A 点由静止开始运动,到达B 点时,小球的动能为E 0,进入电场后继续沿轨道运动,到达C 点时小球的电势能减少量为2E 0,试求:(1)小球所受重力和电场力的大小; (2)小球脱离轨道后到达最高点时的动能。
【答案】(1)0E R 02E R(2)8E 0 【解析】 【详解】(1)设带电小球的质量为m ,则从A 到B 根据动能定理有:mgR =E 0则小球受到的重力为:mg =E R方向竖直向下;由题可知:到达C 点时小球的电势能减少量为2E 0,根据功能关系可知:EqR =2E 0则小球受到的电场力为:Eq =2E R方向水平向右,小球带正电。
(2)设小球到达C 点时速度为v C ,则从A 到C 根据动能定理有:EqR =212C mv =2E 0 则C 点速度为:v C 04E m方向竖直向上。
从C 点飞出后,在竖直方向只受重力作用,做匀减速运动到达最高点的时间为:41C v E t g g m== 在水平方向只受电场力作用,做匀加速运动,到达最高点时其速度为:00442E E qE qE v at t m mg m m==== 则在最高点的动能为:2200411(2)822k E E mv m E m===2.如图(a)所示,整个空间存在竖直向上的匀强电场(平行于纸面),在同一水平线上的两位置,以相同速率同时喷出质量均为m 的油滴a 和b ,带电量为+q 的a 水平向右,不带电的b 竖直向上.b 上升高度为h 时,到达最高点,此时a 恰好与它相碰,瞬间结合成油滴p .忽略空气阻力,重力加速度为g .求(1)油滴b 竖直上升的时间及两油滴喷出位置的距离; (2)匀强电场的场强及油滴a 、b 结合为p 后瞬间的速度;(3)若油滴p 形成时恰位于某矩形区域边界,取此时为0t =时刻,同时在该矩形区域加一个垂直于纸面的周期性变化的匀强磁场,磁场变化规律如图(b)所示,磁场变化周期为T 0(垂直纸面向外为正),已知P 始终在矩形区域内运动,求矩形区域的最小面积.(忽略磁场突变的影响)【答案】(12h g 2h (2)2mg q ;P v gh = 方向向右上,与水平方向夹角为45°(3)20min 22ghT s π=【解析】 【详解】(1)设油滴的喷出速率为0v ,则对油滴b 做竖直上抛运动,有2002v gh =- 解得02v gh =000v gt =- 解得02ht g=对油滴a 的水平运动,有000x v t = 解得02x h =(2)两油滴结合之前,油滴a 做类平抛运动,设加速度为a ,有qE mg ma -=,2012h at =,解得a g =,2mg E q =设油滴的喷出速率为0v ,结合前瞬间油滴a 速度大小为a v ,方向向右上与水平方向夹θ角,则0a cos v v θ=,00tan v at θ=,解得a 2v gh =,45θ=︒两油滴的结束过程动量守恒,有:12p mv mv =,联立各式,解得:p v gh =,方向向右上,与水平方向夹45︒角(3)因2qE mg =,油滴p 在磁场中做匀速圆周运动,设半径为r ,周期为T ,则由2082pp v m qv m qT r π= 得04T gh r π=,由2p r T v π= 得02T T = 即油滴p 在磁场中的运动轨迹是两个外切圆组成的“8”字形.最小矩形的两条边长分别为2r 、4r (轨迹如图所示).最小矩形的面积为20min2242ghT s r r π=⨯=3.3L 、间距为L 、水平固定的平行金属板之间,存在方向垂直纸面向外的匀强磁场.现将下板接地,让质量为m 、电荷量为q 的带正电粒子流从两板左端连线的中点O 以初速度v 0水平向右射入板间,粒子恰好打到下板的中点.若撤去平行板间的磁场,使上板的电势φ随时间t 的变化规律如图所示,则t=0时刻,从O 点射人的粒子P 经时间t 0(未知量)恰好从下板右边缘射出.设粒子打到板上均被板吸收,粒子的重力及粒子间的作用力均不计.(1)求两板间磁场的磁感应强度大小B .(2)若两板右侧存在一定宽度的、方向垂直纸面向里的匀强磁场,为了使t=0时刻射入的粒子P 经过右侧磁场偏转后在电场变化的第一个周期内能够回到O 点,求右侧磁场的宽度d 应满足的条件和电场周期T 的最小值T min . 【答案】(1)0mv B qL = (2)223cos 2d R a R L ≥+= ;min 0(632)3L T v π+= 【解析】 【分析】 【详解】(1)如图,设粒子在两板间做匀速圆周运动的半径为R 1,则0102qv B m v R =由几何关系:222113()()22L LR R =+- 解得0mv B qL=(2)粒子P 从O 003L v t =01122y L v t = 解得03y v =设合速度为v ,与竖直方向的夹角为α,则:0tan yv v α== 则=3πα00sin v v α== 粒子P 在两板的右侧匀强磁场中做匀速圆周运动,设做圆周运动的半径为R 2,则212sin LR α= ,解得2R =右侧磁场沿初速度方向的宽度应该满足的条件为22cos 2d R R L α≥+=; 由于粒子P 从O 点运动到下极板右侧边缘的过程与从上板右边缘运动到O 点的过程,运动轨迹是关于两板间的中心线是上下对称的,这两个过程经历的时间相等,则:2min 0(22)2R T t vπα--=解得()min23L T v π=【点睛】带电粒子在电场或磁场中的运动问题,关键是分析粒子的受力情况和运动特征,画出粒子的运动轨迹图,结合几何关系求解相关量,并搞清临界状态.4.如图所示,竖直平面内有一固定绝缘轨道ABCDP ,由半径的圆弧轨道CDP 和与之相切于C 点的水平轨道ABC 组成,圆弧轨道的直径DP 与竖直半径OC 间的夹角θ=37°,A 、B 两点间的距离.质量m 1的不带电绝缘滑块静止在A 点,质量m 2、电荷量q=1×10-5C 的带正电小球静止在B 点,小球的右侧空间存在水平向右的匀强电场.现用大小F=4.5N 、方向水平向右的恒力推滑块,滑块到达月点前瞬间撤去该恒力,滑块与小球发生弹性正碰,碰后小球沿轨道运动,到达P 点时恰好和轨道无挤压且所受合力指向圆心.小球和滑块均视为质点,碰撞过程中小球的电荷量不变,不计一切摩擦.取g=10m /s 2,,.(1)求撤去该恒力瞬间滑块的速度大小v 以及匀强电场的电场强度大小E ; (2)求小球到达P 点时的速度大小v P 和B 、C 两点间的距离x . 【答案】(1) 6m /s ;7.5×104N //s ; 【解析】 【详解】(1)对滑块从A 点运动到B 点的过程,根据动能定理有:2112Fd m v = 解得:v =6m /s小球到达P 点时,受力如图所示:则有:qE =m 2g tan θ, 解得:E =7.5×104N /C(2)小球所受重力与电场力的合力大小为:2cos m gG 等θ=小球到达P 点时,由牛顿第二定律有:2P v G r=等解得:v P /s滑块与小球发生弹性正碰,设碰后滑块、小球的速度大小分别为v 1、v 2, 则有:m 1v =m 1v 1+m 2v 222211122111222m v m v m v =+ 解得:v 1=-2m /s(“-”表示v 1的方向水平向左),v 2=4m /s对小球碰后运动到P 点的过程,根据动能定理有:()()22222211sin cos 22P qE x r m g r r m v m v θθ--+=- 解得:x5.如图甲所示,极板A 、B 间电压为U 0,极板C 、D 间距为d ,荧光屏到C 、D 板右端的距离等于C 、D 板的板长.A 板O 处的放射源连续无初速地释放质量为m 、电荷量为+q 的粒子,经电场加速后,沿极板C 、D 的中心线射向荧光屏(荧光屏足够大且与中心线垂直),当C 、D 板间未加电压时,粒子通过两板间的时间为t 0;当C 、D 板间加上图乙所示电压(图中电压U 1已知)时,粒子均能从C 、D 两板间飞出,不计粒子的重力及相互间的作用.求:(1)C 、D 板的长度L ;(2)粒子从C 、D 板间飞出时垂直于极板方向偏移的最大距离; (3)粒子打在荧光屏上区域的长度. 【答案】(1)02qU L t m =2)2102qU t y md =(3)21032qU t s s md∆== 【解析】试题分析:(1)粒子在A 、B 板间有20012qU mv = 在C 、D 板间有00L v t = 解得:02qU L t m=(2)粒子从nt 0(n=0、2、4……)时刻进入C 、D 间,偏移距离最大 粒子做类平抛运动偏移距离2012y at =加速度1qU a md=得:2102qU t y md=(3)粒子在C 、D 间偏转距离最大时打在荧光屏上距中心线最远ZXXK]出C 、D 板偏转角0tan y v v θ=0y v at =打在荧光屏上距中心线最远距离tan s y L θ=+荧光屏上区域长度21032qU t s s md∆==考点:带电粒子在匀强电场中的运动【名师点睛】此题是带电粒子在匀强电场中的运动问题;关键是知道粒子在水平及竖直方向的运动规律和特点,结合平抛运动的规律解答.6.如图所示,在竖直面内有两平行金属导轨AB 、CD .导轨间距为L ,电阻不计.一根电阻不计的金属棒ab 可在导轨上无摩擦地滑动.棒与导轨垂直,并接触良好.导轨之间有垂直纸面向外的匀强磁场,磁感强度为B .导轨右边与电路连接.电路中的三个定值电阻阻值分别为2R 、R 和R .在BD 间接有一水平放置的电容为C 的平行板电容器,板间距离为d ,电容器中质量为m 的带电微粒电量为q 。
2018版 第1部分 专题8 电场的性质 带电粒子在电场中的运动
专题八 电场的性质 带电粒子在电场中的运动——————[知识结构互联]——————[核心要点回扣]——————1.电场力的性质(1)电场强度的定义式:E =F q .(2)真空中点电荷的电场强度公式:E =kQ r 2.(3)匀强电场中电场强度与电势差的关系式:E =U d .2.电场能的性质(1)电势的定义式:φ=E p q .(2)电势差的定义式:U AB =W AB q .(3)电势差与电势的关系式:U AB =φA -φB .(4)电场力做功与电势能的关系式:W AB =E p A -E p B .3.带电粒子在电场中的运动 (1)带电粒子的加速:Uq =12m v 22-12m v 21.(2)带电粒子的偏转:t=lv0y=12at2a=Uqdm.考点1电场的性质(对应学生用书第38页)■品真题·感悟高考……………………………………………………………·[考题统计]五年8考:2017年Ⅰ卷T20、Ⅲ卷T212016年Ⅲ卷T152015年Ⅰ卷T152014年Ⅰ卷T21、Ⅱ卷T192013年Ⅰ卷T15、Ⅱ卷T18[考情分析]1.本考点重在考查电场中的基本概念、典型电场的分布特点、电场线、等势面及电场强度的关系,电势、电势能高低的判断.2.理解电场力、电场力做功的特点,电场力做功与电势能的关系,灵活应用电场线分析电势高低,电势能的变化是解题的关键.3.要熟记典型电场中电场线的分布特点,特别是正、负点电荷电场线的方向.4.抓住力和能这两条主线,找出它们的联系,做到融会贯通.1.(电场力的性质)(多选)(2017·Ⅰ卷T20)在一静止点电荷的电场中,任一点的电势φ与该点到点电荷的距离r的关系如图8-1所示.电场中四个点a、b、c 和d的电场强度大小分别为E a、E b、E c和E d.点a到点电荷的距离r a与点a 的电势φa已在图中用坐标(r a,φa)标出,其余类推.现将一带正电的试探电荷由a点依次经b、c点移动到d点,在相邻两点间移动的过程中,电场力所做的功分别为W ab、W bc和W cd.下列选项正确的是()图8-1A.E a∶E b=4∶1B.E c∶E d=2∶1C.W ab∶W bc=3∶1 D.W bc∶W cd=1∶3[题眼点拨] ①“静止点电荷的电场”场强可由E =kQ r 2求解.②由“φ-t图”可求出U ab 、U bc 和U cd 的大小.AC [A 对:由题图知,a 、b 、c 、d 四个点距点电荷的距离依次增大,且r b =2r a ,由E =kQ r 2知,E a ∶E b =4∶1.B 错:r d =2r c ,由E =kQ r 2知,E c ∶E d =4∶1.C 对:在移动电荷的过程中,电场力做的功与电势能的变化量大小相等,则W ab ∶W bc =q (φa -φb )∶q (φb -φc )=3∶1.D 错:W bc ∶W cd =q (φb -φc )∶q (φc -φd )=1∶1.]2.(电场能的性质)(2016·Ⅲ卷T 15)关于静电场的等势面,下列说法正确的是( )A .两个电势不同的等势面可能相交B .电场线与等势面处处相互垂直C .同一等势面上各点电场强度一定相等D .将一负的试探电荷从电势较高的等势面移至电势较低的等势面,电场力做正功B [若两个不同的等势面相交,则在交点处存在两个不同电势数值,与事实不符,A 错;电场线一定与等势面垂直,B 对;同一等势面上的电势相同,但电场强度不一定相同,C 错;将一负电荷从电势较高的等势面移至电势较低的等势面,电场力做负功,故D 错.]3.(电场能的性质)(多选) (2014·Ⅰ卷T 21)如图8-2所示,在正点电荷Q 的电场中有M 、N 、P 、F 四点,M 、N 、P 为直角三角形的三个顶点,F 为MN 的中点,∠M =30°.M 、N 、P 、F 四点处的电势分别用φM 、φN 、φP 、φF 表示,已知φM =φN ,φP =φF ,点电荷Q 在M 、N 、P 三点所在平面内,则( )【导学号:19624092】图8-2A .点电荷Q 一定在MP 的连线上B.连接PF的线段一定在同一等势面上C.将正试探电荷从P点搬运到N点,电场力做负功D.φP大于φMAD[由于φM=φN,φP=φF,所以点电荷Q到M和N的距离相等,到P和F的距离相等,即过F作MN的中垂线,然后作FP的中垂线,两中垂线的交点为点电荷Q所在的位臵,由几何知识得Q在MP上,如图所示,故选项A正确;点电荷形成的电场中等势面是球面,故选项B错误;正试探电荷与Q同号,所以受斥力作用,故将其从P点搬运到N点时,电场力做正功,故选项C 错误;由几何关系知点电荷Q距M的距离大,距P的距离小,所以φM<φP,故选项D正确.](多选)如图所示,已知a、b、c、d为椭圆的四个顶点,+Q处在椭圆的一个焦点上,一带负电的点电荷仅在库仑力作用下绕固定的点电荷+Q 运动,则下列说法正确的是()A.负电荷在a、c两点所受的电场力相同B.负电荷在a点和c点的电势能相等C.负电荷由b运动到d的过程中电势能增加,动能减少D.负电荷由a经b运动到c的过程中,电势能先增加后减少BC[在a、c两点负电荷所受电场力方向不同,A项错误;以单个点电荷为球心的球面是等势面,所以a、c两点电势相等,根据电势与电势能的关系可知,负电荷在a、c两点电势能也相等,B项正确;负电荷由b到d 过程中,电场力始终做负功,电势能增加,动能减少,C项正确;负电荷由a经b到c的过程中,电场力先做正功再做负功,故电势能先减少后增加,D项错误.](2015·Ⅰ卷T15)如图所示,直线a、b和c、d是处于匀强电场中的两组平行线,M、N、P、Q是它们的交点,四点处的电势分别为φM、φN、φP、φQ.一电子由M点分别运动到N点和P点的过程中,电场力所做的负功相等.则()A.直线a位于某一等势面内,φM>φQB.直线c位于某一等势面内,φM>φNC.若电子由M点运动到Q点,电场力做正功D.若电子由P点运动到Q点,电场力做负功B[电子带负电荷,电子由M点分别运动到N点和P点的过程中,电场力所做的负功相等,有W MN=W MP<0,而W MN=qU MN,W MP=qU MP,q<0,所以有U MN=U MP>0,即φM>φN=φP,匀强电场中等势线为平行的直线,所以NP和MQ分别是两条等势线,有φM=φQ,故A错误,B正确;电子由M点到Q点过程中,W MQ=q(φM-φQ)=0,电子由P点到Q点过程中,W PQ=q(φP-φQ)>0,故C、D错误.]■释疑难·类题通法…………………………………………………………………·1.电场强度大小、电势高低的判断(1)电场强度①根据电场线的疏密程度进行判断.②根据等差等势面的疏密程度进行判断.③根据E=Fq进行判断,空间同时存在两个以上的电场时,利用平行四边形定则求其合电场强度.(2)电势①由沿电场线方向电势逐渐降低进行判断.②若q和W AB已知,由U AB=W ABq进行判断.2.电势能大小及其变化的分析(1)做功角度:根据静电力做功与电势能变化的关系分析、判断带电粒子电势能及其变化.静电力做正功,粒子的电势能减少,静电力做负功,则粒子的电势能增加.(2)转化角度:只有静电力做功时,电势能与动能可以相互转化,动能减少,电势能增加,动能增加,电势能减少.■对考向·高效速练…………………………………………………………………..· 考向1 电场力的性质1.(多选)(2017·嘉兴市期末)如图8-3所示,绝缘水平地面上固定一个光滑绝缘斜面,斜面与水平面的夹角θ=30°.一根轻质绝缘细线的一端固定在斜面顶端,另一端系有一个带电小球A ,细线与斜面平行,且小球A 正好静止在斜面中点.在小球A 的正下方地面处固定放置一带电小球B ,两球相距为d .已知两球的质量均为m 、电荷量均为+q ,静电力常量为k ,重力加速度为g ,两球均可视为点电荷.则下列说法正确的是( )【导学号:19624093】图8-3A .两球之间的库仑力F =k q 2d 2B .当q d =mg 2k 时,斜面对小球A 的支持力为3mg 4 C .当q d =mg2k 时,细线上拉力为0D .将小球B 移到斜面底面左端C 点,当q d =2mgk 时,斜面对小球A 的支持力为0ABD [依据库仑定律,则两球之间的库仑力大小为F =k q 2d 2,故A 正确; 当q d =mg 2k 时,则有k q 2d 2=12mg ,对球受力分析,如图所示:根据矢量的合成法则,依据三角知识,则斜面对小球A 的支持力为N =3mg4;T =mg 4,故B 正确,C 错误;当小球B 移到斜面底面左端C 点,对球受力分析,如图所示:依据几何关系可知,T 与F 的夹角为120°,且两力的合力与重力反向; 当q d =mg k 时,即有k q 2d 2=mg ,根据矢量的合成法则,则有两合力与重力等值反向,那么斜面对小球A 的支持力为N =0, 而现在q d =2mg k 时,即有k q 2d 2=4mg ,那么小球离开斜面,因此斜面对小球A 的支持力仍为零,故D 正确.]考向2 电场能的性质2.(多选)(2017·Ⅲ卷·T 21)一匀强电场的方向平行于xOy 平面,平面内a 、b 、c 三点的位置如图8-4所示,三点的电势分别为10 V 、17 V 、26 V .下列说法正确的是( )图8-4A .电场强度的大小为2.5 V/cmB .坐标原点处的电势为1 VC .电子在a 点的电势能比在b 点的低7 eVD .电子从b 点运动到c 点,电场力做功为9 eVABD [如图所示,由匀强电场中两平行线距离相等的两点间电势差相等知,Oa 间电势差与bc 间电势差相等,故O 点电势为1 V ,选项B 正确;则在x 轴上,每0.5 cm 长度对应电势差为1 V ,10 V 对应的等势线与x 轴交点e 坐标为(4.5,0),△aOe 中,Oe ∶Oa =4.5∶6=3∶4,由几何知识得:Od 长度为3.6 cm ,代入公式E =U d 得,E =2.5 V/cm ,选项A 正确;电子带负电,电势越高,电势能越小,电子在a 点的电势能比在b 点的高7 eV ,选项C 错误;电子从b 点运动到c 点,电场力做功W =eU =9 eV ,选项D 正确.](多选)(2017·天津高考)如图所示,在点电荷Q 产生的电场中,实线MN 是一条方向未标出的电场线,虚线AB 是一个电子只在静电力作用下的运动轨迹.设电子在A 、B 两点的加速度大小分别为a A 、a B ,电势能分别为E p A 、E p B .下列说法正确的是( )A .电子一定从A 向B 运动B .若a A >a B ,则Q 靠近M 端且为正电荷C .无论Q 为正电荷还是负电荷一定有E p A <E p BD .B 点电势可能高于A 点电势BC [若Q 在M 端,由电子运动的轨迹可知Q 为正电荷,电子从A 向B 运动或从B 向A 运动均可,由于r A <r B ,故E A >E B ,F A >F B ,a A >a B ,φA >φB ,E p A <E p B ;若Q 在N 端,由电子运动的轨迹可知Q 为负电荷,且电子从A 向B 运动或从B 向A 运动均可,由r A >r B ,故φA >φB ,E p A <E p B .综上所述选项A 、D 错误,选项B 、C 正确.]考向3 电场的综合应用3.[2017·高三第一次全国大联考(新课标卷Ⅰ)]如图8-5所示,一倾角为30°的匀质圆盘绕垂直于盘面的固定对称轴以恒定角速度ω转动,盘面上离转轴距离d 处有一带负电的电荷量为q 、质量为m 的小物体与圆盘始终保持相对静止.整个装置放在竖直向上的匀强电场中,电场强度E =mg 2q ,则物体与盘面间的动摩擦因数至少为(设最大静摩擦力等于滑动摩擦力,g 为重力加速度)( )图8-5 A.3(3g +4ω2d )9g B.2(3+1)ω2d 3gC.3(g +4ω2d )3gD.3(g +2ω2d )3gA [对物体跟着圆盘转动的各个位臵分析比较可知,当物体转到圆盘的最低点时,所受的静摩擦力沿斜面向上达到最大,即将相对滑动,由牛顿第二定律得:μ(mg +qE )cos 30°-(mg +qE )sin 30°=mω2d ,解得μ=3(3g +4ω2d )9g,故A 正确,BCD 错误.]1.如图所示,均匀带正电圆环带电荷量为Q ,半径为R ,圆心为O ,A 、B 、C 为垂直于圆环平面的中心轴上的三个点,且BC =2AO =2OB =2R ,当在C 处放置一点电荷时(不影响圆环的电荷分布情况,整个装置位于真空中),B 点的电场强度恰好为零,则由此可得A 点的电场强度大小为( )A.2kQ 4R 2B.52kQ 16R 2C.32kQ 16R 2D.2kQ 2R 2B [在带电圆环上取一长为Δl 的微小段,则其所带电荷量为Δq =Q ·Δl 2πR ,此微小段在B 点产生的电场强度为E 1=k Δq (2R )2,由对称性可知,带电圆环在B 处产生的电场强度是水平向右的(垂直分量相抵消),大小为E B =2πR Δl ·E 1·cos 45°,联立得E B =2kQ 4R 2,再由对称性知,圆环在A 点产生的电场强度水平向左,大小也为2kQ 4R 2,又因在C 处放臵一点电荷时,B点的电场强度恰好为零,故点电荷在B 点产生的电场强度水平向左,大小为2kQ 4R 2,由点电荷电场强度决定式可知点电荷在A 点产生的电场强度水平向左,大小为2kQ 16R 2,由电场强度的矢量叠加可知A 点的电场强度大小为52kQ 16R 2,B 项正确.]2.(2016·湖北黄石二调)如图所示,一个“V ”形玻璃管ABC 倒置于竖直平面内,并处于场强大小为E =1×103 V/m 、方向竖直向下的匀强电场中,一个重力为G =1×10-3 N 、电荷量为q =2×10-6 C 的带负电小滑块从A 点由静止开始运动,小滑块与管壁的动摩擦因数μ=0.5.已知管长AB =BC =L =2 m ,倾角α=37°,B 点处是一段很短的光滑圆弧管,sin 37°=0.6,cos 37°=0.8,g 取10 m/s 2.下列说法正确的是( )A .B 、A 两点间的电势差为2 000 VB .小滑块从A 点第一次运动到B 点的过程中电势能增大C .小滑块第一次速度为零的位置在C 处D.从开始运动到最后静止,小滑块通过的总路程为3 mD[U BA=EL sin α=1.2×103V,A错误;小滑块从A点第一次运动到B 点过程中,电场力做正功,电势能减小,B错误;小滑块受到竖直向上的电场力为F=qE=2×10-3 N=2G,重力和电场力的合力大小等于G、方向竖直向上,可以把电场力与重力的合力等效为一个竖直向上的“重力”,小滑块开始沿玻璃管运动的加速度为a1=g(sin α-μcos α)=2 m/s2,所以小滑块第一次到达B点时的速度为v=2a1L=2 2 m/s,在BC段,小滑块做匀减速运动,加速度大小为a2=g(sin α+μcos α)=10 m/s2,所以第一次速度为0的位臵到B点的距离为x=v22a2=0.4 m,C错误;小滑块第一次速度减为零后,又反向向B加速运动,到B后又减速向A运动,这样不断地往复,最后停在B点,根据能量守恒定律,有GL sin α=μGs cos α,解得s =3 m,即小滑块通过的总路程为3 m,D正确.]考点2平行板电容器(对应学生用书第40页)■品真题·感悟高考……………………………………………………………·[考题统计]五年2考:2016年Ⅰ卷T142015年Ⅱ卷T14[考情分析]1.高考在本考点的命题热点为电容器的动态分析,带电体在电容器间的受力情况及运动情况.2.常涉及两种连接方式及三个公式C=εS4πkd,C=QU,E=Ud的灵活应用.3.正确判断平行板电容器中的变量和不变量是关键.4.(电容器的动态分析)(2016·Ⅰ卷T14)一平行板电容器两极板之间充满云母介质,接在恒压直流电源上.若将云母介质移出,则电容器()A.极板上的电荷量变大,极板间电场强度变大B.极板上的电荷量变小,极板间电场强度变大C.极板上的电荷量变大,极板间电场强度不变D.极板上的电荷量变小,极板间电场强度不变[题眼点拨]①“接在恒压直流电源上”说明两极板间电压不变;②“云母介质移出”说明介电常数变小,电容变小.D[平行板电容器电容的表达式为C=εS4πkd,将极板间的云母介质移出后,导致电容器的电容C变小.由于极板间电压不变,据Q=CU知,极板上的电荷量变小.再考虑到极板间电场强度E=Ud,由于U、d不变,所以极板间电场强度不变,选项D正确.]5.(平行板电容器的综合问题)(2015·Ⅱ卷T14)如图8-6所示,两平行的带电金属板水平放置.若在两板中间a点从静止释放一带电微粒,微粒恰好保持静止状态.现将两板绕过a点的轴(垂直于纸面)逆时针旋转45°,再由a点从静止释放一同样的微粒,该微粒将()【导学号:19624094】图8-6A.保持静止状态B.向左上方做匀加速运动C.向正下方做匀加速运动D.向左下方做匀加速运动D[两板水平放臵时,放臵于两板间a点的带电微粒保持静止,带电微粒受到的电场力与重力平衡.当将两板逆时针旋转45°时,电场力大小不变,方向逆时针偏转45°,受力如图,则其合力方向沿二力角平分线方向,微粒将向左下方做匀加速运动,选项D正确.]在第5题中,若在两极板接上电源,如图8-7所示,平行板电容器两极板M、N相距d,两极板分别与电压为U的恒定电源两极连接,极板M带正电.此时极板带电荷量与微粒带电荷量的比值为k,则()图8-7A .微粒带正电B .微粒带电荷量为mg UdC .电容器的电容为kmgd U 2D .将极板N 向下缓慢移动一小段距离,油滴将向上运动C [带电微粒静止在两极板间,重力与电场力等大、反向,电场力竖直向上,而电容器上极板与电源正极相连为正极板,两板间电场方向竖直向下,综上可知,带电微粒带负电,A 项错;由场强与电势差关系可知,mg =Eq =U d q 解得:q =mgd U ,B 项错;由题意知,电容器带电荷量Q =kq =kmgd U ,由电容的定义式知,C =Q U =kmgd U 2,C 项正确;电容器与电源保持连接时,两板间电势差不变,N 板向下移动,板间距离变大,F 电=U d q ,微粒所受电场力减小,微粒向下运动,D 项错.]■释疑难·类题通法…………………………………………………………………·1.公式法分析平行板电容器的两类动态问题联的支路两端电压;电容器所带的电荷量恒定不变时,极板间的电场强度与极板间距离无关.■对考向·高效速练…………………………………………………………………..·考向1电容器的动态分析4. [2017·高三第一次大联考(新课标卷Ⅲ)]如图8-8所示的装置可以通过静电计指针偏转角度的变化,检测电容器电容的变化来检测导电液体是增多还是减少的仪器原理图.图中芯柱、导电液体、绝缘管组成一个电容器,电源通过电极A、电极B给电容器充电,充电完毕移去电源,由此可以判断()图8-8A.静电计指针偏角变小,说明电容器两板间电压增大B.静电计指针偏角变小,说明导电液体增多C.静电计指针偏角变大,说明电容器电容增大D.静电计指针偏角变大,导电液体液面升高B[静电计指针偏角变小,说明电容器两板间电压减小,选项A错误;静电计指针偏角变小,根据C=QU可知,电容器电容增大,因C=εr S4πkd,所以S增大,液面升高,导电液体增多,选项B正确;静电计指针偏角变大,说明电容器两板间电压增大,根据C=QU可知,电容器电容减小,因C=εr S4πkd,所以S减小,液面降低,导电液体减少,选项C、D错误.](多选)如图所示的电路中,理想二极管和水平放置的平行板电容器串联接在电路中,闭合开关S,平行板间有一质量为m,电荷量为q的带电液滴恰好能处于静止状态,则下列说法正确中的是()A.将A板向上平移一些,液滴将向下运动B.将A板向左平移一些,液滴将向上运动C .断开开关S ,将A 板向下平移一些,液滴将保持静止不动D .断开开关S ,将A 板向右平移一些,液滴将向上运动BCD [开关S 闭合后,将A 板向上平移一些,由C =εS 4πkd 可知,电容器的电容减小,由电容器要放电,由于二极管的单向导电性,因此电容器不能反向放电,电容器的带电量不变,极板移动后,板间的电场强度不变,因此液滴仍保持静止,A 项错误;将A 板向左平移一些,尽管电容器的电容减小,但电容器不能放电,带电量一定,电容减小,由U =Q C 可知,板间电压增大,由E =U d 可知,板间电场强度增大,液滴会向上运动,B 项正确;断开开关,电容器带电量一定,将A 板向下平移一些,板间的电场强度不变,液滴仍保持静止,C 项正确;断开开关S ,将A 板向右平移一些,电容器的电容减小,板间电压增大,电场强度增大,液滴会向上运动,D 项正确.]考向2 平行板电容器的综合问题5.(2016·开封二模)如图8-9所示,一带电小球悬挂在平行板电容器内部,闭合开关S ,电容器充电后,细线与竖直方向夹角为φ,则下列说法中正确的是( )【导学号:19624095】图8-9A .保持开关S 闭合,使两极板靠近一些,φ将减小B .保持开关S 闭合,将滑动变阻器滑片向右移动,φ将减小C .打开开关S ,使两极板靠近一些,φ将不变D .轻轻将细线剪断,小球将做斜抛运动C [保持开关S 闭合,即电容器两端电压不变,使两极板靠近些,由E =U d知,电场强度增大,φ将增大,A 项错误;调节滑动变阻器滑片不影响电容器两极板间的电压,B 项错误;打开开关S ,电容器两极板所带电荷量不变,使两极板靠近一些,由C =εr S 4πkd 、U =Q C 、E =U d 知,E 不变,即夹角φ不变,C 项正确;轻轻将细线剪断,小球将沿细线方向向下做匀加速直线运动,D 项错误.]如图所示,一平行板电容器的两极板与一电压恒定的电源相连,极板水平放置,极板间距为d ,有一带电粒子P 静止在电容器上部空间中,当在其下极板上快速插入一厚度为L 的不带电的金属板后,粒子P 开始运动,重力加速度为g .粒子运动的加速度大小为( )A.L d gB.L d -L gC.d -L d gD.d d -L g B [设板间电压为U ,带电粒子静止时有:U d q =mg ;当插入金属板后,金属板处于静电平衡状态,相当于极板间距减小为d ′=d -L ,由牛顿第二定律得q U d ′-mg =ma ,解得a =L d -Lg ,故B 正确.] 考点3 带电粒子在电场中的运动(对应学生用书第41页)■品真题·感悟高考……………………………………………………………·[考题统计] 五年7考:2017年Ⅰ卷T 25、Ⅱ卷T 25 2016年Ⅰ卷T 18、Ⅱ卷T 152015年Ⅱ卷T 24 2014年Ⅰ卷T 25 2013年Ⅰ卷T 16[考情分析]1.高考对本考点的考查重在应用动力学观点和动能定理分析计算带电粒子在电场运动过程中的受力、做功及能量变化.2.应熟记常见典型电场的电场线、等势面的分布特点.3.做好过程分析、用好功能关系是解题的关键.6.(电场中的曲线运动)(2016·Ⅱ卷T 15)如图8-10所示,P 是固定的点电荷,虚线是以P 为圆心的两个圆.带电粒子Q 在P 的电场中运动,运动轨迹与两圆在同一平面内,a 、b 、c 为轨迹上的三个点.若Q 仅受P 的电场力作用,其在a 、b 、c 点的加速度大小分别为a a 、a b 、a c ,速度大小分别为v a 、v b 、v c .则( )图8-10A .a a >a b >a c ,v a >v c >v bB .a a >a b >a c ,v b >v c >v aC .a b >a c >a a ,v b >v c >v aD .a b >a c >a a ,v a >v c >v bD [a 、b 、c 三点到固定的点电荷P 的距离r b <r c <r a ,则三点的电场强度由E =k Q r 2可知E b >E c >E a ,故带电粒子Q 在这三点的加速度a b >a c >a a .由运动轨迹可知带电粒子Q 所受P 的电场力为斥力,从a 到b 电场力做负功,由动能定理-|qU ab |=12m v 2b -12m v 2a <0,则v b <v a ,从b 到c 电场力做正功,由动能定理|qU bc |=12m v 2c -12m v 2b >0,v c >v b ,又|U ab |>|U bc |,则v a >v c ,故v a >v c >v b ,选项D 正确.]7.(电场中的曲线运动)(2015·Ⅱ卷T 24)如图8-11所示,一质量为m 、电荷量为q (q >0)的粒子在匀强电场中运动,A 、B 为其运动轨迹上的两点.已知该粒子在A 点的速度大小为v 0,方向与电场方向的夹角为60°;它运动到B 点时速度方向与电场方向的夹角为30°.不计重力.求A 、B 两点间的电势差.图8-11[题眼点拨]①“重力不计”,只受电场力,A、B两点在垂直电场方向分速度相等.②求电势差,可考虑应用动能定理.【解析】设带电粒子在B点的速度大小为v B.粒子在垂直于电场方向的速度分量不变,即v B sin 30°=v0sin 60°①由此得v B=3v0 ②设A、B两点间的电势差为U AB,由动能定理有qU AB=12m(v2B-v20) ③联立②③式得U AB=m v20q. ④【答案】m v20 q(2017·Ⅱ卷T25)如图,两水平面(虚线)之间的距离为H,其间的区域存在方向水平向右的匀强电场.自该区域上方的A点将质量均为m、电荷量分别为q和-q(q>0)的带电小球M、N先后以相同的初速度沿平行于电场的方向射出.小球在重力作用下进入电场区域,并从该区域的下边界离开.已知N 离开电场时的速度方向竖直向下;M在电场中做直线运动,刚离开电场时的动能为N刚离开电场时动能的1.5倍.不计空气阻力,重力加速度大小为g.求:(1)M与N在电场中沿水平方向的位移之比;(2)A点距电场上边界的高度;(3)该电场的电场强度大小.【解析】(1)设小球M、N在A点水平射出时的初速度大小为v0,则它们进入电场时的水平速度仍然为v0.M、N在电场中运动的时间t相等,电场力作用下产生的加速度沿水平方向,大小均为a,在电场中沿水平方向的位移分别为s 1和s 2.由题给条件和运动学公式得v 0-at =0① s 1=v 0t +12at 2② s 2=v 0t -12at 2③ 联立①②③式得s 1s 2=3. ④(2)设A 点距电场上边界的高度为h ,小球下落h 时在竖直方向的分速度为v y ,由运动学公式得v 2y =2gh⑤ H =v y t +12gt 2 ⑥M 进入电场后做直线运动,由几何关系知v 0v y =s 1H联立①②⑤⑥⑦式可得h =13H . ⑧(3)设电场强度的大小为E ,小球M 进入电场后做直线运动,则 v 0v y =qE mg ⑨设M 、N 离开电场时的动能分别为E k1、E k2,由动能定理得E k1=12m (v 20+v 2y )+mgH +qE S 1⑩ E k2=12m (v 20+v 2y )+mgH -qE S 2⑪由已知条件E k1=1.5E k2⑫联立④⑤⑦⑧⑨⑩⑪⑫式得E =mg 2q . ⑬ 【答案】 (1)3∶1 (2)13H (3)mg 2q8.(电场中的直线运动)(2017·Ⅰ卷T)真空中存在电场强度大小为E1的匀强电场,一带电油滴在该电场中竖直向上做匀速直线运动,速度大小为v0.在油滴处于位置A时,将电场强度的大小突然增大到某值,但保持其方向不变.持续一段时间t1后,又突然将电场反向,但保持其大小不变;再持续同样一段时间后,油滴运动到B点.重力加速度大小为g.(1)求油滴运动到B点时的速度;(2)求增大后的电场强度的大小;为保证后来的电场强度比原来的大,试给出相应的t1和v0应满足的条件.已知不存在电场时,油滴以初速度v0做竖直上抛运动的最大高度恰好等于B、A两点间距离的两倍.[题眼点拨]①“竖直向上做匀速直线运动”说明电场力与重力等大反向;②“电场强度的大小突然间增大到某值,但保持其方向不变”说明油滴竖直向上做匀加速运动;③“电场反向,但保持其大小不变”说明油滴向上做匀减速直线运动.【解析】(1)设油滴质量和电荷量分别为m和q,油滴速度方向向上为正.油滴在电场强度大小为E1的匀强电场中做匀速直线运动,故匀强电场方向向上.在t=0时,电场强度突然从E1增加至E2时,油滴做竖直向上的匀加速运动,加速度方向向上,大小a1满足qE2-mg=ma1 ①油滴在时刻t1的速度为v1=v0+a1t1 ②电场强度在时刻t1突然反向,油滴做匀变速运动,加速度方向向下,大小a2满足qE2+mg=ma2 ③油滴在时刻t2=2t1的速度为v2=v1-a2t1 ④由①②③④式得v2=v0-2gt1 ⑤(2)由题意,在t=0时刻前有qE1=mg ⑥。
专题检测卷(8) 专题四 第8讲电场及带电粒子在电场中的运动
温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
专题检测卷(八)电场及带电粒子在电场中的运动(45分钟100分)一、选择题(本大题共8小题,每小题8分,共64分。
第1~5题只有一项符合题目要求,第6~8题有多项符合题目要求)1.(2013·东城一模)法拉第首先提出用电场线形象生动地描绘电场,如图所示为点电荷a、b所形成电场的电场线分布图,以下几种说法中正确的是( )A.a、b为异种电荷,a的电荷量大于b的电荷量B.a、b为异种电荷,a的电荷量小于b的电荷量C.a、b为同种电荷,a的电荷量大于b的电荷量D.a、b为同种电荷,a的电荷量小于b的电荷量2.(2012·福建高考)如图,在点电荷Q产生的电场中,将两个带正电的试探电荷q1、q2分别置于A、B两点,虚线为等势线。
取无穷远处为零电势点,若将q1、q2移动到无穷远的过程中外力克服电场力做的功相等,则下列说法正确的是( )A.A点电势大于B点电势B.A、B两点的电场强度相等C.q1的电荷量小于q2的电荷量D.q1在A点的电势能小于q2在B点的电势能3.(2013·西城一模)如图所示,足够长的两平行金属板正对竖直放置,它们通过导线与电源E、定值电阻R、开关S相连。
闭合开关后,一个带电的液滴从两板上端的中点处无初速度释放,最终液滴落在某一金属板上。
下列说法中正确的是( )A.液滴在两板间运动的轨迹是一条抛物线B.电源电动势越大,液滴在板间运动的加速度越大C.电源电动势越大,液滴在板间运动的时间越长D.定值电阻的阻值越大,液滴在板间运动的时间越长4.(2013·长沙一模)如图所示,A、B两个带电小球的质量均为m,所带电量分别为+q和-q,两球间用绝缘细线连接,A球又用绝缘细线悬挂在天花板上,细线长均为L。
现在两球所在的空间加上一方向向左的匀强电场,电场强度E=,A、B两球最后会达到新的平衡位置,则在这个过程中,两个小球( )A.总重力势能增加了mgLB.总重力势能增加了mgLC.总电势能减少了mgLD.总电势能减少了mgL5.(2013·太原一模)一匀强电场的电场强度E随时间t变化的图像如图所示,在该匀强电场中,有一个带电粒子于t=0时刻由静止释放,若带电粒子只受电场力作用,则下列说法中正确的是( )A.带电粒子只向一个方向运动B.0~2s内,电场力所做的功等于零C.4s末带电粒子回到原出发点D.2.5~4s内,速度的改变等于零6.(2013·淄博一模)如图所示,真空中M、N处放置两等量异种电荷,a、b、c为电场中的三点,实线PQ为M、N连线的中垂线,a、b两点关于MN对称,a、c两点关于PQ对称,已知一带正电的试探电荷从a点移动到c点时,试探电荷的电势能增加,则以下判定正确的是( )A.M点处放置的是负电荷B.a点的场强与c点的场强完全相同C.a点的电势高于c点的电势D.若将该试探电荷沿直线由a点移动到b点,则电场力先做正功,后做负功7.(2013·江西重点中学高三联考)A、B是一条电场线上的两点,若在A点释放一初速度为零的电子,电子仅在电场力作用下沿电场线从A运动到B,其电势能W随位移s变化的规律如图所示。
高考物理一轮复习 专题八 电场 考点3 电容器及带电粒子在电场中的运动教案-人教版高三全册物理教案
考点3 电容器及带电粒子在电场中的运动考向1 平行板电容器相关问题1.[2018高考,19,6分]研究与平行板电容器电容有关因素的实验装置如图所示.下列说法正确的是( )A.实验前,只用带电玻璃棒与电容器a 板接触,能使电容器带电B.实验中,只将电容器b 板向上平移,静电计指针的X 角变小C.实验中,只在极板间插入有机玻璃板,静电计指针的X 角变大D.实验中,只增加极板带电量,静电计指针的X 角变大,表明电容增大必备知识:静电起电方法、静电计原理、平板电容器电容的决定因素、实验探究现象及方法等. 关键能力:分析推理能力.解题指导:通过带电玻璃棒与a 板接触,使电容器两板带等量异号电荷,且电容器带电量Q 不变;根据C=εrε4πεε及C=εε分析求解.考向2 带电粒子在电场中的运动问题2.[2019全国Ⅲ,24,12分]空间存在一方向竖直向下的匀强电场,O 、P 是电场中的两点.从O 点沿水平方向以不同速度先后发射两个质量均为m 的小球A 、B.A 不带电,B 的电荷量为q (q>0).A 从O 点发射时的速度大小为v 0,到达P 点所用时间为t ;B 从O 点到达P 点所用时间为ε2.重力加速度为g ,求: (1)电场强度的大小; (2)B 运动到P 点时的动能.必备知识:电场力、电场力做功、牛顿第二定律、动能定理、平抛运动、运动的分解等. 关键能力:运动模型的构建能力;牛顿第二定律、动能定理等的综合运用能力.解题指导:本题中不带电小球做平抛运动,带电小球做类平抛运动.两种运动均属于匀变速曲线运动,处理方法均为分解法,均可分解为沿初速度方向的匀速直线运动和沿合外力方向且初速度为零的匀加速直线运动.考法1平行板电容器的动态变化问题1[2016某某高考,4,6分]如图所示,平行板电容器带有等量异种电荷,与静电计相连,静电计金属外壳和电容器下极板都接地.在两极板间有一固定在P点的点电荷,以E表示两板间的电场强度,E p表示点电荷在P点的电势能,θ表示静电计指针的偏角.若保持下极板不动,将上极板向下移动一小段距离至图中虚线位置,则A.θ增大,E增大B.θ增大,E p不变C.θ减小,E p增大D.θ减小,E不变由题意及分析可知,当极板正对面积不变时,两极板之间的电场强度E不变.保持下极板不动,将上极板向下移动一小段距离至题图中虚线位置,由U=Ed可知,两极板之间的电势差减小,静电计指针的偏角θ减小,由于下极板接地(电势为零),两极板之间的电场强度不变,所以点电荷在P点的电势能E p不变.综上所述,选项D正确.D1.[2016全国Ⅰ,14,6分]一平行板电容器两极板之间充满云母介质,接在恒压直流电源上.若将云母介质移出,则电容器()A.极板上的电荷量变大,极板间电场强度变大B.极板上的电荷量变小,极板间电场强度变大C.极板上的电荷量变大,极板间电场强度不变D.极板上的电荷量变小,极板间电场强度不变考法2 带电粒子在点电荷电场中的运动2[2017某某高考,7,6分,多选]如图所示,在点电荷Q产生的电场中,实线MN是一条方向未标出的电场线,虚线AB是一个电子只在静电力作用下的运动轨迹.设电子在A、B两点的加速度大小分别为a A、a B,电势能分别为E p A、E p B.下列说法正确的是A.电子一定从A向B运动B.若a A>a B,则Q靠近M端且为正电荷C.无论Q为正电荷还是负电荷一定有E p A<E p BD.B点电势可能高于A点电势由已知条件不能确定电子的运动方向,故A错误;若a A>a B,则A点场强大于B点场强,则Q 应靠近M端,由运动轨迹可知,电子受力方向向左,因此场强方向由M指向N,可知Q为正点电荷,故B正确;无论Q带正电荷还是负电荷,若电子从A运动到B,电场力做负功,电势能增加,若电子从B运动到A,电场力做正功,电势能减少,故E p A<E p B,A点电势一定高于B点电势,故C正确,D 错误.BC2.[2016某某高考,10,5分,多选]如图,一带正电的点电荷固定于O点,两虚线圆均以O为圆心,两实线分别为带电粒子M和N先后在电场中运动的轨迹,a、b、c、d、e为轨迹和虚线圆的交点.不计重力.下列说法正确的是( )A.M 带负电荷,N 带正电荷B.M 在b 点的动能小于它在a 点的动能C.N 在d 点的电势能等于它在e 点的电势能D.N 在从c 点运动到d 点的过程中克服电场力做功 考法 3 电容器与力学知识的综合应用3[2018全国Ⅲ,21,6分,多选]如图,一平行板电容器连接在直流电源上,电容器的极板水平;两微粒a 、b 所带电荷量大小相等、符号相反,使它们分别静止于电容器的上、下极板附近,与极板距离相等.现同时释放a 、b ,它们由静止开始运动.在随后的某时刻t ,a 、b 经过电容器两极板间下半区域的同一水平面.a 、b 间的相互作用和重力可忽略.下列说法正确的是 A .a 的质量比b 的大B .在t 时刻,a 的动能比b 的大C .在t 时刻,a 和b 的电势能相等D .在t 时刻,a 和b 的动量大小相等根据题述可知,微粒a 向下加速运动,微粒b 向上加速运动,根据a 、b 某时刻经过电容器两极板间下半区域的同一水平面,可知a 的加速度大小大于b 的加速度大小,即a a >a b .对微粒a ,由牛顿第二定律,有qE=m a a a ,对微粒b ,由牛顿第二定律,有qE=m b a b ,联立解得εεεε>εεεε,由此式可以得出a 的质量比b 的小,A 错误;在a 、b 两微粒运动过程中,a 微粒所受电场力等于b 微粒所受的电场力,t 时刻a 微粒的位移大于b 微粒的位移,根据动能定理,可知在t 时刻,a 的动能比b 的大,B 正确;由于在t 时刻两微粒经过同一水平面,电势相等,电荷量大小相等,符号相反,所以在t 时刻,a 和b 的电势能不等,C 错误;由于a 微粒受到的电场力(合外力)与b 微粒受到的电场力(合外力)大小相等,根据动量定理,可知在t 时刻,a 微粒的动量大小等于b 微粒的动量大小,D 正确.BD3.[2016某某高考,6,3分]如图所示,平行板电容器两极板的间距为d ,极板与水平面成45°角.上极板带正电.一电荷量为q (q>0)的粒子在电容器中靠近下极板处,以初动能E k0竖直向上射出.不计重力,极板尺寸足够大.若粒子能打到上极板,则两极板间电场强度的最大值为()A.εk04εεB.εk02εεC.√2εk02εεD.√2εk0εε考法4 带电粒子在匀强电场中的运动4[2016高考,23,18分]如图所示,电子由静止开始经加速电场加速后,沿平行于板面的方向射入偏转电场,并从另一侧射出.已知电子质量为m ,电荷量为e ,加速电场电压为U 0.偏转电场可看作匀强电场,极板间电压为U ,极板长度为L ,板间距为d.(1)忽略电子所受重力,求电子射入偏转电场时的初速度v 0和从电场射出时沿垂直板面方向的偏转距离Δy ;(2)分析物理量的数量级,是解决物理问题的常用方法.在解决(1)问时忽略了电子所受重力,请利用下列数据分析说明其原因.已知U=2.0×102V,d=4.0×10-2 m,m=9.1×10-31kg,e=1.6×10-19C,g=10 m/s 2.(3)极板间既有静电场也有重力场.电势反映了静电场各点的能的性质,请写出电势φ的定义式.类比电势的定义方法,在重力场中建立“重力势”φG 的概念,并简要说明电势和“重力势”的共同特点.(1)根据功和能的关系,有eU 0=12m ε02电子射入偏转电场的初速度v 0=√2εε0ε在偏转电场中,电子的运动时间Δt=εε0=L √ε2εε0偏转距离Δy=12a (Δt )2=12·εεεε(Δt )2=εε24ε0ε. (2)考虑电子所受重力和电场力的数量级,有 重力G=mg~10-29N 电场力F=εεε~10-15N 由于F ≫G ,因此不需要考虑电子所受重力.(3)电场中某点电势φ定义为电荷在该点的电势能E p 与其电荷量q 的比值,即φ=εpε由于重力做功与路径无关,可以类比静电场电势的定义,将重力场中物体在某点的重力势能E G与其质量m 的比值,叫做“重力势”,即φG =εεε电势φ和重力势φG 都是反映场的能的性质的物理量,仅由场自身的因素决定.(1)√2εε0εεε24ε0ε(2)(3)见解析4.[2015某某高考,7,6分,多选]如图所示,氕核、氘核、氚核三种粒子从同一位置无初速度地飘入电场线水平向右的加速电场E 1,之后进入电场线竖直向下的匀强电场E 2发生偏转,最后打在屏上.整个装置处于真空中,不计粒子重力及其相互作用,那么()A .偏转电场E 2对三种粒子做功一样多B .三种粒子打到屏上时的速度一样大C .三种粒子运动到屏上所用时间相同D .三种粒子一定打到屏上的同一位置考法5 带电粒子在变化电场中的运动5[2019某某高三适应性测试]如图甲所示,M、N为正对竖直放置的平行金属板,A、B为两板间中线上的两点.当M、N板间不加电压时,一带电小球从A点由静止释放经时间T到达B点,此时速度为v.若两板间加上如图乙所示的交变电压,t=0时,将带电小球仍从A点由静止释放,小球运动过程中始终未接触极板,则t=T时,小球A.在B点上方B.恰好到达B点C.速度大于vD.速度小于v在M、N两板间加上如图乙所示的交变电压,小球受到重力和电场力的作用,电场力的方向(水平方向)随交变电压周期性变化,其大小不变,所以小球在竖直方向做自由落体运动,在水时速度减为零,接着平方向上,小球先做匀加速直线运动,后沿原方向做匀减速直线运动,t=ε2反向做匀加速直线运动,后继续做匀减速直线运动,t=T时速度减为零.根据对称性可知在t=T 时小球的水平位移为零,所以t=T时,小球恰好到达B点,选项A错误,B正确.在0~T时间内,电场力做的功为零,重力做的功与不加电压时相同,所以t=T时,小球速度为v,选项C、D错误.B5.[2015某某高考,20,6分,多选]如图甲,两水平金属板间距为d,板间电场强度的变化规律如图乙所示.t=0时刻,质量为m的带电微粒以初速度v0沿中线射入两板间,0~ε时间3内微粒匀速运动,T时刻微粒恰好经金属板边缘飞出.微粒运动过程中未与金属板接触.重力加速度的大小为g.关于微粒在0~T时间内运动的描述,正确的是()A.末速度大小为√2v0B.末速度沿水平方向mgd D.克服电场力做功为mgdC.重力势能减少了12考法6带电粒子在“等效场”中的运动6[2019某某4月选考,13,3分]用长为1.4 m 的轻质柔软绝缘细线,拴一质量为1.0×10-2 kg 、电荷量为2.0×10-8C 的小球,细线的上端固定于O 点.现加一水平向右的匀强电场,平衡时细线与铅垂线成37°角,如图所示.现向左拉小球使细线水平且拉直,静止释放,则(sin 37°=0.6) A.该匀强电场的场强为3.75×107N/C B.平衡时细线的拉力为0.17 NC.经过0.5 s,小球的速度大小为6.25 m/sD.小球第一次通过O 点正下方时,速度大小为7 m/s小球处于平衡状态时,受力分析如图所示,则可知qE=mg tan 37°,则该匀强电场的电场强度E=εεtan37°ε=3.75×106N/C,A 错误;细线的拉力F=εεcos37°=0.125 N,故B 错误;在外力作用下,小球拉至细线水平时,由静止释放,如图所示,小球在电场力和重力组成的等效“重力场”的作用下,从A 点由静止开始做匀加速直线运动至B 点,∠OAB=∠OBA=53°,OA=OB=l=1.4 m,在此过程中,细线处于松弛状态,无拉力作用,小球运动至B 点时,细线绷紧,匀加速直线运动结束.根据牛顿第二定律可知小球匀加速直线运动时的加速度a=ε合ε=εε=0.1250.01m/s 2=12.5 m/s 2,假设经过0.5 s 后,小球仍在沿AB 方向做匀加速直线运动,则小球的速度v=at=6.25 m/s,经过的距离x=12at 2=12×12.5×0.52m =1.562 5 m,A 、B间的距离|AB|=2×l×cos 53°=1.68 m,x<|AB|,假设成立,故0.5 s 时,小球的速度大小为6.25 m/s,故C 正确;小球运动至B 点时,细线绷紧,小球沿细线方向的分速度减为零,动能减小,假设细线绷紧过程小球机械能损失ΔE ,此后在电场力、重力和细线拉力作用下沿圆弧运动至O 点正下方,根据能量守恒定律,可知(qE+mg )·l-ΔE=12mv 2,可得v<7 m/s,故D 错误.C6.[2019某某南开中学二诊,多选]如图所示,竖直平面内一半径为R 的光滑圆环处在与水平方向夹角为θ=45°的斜向上的匀强电场中,现一电荷量为q 、质量为m 的带正电小球在圆环内侧A 点静止(A 点未画出),已知场强E=√2εεε,现给静止在A 处的小球一沿圆环切线方向的冲量I ,使小球不脱离轨道,I 的取值可能是() A.m √εεB.m √3εε C.2m √εε D.m √6εε重难突破带电粒子的力电综合问题题型1 带电粒子做类平抛运动问题分析7[2017全国Ⅱ,25,20分]如图,两水平面(虚线)之间的距离为H ,其间的区域存在方向水平向右的匀强电场.自该区域上方的A 点将质量均为m 、电荷量分别为q 和-q (q>0)的带电小球M 、N 先后以相同的初速度沿平行于电场的方向射出.小球在重力作用下进入电场区域,并从该区域的下边界离开.已知N 离开电场时的速度方向竖直向下;M 在电场中做直线运动,刚离开电场时的动能为N 刚离开电场时动能的1.5倍.不计空气阻力,重力加速度大小为g.求:(1)M 与N 在电场中沿水平方向的位移之比; (2)A 点距电场上边界的高度; (3)该电场的电场强度大小.(1)设小球M 、N 在A 点水平射出时的初速度大小为v 0,则它们进入电场时的水平速度仍然为v 0.M 、N 在电场中运动的时间t 相等,电场力作用下产生的加速度沿水平方向,大小均为a ,在电场中沿水平方向的位移分别为s 1和s 2.由题给条件和运动学公式得v 0-at=0①s 1=v 0t+12at 2② s 2=v 0t-12at 2③联立①②③式得s 1:s 2=3:1④.(2)设A 点距电场上边界的高度为h ,小球下落h 时在竖直方向的分速度为v y ,由运动学公式得εε2=2gh ⑤ H=v y t+12gt 2⑥M 进入电场后做直线运动,由几何关系知ε0εε=ε1ε⑦联立①②⑤⑥⑦式可得h=13H ⑧.(3)设电场强度的大小为E ,小球M 进入电场后做直线运动,则ε0εε=εεεε⑨ 设M 、N 离开电场时的动能分别为E k1、E k2,由动能定理得E k1=12m (ε02+εε2)+mgH+qEs 1⑩ E k2=12m (ε02+εε2)+mgH-qEs 2由已知条件得E k1=1.5E k2 联立④⑤⑦⑧⑨⑩式得E=εε√2ε.(1)3:1(2)13H (3)εε√2ε7.[2019全国Ⅱ,24,12分]如图,两金属板P 、Q 水平放置,间距为d.两金属板正中间有一水平放置的金属网G ,P 、Q 、G 的尺寸相同.G 接地,P 、Q 的电势均为φ(φ>0).质量为m 、电荷量为q (q>0)的粒子自G 的左端上方距离G 为h 的位置,以速度v 0平行于纸面水平射入电场,重力忽略不计.(1)求粒子第一次穿过G 时的动能,以及它从射入电场至此时在水平方向上的位移大小; (2)若粒子恰好从G 的下方距离G 也为h 的位置离开电场,则金属板的长度最短应为多少?题型2 带电粒子做多过程运动问题分析8[2017全国Ⅰ,25,20分]真空中存在电场强度大小为E 1的匀强电场,一带电油滴在该电场中竖直向上做匀速直线运动,速度大小为v 0.在油滴处于位置A 时,将电场强度的大小突然增大到某值,但保持其方向不变.持续一段时间t 1后,又突然将电场反向,但保持其大小不变;再持续同样一段时间后,油滴运动到B 点.重力加速度大小为g . (1)求油滴运动到B 点时的速度.(2)求增大后的电场强度的大小;为保证后来的电场强度比原来的大,试给出相应的t 1和v 0应满足的条件.已知不存在电场时,油滴以初速度v 0做竖直上抛运动的最大高度恰好等于B 、A 两点间距离的两倍.(1)设油滴质量和电荷量分别为m 和q ,油滴速度方向向上为正.油滴在电场强度大小为E 1的匀强电场中做匀速直线运动,故此时油滴所受电场力方向竖直向上.油滴处于位置A (t=0)时,电场强度突然从E 1增大至E 2,油滴做竖直向上的匀加速运动,加速度a 1方向竖直向上,大小满足qE 2-mg=ma 1①油滴在t 1时刻的速度为v 1=v 0+a 1t 1②电场强度在t 1时刻突然反向,油滴做匀变速运动,加速度a 2方向竖直向下,大小满足qE 2+mg=ma 2③则油滴运动到B 点时的速度为v 2=v 1-a 2t 1④ 由①②③④式得v 2=v 0-2gt 1⑤. (2)由题意,在t=0时刻前有qE 1=mg ⑥ 油滴从t=0到t 1时刻的位移为s 1=v 0t 1+12a 1ε12⑦ 油滴在从t 1到t 2=2t 1时刻的时间内的位移为s 2=v 1t 1-12a 2ε12⑧由题给条件有ε02=2g (2h )⑨ 式中h 是B 、A 两点之间的距离 若B 点在A 点之上,依题意有s 1+s 2=h由①②③⑥⑦⑧⑨式得E 2=[2-2ε0εε1+14(ε0εε1)2]E 1为使E 2>E 1,应有2-2ε0εε1+14(εεε1)2>1即当0<t 1<(1-√32)ε0ε 或t 1>(1+√32)ε0ε才是可能的;条件式和式分别对应于v 2>0和v 2<0两种情形若B 点在A 点之下,依题意有s 1+s 2=-h由①②③⑥⑦⑧⑨式得E 2=[2-2ε0εε1-14(εεε1)2]E 1为使E 2>E 1,应有2-2ε0εε1-14(ε0εε1)2>1即t 1>(√52+1)ε0ε另一解为负,不合题意,已舍去.(1)v 0-2gt 1(2)见解析8.[2019某某七市州3月联考]如图所示,在坐标系xOy 中,x 轴水平向右,y轴竖直向下,在x ≥2L 的区域内存在与x 轴平行的匀强电场(未画出),一带正电小球,电荷量为q ,从原点O 水平抛出,再从A 点进入电场区域,并从C 点离开,其运动的轨迹如图所示,B 点是小球在电场中向右运动的最远点,B 点的横坐标x B =3L.已知小球抛出时的动能为E k0,在B 点的动能为43E k0,重力加速度为g ,不计空气阻力.求:(1)小球在OA 段运动的时间与在AB 段运动的时间之比; (2)匀强电场的场强和小球的质量; (3)小球在电场中运动的最小动能.考点3电容器及带电粒子在电场中的运动1.A 实验前,只用带电玻璃棒与电容器a 板接触,则a 板带电,由静电感应可知,在b 板上感应出与a 板电性相反的电荷,故选项A 正确;实验中,只将电容器b 板向上平移,正对面积S 变小,由C=εrε4πεε,可知电容C 变小,由C=εε,Q 不变可知,U 变大,因此静电计指针的X 角变大,选项B 错误;实验中,只将极板间插入有机玻璃板,相对介电常数εr 变大,由C=εr ε4πεε,可知电容C 变大,由C=εε,Q 不变可知,U 变小,静电计指针的X 角变小,选项C 错误;实验中,只增加极板带电量,电容C 不变,由C=εε,可知静电计指针的X 角变大,故选项D 错误.2.(1)3εεε(2)2m (ε02+g 2t 2)解析:(1)设电场强度的大小为E ,小球B 运动的加速度为a.根据牛顿第二定律、运动学公式和题给条件,有mg+qE=ma ①12a (ε2)2=12gt 2② 解得E=3εεε③.(2)设B 从O 点发射时的速度为v 1,到达P 点时的动能为E k ,O 、P 两点的高度差为h ,根据动能定理有E k -12m ε12=mgh+qEh ④且有v 1ε2=v 0t ⑤h=12gt 2⑥联立③④⑤⑥式得E k =2m (ε02+g 2t 2).1.D 平行板电容器接在电压恒定的直流电源上,电容器两极板之间的电压U 不变.若将云母介质移出,电容C 变小,由Q=UC 可知,电容器所带电荷量Q 变小,即电容器极板上的电荷量变小.由于U 不变,d 不变,由E=εε可知,极板间电场强度E 不变,选项D 正确,A 、B 、C 错误.2.ABC 由粒子受到的电场力指向轨迹的凹侧,可知M 受到了引力作用,N 受到了斥力作用,故M 带负电荷,N 带正电荷,选项A 正确;由于虚线是等势面,故M 从a 点到b 点电场力对其做负功,动能减少,选项B 正确;d 点和e 点在同一等势面上,N 在d 点的电势能等于它在e 点的电势能,选项C 正确;N 从c 点运动到d 点的过程中,电场力做正功,选项D 错误.3.B如图所示,粒子在垂直极板方向上做匀减速运动,在平行极板方向上做匀速运动,轨迹呈曲线,全过程电场力做负功.若粒子刚好能打到上极板,则打到极板上时,粒子垂直于极板的速度刚好减为0,因极板与水平面夹角为45°,所以粒子的末速度为初速度的√22,故粒子的末动能为12E k0,根据动能定理有-Edq=12E k0-E k0,可得E=εk02εε,选项B 正确.4.AD 由动能定理得qE 1d 1=12mv 2,解得粒子离开电场E 1时速度v=√2εε1ε1ε,在电场E 2中y=12at2,E 2q=ma ,L=vt ,tan φ=a εε,联立以上方程得y=ε2ε24ε1ε1,tan φ=ε2ε2ε1ε1.所以,在电场E 2中电场力做功W=E 2qy=ε22ε2ε4ε1ε1,三种粒子电荷量相等,做功相等,A 项正确.因为在电场E 2中y 、tan φ均与q 、m 无关,故它们通过同一轨迹打到屏上同一点,D 项正确.对全程应用动能定理,有qE 1d 1+qE 2y=12mv'2-0,解得打到屏上的速度的平方v'2=2εε(E 1d 1+ε22ε24ε1ε1),所以氕核打到屏上的速度最大,故B 项错误.在加速电场中所用时间t 1=√2ε1εε1ε,通过偏转电场到达屏所用时间t 2=ε+ε'ε=(L+L')·√ε2εε1ε1,总时间t=t 1+t 2,故氚核运动时间最长,C 项错误.5.BC0~ε3时间内微粒做匀速直线运动,则E 0q=mg.ε3~2ε3时间内没有电场作用,微粒做平抛运动,竖直方向上a=g.2ε3~T 时间内,由于电场作用,F 合=2E 0q-mg=mg ,方向竖直向上.分析可知,微粒到达金属板边缘时,速度为v 0,方向水平,选项A 错误,B 正确;从微粒进入两板间到离开,重力做功ε2mg ,重力势能减少12mgd ,选项C 正确;由动能定理知W G +W 电=0,W 电=-12mgd ,则克服电场力做功为12mgd ,选项D 错误.6.AD 小球受电场力与重力,两力的合力方向水平向右,大小为mg ,即等效重力场的效果相当于将重力场逆时针转90°.当小球恰好能到达等效重力场中与圆心“等高”处时,有mgR=12m ε12,解得v 1=√2εε,若小球不脱离轨道,此时速度0<v ≤√2εε,冲量0<I ≤m √2εε.当小球恰好能通过等效重力场的“最高点”时,由动能定理有mg ·2R=12m ε22-12m ε02,等效重力提供向心力,有mg=m ε02ε,解得v 0=√εε,v 2=√5εε,若小球不脱离轨道,此时速度v ≥√5εε,冲量I ≥m √5εε,选项A 、D 正确.7.(1)12m ε02+2εεqh v 0√εεεεε(2)2v 0√εεεεε解析:(1)P 、G 与Q 、G 间场强大小相等,均为E.粒子在P 、G 间所受电场力F 的方向竖直向下,设粒子的加速度大小为a ,有E=2εε① F=qE=ma ②设粒子第一次到达G 时动能为E k ,由动能定理有qEh=E k -12m ε02③设粒子第一次到达G 时所用的时间为t ,粒子在水平方向的位移大小为l ,则有h=12at 2④ l=v 0t ⑤联立①②③④⑤式解得E k =12m ε02+2εεqh ⑥ l=v 0√εεεεε⑦. (2)若粒子穿过G 一次就从电场的右侧飞出,则金属板的长度最短.由对称性知,此时金属板的长度为L=2l=2v 0√εεεεε.8.(1)1:1(2)εk0εε,方向水平向左√3εk03εε(3)E k0解析:(1)从O 点运动到A 点,小球在水平方向做匀速直线运动 有2L=v 0t OA ①小球从A 点运动到B 点,在水平方向做匀减速直线运动,依据题意,小球在B 点水平方向的速度为0,由运动学公式得L=ε02t AB ②联立①②解得t OA =t AB ,即εεεεεε=11.(2)小球在B 点时有43E k0=12m εεε2③ 其中E k0=12m ε02④由于小球在竖直方向做自由落体运动,而且t OA =t AB ,则可知v By =2v Ay ⑤ 联立③④⑤解得v Ay =√33v 0⑥小球从A 点运动到B 点,在水平方向做匀减速直线运动,由牛顿第二定律和运动学公式得ε02=2εεεL ⑦联立④⑦解得E=εk0εε⑧分析知场强方向水平向左 由运动学公式得v Ay =gt OA ⑨v 0=εεεt AB ⑩ 联立⑥⑧⑨⑩及t OA =t AB 解得m=√3εk03εε.(3)由以上所得结果可知在电场区域F 合与水平方向夹角为30°,v A 与水平方向夹角为30°,建立如图所示坐标系,将v A 分解到x'、y'轴上,小球在x'方向上做匀速运动,在y'方向上做的运动类似于竖直上抛运动,所以小球在电场中运动的最小动能为E kmin =12m εεε'2,而v Ax'=v A cos 30°=v 0解得E kmin =E k0.。
高三物理一轮复习8带电粒子在电场中的运动(教师版)
思考:如图所示,由绳子连接的小球从一点静止释放,运动到最高点时,若此刻小球突然不受任何力,接下来小球会保持什么状态?(教师可见内容)这种情况下小球运动到点速度为零,所以小球不受任何力后,小球会保持静止状态.思考:如图所示,由绳子连接的小球从一点以一定初速度释放,运动到最高点时,若此刻小球突然不受任何力,接下来小球会保持什么状态?(教师可见内容)这种情况下小球运动到点速度不为零,所以小球不受任何力后,小球会保持匀速直线运动状态.思考:为什么我们总会有物体速度越大惯性越大的错觉?比如汽车速度越大,越难停下来?(教师可见内容)思考:描述相互作用力及平衡力的区别,从相同点跟不同点两个角度说明;不同点可以从作用对象、力学性质、作用效果等方面进行讨论(教师可见内容)相同点:大小相等、方向相反、作用在同一直线上;不同点:平衡力:作用在相同物体,力学性质不一定相同,不一定同时产生,作用效果可抵消;思考:一对大小相等、方向相反、作用在同一直线、作用在不同物体的力,一定是相互作用力吗?为什么?(教师可见内容)不一定,比如下图所示的两个力.思考:牛顿第一定律是牛顿第二定律在物体加速度为零时的特殊情况吗?(教师可见内容)①牛顿第一定律给出了物体不受力时的运动规律,是牛顿力学的基础;不是牛顿第二定律在物体所受合力为零时的特殊情况;②牛顿第一定律是经过科学抽象、归纳推理总结出来的,而牛顿第二定律是一条实验定律.思考:尝试推导下公式(教师可见内容)根据得到的单位是思考:物体处于超重状态下可能具有的运动状态有哪些?处于失重状态呢?(教师可见内容)物体处于超重状态下可能具有的运动状态有:向上加速或向下减速;物体处于失重状态下可能具有的运动状态有:向上减速或向下加速.思考:最高点,(教师可见内容)以杆为例作分析,假设杆的夹角为,圆半径为则为,则根据可得,与无关,故每个圆环到达思考:下面哪个图是子弹打木块所对应的图像,为什么?甲乙(教师可见内容)如图,相对位移大于木板的对地位移,即:,故甲图正确.思考:推导摩擦力产生的热量为:相对如图,物块置于光滑水平面上,子弹质量为,物块质量为:(教师可见内容)(1)系统机械能不守恒,摩擦做功产生热量,直到二者共速,;摩擦力对子弹做功:共摩擦力对物块做功:;共共思考:对传送带的功能关系进行分析?思考:倾斜传送带上物块能和传送带共速的条件?(教师可见内容)1.传送带足够长2.思考:思考(教师可见内容)电容思考:回答下面的问题.(教师可见内容)场强增大,而点与下极板间的距离不变,则由公式间电势差将增大,而点的电势高于下极板的电势,则知本讲内容大纲如图,当电场力的方向与运动方向在一条直线上时,粒子做加速直线运动或减速直线运动,,.思考:同一个粒子始终能从从板的一端运动到另一端,改变板间距离,电场力做功会改变吗?(教师可见内容)如果Q 一定,会变如果是U 一定,不会变.油滴运动的加速度大小不变、方向水平向平行板电容器的两个极板与水平地面成一角度,两极板与一个直流电源相连,若一个带电油滴恰1动能变化为零板间往复运动在图装置中,从2,A 正确;间没有电压,则没有电场,所以电子在此处做匀速直线运动,则电子的动能板间往复运动,C 错误,D 正确.如图所示为匀强电场的电场强度3,为第内加速度的,将反向加速,图象如图所示:A.带电粒子在前秒匀加速运动,在第二秒内先做匀减速后反向加速,所以不是始终向一方向运动,故A错误;B.根据速度时间图象与坐标轴围成的面积表示位移可知,在发点,粒子在内的位移为零,回到出发点.故C.由图可知,粒子在D.因为第末粒子的速度刚好减为4如图甲所示,两平行金属板竖直放置,左极板接地,中间有小孔,右极板电势随时间变化的规律时刻释放电子,电子始终向右运动,直到打到右极板上时刻释放电子,电子可能在两板间振动时刻释放电子,电子可能在两板间振动,也可能打到右极板上时刻释放电子,电子必然打到左极板上若时刻释放电子,在前内,电子受到的电场力向右,向右做匀加速直线5如图所示,平行板电容器水平放置,电源通过二极管给电容充电,上、下极板正中有一小孔,质;;方向位移(匀加速直线运动):;方向速度(匀加速直线运动):;.思考:计算时间一定是用水平方向吗?(教师可见内容)不一定;打出板,用水平方向算时间;打到板上,用竖直方向算时间.增大两板间的电势差 B.尽可能使板长长些升高些D.尽可能使板间距离小些如图所示是一个说明示波管工作原理的示意图,电子经电压加速后垂直进入偏转电场,离开电,两平行板间的距离为,电势差为,板长为.为了提高示波管的灵敏度(每单位电压引起的偏转量),可采用的方法是()67带有等量异种电荷的两平行金属板水平放置,8如图所示,一带正电的粒子以一定的初速度,在竖直方向上做匀加速直线运动,则在前时间内,时间内,粒子在竖直方向上的位移为.则在前时间时间内,电场力对粒子做的功为,故A错误,B知,前和后电场力做功相9如图,质量相同的带电粒子末速度沿水平方向 B.末速度大小为克服电场力做功为D.重力势能减少了如图甲,两水平金属板间距为10时间内微粒匀速运动,则有:,内,微粒做平抛运动,下降的,时间内,微粒的加速度,方向竖直向上,微粒在竖直方向上做匀减速运动,时刻竖直分速度为零,所以末速度的方向沿水平方向,大小为时刻进入电场的电子,在两板间运动时电大侧位移为一对平行金属板板长为11的“面积”大小等于位移可知.故选BD .方法二:A. 电子进入电场后做类平抛运动,不同时刻进入电场的电子竖直方向分速度图象如图,根据图象的“面积”大小等于位移可知,各个电子在竖直方向的位移不全相同,故所有电子从右侧的离开电场的位置不全相同.故B. 由图看出,所有电子离开电场时竖直方向分速度C. 由上分析可知,电子离开电场时的速度都相同,动能都相同.故D.时刻进入电场的电子,在在时刻进入电场的电子侧位移最大为②联立①②得:,故且电子恰好在时刻射出电场,应满足的条件是且电子恰好在时刻从板边缘射出电场,其动能增加且电子恰好在时刻射出电场,射出时的速度为,电子在射出电场的过程中,沿电场方向的分速度方向始终不变制造纳米薄膜装置的工作电极可简化为真空中间距为12故选AD.二、示波器原理及其应用)偏转电极不加电压:从电子枪射出的电子沿直线运动,射到荧光屏中心的点形成亮斑.)仅在或()加电压:若所加电压稳定,则电子流被加速、偏转后射到直线上某一点,形成一个亮斑(不在中心),如图所示.思考:板间电压随时间变化,电子在电场中受力随着时间变化吗?(教师可见内容)不会,电子的速度足够快,通过时间很短,电子通过电极的过程中,其两端电压视为不变.思考:它与一般粒子在交变电场中地偏转有什么不同吗?(教师可见内容)大部分情况不一样,一般粒子在交变电场中的偏转,时间有可能不是极其短,是可能考虑粒子在电场中运动时,电场在变化.具体是否考虑,需要比较侧移与横移大小.13如图所示,示波管是示波器的核心部件,它由电子枪、偏转电极和荧光屏组成.荧光屏上如果只在上加上图甲所示的电压,则在荧光屏上看到的图形如图如果只在上加上图乙所示的电压,则在荧光屏上看到的图形如图示波器是一种常见的电学仪器,可以在荧光屏上显示出被检测的电压随时间变化的情况,电子经1415如图所示的示波管,电子由阴极思考:运用动能定理时,可以分别列重力和电场力做的功,那为什么还要用等效重力法呢?(教师可见内容)运用等效重力法,更多的是帮助我们判断运动学状态.思考:如何解释圆周运动关于等效最低点对称.(教师可见内容)关于等效最低点对称的两点,合力做功大小一样,但一正一负,故速度大小对称.简单能量问题16如图,半径为设与之间的夹角为,所以:珠子在等效最低点时具有最大的动能.如图,此时珠子做圆周运动在点,珠子速度为得:.17如图,两点时,静电力和轨道的作用力的合力提供向心力,两点的动能.,由牛顿第二定律有18如图所示,光滑绝缘的细圆管弯成半径为的过程中,只有重力做功,机械能守恒,则有:19一端弯曲的光滑绝缘杆点,求水平外力的最小值.)问中的),求小环运动到点时,绝缘杆对,方向指向圆心.,方向背向圆心20如图所示,在水平地面点后立即撤去轨道,则物块的落地点距离点的水平距离是多21如图所示,光滑绝缘轨道22如图所示,一内壁光滑的绝缘圆管点(图中未标出点),小物体释放后在重力和电场力的作用下做匀加速直线运动,小物体从点沿切线方向23如图所示,一质量为24如图所示,空间存在一匀强电场,其方向与水平方向间的夹角为电场强度大小为此过程增加的电势能等于选项:由题意可知,小球在下落过程中动能不变,而重力做正功,则电场力一定做负功,而,解得:,故B 正确;选项:将电场力分解为沿水平方向和竖直方向,则有竖直分量中产生的电场力D.如图所示,在水平方向的匀强电场中,有一带电体2526如图所示,水平面,可知竖直分速度减小,根据牛顿第二定律知,加速度方向向上,合力向上,根27如图所示,带正电的金属滑块质量为28如图所示,一水平放置的平行板电容器其间距为处返回.根据动能定理29如图所示,平行金属板30在动摩擦因数时的速度大小.球电势能增加量的最大值.31真空中存在电场强度大小为思考:在列能量关系解题时,存在点电荷做功(变力做功)时,你有哪些思考?(教师可见内容)思考一:这个过程点电荷做功是不是等于零;思考二:这部分点电荷做功能不能其他过程算出来;思考三:题干或者图表是不是说了点电荷做功(或者电势能)的大小(或算法).32如图所示,竖直平面内四分之一光滑圆弧形管道是中垂线,是等势面,与无穷远处的电势两顶点上放置一对等量异种电荷,管道处于等势面上,故小球运动过程中只有重33如图所示,可视为质点的物块。
高考物理总复习--带电粒子在电场中的运动及解析
高考物理总复习--带电粒子在电场中的运动及解析一、高考物理精讲专题带电粒子在电场中的运动1.如图,半径为a 的内圆A 是电子发射器,其金属圆周表圆各处可沿纸面内的任意方向发射速率为v 的电子;外圆C 为与A 同心的金属网,半径为3a .不考虑静电感应及电子的重力和电子间的相互作用,已知电子质量为m ,电量为e .(1)为使从C 射出的电子速率达到3v ,C 、A 间应加多大的电压U ; (2)C 、A 间不加电压,而加垂直于纸面向里的匀强磁场.①若沿A 径向射出的电子恰好不从C 射出,求该电子第一次回到A 时,在磁场中运动的时间t ;②为使所有电子都不从C 射出,所加磁场磁感应强度B 应多大.【答案】(1)24mv e (2)①43a π ②(31)B ae ≥- 【解析】 【详解】(1)对电子经C 、A 间的电场加速时,由动能定理得()2211322eU m v mv =- 得24mv U e=(2)电子在C 、A 间磁场中运动轨迹与金属网相切.轨迹如图所示.设此轨迹圆的半径为r ,则)2223a rr a -=+又2rT vπ=得tan 3arθ== 故θ=60°所以电子在磁场中运动的时间2-22t T πθπ= 得439at vπ=(3)若沿切线方向射出的电子轨迹恰好与金属网C 相切.则所有电子都不从C 射出,轨迹如图所示:23r a a '=-又2v evB m r ='得3-1B ae =()所以3-1B ae≥()2.如图,质量分别为m A =1kg 、m B =2kg 的A 、B 两滑块放在水平面上,处于场强大小E=3×105N/C 、方向水平向右的匀强电场中,A 不带电,B 带正电、电荷量q=2×10-5C .零时刻,A 、B 用绷直的细绳连接(细绳形变不计)着,从静止同时开始运动,2s 末细绳断开.已知A 、B 与水平面间的动摩擦因数均为μ=0.1,重力加速度大小g=10m/s 2.求:(1)前2s 内,A 的位移大小; (2)6s 末,电场力的瞬时功率. 【答案】(1) 2m (2) 60W 【解析】 【分析】 【详解】(1)B 所受电场力为F=Eq=6N ;绳断之前,对系统由牛顿第二定律:F-μ(m A +m B )g=(m A +m B )a 1 可得系统的加速度a 1=1m/s 2;由运动规律:x=12a 1t 12 解得A 在2s 内的位移为x=2m ;(2)设绳断瞬间,AB 的速度大小为v 1,t 2=6s 时刻,B 的速度大小为v 2,则v 1=a 1t 1=2m/s ;绳断后,对B 由牛顿第二定律:F-μm B g=m B a 2 解得a 2=2m/s 2;由运动规律可知:v 2=v 1+a 2(t 2-t 1) 解得v 2=10m/s电场力的功率P=Fv ,解得P=60W3.如图所示,在直角坐标系x0y 平面的一、四个象限内各有一个边长为L 的正方向区域,二三像限区域内各有一个高L ,宽2L 的匀强磁场,其中在第二象限内有垂直坐标平面向外的匀强磁场,第一、三、四象限内有垂直坐标平面向内的匀强磁场,各磁场的磁感应强度大小均相等,第一象限的x<L ,L<y<2L 的区域内,有沿y 轴正方向的匀强电场.现有一质量为四电荷量为q 的带负电粒子从坐标(L ,3L/2)处以初速度0v 沿x 轴负方向射入电场,射出电场时通过坐标(0,L)点,不计粒子重力.(1)求电场强度大小E ;(2)为使粒子进入磁场后途经坐标原点0到达坐标(-L ,0)点,求匀强磁场的磁感应强度大小B ;(3)求第(2)问中粒子从进入磁场到坐标(-L ,0)点所用的时间.【答案】(1)2mv E qL =(2)04nmv B qL =n=1、2、3......(3)02L t v π=【解析】本题考查带电粒子在组合场中的运动,需画出粒子在磁场中的可能轨迹再结合物理公式求解.(1)带电粒子在电场中做类平抛运动有: 0L v t =,2122L at =,qE ma =联立解得:2mv EqL=(2)粒子进入磁场时,速度方向与y 轴负方向夹角的正切值tan xyvvθ==l速度大小02sinvv vθ==设x为每次偏转圆弧对应的弦长,根据运动的对称性,粒子能到达(一L,0 )点,应满足L=2nx,其中n=1、2、3......粒子轨迹如图甲所示,偏转圆弧对应的圆心角为2π;当满足L=(2n+1)x时,粒子轨迹如图乙所示.若轨迹如图甲设圆弧的半径为R,圆弧对应的圆心角为2π.则有2R,此时满足L=2nx联立可得:22Rn=由牛顿第二定律,洛伦兹力提供向心力,则有:2vqvB mR=得:04nmvBqL=,n=1、2、3....轨迹如图乙设圆弧的半径为R,圆弧对应的圆心角为2π.则有222x R,此时满足()221L n x=+联立可得:()2212Rn=+由牛顿第二定律,洛伦兹力提供向心力,则有:222vqvB mR=得:()2221n mvBqL+=,n=1、2、3....所以为使粒子进入磁场后途经坐标原点0到达坐标(-L,0)点,求匀强磁场的磁感应强度大小04nmv B qL =,n=1、2、3....或()02221n mv B qL+=,n=1、2、3.... (3) 若轨迹如图甲,粒子从进人磁场到从坐标(一L ,0)点射出磁场过程中,圆心角的总和θ=2n×2π×2=2nπ,则02222n n m L t T qB v ππππ=⨯==若轨迹如图乙,粒子从进人磁场到从坐标(一L ,0)点射出磁场过程中,圆心角的总和θ=(2n+1)×2π=(4n+2)π,则2220(42)(42)2n n m Lt T qB v ππππ++=⨯== 粒子从进入磁场到坐标(-L ,0)点所用的时间为02222n n m Lt T qB v ππππ=⨯==或2220(42)(42)2n n m Lt T qB v ππππ++=⨯==4.空间中存在方向垂直于纸面向里的匀强磁场,磁感应强度为B ,一带电量为+q 、质量为m 的粒子,在P 点以某一初速开始运动,初速方向在图中纸面内如图中P 点箭头所示.该粒子运动到图中Q 点时速度方向与P 点时速度方向垂直,如图中Q 点箭头所示.已知P 、Q 间的距离为L .若保持粒子在P 点时的速度不变,而将匀强磁场换成匀强电场,电场方向与纸面平行且与粒子在P 点时速度方向垂直,在此电场作用下粒子也由P 点运动到Q 点.不计重力.求:(1)电场强度的大小.(2)两种情况中粒子由P 运动到Q 点所经历的时间之比.【答案】22B qLE m=;2B E t t π= 【解析】 【分析】 【详解】(1)粒子在磁场中做匀速圆周运动,以v 0表示粒子在P 点的初速度,R 表示圆周的半径,则有20v qv B m R= 由于粒子在Q 点的速度垂直它在p 点时的速度,可知粒子由P 点到Q 点的轨迹为14圆周,故有2R =以E 表示电场强度的大小,a 表示粒子在电场中加速度的大小,t E 表示粒子在电场中由p 点运动到Q 点经过的时间,则有qE ma = 水平方向上:212E R at =竖直方向上:0E R v t =由以上各式,得 22B qL E m= 且E mt qB = (2)因粒子在磁场中由P 点运动到Q 点的轨迹为14圆周,即142B t T m qB π==所以2B E t t π=5.如图,PQ 分界线的右侧空间有一垂直纸面向里、磁感应强度为B 的匀强磁场。
2022版考前三个月(江苏专用)高考物理二轮复习系列——专题8 带电粒子在电场和磁场中的运动
1.(2021·江苏单科·15)一台质谱仪的工作原理如图1所示,电荷量均为+q 、质量不同的离子飘入电压为U 0的加速电场,其初速度几乎为零.这些离子经加速后通过狭缝O 沿着与磁场垂直的方向进入磁感应强度为B 的匀强磁场,最终打在底片上.已知放置底片的区域MN =L ,且OM =L .某次测量发觉MN 中左侧23区域MQ 损坏,检测不到离子,但右侧13区域QN 仍能正常检测到离子.在适当调整加速电压后,原本打在MQ 的离子即可在QN 检测到.图1(1)求原本打在MN 中点P 的离子质量m ;(2)为使原本打在P 的离子能打在QN 区域,求加速电压U 的调整范围;(3)为了在QN 区域将原本打在MQ 区域的全部离子检测完整,求需要调整U 的最少次数.(取lg2=0.301,lg3=0.477,lg5=0.699)2.(2022·全国大纲·25)如图2所示,在第一象限存在匀强磁场,磁感应强度方向垂直于纸面(xy 平面)向外;在第四象限存在匀强电场,方向沿x 轴负方向.在y 轴正半轴上某点以与x 轴正向平行、大小为v 0的速度放射出一带正电荷的粒子,该粒子在(d,0)点沿垂直于x 轴的方向进入电场.不计粒子重力.若该粒子离开电场时速度方向与y 轴负方向的夹角为θ,求:图2(1)电场强度大小与磁感应强度大小的比值; (2)该粒子在电场中运动的时间.1.题型特点(1)带电粒子在复合场中的运动是力电综合的重点和高考的热点,常见的考查形式有组合场(电场、磁场、重力场依次消灭)、叠加场(空间同一区域同时存在两种以上的场)、周期性变化的场等,近几年高考试题中,涉及本专题内容的频率极高,特殊是计算题,题目难度大,涉及面广.(2)试题多把电场和磁场的性质、运动学规律、牛顿运动定律、圆周运动规律、功能关系揉合在一起,主要考查考生的空间想象力、分析综合力量以及运用数学学问解决 物理问题的力量.以及考查考生综合分析和解决简单问题的力量. 2.解决带电粒子在组合场中运动的一般思路和方法: (1)明确组合场是由哪些场组合成的.(2)推断粒子经过组合场时的受力和运动状况,并画出相应的运动轨迹简图. (3)带电粒子经过电场时利用动能定理和类平抛运动学问分析. (4)带电粒子经过磁场区域时通常用圆周运动学问结合几何学问来处理.考题一带电粒子在组合场中的运动1.(2021·临沂二模)如图3所示,在直角坐标系xOy的其次象限存在沿y轴正方向的匀强电场,电场强度的大小为E1,在y轴的左侧存在垂直于纸面的匀强磁场.现有一质量为m,带电荷量为-q的带电粒子从其次象限的A点(-3L,L)以初速度v0沿x轴正方向射入后刚好做匀速直线运动,不计带电粒子的重力.图3(1)求匀强磁场的大小和方向;(2)撤去其次象限的匀强磁场,同时调整电场强度的大小为E2,使带电粒子刚好从B点(-L,0)进入第三象限,求电场强度E2的大小;(3)带电粒子从B点穿出后,从y轴上的C点进入第四象限,若E1=2E2,求C点离坐标原点O的距离.2.(2021·徐州模拟)如图4所示,在竖直平面内建立xOy直角坐标系,在x=-2d处有垂直于x轴足够大的弹性绝缘挡板,y轴左侧和挡板之间存在一匀强电场,电场与x轴负方向夹角θ=45°,y轴右侧有一个有界匀强磁场,磁场方向垂直于纸面对里,磁感应强度大小为B.在M(-22d、0)处有一个质量为m、电荷量为-q的粒子,以某一初速度沿场强方向运动.当它打到绝缘板上N点时,粒子沿y轴方向的速度不变,x轴方向速度大小不变,方向反向,一段时间后,以2v的速度垂直于y轴进入磁场,恰好不从磁场右边界飞出.粒子的重力不计.图4(1)求磁场的宽度L;(2)求匀强电场的场强大小E;(3)若另一个同样的粒子以速度v从M点沿场强方向运动,经时间t第一次从磁场边界上P点出来,求时间t.分析带电粒子在组合场中运动问题的方法(1)要清楚场的性质、方向、强弱、范围等.(2)带电粒子依次通过不同场区时,由受力状况确定粒子在不同区域的运动状况.(3)正确地画出粒子的运动轨迹图.(4)依据区域和运动规律的不同,将粒子运动的过程划分为几个不同的阶段,对不同的阶段选取不同的规律处理.(5)要明确带电粒子通过不同场区的交界处时速度大小和方向关系,上一个区域的末速度往往是下一个区域的初速度.考题二带电粒子在叠加场中的运动3.(多选)(2021·南充三诊)如图5所示,直角坐标系xOy位于竖直平面内.第Ⅲ、Ⅳ象限内有垂直于坐标面对外的匀强磁场,第Ⅳ象限同时存在方向平行于y轴的匀强电场(图中未画出),一带电小球从x轴上的A点由静止释放,恰好从P点垂直于y轴进入第Ⅳ象限,然后做圆周运动,从Q点垂直于x轴进入第Ⅰ象限,Q点距O 点的距离为d,重力加速度为g.依据以上信息,能求出的物理量有()图5A.圆周运动的速度大小B.电场强度的大小和方向C.小球在第Ⅳ象限运动的时间D.磁感应强度大小4.(2021·安徽模拟)如图6所示,在竖直平面内建立直角坐标系xOy,其第一象限存在着正交的匀强电场和匀强磁场,电场强度的方向水平向右,磁感应强度的方向垂直纸面对里.一带电荷量为+q,质量为m的微粒从原点动身沿与x轴正方向的夹角为45°的初速度进入复合场中,正好做直线运动,当微粒运动到A(l,l)时,电场方向突然变为竖直向上(不计电场变化的时间),粒子连续运动一段时间后,正好垂直于y轴穿出复合场.(不计一切阻力),求:图6(1)电场强度E大小;(2)磁感应强度B的大小;(3)粒子在复合场中的运动时间.带电粒子在叠加场中运动问题的处理方法(1)弄清叠加场的组成特点.(2)正确分析带电粒子的受力及运动特点.(3)画出粒子的运动轨迹,机敏选择不同的运动规律.①若只有两个场且正交.例如,电场与磁场中满足qE =q v B 或重力场与磁场中满足mg =q v B 或重力场与电场中满足mg =qE ,都表现为匀速直线运动或静止,依据受力平衡列方程求解.②三场共存时,合力为零,受力平衡,粒子做匀速直线运动.其中洛伦兹力F =q v B 的方向与速度v 垂直. ③三场共存时,粒子在复合场中做匀速圆周运动.mg 与qE 相平衡,有mg =qE ,由此可计算粒子比荷,判定粒子电性.粒子在洛伦兹力作用下做匀速圆周运动,应用受力平衡和牛顿运动定律结合圆周运动规律求解,有q v B =mrω2=m v 2r =mr 4π2T2=ma .④当带电粒子做简单的曲线运动或有约束的变速直线运动时,一般用动能定理或能量守恒定律求解.考题三 带电粒子在交变电磁场中运动的问题5.(2021·泰州二模)如图7甲所示,在xOy 竖直平面内存在竖直方向的匀强电场,在第一象限内有一与x 轴相切于点(2R,0)、半径为R 的圆形区域,该区域内存在垂直于xOy 面的匀强磁场,电场与磁场随时间变化如图乙、丙所示,设电场强度竖直向下为正方向,磁场垂直纸面对里为正方向,电场、磁场同步周期性变化(每个周期内正反向时间相同).一带正电的小球A 沿y 轴方向下落,t =0时刻A 落至点(0,3R ),此时,另一带负电的小球B 从圆形区域最高点(2R,2R )处开头在磁场内紧靠磁场边界做匀速圆周运动;当A 球再下落R 时,B 球旋转半圈到达点(2R,0);当A 球到达原点O 时,B 球又旋转半圈回到最高点;然后A 球开头匀速运动.两球的质量均为m ,电荷量大小均为q .(不计空气阻力及两小球之间的作用力,重力加速度为g )求:图7(1)匀强电场的场强E 的大小;(2)小球B 做匀速圆周运动的周期T 及匀强磁场的磁感应强度B 的大小; (3)电场、磁场变化第一个周期末A 、B 两球间的距离.6.(2021·绥化二模)如图8甲所示,两个平行正对的水平金属板X 、X ′极板长L =0.23m ,板间距离d =0.2m ,在金属板右端竖直边界MN 的右侧有一区域足够大的匀强磁场,磁感应强度B =5×10-3T ,方向垂直纸面对里.现将X ′极板接地,X 极板上电势φ随时间变化规律如图乙所示.现有带正电的粒子流以v 0=105m/s 的速度沿水平中线OO ′连续射入电场中,粒子的比荷qm =108C/kg ,重力可忽视不计,在每个粒子通过电场的极短时间内,电场可视为匀强电场(设两板外无电场).求:图8(1)带电粒子射出电场时的最大速率;(2)粒子在磁场中运动的最长时间和最短时间之比;(3)分别从O ′点和距O ′点下方d4=0.05m 处射入磁场的两个粒子,在MN 上射出磁场时两出射点之间的距离.解决带电粒子在交变电磁场中运动问题“三步走”考题四 磁与现代科技的应用7.(2021·长春三质检)如图9所示,宽度为d 、厚度为h 的导体放在垂直于它的磁感应强度为B 的匀强磁场中,当电流通过该导体时,在导体的上、下表面之间会产生电势差,这种现象称为霍尔效应.试验表明:当磁场不太强时,电势差U 、电流I 和磁感应强度B 的关系为:U =K IBd ,式中的比例系数K 称为霍尔系数.设载流子的电荷量为q ,下列说法正确的是( )图9A .载流子所受静电力的大小F =q UdB .导体上表面的电势肯定大于下表面的电势C .霍尔系数为K =1nq,其中n 为导体单位长度上的电荷数D .载流子所受洛伦兹力的大小F 洛=BInhd,其中n 为导体单位体积内的电荷数8.(多选)(2021·日照模拟)英国物理学家阿斯顿因首次制成质谱仪,并用此对同位素进行了争辩,因此荣获了1922年的诺贝尔化学奖.若速度相同的同一束粒子由左端射入质谱仪后的运动轨迹如图10所示,则下列说法中正确的是( )图10A .该束带电粒子带正电B .速度选择器的P 1极板带负电C .在B 2磁场中运动半径越大的粒子,质量越大D .在B 2磁场中运动半径越大的粒子,比荷qm越小9.(2021·浙江理综·25)使用回旋加速器的试验需要把离子束从加速器中引出,离子束引出的方法有磁屏蔽通道法和静电偏转法等.质量为m ,速度为v 的离子在回旋加速器内旋转,旋转轨道是半径为r 的圆,圆心在O 点,图11轨道在垂直纸面对外的匀强磁场中,磁感应强度为B .为引出离子束,使用磁屏蔽通道法设计引出器.引出器原理如图所示,一对圆弧形金属板组成弧形引出通道,通道的圆心位于O ′点(O ′点图中未画出).引出离子时,令引出通道内磁场的磁感应强度降低,从而使离子从P 点进入通道,沿通道中心线从Q 点射出.已知OQ 长度为L ,OQ 与OP 的夹角为θ.图11(1)求离子的电荷量q 并推断其正负;(2)离子从P 点进入,Q 点射出,通道内匀强磁场的磁感应强度应降为B ′,求B ′;(3)换用静电偏转法引出离子束,维持通道内的原有磁感应强度B 不变,在内外金属板间加直流电压,两板间产生径向电场,忽视边缘效应.为使离子仍从P 点进入,Q 点射出,求通道内引出轨迹处电场强度E 的方向和大小.几种常见的电磁场应用实例 (1)质谱仪:①用途:测量带电粒子的质量和分析同位素.②原理:由粒子源S 发出的速度几乎为零的粒子经过加速电场U 加速后,以速度v =2qUm进入偏转磁场中做匀速圆周运动,运动半径为r =1B2mUq,粒子经过半个圆周运动后打到照相底片D 上,通过测量D 与入口间的距离d ,进而求出粒子的比荷q m =8UB 2d 2或粒子的质量m =qB 2d 28U.(2)速度选择器:带电粒子束射入正交的匀强电场和匀强磁场组成的区域中,满足平衡条件qE =q v B 的带电粒子可以沿直线通过速度选择器.速度选择器只对粒子的速度大小和方向做出选择,而对粒子的电性、电荷量不能进行选择. (3)回旋加速器: ①用途:加速带电粒子.②原理:带电粒子在电场中加速,在磁场中偏转,交变电压的周期与带电粒子在磁场中做匀速圆周运动的周期相同.③粒子获得的最大动能E k =q 2B 2r 2n2m,其中r n 表示D 形盒的最大半径.专题综合练1.(2021·全国大联考二)如图12所示,平面直角坐标系第一象限存在竖直向上的匀强电场,距离原点O 为3a 处有一个竖直放置的荧光屏,荧光屏与x 轴相交于Q 点,且纵贯第四象限.一个顶角等于30°的直角三角形区域内存在垂直平面对里的匀强磁场,三角形区域的一条直角边ML 与y 轴重合,且被x 轴垂直平分.已知ML 的长度为6a ,磁感应强度为B ,电子束以相同的速度v 0从LO 区间垂直y 轴和磁场方向射入直角三角形区域.从y =-2a 射入磁场的电子运动轨迹恰好经过原点O ,假设第一象限的电场强度大小为E =B v 0,试求:图12(1)电子的比荷;(2)电子束从+y 轴上射入电场的纵坐标范围;(3)从磁场中垂直于y 轴射入电场的电子打到荧光屏上距Q 点的最远距离.2.(2021·绵阳4月模拟)如图13甲所示,有一磁感应强度大小为B、垂直纸面对外的匀强磁场,磁场边界OP 与水平方向夹角为θ=45°,紧靠磁场右上边界放置长为L、间距为d的平行金属板M、N,磁场边界上的O点与N板在同一水平面上,O1、O2为电场左右边界中点.在两板间存在如图乙所示的交变电场(取竖直向下为正方向).某时刻从O点竖直向上以不同初速度同时放射两个相同的质量为m、电荷量为+q的粒子a和b.结果粒子a恰好从O1点水平进入板间电场运动,由电场中的O2点射出;粒子b恰好从M板左端边缘水平进入电场.不计粒子重力和粒子间相互作用,电场周期T未知.求:图13(1)粒子a、b从磁场边界射出时的速度v a、v b;(2)粒子a从O点进入磁场到O2点射出电场运动的总时间t. 3.(2021·盐城二模)如图14所示的xOy坐标系中,y轴右侧空间存在范围足够大的匀强磁场,磁感应强度大小为B,方向垂直于xOy平面对里.P点的坐标为(-2L,0),Q1、Q2两点的坐标分别为(0,L),(0,-L).坐标为(-13L,0)处的C点固定一平行于y轴放置的长为23L的绝缘弹性挡板,C为挡板中点,带电粒子与弹性绝缘挡板碰撞前后,沿y方向分速度不变,沿x方向分速度反向,大小不变.带负电的粒子质量为m,电荷量为q,不计粒子所受重力.若粒子从P点射出沿PQ1方向进入磁场,经磁场运动后,求:图14(1)从Q1直接到达Q2处的粒子初速度大小;(2)从Q1直接到达O点,粒子第一次经过x轴的交点坐标;(3)只与挡板碰撞两次并能回到P点的粒子初速度大小.答案精析专题8 带电粒子在电场和磁场中的运动真题示例1.(1)9qB 2L 232U 0 (2)100U 081≤U ≤16U 09 (3)3次解析 (1)离子在电场中加速:qU 0=12m v 2在磁场中做匀速圆周运动:q v B =m v 2r解得r =1B2mU 0q打在MN 中点P 的离子运动半径为r 0=34L ,代入解得m =9qB 2L 232U 0(2)由(1)知,U =16U 0r 29L 2离子打在Q 点时r =56L ,U =100U 081离子打在N 点时r =L ,U =16U 09,则电压的范围 100U 081≤U ≤16U 09 (3)由(1)可知,r ∝U由题意知,第1次调整电压到U 1,使原本Q 点的离子打在N 点L 56L =U 1U 0此时,原本半径为r 1的打在Q 1的离子打在Q 上56L r 1=U 1U 0解得r 1=⎝⎛⎭⎫562L第2次调整电压到U 2,原本打在Q 1的离子打在N 点,原本半径为r 2的打在Q 2的离子打在Q 上,则:L r 1=U 2U 0,56L r 2=U 2U 0 解得r 2=⎝⎛⎭⎫563L同理,第n 次调整电压,有r n =⎝⎛⎭⎫56n +1L 检测完整,有r n ≤L 2解得n ≥lg2lg (65)-1≈2.8最少次数为3次 2.(1)12v 0tan 2θ (2)2d v 0tan θ解析 (1)如图,粒子进入磁场后做匀速圆周运动.设磁感应强度的大小为B ,粒子质量与所带电荷量分别为m 和q ,圆周运动的半径为R 0.由洛伦兹力公式及牛顿其次定律得q v 0B =m v 20R 0①由题给条件和几何关系可知 R 0=d ②设电场强度大小为E ,粒子进入电场后沿x 轴负方向的加速度大小为a x ,在电场中运动的时间为t ,离开电场时沿x 轴负方向的速度大小为v x .由牛顿其次定律及运动学公式得Eq =ma x ③ v x =a x t ④ v x2t =d ⑤ 由于粒子在电场中做类平抛运动(如图),有 tan θ=v xv 0⑥联立①②③④⑤⑥式得 E B =12v 0tan 2θ⑦ (2)联立⑤⑥式得 t =2dv 0tan θ.考题一 带电粒子在组合场中的运动1.(1)E 1v 0 磁场方向垂直纸面对外 (2)m v 202qL(3)(2-1)L解析 (1)带电粒子做匀速直线运动,其所受合力为零,由于粒子带负电荷,带电粒子受到的电场力方向沿y 轴负方向,所以带电粒子受到的洛伦兹力方向沿y 轴正方向,依据左手定则推断磁场方向垂直纸面对外 依据带电粒子受的洛伦兹力等于电场力,即:q v 0B =qE 1① 解得:B =E 1v 0②(2)撤去磁场后,带电粒子仅受电场力作用做类平抛运动. 依据牛顿其次定律:qE 2=ma ③ x 轴方向:2L =v 0t ④ y 轴方向:L =12at 2⑤联立③④⑤解得:E 2=m v 202qL⑥(3)带电粒子穿过B 点时竖直速度:v 1=at ⑦ 由④⑤⑦解得:v 1=v 0⑧则通过B 点时的速度v =v 20+v 21=2v 0⑨与x 轴正方向的夹角为θ,则sin θ=v 1v =22⑩即θ=45°⑪带电粒子在第三象限做匀速圆周运动,洛伦兹力供应向心力q v B =m v 2R ⑫由E 1=2E 2⑬ 由(1)知B =E 1v 0=2E 2v 0⑭由⑥⑨⑫⑭解得:R =2L ⑮CO =(2-1)L2.(1)2m v qB (2)3m v 24qd (3)(4+210)d 3v +πm2qB解析 (1)依据洛伦兹力供应向心力有:2q v B =m (2v )2R解得:R =2m vqB粒子刚好不从磁场右边界飞出的条件为:L =R ,即:L =2m vqB(2)如图,设粒子从A 点进入磁场,将其从N 点到A 点的运动分别沿着电场线和垂直电场线方向分解,粒子在这两个方向上通过的距离分别为h 和l ,在A 点沿这两个方向的速度大小均为v .沿电场线方向有:h =12·qE m ·t 2=v t2垂直于电场线方向有:l =v t由几何关系有:l +h =2d以上各式联立得:E =3m v 24qd(3)粒子从M 点沿电场线方向向前运动的距离为s 由v 2=2as ,得:s =v 22·qE m=23d <d说明粒子不能打到绝缘板上就要返回,运动过程如图 从F 点进入磁场时的速度为v ′,由v ′2-v 2=2ad 解得:v ′=102v 粒子在电场中来回运动的时间为: t 1=v +v ′a =(4+210)d 3v粒子在磁场中做圆周运动的半径: R ′=m v ′qB =10m v 2qB由于R ′(1-cos 45°)<L ,所以粒子不会从磁场右边界射出. 粒子在磁场中做圆周运动的周期:T =2πm qB在磁场中运动的时间为:t 2=T 4=πm2qB粒子从M 点到第一次从磁场中出来所经过的时间为 t =t 1+t 2=(4+210)d 3v +πm2qB考题二 带电粒子在叠加场中的运动3.AC [带电小球在第Ⅲ象限内运动时只有重力做功,机械能守恒,设带电小球到达P 点的速度为v .依据机械能守恒定律得:mgd =12m v 2,v =2gd ,即带电小球做圆周运动的速度大小为2gd ,所以可以求出带电小球做圆周运动的速度大小,故A 正确;带电小球在第Ⅳ象限内做圆周运动,重力与电场力平衡,则有mg =qE ,E =mgq ,由于带电小球的比荷未知,不能求出电场强度E 的大小.依据带电小球第Ⅲ象限内运动状况,由左手定则推断知该带电小球带负电,带电小球在第Ⅳ象限内受到的电场力向上,则电场强度方向向下,故B 错误;小球在第Ⅳ象限运动的时间t =14·2πd v =πd2v ,可知能求出小球在第Ⅳ象限运动的时间t ,故C 正确;小球在第Ⅳ象限内运动的半径为d ,由d =m vqB知,由于带电小球的比荷未知,不能求出磁感应强度大小,故D 错误.]4.(1)mg q (2)m qg l (3)(3π4+1)lg解析 (1)微粒到达A (l ,l )之前做匀速直线运动, 对微粒受力分析如图甲: 所以,Eq =mg ,得:E =mgq(2)由平衡条件得:q v B =2mg电场方向变化后,微粒所受重力与电场力平衡,微粒在洛伦兹力作用下做匀速圆周运动,轨迹如图乙: q v B =m v 2r由几何学问可得:r =2lv =2gl联立解得:B =mq g l(3)微粒做匀速运动时间: t 1=2l v =l g做圆周运动时间: t 2=34π2l v =3π4l g在复合场中运动时间:t =t 1+t 2=(3π4+1)l g考题三 带电粒子在交变电磁场中运动的问题5.(1)mg q (2)πm q2gR(3)25+(2π+2)2R 解析 (1)小球B 做匀速圆周运动,则Eq =mg 解得:E =mgq(2)设小球B 做圆周运动的周期为T 对A 小球:Eq +mg =ma 得a =2g R =a (T 2)2解得T =2R g对B 小球:Bq v =m v 2Rv =2πR T解得:B =πmq2g R(3)分析得:电(磁)场变化周期是B 球圆周运动周期的2倍 对小球A :在原点的速度为v A =3R T +a T2在原点下的位移为:y A =v A T y A =5R2T 末,小球A 的坐标为(0,-5R ) 对小球B :球B 的线速度v B =π2gR 水平位移为x b =v B T =2πR 竖直位移为y b =12aT 2=2R2T 末,小球B 的坐标为[(2π+2)R,0] 则2T 末,AB 两球的距离为AB =25+(2π+2)2R6.(1)233×105 m/s (2)2∶1 (3)0.05 m解析 (1)带电粒子在偏转电场中做类平抛运动: 水平:t =Lv 0=23×10-6 s竖直:y =12at 2=d 2,其中a =qU 1dm ,U 1=adm q =1003V当U >1003 V 时进入电场中的粒子将打到极板上,即在电压等于1003 V 时刻进入的粒子具有最大速度.所以由动能定理得:q U 12=12m v 2t -12m v 20, 解得v t =233×105 m/s(2)计算可得,粒子射入磁场时的速度与水平方向的夹角为30°,从下极板边缘射出的粒子轨迹如图甲中a 所示,磁场中轨迹所对应的圆心角为240°,时间最长;从上极板边缘射出的粒子轨迹如图中b 所示,磁场中轨迹所对应的圆心角为120°,时间最短,由于两粒子的周期T =2πm Bq相同,所以粒子在磁场中运动的最长时间和最短时间之比为2∶ 1.(3)如图乙,从O ′点射入磁场的粒子速度为v 0,它在磁场中的出射点与入射点间距为d 1=2R 1 由R 1=m v 1Bq ,得:d 1=2m v 0Bq从距O ′点下方d4=0.05 m 处射入磁场的粒子速度与水平方向夹角φ,则它的速度为v 2=v 0cos φ,它在磁场中的出射点与入射点间距为d 2=2R 2cos φ, 由R 2=m v 2Bq得d 2=2m v 0Bq即两个粒子向上偏移的距离相等所以:两粒子射出磁场的出射点间距仍为进入磁场时的间距, 即d4=0.05 m考题四 磁与现代科技的应用7.D [静电力大小应为F =q Uh ,A 项错误;载流子的电性是不确定的,因此B 项错误;n 为导体单位体积内的电荷数,C 项错误;载流子所受洛伦兹力的大小F 洛=q v B ,其中v =I nqdh ,可得F 洛=BIndh ,D 项正确.]8.AD [依据粒子在磁场中的运动轨迹,由左手定则可知,粒子带正电,选项A 正确;粒子在正交场中,受向上的洛伦兹力,故电场力向下,即速度选择器的P 1极板带正电,选项B 错误;依据R =m vqB 可知,在B 2磁场中运动半径越大的粒子,质量与电荷量的比值越大,或者比荷qm 越小,选项C 错误,D 正确.]9.(1)m v Br 正电荷 (2)m v (2r -2L cos θ)q (r 2+L 2-2rL cos θ)(3)沿径向向外 B v -m v 2(2r -2L cos θ)q (r 2+L 2-2rL cos θ)解析 (1)离子做圆周运动Bq v =m v 2r ①q =m vBr,依据左手定则可推断离子带正电荷②(2)离子进入通道前、后的轨迹如图所示 O ′Q =R ,OQ =L ,O ′O =R -r 引出轨迹为圆弧,B ′q v =m v 2R ③R =m v qB ′④由余弦定理得R 2=L 2+(R -r )2+2L (R -r )cos θ解得R =r 2+L 2-2rL cos θ2r -2L cos θ⑤故B ′=m vqR=m v (2r -2L cos θ)q (r 2+L 2-2rL cos θ)⑥(3)电场强度方向沿径向向外⑦ 引出轨迹为圆弧Bq v -Eq =m v 2R ⑧解得E =B v -m v 2(2r -2L cos θ)q (r 2+L 2-2rL cos θ)⑨专题综合练1.(1)v 0Ba (2)0≤y ≤2a (3)94a解析 (1)由题意可知电子在磁场中的轨迹半径为r =a ,由圆周运动规律得:e v 0B =m v 20r ,解得电子的比荷:e m =v 0Ba(2)电子能进入电场中,且离O 点上方最远,电子在磁场中运动圆轨迹恰好与边MN 相切,电子运动轨迹的圆心为O ′点,如图所示.O ′M =2aOO ′=OM -O ′M =a ,即粒子从D 点离开磁场进入电场时,离O 点上方最远距离为:OD =y m =2a ,所以电子束从+y 轴射入电场的范围为0≤y ≤2a ;(3)假设电子没有射出电场就打到荧光屏上,有3a =v 0t ,y =12eE mt 2解得:y =92a >2a ,所以电子应射出电场后打到荧光屏上.电子在电场中做类平抛运动,设电子在电场的运动时间t ,竖直方向位移为y ,水平位移为x , 水平:x =v 0t ,竖直:y =12eE mt 2,代入数据解得:x =2ay设电子最终打在光屏的最远点距Q 点为H ,电子射出电场时与x 轴的夹角为θ有: tan θ=v y v 0=eE m ×x v 0v 0=2ya,H =(3a -x )tan θ=(3a -2y )2y 当3a -2y =2y ,即y =98a 时,H 有最大值,由于98a <2a ,所以H max =94a2.(1)qBd 2m qBd m (2)πm 2qB +m (2L +d )qBd解析 (1)依据题意,粒子a 、b 在磁场中受洛伦兹力作用做匀速圆周运动,圆心分别为O a 、O b ,作出其运动轨迹如图所示,粒子a 从A 点射出磁场.由几何关系有:r a =d2,r b =d由牛顿其次定律有:q v B =m v 2r联立解得:v a =qBd 2m v b =qBdm(2)设粒子a 在磁场中运动时间为t 1,从A 点到O 2点的运动时间为t 2,则: t 1=T a 4,T a =2πmqB ,t 2=(r b -r a )+L v a ,t =t 1+t 2联解得:t =πm 2qB +m (2L +d )qBd3.(1)5qBL 2m (2)(12L,0) (3)25qBL 9m解析 (1)由题意画出粒子运动轨迹如图甲所示,设PQ 1与x 轴方向夹角为θ,粒子在磁场中做圆周运动的半径大小为R 1,由几何关系得:R 1cos θ=L ,其中:cos θ=255粒子在磁场中做匀速圆周运动,洛伦兹力供应向心力,有: q v 1B =m v 21R 1,解得:v 1=5qBL 2m.(2)由题意画出粒子运动轨迹如图乙所示,设其与x 轴交点为F ,由几何关系得:R 2=54L .设F 点横坐标为x F ,由几何关系得:x F =12L .则F 点坐标为:(12L,0).(3)由题意画出粒子运动轨迹如图丙所示,设PQ 1与x 轴正方向夹角为θ,粒子在磁场中做圆周运动的半径大小为R 3,偏转一次后在y 轴负方向偏移量为Δy 1,由几何关系得:Δy 1=2R 3cos θ,为保证粒子最终能回到P ,粒子与挡板碰撞后,速度方向应与PQ 1连线平行,每碰撞一次,粒子进出磁场在y 轴上这段距离Δy 2(如图中A 、E 间距)可由题给条件, 有Δy 22L 3=tan θ, 得Δy 2=L3.当粒子只碰二次,其几何条件是3Δy 1-2Δy 2=2L , 解得:R 3=259L粒子在磁场中做匀速圆周运动:q v B =m v 2R 3,解得:v =25qBL9m .。
高考物理二轮专训【8】电场的性质、带电粒子在电场中运动
提能专训(八)电场的性质、带电粒子在电场中运动 时间:90分钟 满分:100分一、选择题(本题共11小题,每小题4分,共44分.多选全部选对的得4分,选对但不全的得2分,有选错的得0分)1.(2018·新课标全国卷Ⅱ)(多选)关于静电场的电场强度和电势,下列说法正确的是( ) A .电场强度的方向处处与等电势面垂直 B .电场强度为零的地方,电势也为零C .随着电场强度的大小逐渐减小,电势也逐渐降低D .任一点的电场强度总是指向该点电势降落最快的方向 答案:AD解析:根据电场强度与电势的关系解题.电场线(电场强度)的方向总是与等电势面垂直,选项A 正确.电场强度和电势是两个不同的物理量,电场强度等于零的地方,电势不一定等于零,选项B 错误.沿着电场线方向,电势不断降落,电势的高低与电场强度的大小无必然关系,选项C 错误.电场线(电场强度)的方向总是从高的等电势面指向低的等电势面,而且是电势降落最快的方向,选项D 正确.2.(2018·陕西长安一中质检)如图所示,xOy 平面是无穷大导体的表面,该导体充满z<0的空间,z>0的荷为+q 的点电荷置于z 轴上z =h 处,则在xOy 平面上会产生感应电荷.空间任意一点处的电场皆是由点电荷q 和导体表面上的感应电荷共同激发的.已知静电平衡时导体内部场强处处为零,则在z 轴上,z =h3处的场强大小为(k 为静电力常量)( )A .k 4q h 2B .k 45q 16h 2C .k 32q 9h 2D .k 40q 90h 2答案:B解析:在z 轴上-h3处取一点M ,由于该点场强为零,所以感应电荷与+q 在该点产生场强大小相等、方向相反,所以感应电荷场强E′=kq432,同理可得感应电荷在z =h 3处场强,所以z =h3处场强E =kq432+kq 232=45kq16h2,选项B 正确. 3.(2018·大纲全国)地球表面附近某区域存在大小为 150 N/C 、方向竖直向下的电场.一质量为1.00×10-4kg、带电量为-1.00×10-7C的小球从静止释放,在电场区域内下落 10.0 m.对此过程,该小球的电势能和动能的改变量分别为(重力加速度大小取9.80 m/s2,忽略空气阻力)( )A.-1.50×10-4 J和9.95×10-3 JB.1.50×10-4 J和9.95×10-3 JC.-1.50×10-4 J和9.65×10-3 JD.1.50×10-4 J和9.65×10-3 J答案:D解析:对带电小球受力分析,如图所示,在此过程中,该小球的电势能的改变量ΔE p=qEh=1.50×10-4J;根据动能定理可得:小球的动能的改变量ΔE k=mgh-qEh=9.65×10-3 J,选项D正确,A、B、C错误.4.(2018·吉林省吉林市质量检测)如图甲所示,Q1、Q2为两个被固定的点电荷,其中Q1带负电荷,a、b 两点在它们连线的延长线上.现有一带负电荷的粒子以一定的初速度沿直线从a点开始经b点向远处运动(粒子只受电场力作用),粒子经过a、b两点时的速度分别为v a、v b,其速度图象如图乙所示.以下说法中正确的是( )A.Q2一定带负电B.Q2的电荷量一定大于Q1的电荷量C.b点的电场强度一定为零D.整个运动过程中,粒子的电势能先减小后增大答案:C解析:因为vt图线的斜率表示加速度,根据题图乙可知,粒子在b点的加速度为零,其电场力也为零,b点的电场强度一定为零,选项C正确;要使b点的场强为零,Q1、Q2必带异种电荷,所以Q2一定带正电,选项A错误;Q1、Q2单独存在时在b点产生的场强必等大反向,再考虑到Q1到b点的距离较大,可知Q1的电荷量一定大于Q2的电荷量,选项B错误;整个运动过程中,粒子的动能和电势能之和保持不变,考虑到其动能先减小后增大,则其电势能一定是先增大后减小,选项D错误.5.(2018·山东临沂一模)(多选)如图所示,A、B、C是平行纸面的匀强电场中的三点,它们之间的距离均为L,电荷量为q=1.0×10-5 C的负电荷由A移动到C电场力做功W1=4.0×10-5 J,该电荷由C移动到B电场力做功W2=-2.0×10-5 J,若B点电势为零,以下说法正确的是( )A.A点电势为2 VB.A点电势为-2 VC.匀强电场的方向为由C指向AD.匀强电场的方向为垂直于AC指向B答案:BC解析:C、B间电势差为U CB=W CB-q=-2.0×10-5-1.0×10-5V=2 V,B点电势为零,则U CB=φC-φB,则C点电势φC=2 V,而A与C间的电势差为U AC=W AC-q=4.0×10-5-1.0×10-5V=-4 V,U AC=φA-φC,则A点电势φA=-2 V,故A项错误,B项正确;由以上分析可知,A、C连线的中点M电势为0,M与B点的连线即为等势线,且电场线垂直于等势线,三角形ABC为等边三角形,BM⊥AC,根据沿着电场线方向,电势降低,则有匀强电场的方向由C到A,故C项正确,D项错误.6.(2018·湖北八校联考)(多选真空中有一正四面体ABCD,如图M、N分别是AB和CD的中点.现在A、B两点分别固定电荷量为+Q、-Q的点电荷,下列说法中正确的是( )A.将试探电荷+q从C点移到D点,电场力做正功,试探电荷+q的电势能降低B.将试探电荷-q从M点移到N点,电场力不做功,试探电荷-q的电势能不变C.C、D两点的电场强度相等D.N点的电场强度方向平行AB且跟CD垂直答案:BCD解析:由几何知识可判断,AB垂直面DMC,且M点为AB的中点,则面DMC与AB的中垂面重合,故DMC为一等势面,则φD=φC=φN=φM,A项错误,B项正确;由电场的空间分布特点可判断C、D项正确.7.(2018·河北石家庄质检)均匀带电的球壳在球外空间产生的电场等效于电荷集中于球心处产生的电场.如图所示,在半球面AB上均匀分布着正电荷,总电荷量为q,球面半径为R,CD为通过半球面顶点与球心O的轴线,在轴线上有M、N两点,OM=ON=2R.已知M点的场强大小为E,则N点的场强大小为( )A.kq2R -E B.kq4RC.kq4R-E D.kq4R+E答案:A解析:左半球面AB上的正电荷产生的电场等效为带电荷量为2q的整个球面的电场和带电荷量为-q的右半球面的电场的合电场,则E=k×2q2-E′,E′为带电荷量为-q的右半球面在M点产生的场强大小.带电荷量为-q的右半球面在M点的场强大小与带电荷量为q的左半球面AB在N点的场强大小相等,则E N=E′=k×2q2-E=kq2R2-E,则A正确.8.(2018·山东滨州一模如图所示,分别在M、N两点固定放置两个点电荷+Q和-2Q,以M、N连线的中点O为圆心的圆周上有A、B、C、D四点.下列说法正确的是( )A.A点电场强度小于B点电场强度B.C点电场强度与D点电场强度相同C.A点电势小于B点电势D.将某正电荷从C点移到O点,电场力不做功答案:A解析:电场线方向由M指向N,则A点电势高于B点电势,C项错误;由于2Q>Q,N点处电场线比M点处电场线密,B点电场强度大于A点电场强度,A项正确;由于电场线关于MN对称,C、D两点电场线疏密程度相同,则C点电场强度大小等于D点电场强度大小,但方向不同,B项错误;由于两电荷不等量异种,所以C、O 两点的电势不相等,根据W=qU知,将某正电荷从C点移到O点,电场力将做功,D项错误.9.(2018·河北邯郸一模)如图所示,平行板电容器两极板M、N相距d,两极板分别与电压恒为U的电源两极连接,极板M带正电.现有一质量为m的带电油滴在极板中央处于静止状态,且此时极板带电荷量与油滴带电荷量的比值为k ,则( )A .油滴带负电B .油滴带电荷量为mgUdC .电容器的电容为kmgdUD .将极板N 向下缓慢移动一小段距离,油滴将向上运动 答案:A解析:油滴受到的重力和电场力平衡,即mg =q Ud ,则电场力竖直向上,M 板带正电,故油滴带负电,且q=mgd U ,A 项正确,B 项错误;由于极板所带电荷量与油滴所带电荷量的比值为k ,即Q q =k ,则Q =kmgd U ,由C =QU得C =kmgd U ,C 项错误;将极板N 向下缓慢移动一小段距离,d 增大,根据E =Ud可知,E 变小,电场力变小,故油滴将向下运动,D 项错误.10.(2018·山东潍坊一模)(多选)直线ab 是电场中的一条电场线,从a 点无初速度释放一电子,电子仅在电场力作用下,沿直线从a 点运动到b 点,其电势能E p 随位移x 变化的规律如图所示,设a 、b 两点的电场强度分别为E a 和E b ,电势分别为φa 和φb .则( )A .E a >E bB .E a <E bC .φa <φbD .φa >φb 答案:AC解析:根据图象可知,图线的斜率表示电场力的大小.电子从a 到b ,电势能图线的斜率逐渐减小,则电场力逐渐减小,故电场强度逐渐减小,所以E a >E b ,A 项正确,B 项错误;由于电势能逐渐降低,所以电场力做正功,则电子所受的电场力方向由a 指向b ,电场线的方向由b 指向a ,沿电场线方向电势逐渐降低,所以φa <φb ,C 项正确,D 项错误.(多选)如图所示为空间某一电场的电场线,a 、b 两点为其中一条竖直向下的电场线上的两点,该两点的高度差为h ,一个质量为m 、带电荷量为+q 的小球从a 点静止释放后沿电场线运动到b 点时速度大小为3gh ,则下列说法中正确的是( )A .质量为m 、带电荷量为+q 的小球从a 点静止释放后沿电场线运动到b 点的过程中动能增加量等于电势能减少量B .a 、b 两点的电势差U =mgh2qC .质量为m 、带电荷量为+2q 的小球从a 点静止释放后沿电场线运动到b 点时速度大小为ghD .质量为m 、带电荷量为-q 的小球从a 点静止释放后沿电场线运动到b 点时速度大小为gh 答案:BD解析:质量为m 、带电荷量为+q 的小球从a 点静止释放后沿电场线运动到b 点的过程中,机械能与电势能之和守恒,其动能增加量等于重力势能、电势能的减少量之和,选项A 错误;设a 、b 之间的电势差为U ,由题意,质量为m 、带电荷量为+q 的小球从a 点静止释放后沿电场线运动到b 点时速度大小为3gh ,根据动能定理,mgh +qU =12m·3gh,解得qU =12mgh ,a 、b 两点的电势差U =mgh2q ,选项B 正确;质量为m 、带电荷量为+2q的小球从a 点静止释放后沿电场线运动到b 点时,由动能定理得mgh +2qU =12mv 21,解得v 1=2gh ,选项C 错误;质量为m 、带电荷量为-q 的小球从a 点静止释放后沿电场线运动到b 点时,由动能定理得mgh -qU =12mv 22,解得v 2=gh ,选项D 正确.二、计算题(本题包括3小题,共56分.解答应写出必要的文字说明、方程式和重要演算步骤,只写出最后答案不能得分)12.(12分)反射式速调管是常用的微波器件之一,它利用电子团在电场中的振荡来产生微波,其振荡原理与下述过程类似.如图所示,在虚线MN 两侧分别存在着方向相反的两个匀强电场,一带电微粒从A 点由静止开始,在电场力作用下沿直线在A 、B 两点间往返运动,已知电场强度的大小分别是E 1=2.0×103 N/C 和E 2=4.0×103N/C ,方向如图所示,带电微粒的质量m =1.0×10-20kg ,带电荷量q =-1.0×10-9C ,A 点距虚线MN 的距离d 1=1.0 cm ,不计带电微粒的重力,忽略相对论效应,求:(1)B 点距虚线MN 的距离d 2;(2)带电微粒从A 点运动到B 点所经历的时间t. 答案:(1)0.50 cm (2)1.5×10-8s解析:(1)带电微粒由A 运动到B 的过程中,由动能定理有: |q|E 1d 1-|q|E 2d 2=0,① 由①式解得d 2=E 1E 2d 1=0.50 cm.②(2)设微粒在虚线MN 两侧的加速度大小分别为a 1、a 2,由牛顿第二定律有: |q|E 1=ma 1,③ |q|E 2=ma 2.④设微粒在虚线MN 两侧运动的时间分别为t 1、t 2,由运动学公式有: d 1=12a 1t 21,⑤d 2=12a 2t 22.⑥又t =t 1+t 2,⑦由②③④⑤⑥⑦式解得t =1.5×10-8 s.13.(2018·湖南长沙一中期末)(14分)喷墨打印机的结构简图如图所示,设偏转板板长1.6 cm ,两板间的距离为0.50 cm ,偏转板的右端距纸3.2 cm.若一个墨汁微滴的质量为1.6×10-10kg ,以20 m/s 的初速度垂直于电场方向进入偏转电场,两偏转板间的电压是8.0×103V ,若墨汁微滴打到纸上点距原射入方向的距离是2.0 mm.求:(1)这个墨汁微滴通过带电室带的电量是多少?(不计空气阻力和重力); (2)为了使纸上的字体放大10%,请你分析理出一个可行的方法. 答案:(1)2.5×10-13C (2)见解析解析:(1)带电微滴的电量设为q ,进入偏转电场后做类平抛运动,离开电场后沿直线打到纸上,距原入射方向的距离为Y =12·qU md (l v 0)2+qUl mdv 20L =qUl mdv 20(l 2+L)代入数据可得q =1.25×10-13C(2)由上式可知,Y 与U 成正比,可以提高偏转板间的电压U 到8.8×103V ,实现字体放大10%;由上式可知,Y 与(l 2+L)成正比,因此也可以增加偏转板与纸的距离L ,L′+0.5lL +0.5l =1.1;L′=3.6 cm ,实现字体放大10%.14.(2018·安徽理综(14分)如图所示,充电后的平行板电容器水平放置,电容为C ,极板间距离为d ,上极板正中有一小孔.质量为m 、电荷量为+q 的小球从小孔正上方高h 处由静止开始下落,穿过小孔到达下极板处速度恰为零(空气阻力忽略不计,极板间电场可视为匀强电场,重力加速度为g).求:(1)小球到达小孔处的速度;(2)极板间电场强度大小和电容器所带电荷量; (3)小球从开始下落运动到下极板处的时间. 答案:(1)2gh (2)+qd+q(3)h +dh2h g解析:(1)由v 2=2gh ,得v =2gh(2)在极板间带电小球受重力和电场力,有mg -qE =ma 0-v 2=2ad 得E =+qdU =Ed Q =CU 得Q =+q(3)由h =12gt 21;0=v +at 2;t =t 1+t 2综合可得t =h +dh2h g15.(16分)如图甲所示,长为L 、间距为d 的两金属板A 、B 水平放置,ab 为两板的中心线,一个带电粒子以速度v 0从a 点水平射入,沿直线从b 点射出,若将两金属板接到如图乙所示的交变电压上,欲使该粒子仍能从b 点以速度v 0射出,求:(1)交变电压的周期T 应满足什么条件?(2)粒子从a 点射入金属板的时刻应满足什么条件? 答案:(1)T =L nv 0,其中n 取大于等于L 2dv 0qU 02m 的整数 (2)t =2n -14T(n =1,2,3,…) 解析:(1)为使粒子仍从b 点以速度v 0穿出电场,在垂直于初速度方向上,粒子的运动应为:加速,减速,反向加速,反向减速,经历四个过程后,回到中心线上时,在垂直于金属板的方向上速度正好等于零,这段时间等于一个周期,故有L =nTv 0,解得T =L nv 0粒子在14T 内离开中心线的距离为y =12a ⎝ ⎛⎭⎪⎫14T 2又a =qE m ,E =U 0d ,解得y =qU 0T 232md在运动过程中离开中心线的最大距离为y m =2y =qU 0T 216md粒子不撞击金属板,应有y m ≤12d解得T≤2d 2m qU 0故n≥L2dv 0qU 02m ,即n 取大于等于L 2dv 0qU 02m的整数. 所以粒子的周期应满足的条件为 T =L nv 0,其中n 取大于等于L 2dv 0qU 02m的整数. (2)粒子进入电场的时间应为14T ,34T ,54T ,…故粒子进入电场的时间为t =2n -14T(n =1,2,3,…).。
2020届高三高考物理二轮复习专题强化练习:电场及带电粒子在电场中的运动(解析版)
电场及带电粒子在电场中的运动一、选择题(本题共包括15小题,每小题4分,共60分)1.如图所示,小球A 、B 带电荷量相等,质量均为m ,都用长L 的绝缘细线挂在绝缘的竖直墙上O 点,A 球靠墙且其悬线刚好竖直,B 球悬线偏离竖直方向θ角而静止,此时A 、B 两球之间的库仑力为F .由于外部原因小球B 的带电荷量减小,使两球再次静止时它们之间的库仑力变为原来的一半,则小球B 的带电荷量减小为原来的( )A.12B .14 C.18D .116【答案】C【解析】小球B 受力分析如图所示,两绝缘细线的长度都是L ,则△OAB 是等腰三角形,则线的拉力T 与重力G 相等,G =T ,小球处于平衡状态,则库仑力F =2G sin θ2,设原来小球带电荷量为q ,A 、B 间的距离是r ,则r =2L sin θ2,由库仑定律得F =k q 2r 2,后来库仑力变为原来的一半,则F 2=2G sin θ′2,r ′=2L sin θ′2,F 2=k qq B r ′2 ,解得q B =18q ,故选C 。
2.如图所示,直线a 、b 和c 、d 是处于匀强电场中的两组平行线,M 、N 、P 、Q 是它们的交点,四点处的电势分别为φM 、φN 、φP 、φQ .一电子由M 点分别运动到N 点和P 点的过程中,电场力所做的负功相等.则( )A .直线a 位于某一等势面内,φM >φQB .直线c 位于某一等势面内,φM >φNC .若电子由M 点运动到Q 点,电场力做正功D .若电子由P 点运动到Q 点,电场力做负功【答案】B【解析】由电子从M 点分别运动到N 点和P 点的过程中电场力所做的负功相等可知,N 、P 两点在同一等势面上,且电场线方向为M →N ,故选项B 正确,A 错误;M 点与Q 点在同一等势面上,电子由M 点运动到Q 点,电场力不做功,故选项C 错误;电子由P 点运动到Q 点,电场力做正功,故选项D 错误。
2022年高考物理二轮复习专题能力提升练(八)电场及带电粒子在电场中的运动
C.带电粒子从A点运动到P点的时间为
2mL qE
D.带电粒子从A点运动到P点的时间为2
mL qE
【解析】选A。设带电粒子的初速度为v0,AQ连线与水平方向的夹角为α,A到Q的
竖直位移为yQ;带电粒子在电场中做类平抛运动,由题意知tan
α=
yQ L
=12
tan53°,
解得:yQ=
2 3
L,粒子从A到Q,电场力做的功为W=qEyQ=
1 2
mv
2 D
-
1 2
mv
2 m
,解得最大动能Ekm=
1 2
mv
2 m
=
5mgR,C正确;小滑块从D点抛出后做类平抛运动,假设刚好落到B点,则有2mg=ma,vDt= R,则在合力方向上的位移y=12 at2=12 R<R,所以假设错误,即小滑块从D点抛出后没有落在轨
道上的B点,D错误。
8.如图所示,圆形区域内有方向平行于纸面的匀强电场,其半径为R,AB为圆的直 径。质量为m、电荷量为q的带正电粒子自A点由静止释放,粒子从圆周上的C点以 速率v0穿出电场,AC与AB的夹角θ=60°。现将该种粒子在纸面内从A点先后以不同 的速率垂直于电场线方向射入电场,只考虑电场力的作用。 (1)求电场强度大小及方向; (2)为使粒子从B点离开电场, 粒子进入电场时的速率v应是多大?
4.如图所示,水平放置的平行板电容器,下极板接地,一带电油滴静止于P点。现 将一与极板相同的不带电金属板插入图中虚线位置,则( ) A.油滴带正电 B.M、N两极板间电压保持不变 C.P点的电势减小 D.油滴在P点的电势能减小
【解析】选C。一带电油滴静止于P点,电场力向上,则油滴带负电,故A错误;现
【总结提升】平行板电容器问题的分析思路 (1)平行板电容器两极板间电场为匀强电场,电场强度通过E=Ud 分析。 (2)电容器的电容与电荷量的关系通过C=QU 分析。 (3)平行板电容器的电容大小由C=4επrkSd 决定。
2023年高考物理总复习专题能力进阶练(八)电场及带电粒子在电场中的运动
专题能力进阶练(八)电场及带电粒子在电场中的运动1.(多选)如图所示,带电性质相同且电荷量为q的A、B两小球,A球被放在绝缘的水平台面上,B 球被长为L的轻绳悬于B点,OA的距离等于OB的距离且夹角为θ,静电力常量为k,若B球的电荷量在逐渐减小的过程中,则下列说法中正确的是()A.轻绳对B球的拉力不变B.轻绳对B球的拉力逐渐增大C.在电荷量还没减小时,A、B两球之间的静电力大小为k q 22L2(1-cosθ)D.在电荷量还没减小时,A、B两球之间的静电力大小为k q 22L2(1+cosθ)【解析】选A、C。
对B球受力分析根据库仑定律可得F=kq 2(2Lsinθ2)2解得F=k q 22L2(1-cosθ),故C正确,D错误;根据相似三角形受力分析可得TOB =mgOA=F2Lsinθ2,则因为mg,OA,OB都不变,所以T不变,A正确,B错误。
【加固训练】如图所示,竖直绝缘杆上端固定一光滑小环O,底端紧套带电圆环B后固定在水平面上。
轻绳一端绕过光滑定滑轮O'后连接沙桶C,另一端穿过O后连接一轻弹簧,弹簧另一端通过绝缘轻绳连接带电小球A(两端细绳与弹簧的轴线共线)。
当A静止时,A与C等高,小球A与B的连线与OA垂直,OA与杆的夹角θ=60°。
若在沙桶中加入(或取出)细沙的同时,将A缓慢移至另一位置D(没有画出,OA与细杆不平行),释放后A与C仍然能够保持静止,已知A与B的电荷量不变,弹簧始终在弹性限度内且不会与O接触,则下列说法正确的是()A.小球A受静电力的大小可能减小B.D点可能存在的位置均处于同一圆上C.若取出细沙,平衡后杆右侧轻绳与细杆间的夹角会大于60°D.若加入细沙,平衡后沙桶距地面的高度必定大于小球距地面的高度【解析】选B。
对小球进行受力分析,由相似三角形可得m A gℎOB =Fx AB=F TL OA,由于F=kq A q Bx AB2,联立可得m A g ℎOB =kq A q Bx AB3,由于m A g、h OB及电荷量q A、q B均不变,可知x AB不变,即A、B间距不变,故小球所受静电力大小不变,A错误;由于A、B间距不变,所以D点可能存在的位置均处于同一圆上,B正确;由于D点可能存在的位置均处于同一圆上,且已知当轻质细绳与细杆的夹角θ=60°时,细绳与该圆相切,则此时的夹角θ=60°为细绳与细杆间夹角的最大值,即细绳与细杆间的夹角不可能大于60°,C错误;由于F T=m C g=kx,在沙桶中加入细沙,即m C增大时,L OA增大,小球的位置是下降的,但不知k的具体值,沙桶高度变化不确定,D错误。
2020学年高考物理专题08静电场备考强化训练19带电粒子在电场中的直线运动新人教版
强化训练19 带电粒子在电场中的直线运动本套强化训练搜集近年来各地高中物理高考真题、模拟题及其它极有备考价值的习题等筛选而成。
其目的在于:了解电容器的结构,理解平行板电容器及其电容决定式的意义。
通过本训练把握带电粒子在电场中运动的知识,熟悉利用电学搭台、力学唱戏的方法,分析和解决带电粒子在电场中运动的规律,以便了解本类知识在现代技术中的应用。
一、破解依据㈠电容:⑴定义式,计算式C=Q/U*⑵平行板电容器的电容 C=εS/4πKd S:两极板正对面积 d:两极板间的垂直距离 *⑶两个电容器的串、并联:21C C C +=并,)(串2121C C C C C +=。
㈡电场力及其功:若不计带电粒子的重力,无论均匀或不均匀电场,则电场力做的功都等于动能的增量。
⑴ma d qU qE F ===, 2r kQ q F ⋅=⑵2022121mv mv qU qEd Fd W t -==== ;)11(B A AB AB r r kQ q qU W -⋅== ㈢电势能及其变化:则用AA A r kQq q ⋅==ϕε及.AB AB W =∆ε㈣电加速、电偏转:⑴加速运动 (Vo=0) W=ΔE K qu=mV t 2/2 ,11)2(m qU v =,⑵类平抛运动 a=F/m=qE/m ,y =at 2/2; 侧移:d U l U d mv l qU aty 12220222422===,方向:d U l U d mv l qU 122022tan ==ϕ二、 精选习题㈠选择题(每小题5分,共40分) ⒈(16浙江)以下说法正确的是A .在静电场中,沿着电场线方向电势逐渐降低B .外力对物体所做的功越多,对应的功率越大C .电容器电容C 与电容器所带电荷量Q 成正比D .在超重和失重现象中,地球对物体的实际作用力发生了变化2.(16新课标I )一平行板电容器两极板之间充满云母介质,接在恒压直流电源上。
若将云母介质移出,则电容器( )A.极板上的电荷量变大,极板间电场强度变大B.极板上的电荷量变小,极板间电场强度变大C.极板上的电荷量变大,极板间电场强度不变D.极板上的电荷量变小,极板间电场强度不变3.(16天津)如图所示,平行板电容器带有等量异种电荷,与静电计相连,静电计金属外壳和电容器下极板都接地,在两极板间有一个固定在P 点的点电荷,以E 表示两板间的电场强度,p E 表示点电荷在P 点的电势能,θ表示静电计指针的偏角。
【物理】物理带电粒子在电场中的运动专题练习(及答案)及解析
【物理】物理带电粒⼦在电场中的运动专题练习(及答案)及解析【物理】物理带电粒⼦在电场中的运动专题练习(及答案)及解析⼀、⾼考物理精讲专题带电粒⼦在电场中的运动1.如图甲所⽰,极板A 、B 间电压为U 0,极板C 、D 间距为d ,荧光屏到C 、D 板右端的距离等于C 、D 板的板长.A 板O 处的放射源连续⽆初速地释放质量为m 、电荷量为+q 的粒⼦,经电场加速后,沿极板C 、D 的中⼼线射向荧光屏(荧光屏⾜够⼤且与中⼼线垂直),当C 、D 板间未加电压时,粒⼦通过两板间的时间为t 0;当C 、D 板间加上图⼄所⽰电压(图中电压U 1已知)时,粒⼦均能从C 、D 两板间飞出,不计粒⼦的重⼒及相互间的作⽤.求:(1)C 、D 板的长度L ;(2)粒⼦从C 、D 板间飞出时垂直于极板⽅向偏移的最⼤距离;(3)粒⼦打在荧光屏上区域的长度.【答案】(1)02qU L t m =2)2102qU t y md =(3)21032qU t s s md== 【解析】试题分析:(1)粒⼦在A 、B 板间有20012qU mv = 在C 、D 板间有00L v t = 解得:02qU L t m=(2)粒⼦从nt 0(n=0、2、4……)时刻进⼊C 、D 间,偏移距离最⼤粒⼦做类平抛运动偏移距离2012y at = 加速度1qU a md=得:2102qU t y md=(3)粒⼦在C 、D 间偏转距离最⼤时打在荧光屏上距中⼼线最远ZXXK] 出C 、D 板偏转⾓0tan y v v θ=0y v at =打在荧光屏上距中⼼线最远距离tan s y L θ=+荧光屏上区域长度21032qU t s s md==考点:带电粒⼦在匀强电场中的运动【名师点睛】此题是带电粒⼦在匀强电场中的运动问题;关键是知道粒⼦在⽔平及竖直⽅向的运动规律和特点,结合平抛运动的规律解答.2.如图1所⽰,光滑绝缘斜⾯的倾⾓θ=30°,整个空间处在电场中,取沿斜⾯向上的⽅向为电场的正⽅向,电场随时间的变化规律如图2所⽰.⼀个质量m=0.2kg ,电量q=1×10-5C 的带正电的滑块被挡板P 挡住,在t=0时刻,撤去挡板P .重⼒加速度g=10m/s 2,求:(1)0~4s 内滑块的最⼤速度为多少? (2)0~4s 内电场⼒做了多少功? 【答案】(1)20m/s (2)40J 【解析】【分析】对滑块受⼒分析,由⽜顿运动定律计算加速度计算各速度.【详解】【解】(l)在0~2 s 内,滑块的受⼒分析如图甲所⽰,电场⼒F=qE11sin F mg ma θ-=解得2110/a m s =在2 ---4 s 内,滑块受⼒分析如图⼄所⽰22sin F mg ma θ+=解得2210/a m s =因此物体在0~2 s 内,以2110/a m s =的加速度加速,在2~4 s 内,2210/a m s =的加速度减速,即在2s 时,速度最⼤由1v a t =得,max 20/v m s =(2)物体在0~2s 内与在2~4s 内通过的位移相等.通过的位移max202v x t m == 在0~2 s 内,电场⼒做正功1160W F x J == - 在2~4 s 内,电场⼒做负功2220W F x J ==- 电场⼒做功W=40 J 3.在⽔平桌⾯上有⼀个边长为L 的正⽅形框架,内嵌⼀个表⾯光滑的绝缘圆盘,圆盘所在区域存在垂直圆盘向上的匀强磁场.⼀带电⼩球从圆盘上的P 点(P 为正⽅形框架对⾓线AC 与圆盘的交点)以初速度v 0⽔平射⼊磁场区,⼩球刚好以平⾏于BC 边的速度从圆盘上的Q 点离开该磁场区(图中Q 点未画出),如图甲所⽰.现撤去磁场,⼩球仍从P 点以相同的初速度v 0⽔平⼊射,为使其仍从Q 点离开,可将整个装置以CD 边为轴向上抬起⼀定⾼度,如图⼄所⽰,忽略⼩球运动过程中的空⽓阻⼒,已知重⼒加速度为g .求:(1)⼩球两次在圆盘上运动的时间之⽐;(2)框架以CD 为轴抬起后,AB 边距桌⾯的⾼度.【答案】(1)⼩球两次在圆盘上运动的时间之⽐为:π:2;(2)框架以CD 为轴抬起后,AB边距桌⾯的⾼度为222vg.【解析】【分析】【详解】(1)⼩球在磁场中做匀速圆周运动,由⼏何知识得:r2+r2=L2,解得:r=22L,⼩球在磁场中做圆周运的周期:T=2rvπ,⼩球在磁场中的运动时间:t1=14T=2Lπ,⼩球在斜⾯上做类平抛运动,⽔平⽅向:x=r=v0t2,运动时间:t2=22Lv,则:t1:t2=π:2;(2)⼩球在斜⾯上做类平抛运动,沿斜⾯⽅向做初速度为零的匀加速直线运动,位移:r=2212at,解得,加速度:a=222vL,对⼩球,由⽜顿第⼆定律得:a=mgsinmθ=g sinθ,AB 边距离桌⾯的⾼度:h =L sinθ=222v g;4.⼀电路如图所⽰,电源电动势E=28v ,内阻r=2Ω,电阻R1=4Ω,R2=8Ω,R3=4Ω,C 为平⾏板电容器,其电容C=3.0pF ,虚线到两极板距离相等,极板长L=0.20m ,两极板的间距d=1.0×10-2m .(1)闭合开关S 稳定后,求电容器所带的电荷量为多少?(2)当开关S 闭合后,有⼀未知的、待研究的带电粒⼦沿虚线⽅向以v0=2.0m/s 的初速度射⼊MN 的电场中,已知该带电粒⼦刚好从极板的右侧下边缘穿出电场,求该带电粒⼦的⽐荷q/m (不计粒⼦的重⼒,M 、N 板之间的电场看作匀强电场,g=10m/s 2)【答案】(1)114.810C -? (2)46.2510/C kg -?【解析】【分析】【详解】(1)闭合开关S 稳定后,电路的电流:12282482E I A A R R r ===++++;电容器两端电压:222816R U U IR V V ===?=;电容器带电量: 12112 3.01016 4.810R Q CU C C --==??=?(2)粒⼦在电场中做类平抛运动,则:0L v t =21122Uq d t dm= 联⽴解得46.2510/qC kg m-=?5.如图所⽰,在不考虑万有引⼒的空间⾥,有两条相互垂直的分界线MN 、PQ ,其交点为O .MN ⼀侧有电场强度为E 的匀强电场(垂直于MN ),另⼀侧有匀强磁场(垂直纸⾯向⾥).宇航员(视为质点)固定在PQ 线上距O 点为h 的A 点处,⾝边有多个质量均为m 、电量不等的带负电⼩球.他先后以相同速度v0、沿平⾏于MN ⽅向抛出各⼩球.其中第1个⼩球恰能通过MN 上的C 点第⼀次进⼊磁场,通过O 点第⼀次离开磁场,OC=2h .求:(1)第1个⼩球的带电量⼤⼩;(2)磁场的磁感强度的⼤⼩B ;(3)磁场的磁感强度是否有某值,使后⾯抛出的每个⼩球从不同位置进⼊磁场后都能回到宇航员的⼿中?如有,则磁感强度应调为多⼤.【答案】(1)20 12mvqEh=;(2)2EBv=;(3)存在,EBv'=【解析】【详解】(1)设第1球的电量为1q,研究A到C的运动:2112q E=2h v t=解得:212mvqEh=;(2)研究第1球从A到C的运动:12yq Ev hm=解得:0yv v=tan1yvvθ==,45oθ=,2v v=;研究第1球从C作圆周运动到达O的运动,设磁感应强度为B 由2q vB mR=得1mvRq B=由⼏何关系得:22sinR hθ=解得:2EBv=;(3)后⾯抛出的⼩球电量为q ,磁感应强度B '①⼩球作平抛运动过程002hmx v tv qE== 2y qE v h m= ②⼩球穿过磁场⼀次能够⾃⾏回到A ,满⾜要求:sin R x θ=,变形得:sin mvx qB θ'= 解得:0E B v '=.6.竖直平⾯内存在着如图甲所⽰管道,虚线左侧管道⽔平,虚线右侧管道是半径R=1m 的半圆形,管道截⾯是不闭合的圆,管道半圆形部分处在竖直向上的匀强电场中,电场强度E=4×103V/m .⼩球a 、b 、c 的半径略⼩于管道内径,b 、c 球⽤长2m L =的绝缘细轻杆连接,开始时c 静⽌于管道⽔平部分右端P 点处,在M 点处的a 球在⽔平推⼒F 的作⽤下由静⽌向右运动,当F 减到零时恰好与b 发⽣了弹性碰撞,F-t 的变化图像如图⼄所⽰,且满⾜224F t π+=.已知三个⼩球均可看做质点且m a =0.25kg ,m b =0.2kg ,m c =0.05kg ,⼩球c 带q=5×10-4C 的正电荷,其他⼩球不带电,不计⼀切摩擦,g =10m/s 2,求(1)⼩球a 与b 发⽣碰撞时的速度v 0; (2)⼩球c 运动到Q 点时的速度v ;(3)从⼩球c 开始运动到速度减为零的过程中,⼩球c 电势能的增加量.【答案】(1)04m/s v = (2)v =2m/s (3) 3.2J P E ?=【分析】对⼩球a ,由动量定理可得⼩球a 与b 发⽣碰撞时的速度;⼩球a 与⼩球b 、c 组成的系统发⽣弹性碰撞由动量守恒和机械能守恒可列式,⼩球c 运动到Q 点时,⼩球b 恰好运动到P 点,由动能定理可得⼩球c 运动到Q 点时的速度;由于b 、c 两球转动的⾓速度和半径都相同,故两球的线速度⼤⼩始终相等,从c 球运动到Q 点到减速到零的过程列能量守恒可得;解:(1)对⼩球a ,由动量定理可得00a I m v =-由题意可知,F-图像所围的图形为四分之⼀圆弧,⾯积为拉⼒F 的冲量,由圆⽅程可知21S m = 代⼊数据可得:04/v m s =(2)⼩球a 与⼩球b 、c 组成的系统发⽣弹性碰撞,由动量守恒可得012()a a b c m v m v m m v =++ 由机械能守恒可得222012111()222a abc m v m v m m v =++ 解得120,4/v v m s ==⼩球c 运动到Q 点时,⼩球b 恰好运动到P 点,由动能定理22211()()22c b c b c m gR qER m m v m m v -=+-+ 代⼊数据可得2/v m s =(3)由于b 、c 两球转动的⾓速度和半径都相同,故两球的线速度⼤⼩始终相等,假设当两球速度减到零时,设b 球与O 点连线与竖直⽅向的夹⾓为θ从c 球运动到Q 点到减速到零的过程列能量守恒可得:21(1cos )sin ()sin 2b c b c m gR m gR m m v qER θθθ-+++=解得sin 0.6,37θθ==?因此⼩球c 电势能的增加量:(1sin ) 3.2P E qER J θ?=+=7.如图所⽰,在竖直⾯内有两平⾏⾦属导轨AB 、CD .导轨间距为L ,电阻不计.⼀根电阻不计的⾦属棒ab 可在导轨上⽆摩擦地滑动.棒与导轨垂直,并接触良好.导轨之间有垂直纸⾯向外的匀强磁场,磁感强度为B .导轨右边与电路连接.电路中的三个定值电阻阻值分别为2R 、R 和R .在BD 间接有⼀⽔平放置的电容为C 的平⾏板电容器,板间距离为d ,电容器中质量为m 的带电微粒电量为q 。
高中物理高考难点之八 带电粒子在电场中的运动
高中物理高考难点之八带电粒子在电场中的运动一、难点形成原因:1、由于对平抛运动规律、牛顿运动规律、匀变速运动规律的理解不深切,导致研究带电粒子在电场中的运动规律时,形成已有知识的‘负迁移’和‘前摄抑制’,出现了新旧知识的干扰和混淆。
2、围绕‘电场’、‘带电粒子’问题中的力学知识(如:库仑定律、电场强度、电场力、电场线)与能量知识(如:电势、电势能、电势差、等势面、电势能的变化、电场力的功)模糊混淆导致了认知的困难。
3、在解答“带电粒子在匀强电场中运动”的问题时,常常因能否忽略带电粒子所受的重力而导致错误。
4、学生对物理知识掌握不全,应用数学处理物理问题的能力、综合分析能力不达标导致解题的困难。
二、难点突破策略:带电微粒在电场中运动是电场知识和力学知识的结合,分析方法和力学的分析方法是基本相同的:先受力分析,再分析运动过程,选择恰当物理规律解题。
处理问题所需的知识都在电场和力学中学习过了,关键是怎样把学过的知识有机地组织起来,这就需要有较强的分析与综合的能力,为有效突破难点,学习中应重视以下几方面:1.在分析物体受力时,是否考虑重力要依据具体情况而定。
(1)基本粒子:如电子、质子、α粒子、离子等,除有说明或有明确的暗示以外一般都忽略不计。
(2)带电颗粒:如尘埃、液滴、小球等,除有说明或有明确的暗示以外一般都不能忽略。
“带电粒子”一般是指电子、质子及其某些离子或原子核等微观的带电体,它们的质量都很小,例如:电子的质量仅为0.91×10-30千克、质子的质量也只有1.67×10-27千克。
(有些离子和原子核的质量虽比电子、质子的质量大一些,但从“数量级”上来盾,仍然是很小的。
)如果近似地取g=10米/秒2,则电子所受的重力也仅仅是m e g=0.91×10-30×10=0.91×10-29(牛)。
但是电子的电量为q=1.60×10-19库(虽然也很小,但相对而言10-19比10-30就大了10-11倍),如果一个电子处于E=1.0×104牛/库的匀强电场中(此电场的场强并不很大),那这个电子所受的电场力F=qE=1.60×10-19×1.0×104=1.6×10-15(牛),看起来虽然也很小,但是比起前面算出的重力就大多了(从“数量级”比较,电场力比重力大了1014倍),由此可知:电子在不很强的匀强电场中,它所受的电场力也远大于它所受的重力——qE>>m e g。
2023届高考物理专题复习:电场的性质-带电粒子在电场中的运动 课件
平行板电容器分析类问题
[典例 3] 如图所示,平行板电容器与电动势为 E′的直流电源(内 阻不计)连接,下极板接地,静电计所带电荷量很少,可被忽略。一 带负电油滴被固定于电容器中的 P 点。现将平行板电容器的上极板 竖直向下平移一小段距离,则下列说法正确的是( )
第1讲 电场的性质 带电粒子在电场中的运动
2023届高考物理专题复习
第一部分 师生共研 核心专题 专题三 电场与磁场
第1讲 电场的性质 带电粒子在电场中 的运动
第1讲 电场的性质 带电粒子在电场中的运动
1
2
3
4
突破点一 突破点二 突破点三 专题限时集训
真题情境
甲 2021·山东卷 T6
乙 2021·湖南卷 T4
第1讲 电场的性质 带电粒子在电场中的运动
1
2
3
4
突破点一 突破点二 突破点三 专题限时集训
BD [曲线运动受力方向指向曲线凹的一侧,若粒子带正电,则
电场方向竖直向下,沿电场线方向电势降低,可知 Q 点电势比 P 点
电势低;若粒子带负电,则电场方向竖直向上,沿电场线方向电势
降低,可知 P 点电势比 Q 点电势低,选项 A 错误,B 正确。若粒子
2.(易错题)真空中两个点电荷 Q1、Q2 分别固定于 x 轴上 x1=0 和 x2=4a 的两点,在它们的连线上,场强 E 与 x 的关系图像如图所 示(取 x 轴正方向为场强正方向),以下判断正确的是( )
A.Q1 带正电、Q2 带负电 B.Q1 的电荷量是 Q2 的 3 倍 C.x 轴上 a 处的电势比 2a 处的高 D.带负电的试探电荷从 a 处移到 3a 处,电场力做正功
2
3
4
突破点一 突破点二 突破点三 专题限时集训
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考物理复习专题能力训练8电场性质及带电粒子在电场中的运动
(时间:45分钟满分:100分)
一、选择题(本题共8小题,每小题7分,共56分。
在每小题给出的四个选项中,1~6题只有一个选项符合题目要求,7~8题有多个选项符合题目要求。
全部选对的得7分,选对但不全的得4分,有选错的得0分)
1.
(2017·重庆模拟)一个正七边形七个顶点上各固定一个电荷量为q的点电荷,各电荷的电性如图所示,O点是正七边形的几何中心。
若空间中有一点M,且MO垂直于正七边形所在平面,则下列说法正确的是()
A.M点的电场强度方向是沿着OM连线,由O点指向M点
B.M点的电场强度方向是沿着OM连线,由M点指向O点
C.将一个负检验电荷从M点移动到无穷远处,电场力做正功
D.将一个正检验电荷从M点移动到无穷远处,电场力做正功
2.
如图所示,匀强电场中的A、B、C三点构成一边长为a的等边三角形。
电场强度的方向与纸面平行。
电子以某一初速度仅在静电力作用下从B移动到A动能减少E0。
质子以某一初速度仅在静电力作用下从C移动到A动能增加E0,已知电子和质子电荷量绝对值均为e,则匀强
电场的电场强度为()
A. B. C. D.
3.如图所示,匀强电场中有一圆,其平面与电场线平行,O为圆心,A、B、C、D为圆周上的四个等分点。
现将某带电粒子从A点以相同的初动能向各个不同方向发射,到达圆周上各点时,其中过D点动能最大,不计重力和空气阻力。
则()
A.该电场的电场线一定是与OD平行
B.该电场的电场线一定是与OB垂直
C.带电粒子若经过C点,则其动能不可能与初动能相同
D.带电粒子不可能经过B点
4.
真空中有一带电金属球,通过其球心的一直线上各点的电势φ分布如图,r表示该直线上某点到球心的距离,r1、r2分别是该直线上A、B两点离球心的距离。
根据电势图象(φ-r图象),下列说法正确的是()
A.该金属球可能带负电
B.A点的电场强度方向由A指向B
C.A点和B点之间的电场,从A到B,其电场强度可能逐渐增大
D.电荷量为q的正电荷沿直线从A移到B的过程中,电场力做功W=q(φ2-φ1)
5.
电源和一个水平放置的平行板电容器、两个变阻器R1、R2和定值电阻R3组成如图所示的电路。
当把变阻器R1、R2调到某个值时,闭合开关S,电容器中的一个带电液滴正好处于静止状态。
当再进行其他相关操作时(只改变其中的一个),以下判断正确的是()
A.将R1的阻值增大时,液滴仍保持静止状态
B.将R2的阻值增大时,液滴将向下运动
C.断开开关S,电容器上的电荷量将减为零
D.把电容器的上极板向上平移少许,电容器的电荷量将增加
6.
(2017·湖南永州二模)三个质量相等的带电微粒(重力不计)以相同的水平速度沿两极板的中心线方向从O点射入,已知上极板带正电,下极板接地,三个微粒的运动
轨迹如图所示,其中微粒2恰好沿下极板边缘飞出电场,则()
A.三微粒在电场中的运动时间有t3>t2>t1
B.三微粒所带电荷量有q1>q2=q3
C.三微粒所受静电力有F1=F2>F3
D.飞出电场的微粒2动能大于微粒3的动能
7.
(2017·湖南衡阳模拟)如图所示,倾角为θ的绝缘斜面固定在水平面上,当质量为m、电荷量为+q的滑块沿斜面下滑时,在此空间突然加上竖直方向的匀强电场,已知滑块受到的电场力小于滑块的重力。
则下列说法不正确的是()
A.若滑块匀速下滑,加上竖直向上的电场后,滑块将减速下滑
B.若滑块匀速下滑,加上竖直向下的电场后,滑块仍匀速下滑
C.若滑块匀减速下滑,加上竖直向上的电场后,滑块仍减速下滑,但加速度变大
D.若滑块匀加速下滑,加上竖直向下的电场后,滑块仍以原加速度加速下滑
8.
(2016·全国Ⅰ卷)如图所示,一带负电荷的油滴在匀强电场中运动,其轨迹在竖直面(纸面)内,且相对于
过轨迹最低点P的竖直线对称。
忽略空气阻力。
由此可知()
A.Q点的电势比P点的高
B.油滴在Q点的动能比它在P点的大
C.油滴在Q点的电势能比它在P点的大
D.油滴在Q点的加速度大小比它在P点的小
二、非选择题(本题共3小题,共44分)
9.(14分)图甲所示为一组间距d足够大的平行金属板,板间加有随时间变化的电压(如图乙所示),设U0和T已知。
A板上O处有一静止的带电粒子,其电荷量为q,质量为m(不计重力),在t=0时刻起该带电粒子受板间电场加速向B板运动,途中由于电场反向,粒子又向A板返回
(粒子未曾与B板相碰)。
(1)当U x=2U0时,求带电粒子在t=T时刻的动能。
(2)为使带电粒子在t=T时刻恰能回到O点,U x等于多少?
10.
(15分)如图所示,在平面直角坐标系中,有方向平行于坐标平面的匀强电场,坐标系内有A、B 两点,其中A点坐标为(6,0),B点坐标为(0,),坐标原点O处的电势为0,点A处的电势为8 V,点B处的电势为4 V。
现有一带电粒子从坐标原点O处沿电势为0的等势线方向以速度v=4×105 m/s射入电场,粒子运动时恰好通过B点,不计粒子所受重力,求:
(1)图中C(3,0)处的电势;
(2)匀强电场的电场强度大小;
(3)带电粒子的比荷。
11.(15分)(2017·全国Ⅱ卷)如图所示,两水平面(虚线)之间的距离为h,其间的区域存在方向水平向右的匀强电场。
自该区域上方的A点将质量均为m、电荷量分别为q和-q(q>0)的带电小球M、N先后以相同的初速度沿平行于电场的方向射出。
小球在重力作用下进入电场区域,并从该区域的下边界离开。
已知N离开电场时速度方向竖直向下;M在电场中做直线运动,刚离开电场时的动能为N刚离开电场时动能的1.5倍。
不计空气阻力,重力加速度大小为g。
求:
(1)M与N在电场中沿水平方向的位移之比;
(2)A点距电场上边界的高度;
(3)该电场的电场强度大小。
专题能力训练8电场性质
及带电粒子在电场中的运动
1.D
2.C
3.A
4.B
5.A
6.D
7.ACD
8.AB
9.答案(1)(2)3U0
解析(1)粒子在两种不同电压的电场中运动的加速度分别为a1=,a2=
经过时粒子的速度v1=a1
t=T时刻粒子的速度
v2=v1-a2=a1-a2
=-
t=T时刻粒子的动能
E k=。
(2)0~粒子的位移
x1=a1
~T粒子的位移
x x=v1a x
又v1=a1,x1=-x x
解得a x=3a1
因为a1=,a x=
解得U x=3U0。
10.答案(1)4 V(2)2.67×102 V/m
(3)2.4×1011 C/kg
解析(1)设C处的电势为φC
因为OC=CA
所以φO-φC=φC-φA
φC=V=4V。
(2)BC连线为等势线,电场强度方向与等势线BC垂直
设∠OBC=θ,OB=l=cm
由tanθ=,得θ=60°
由U=Ed,得E=
=V/m
=2.67×102V/m。
(3)因为带电粒子做类平抛运动,
所以
联立解得
=C/kg
=2.4×1011C/kg
所以带电粒子的比荷为2.4×1011C/kg。
11.答案(1)3∶1(2)h (3)
解析(1)设小球M、N在A点水平射出时的初速度大小为v0,则它们进入电场时的水平速度仍然为v0。
M、N在电场中运动的时间t相等,电场力作用下产生的加速度沿水平方向,大小均为a,在电场中沿水平方向的位移分别为x1和x2。
由题给条件和运动学公式得v0-at=0 ①
x1=v0t+at2②
x2=v0t-at2③
联立①②③式得x1∶x2=3∶1。
④
(2)设A点距电场上边界的高度为h A,小球下落h A时在竖直方向的分速度为v y,由运动学公式得
=2gh A⑤
h=v y t+gt2⑥
M进入电场后做直线运动,由几何关系知
⑦
联立①②⑤⑥⑦式可得h A=h⑧(3)设电场强度的大小为E,小球M进入电场后做直线运动,则
⑨
设M、N离开电场时的动能分别为E k1、E k2,由动能定理得
E k1=m()+mgh+qEx1
E k2=m()+mgh-qEx2
由已知条件E k1=1.5E k2
联立④⑤⑦⑧⑨⑩式得E=。