福建省各市2012年中考数学分类解析 专题8:平面几何基础

合集下载

2012福州中考数学

2012福州中考数学

2012福州中考数学
2012福州中考数学试卷回顾
福州中考数学是每年的重要考试科目之一,对于考生来说,备考数学是至关重要的。

下面将回顾2012年福州中考数学试卷,帮助考生更好地备考。

一、选择题
选择题是福州中考数学试卷中的一大特点。

该年份的选择题主要涉及了几何、代数、函数、统计等方面的知识。

其中,几何题主要考查了直线、圆的性质以及平行线、垂直线的判定;代数题主要涉及了一元一次方程的解法;函数题主要考查了函数的定义、性质和应用;统计题主要涉及了频数表和折线图的分析。

二、解答题
解答题是福州中考数学试卷中的重要部分。

该年份的解答题主要涉及了集合和事件、正方体的表面积和体积、线段垂直平分线的性质、数列的规律和应用等方面的知识。

解答题需要考生掌握相应的定理和公式,并能够熟练运用。

三、综合题
综合题是福州中考数学试卷中的难点。

该年份的综合题主要考查了几何、代数、函数、统计等知识的综合运用。

综合题需要考生能够综合运用所学的知识,分析问题并解决问题。

四、题目分值
该年份的福州中考数学试卷中,选择题占总分的50%,解答题占总分的20%,综合题占总分的30%。

因此,考生在备考时要
重点推敲选择题,提高解答题的得分,同时兼顾做综合题的能力。

总结:
通过回顾2012年福州中考数学试卷,我们可以了解到该年份数学试卷的题目类型和知识点分布。

在备考过程中,我们需要注重选择题的训练、解答题的积累和综合题的练习。

希望广大考生在备考过程中,能够对所学的数学知识有更深入的理解,并能够熟练灵活地运用到解题中去。

2012年福建省泉州市中考数学试卷解析版

2012年福建省泉州市中考数学试卷解析版

2012年福建省泉州市中考数学试卷一、选择题(每小题3分,共21分)﹣24B C4.(2012•泉州)如图是两个长方体堆成的物体,则这一物体的正视图是()B C﹣7.(2012•泉州)如图,O是△ABC的内心,过点O作EF∥AB,与AC、BC分别交E、F,则()二、填空题8.(2007•三明)比较大小:﹣5_________0.9.(2012•成都)分解因式:x2﹣5x=_________.10.(2012•泉州)光的速度大约是300 000 000米/秒,将300 000 000用科学记数法表示为_________.11.(2012•泉州)某校初一年段举行科技创新比赛活动,各班选送的学生数分别为3、2、2、6、6、5,则这组数据的平均数是_________.12.(2012•泉州)n边形的内角和为900°,则n=_________.13.计算:=_________.14.(2012•泉州)如图,在△ABC中,AB=AC,BC=6,AD⊥BC于D,则BD=_________.15.(2012•泉州)如图,在△ABC中,∠A=60°,∠B=40°,点D、E分别在BC、AC的延长线上,则∠1=_________°.16.(2012•泉州)如图,在矩形ABCD中,AB=1,AD=2,AD绕着点A顺时针旋转,当点D落在BC上点D′时,则AD′=_________,∠AD′B=_________°.17.(2012•泉州)在△ABC中,P是AB上的动点(P异于A、B),过点P的直线截△ABC,使截得的三角形与△ABC 相似,我们不妨称这种直线为过点P的△ABC的相似线,简记为P(l x)(x为自然数).(1)如图①,∠A=90°,∠B=∠C,当BP=2PA时,P(l1)、P(l2)都是过点P的△ABC的相似线(其中l1⊥BC,l2∥AC),此外,还有_________条;(2)如图②,∠C=90°,∠B=30°,当=_________时,P(l x)截得的三角形面积为△ABC面积的.三、解答题18.(2012•泉州)计算:×+|﹣4|﹣9×3﹣1﹣20120.19.(2012•泉州)先化简,再求值:(x+3)2+(2+x)(2﹣x),其中x=﹣2.20.(2012•泉州)在一个不透明的盒子中,共有“一白三黑”4个围棋子,它们除了颜色之外没有其他区别.(1)随机地从盒中提出1子,则提出白子的概率是多少?(2)随机地从盒中提出1子,不放回再提第二子.请你用画树状图或列表的方法表示所有等可能的结果,并求恰好提出“一黑一白”子的概率.21.(2012•泉州)如图,BD是平行四边形ABCD的一条对角线,AE⊥BD于点E,CF⊥BD于点F.求证:∠DAE=∠BCF.22.(2012•泉州)为了了解参与“泉州市非物质文化进校园”活动的情况,某校就报名参加花灯、南音、高甲戏、闽南语四个兴趣小组的学生进行抽样调查,下面是根据收集的数据进行绘制的两幅不完整的统计图,请根据图中提供的信息,解答下面的问题:(1)此次共调查了_________名同学,扇形统计图中“闽南语”部分的圆心角是_________度,请你把这个条形统计图补充完整;(2)如果每位老师最多只能辅导同一兴趣小组的学生20名,现该校共有1200名学生报名参加这4个兴趣小组,请你估计学校至少安排多少名高甲戏兴趣小组的教师.23.(2012•泉州)如图,在方格纸中(小正方形的边长为1),反比例函数y=与直线的交点A、B均在格点上,根据所给的直角坐标系(O是坐标原点),解答下列问题:(1)分别写出点A、B的坐标后,把直线AB向右平移5个单位,再向上平移5个单位,画出平移后的直线A′B′;(2)若点C在函数y=的图象上,△ABC是以AB为底的等腰三角形,请写出点C的坐标.24.(2012•泉州)国家推行“节能减排,低碳经济”政策后,某企业推出一种叫“CNG”的改烧汽油为天然气的装置,每辆车改装费为b元,据市场调查知:每辆车改装前、后的燃料费(含改装费)y0、y1(单位:元)与正常运营时x(单位:天)之间分别满足关系式:y0=ax、y1=b+50x,如图所示.试根据图象解决下列问题:(1)每辆车改装前每天的燃料费a=_________元;每辆车的改装费b=_________元,正常营运_________天后,就可以从节省的燃料费中收回改装成本;(2)某出租车公司一次性改装了100辆出租车,因而,正常运营多少天后共节省燃料费40万元?25.(2012•泉州)已知:A、B、C三点不在同一直线上.(1)若点A、B、C均在半径为R的⊙O上,i)如图①,当∠A=45°,R=1时,求∠BOC的度数和BC的长;ii)如图②,当∠A为锐角时,求证:sinA=;(2)若定长线段BC的两个端点分别在∠MAN的两边AM、AN(B、C均与A不重合)滑动,如图③,当∠MAN=60°,BC=2时,分别作BP⊥AM,CP⊥AN,交点为P,试探索在整个滑动过程中,P、A两点间的距离是否保持不变?请说明理由.26.(2012•泉州)如图,O为坐标原点,直线l绕着点A(0,2)旋转,与经过点C(0,1)的二次函数y=x2+h的图象交于不同的两点P、Q.(1)求h的值;(2)通过操作、观察,算出△POQ的面积的最小值(不必说理);(3)过点P、C作直线,与x轴交于点B,试问:在直线l的旋转过程中,四边形AOBQ是否为梯形?若是,请说明理由;若不是,请指出四边形的形状.四、附加题27.(2012•泉州)(1)方程x﹣5=0的解是_________.(2)如图,点A、O、B在同一直线上,已知∠BOC=50°,则∠AOC=_________°.2012年福建省泉州市中考数学试卷参考答案与试题解析一、选择题(每小题3分,共21分)﹣24B C4.(2012•泉州)如图是两个长方体堆成的物体,则这一物体的正视图是()B C﹣6.(2012•泉州)下列图形中,有且只有两条对称轴的中心对称图形是()7.(2012•泉州)如图,O是△ABC的内心,过点O作EF∥AB,与AC、BC分别交E、F,则()二、填空题8.(2007•三明)比较大小:﹣5<0.9.(2012•成都)分解因式:x2﹣5x=x(x﹣5).10.(2012•泉州)光的速度大约是300 000 000米/秒,将300 000 000用科学记数法表示为3×108.11.(2012•泉州)某校初一年段举行科技创新比赛活动,各班选送的学生数分别为3、2、2、6、6、5,则这组数据的平均数是4.12.(2012•泉州)n边形的内角和为900°,则n=7.13.计算:=1.14.(2012•泉州)如图,在△ABC中,AB=AC,BC=6,AD⊥BC于D,则BD=3.BD=15.(2012•泉州)如图,在△ABC中,∠A=60°,∠B=40°,点D、E分别在BC、AC的延长线上,则∠1=80°.16.(2012•泉州)如图,在矩形ABCD中,AB=1,AD=2,AD绕着点A顺时针旋转,当点D落在BC上点D′时,则AD′=2,∠AD′B=30°.AB=17.(2012•泉州)在△ABC中,P是AB上的动点(P异于A、B),过点P的直线截△ABC,使截得的三角形与△ABC 相似,我们不妨称这种直线为过点P的△ABC的相似线,简记为P(l x)(x为自然数).(1)如图①,∠A=90°,∠B=∠C,当BP=2PA时,P(l1)、P(l2)都是过点P的△ABC的相似线(其中l1⊥BC,l2∥AC),此外,还有1条;(2)如图②,∠C=90°,∠B=30°,当=或或时,P(l x)截得的三角形面积为△ABC面积的.S=,∴=,∴==,∴==为对应边,且=,∴==,∴=或或三、解答题18.(2012•泉州)计算:×+|﹣4|﹣9×3﹣1﹣20120.原式第一项利用二次根式的乘法法则•=(×=﹣19.(2012•泉州)先化简,再求值:(x+3)2+(2+x)(2﹣x),其中x=﹣2.20.(2012•泉州)在一个不透明的盒子中,共有“一白三黑”4个围棋子,它们除了颜色之外没有其他区别.(1)随机地从盒中提出1子,则提出白子的概率是多少?(2)随机地从盒中提出1子,不放回再提第二子.请你用画树状图或列表的方法表示所有等可能的结果,并求恰好提出“一黑一白”子的概率.=.21.(2012•泉州)如图,BD是平行四边形ABCD的一条对角线,AE⊥BD于点E,CF⊥BD于点F.求证:∠DAE=∠BCF.22.(2012•泉州)为了了解参与“泉州市非物质文化进校园”活动的情况,某校就报名参加花灯、南音、高甲戏、闽南语四个兴趣小组的学生进行抽样调查,下面是根据收集的数据进行绘制的两幅不完整的统计图,请根据图中提供的信息,解答下面的问题:(1)此次共调查了100名同学,扇形统计图中“闽南语”部分的圆心角是90度,请你把这个条形统计图补充完整;(2)如果每位老师最多只能辅导同一兴趣小组的学生20名,现该校共有1200名学生报名参加这4个兴趣小组,请你估计学校至少安排多少名高甲戏兴趣小组的教师.部分的圆心角是:×23.(2012•泉州)如图,在方格纸中(小正方形的边长为1),反比例函数y=与直线的交点A、B均在格点上,根据所给的直角坐标系(O是坐标原点),解答下列问题:(1)分别写出点A、B的坐标后,把直线AB向右平移5个单位,再向上平移5个单位,画出平移后的直线A′B′;(2)若点C在函数y=的图象上,△ABC是以AB为底的等腰三角形,请写出点C的坐标.24.(2012•泉州)国家推行“节能减排,低碳经济”政策后,某企业推出一种叫“CNG”的改烧汽油为天然气的装置,每辆车改装费为b元,据市场调查知:每辆车改装前、后的燃料费(含改装费)y0、y1(单位:元)与正常运营时x(单位:天)之间分别满足关系式:y0=ax、y1=b+50x,如图所示.试根据图象解决下列问题:(1)每辆车改装前每天的燃料费a=90元;每辆车的改装费b=4000元,正常营运100天后,就可以从节省的燃料费中收回改装成本;(2)某出租车公司一次性改装了100辆出租车,因而,正常运营多少天后共节省燃料费40万元?25.(2012•泉州)已知:A、B、C三点不在同一直线上.(1)若点A、B、C均在半径为R的⊙O上,i)如图①,当∠A=45°,R=1时,求∠BOC的度数和BC的长;ii)如图②,当∠A为锐角时,求证:sinA=;(2)若定长线段BC的两个端点分别在∠MAN的两边AM、AN(B、C均与A不重合)滑动,如图③,当∠MAN=60°,BC=2时,分别作BP⊥AM,CP⊥AN,交点为P,试探索在整个滑动过程中,P、A两点间的距离是否保持不变?请说明理由.=∠=,AP=AK=PK==,==26.(2012•泉州)如图,O为坐标原点,直线l绕着点A(0,2)旋转,与经过点C(0,1)的二次函数y=x2+h的图象交于不同的两点P、Q.(1)求h的值;(2)通过操作、观察,算出△POQ的面积的最小值(不必说理);(3)过点P、C作直线,与x轴交于点B,试问:在直线l的旋转过程中,四边形AOBQ是否为梯形?若是,请说明理由;若不是,请指出四边形的形状.x∴+h=1y=x,,∴a得:;=|=•(﹣•由上式知:当﹣y=,,∴a﹣y=﹣四、附加题27.(2012•泉州)(1)方程x﹣5=0的解是5.(2)如图,点A、O、B在同一直线上,已知∠BOC=50°,则∠AOC=130°.。

2012年福建省福州市中考题及答案

2012年福建省福州市中考题及答案

二○一二年福州市初中毕业会考、高级中等学校招生考试数学试卷答案解析一、选择题(共10小题,每题4分,满分40分;每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.3的相反数是( )A .-3B .13C .3D .-132.今年参观“5·18”海交会的总人数约为489000人,将489000用科学记数法表示为( )A .48.9×104B .4.89×105C .4.89×104D .0.489×1063.如图是由4个大小相同的正方体组合而成的几何体,其主视图是( )4.如图,直线a∥b ,∠1=70°,那么∠2的度数是() A .50° B .60° C .70° D .80° 5.下列计算正确的是()A .a +a =2aB .b 3·b 3=2b 3C .a 3÷a =a 3D .(a 5)2=a 76.式子x -1在实数范围内有意义,则x 的取值范围是( )A .x <1B .x ≤1C .x >1D .x ≥17.某射击运动员在一次射击练习中,成绩(单位:环)记录如下:8,9,8,7,10.这组数据的平均数和中位数分别是( )A .8,8B .8.4,8C .8.4,8.4D .8,8.48.⊙O 1和⊙O 2的半径分别是3cm 和4cm ,如果O 1O 2=7cm ,则这两圆的位置关系是( ) A .内含 B .相交 C .外切 D .外离 9.如图,从热气球C 处测得地面A 、B 两点的俯角分别为30°、45°,如果此时热气球C 处的高度CD 为100米,点A 、D 、B 在同一直线上,则AB 两点煌距离是( ) A .200米 B .2003米 C .2203米 D .100(3+1)米10.如图,过点C (1,2)分别作x 轴、y 轴的平行线,交直线y =-x +6于A 、B 两点,若反比例函数y =kx (x >0)的图像与△ABC 有公共点,则k 的取值范围是( )A .2≤k ≤9B .2≤k ≤8C .2≤k ≤5D .5≤k ≤8第3题图 A B C D 第9题图 A B CD 30° 45° a 第4题图 1 2 b二、填空题(共5小题,每题4分,满分20分;请将正确答案填在答题卡相应位置) 11.分解因式:x 2-16=_________________.12.一个袋子中装有3个红球和2个绿球,这些球除了颜色外都相同,从袋子中随机摸出一个球,则摸到红球的概率为__________________. 13.若20n 是整数,则正整数n 的最小值为________________. 14.计算:x -1x +1x=______________.15.如图,已知△ABC ,AB =AC =1,∠A =36°,∠ABC 的平分线BD 交AC 于点D ,则AD 的长是______,cos A 的值是______________.(结果保留根号)三、解答题(满分90分;请将正确答案及解答过程填在答题卡相应位置.作图或添辅助线用铅笔画完,再用黑色签字笔描黑) 16.(每小题7分,共14分) (1) 计算:|-3|+(π+1)0-4. (2) 化简:a (1-a )+(a +1)2-1.17.(每小题7分,共14分)(1) 如图,点E 、F 在AC 上,AB ∥CD ,AB =CD ,AE =CF .求证:△ABF ≌△CDE . (2) 如图,方格纸中的每个小方格是边长为1个单位长度的正方形. ① 画出将Rt △ABC 向右平移5个单位长度后的Rt △A 1B 1C 1; ② 再将Rt △A 1B 1C 1绕点C 1顺时针旋转90°,画出旋转后的Rt △A 2B 2C 1,并求出旋转过程中线段A 1C 1所扫过的面积(结果保留π).D A B C D EF第17(1)题图 第17(2)题图A B C AB C第15题图18.(满分12分)省教育厅决定在全省中小学开展“关注校车、关爱学生”为主题的交通安全教育宣传周活动.某中学为了了解本校学生的上学方式,在全校范围内随机抽查了部分学生,将收集的数据绘制成如下两幅不完整的统计图(如图所示),请根据图中提供的信息,解答下列问题.(1) m =_______%,这次共抽取__________名学生进行调查;并补全条形图; (2) 在这次抽样调查中,采用哪种上学方式的人最多?(3) 如果该校共有1500名学生,请你估计该校骑自行车上学的学生约有多少名?19.(满分11分)某次知识竞赛共有20道题,每一题答对得5分,答错或不答都扣3分.(1) 小明考了68分,那么小明答对了多少道题?(2) 小亮获得二等奖(70~90分),请你算算小亮答对了几道题?学生上学方式扇形统计图学生上学方式条形统计图步行 其他 乘公交车 骑自行车 上学方式20.(满分12分)如图,AB 为⊙O 的直径,C 为⊙O 上一点,AD 和过C 点的切线互相垂直,垂足为D ,AD 交⊙O 于点E .(1) 求证:AC 平分∠DAB ;(2) 若∠B =60º,CD =23,求AE 的长.21.(满分13分)如图①,在Rt △ABC 中,∠C =90º,AC =6,BC =8,动点P 从点A 开始沿边AC 向点C 以每秒1个单位长度的速度运动,动点Q 从点C 开始沿边CB 向点B 以每秒2个单位长度的速度运动,过点P 作PD ∥BC ,交AB 于点D ,连接PQ .点P 、Q 分别从点A 、C 同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t 秒(t ≥0).(1) 直接用含t 的代数式分别表示:QB =______,PD =______.(2) 是否存在t 的值,使四边形PDBQ 为菱形?若存在,求出t 的值;若不存在,说明理由.并探究如何改变点Q 的速度(匀速运动),使四边形PDBQ 在某一时刻为菱形,求点Q 的速度;(3) 如图②,在整个运动过程中,求出线段PQ 中点M 所经过的路径长.第21题图① BC D P Q第21题图②C PA 第20题图22.(满分14分)如图①,已知抛物线y=ax2+bx(a≠0)经过A(3,0)、B(4,4)两点.(1) 求抛物线的解析式;(2) 将直线OB向下平移m个单位长度后,得到的直线与抛物线只有一个公共点D,求m的值及点D的坐标;(3) 如图②,若点N在抛物线上,且∠NBO=∠A BO,则在(2)的条件下,求出所有满足△POD∽△NOB的点P的坐标(点P、O、D分别与点N、O、B对应).第22题图①第22题图②2012年福州市初中毕业会考、高级中等学校招生考试数学试卷答案一、1.A 2.B 3.C 4.C 5.A 6.D 7.B 8.C 9.D 10.A 二、11. (x +4)(x -4) 12. 35 13. 5 14. 1 15. 5-12;5+14三、16. 解:(1) |-3|+(π+1)0-4=3+1-2=2.(2) a (1-a )+(a +1)2-1=a -a 2+a 2+2a +1-1=3a . 17. 证明:∵ AB ∥CD , ∴ ∠A =∠C . ∵ AE =CF ,∴ AE +EF =CF +EF ,即 AF =CE . 又∵ AB =CD ,∴ △ABF ≌△CDE . (2) 解:① 如图所示; ② 如图所示;在旋转过程中,线段A 1C 1所扫过的面积等于90·π·42360=4π.18. 解:(1) 1-14%-20%-40%=26%;20÷40%=50;条形图如图所示; (2) 采用乘公交车上学的人数最多;(3) 该校骑自行车上学的人数约为:150×20%=300(人).19. 解:(1) 设小明答对了x 道题,依题意得:5x -3(20-x )=68.解得:x =16. 答:小明答对了16道题.(2) 设小亮答对了y 道题,依题意得:⎩⎨⎧5y -3(20-y )≥705y -3(20-y )≤90.因此不等式组的解集为1614≤y ≤1834.∵ y 是正整数,∴ y =17或18.答:小亮答对了17道题或18道题. 20. 证明: (1)连接OC , ∵ CD 为⊙O 的切线, ∴ OC ⊥CD , ∴ ∠OCD =90°. ∵ AD ⊥CD , ∴ ∠ADC =90°.∴ ∠OCD +∠ADC =180°, ∴ AD ∥OC , ∴ ∠1=∠2, ∵ OA =OC , ∴ ∠2=∠3,∴ ∠1=∠3,即AC 平分∠DAB . (2)如图,∵ AB 为⊙O 的直径, ∴ ∠ACB =90°.又∵ ∠B =60°, ∴ ∠1=∠3=30°. 在Rt △ACD 中,CD =23, ∴ AC =2CD =43.在Rt △ABC 中,AC =43, ∴ AB =AC cos ∠CAB =43cos30°=8.连接OE ,∵ ∠EAO =2∠3=60°,OA =OE , ∴ △AOE 是等边三角形, ∴ AE =OA =12AB =4.21. 解:(1) QB =8-2t ,PD =43t .(2) 不存在.在Rt △ABC 中,∠C =90°,AC =6,BC =8, ∴ AB =10. ∵ PD ∥BC ,∴ △APD ∽△ACB , ∴ AD AB =AP AC ,即:AD 10=t 6,∴ AD =53t ,∴ BD =AB -AD =10-53t .∵ BQ ∥DP ,∴ 当BQ =DP 时,四边形PDBQ 是平行四边形,即8-2t =43t ,解得:t =125.当t =125时,PD =43×125=165,BD =10-53×125=6,∴ DP ≠BD ,∴ □PDBQ 不能为菱形.设点Q 的速度为每秒v 个单位长度,则BQ =8-vt ,PD =43t ,BD =10-53t .要使四边形PDBQ 为菱形,则PD =BD =BQ ,当PD =BD 时,即43t =10-53t ,解得:t =103.当PD =BQ 时,t =103时,即43×103=8-103v ,解得:v =1615.(3)如图2,以C 为原点,以AC 所在直线为x 依题意,可知0≤t ≤4,当t =0时,点M 1的坐标为(3,0); 当t =4时,点M 2的坐标为(1,4).设直线M 1M 2的解析式为y =kx +b ,∴ ⎩⎨⎧3k +b =0k +b =4,解得:⎩⎨⎧k =-2b =6.∴ 直线M 1M 2的解析式为y =-2x +6.∵ 点Q (0,2t ),P (6-t ,0),图1BCDPQ∴ 在运动过程中,线段PQ 中点M 3的坐标为(6-t2,t ).把x =6-t 2,代入y =-2x +6,得y =-2×6-t 2+6=t .∴ 点M 3在直线M 1M 2上.过点M 2作M 2N ⊥x 轴于点N ,则M 2N =4,M 1N =2.∴ M 1M 2=25.∴ 线段PQ 中点M 所经过的路径长为25单位长度.22. 解:(1) ∵ 抛物线y =ax 2+bx (a ≠0)经过点A (3,0)、B (4,4).∴ ⎩⎨⎧9a +3b =016a +4b =4,解得⎩⎨⎧a =1b =-3. ∴ 抛物线的解析式是y =x 2-3x .(2) 设直线OB 的解析式为y =k 1x ,由点B (4,4),得:4=4k 1,解得k 1=1. ∴ 直线OB 的解析式为y =x .∴ 直线OB 向下平移m 个单位长度后的解析式为:y =x -m . ∵ 点D 在抛物线y =x 2-3x 上. ∴ 可设D (x ,x 2-3x ).又点D 在直线y =x -m 上,∴ x 2-3x =x -m ,即x 2-4x +m =0. ∵ 抛物线与直线只有一个公共点,∴ △=16-4m =0,解得:m =4. 此时x 1=x 2=2,y =x 2-3x =-2,∴ D 点坐标为(2,-2). (3) ∵ 直线OB 的解析式为y =x ,且A (3,0), ∴ 点A 关于直线OB 的对称点A'的坐标是(0,3).设直线A'B 的解析式为y =k 2x +3,过点B (4,4),∴ 4k 2+3=4,解得:k 2=14.∴ 直线A'B 的解析式是y =14x +3.∵ ∠NBO =∠ABO , ∴ 点N 在直线A'B 上,∴ 设点N (n ,14n +3),又点N 在抛物线y =x 2-3x 上,∴ 14n +3=n 2-3n ,解得:n 1=-34,n 2=4(不合题意,会去), ∴ 点N 的坐标为(-34,4516).如图,将△NOB 沿x 轴翻折,得到△N 1OB 1,则N 1(-34,-4516),B 1(4,-4),∴ O 、D 、B 1都在直线y =-x 上. ∵ △P 1OD ∽△NOB , ∴ △P 1OD ∽△N 1OB 1, ∴OP 1ON 1=OD OB 1=12, ∴ 点P 1的坐标为(-38,-4532).英格教育文化有限公司 全新课标理念,优质课程资源将△OP 1D 沿直线y =-x 翻折,可得另一个满足条件的点P 2(4532,38).综上所述,点P 的坐标是(-38,-4532)或(4532,38).。

福建省各市2012年中考数学分类解析专题9:三角形

福建省各市2012年中考数学分类解析专题9:三角形

福建9市2012年中考数学试题分类解析汇编专题9:三角形一、选择题1. (2012福建南平4分)一个三角形的周长是36,则以这个三角形各边中点为顶点的三角形的周长是【 】A .6B .12C .18D .36 【答案】C 。

【考点】三角形中位线定理。

【分析】根据题意画出图形,∵点D 、E 、F 分别是AB 、AC 、BC 的中点, ∴由三角形的中位线定理可知DE=12BC ,DF=12 AC ,EF=12AB , ∵AB+CB+AC=36,∴DE+DF+FE=36÷2=18。

故选C 。

2. (2012福建漳州4分)将一副直角三角板,按如图所示叠放在一起,则图中∠ 的度数是【 】A .45oB .60oC .75oD .90o 【答案】 C 。

【考点】三角形的外角性质,直角三角形的性质。

【分析】如图,∵∠1=90°-60°=30°,∴∠α=45°+30°=75°。

故选C 。

3. (2012福建三明4分)如图,在平面直角坐标系中,点A 在第一象限,点P 在x 轴上,若以P ,O ,A 为顶点的三角形是等腰三角形,则满足条件的点P 共有【 】A.2个B.3个C.4个D.5个【答案】C。

【考点】等腰三角形的判定。

【分析】如图,分OP=AP(1点),OA=AP(1点),OA=OP(2点)三种情况讨论。

∴以P,O,A为顶点的三角形是等腰三角形,则满足条件的点P共有4个。

故选C。

4.(2012福建福州4分)如图,从热气球C处测得地面A、B两点的俯角分别为30°、45°,如果此时热气球C处的高度CD为100米,点A、D、B在同一直线上,则AB两点煌距离是【】A.200米B.2003米C.2203米D.100(3+1)米【答案】D。

【考点】解直角三角形的应用(仰角俯角问题),锐角三角函数定义,特殊角的三角函数值。

【分析】图中两个直角三角形中,都是知道已知角和对边,根据正切函数求出邻边后,相加求和即可:由已知,得∠A=30°,∠B=45°,CD=100,∵ CD⊥AB于点D,∴在Rt△ACD中,∠CDA=90°,tanA=CDAD,∴ AD=CDtanA=10033=1003。

2012年福建省福州市中考数学试题(含解析)

2012年福建省福州市中考数学试题(含解析)

二○一二年福州市初中毕业会考、高级中等学校招生考试数学试卷答案解读一、选择题(共小题,每题分,满分分;每小题只有一个正确地选项,请在答题卡地相应位置填涂> .地相反数是.- . . .-考点:相反数.专题:存在型.分析:根据相反数地定义进行解答.解答:解:由相反数地定义可知,地相反数是-.故选.点评:本题考查地是相反数地定义,即只有符号不同地两个数叫做互为相反数..今年参观“·”海交会地总人数约为人,将用科学记数法表示为.× .× .× .×考点:科学记数法—表示较大地数.分析:科学记数法地表示形式为×地形式,其中≤<,为整数.确定地值时,要看把原数变成时,小数点移动了多少位,地绝对值与小数点移动地位数相同.当原数绝对值>时,是正数;当原数地绝对值<时,是负数.解答:解:=×.故选.点评:此题考查科学记数法地表示方法.科学记数法地表示形式为×地形式,其中≤<,为整数,表示时关键要正确确定地值以及地值..如图是由个大小相同地正方体组合而成地几何体,其主视图是简单组合体地三视图.从正面看到地图叫做主视图,从左面看到地图叫做左视图,从上面看到地图叫做俯视图.根据图中正方体摆放地位置判定则可.解:从正面看,下面一行是横放个正方体,上面一行中间是一个正方体. 故选. 点评:本题考查了三种视图中地主视图,比较简单. .如图,直线∥,∠=°,那么∠地度数是.° .° .° .° 考点:平行线地性质.分析:根据两角地位置关系可知两角是同位角,利用两直线平行同位角相等即可求得结果.解答:解:∵ ∥,∴ ∠=∠,∵ ∠=°,∴ ∠=°.故选.点评:本题考查了平行线地性质,根据两直线平行同位角相等即可得到答案,比较简单,属于基础题. .下列计算正确地是.+= .·= .÷= .(>=考点:同底数幂地除法;合并同类项;同底数幂地乘法;幂地乘方与积地乘方.专题:计算题.分析:分别根据合并同类项、同底数幂地除法与乘法、幂地乘方与积地乘方法则对各选项进行逐一计算即可.解答:解:、+=,故本选项正确;、•=,故本选项错误;、÷=,故本选项错误;、(>=,故本选项错误.故选.点评:本题考查地是合并同类项、同底数幂地除法与乘法、幂地乘方与积地乘方法则,熟知以上知识是解答此题地关键..式子在实数范围内有意义,则地取值范围是.< .≤ .> .≥考点:二次根式有意义地条件.分析:根据二次根式有意义地条件列出关于地不等式,求出地取值范围即可.解答:解:∵ 式子在实数范围内有意义,∴ -≥,解得≥.第题图 第题图故选.点评:本题考查地是二次根式有意义地条件,即被开方数大于等于..某射击运动员在一次射击练习中,成绩(单位:环>记录如下:,,,,.这组数据地平均数和中位数分别是 ., ., ., .,考点:中位数;算术平均数.分析:根据平均数公式求解即可,即用所有数据地和除以即可;个数据地中位数是排序后地第三个数. 解答:解:,,,,地平均数为:×(++++>=.,,,,排序后为,,,,,故中位数为.故选.点评:本题考查了中位数及算术平均数地求法,特别是中位数,首先应该排序,然后再根据数据地个数确定中位数..⊙和⊙地半径分别是和,如果=,则这两圆地位置关系是.内含 .相交 .外切 .外离考点:圆与圆地位置关系.分析:由⊙、⊙地半径分别是、,若=,根据两圆位置关系与圆心距,两圆半径,地数量关系间地联系即可得出⊙和⊙地位置关系.解答:解:∵ ⊙、⊙地半径分别是、,=,又∵ +=,∴⊙和⊙地位置关系是外切.故选.点评:此题考查了圆与圆地位置关系.解题地关键是掌握两圆位置关系与圆心距,两圆半径,地数量关系间地联系.圆和圆地位置与两圆地圆心距、半径地数量之间地关系:① 两圆外离⇔>+;② 两圆外切⇔=+;③ 两圆相交⇔-<<+(≥>;④ 两圆内切⇔=-(>>;⑤ 两圆内含⇔<-(>>..如图,从热气球处测得地面、两点地俯角分别为°、°,如果此时热气球处地高度为,点、、在同一直线上,则两点煌距离是 . . . .(+>考点:解直角三角形地应用-仰角俯角问题.分析:图中两个直角三角形中,都是知道已知角和对边,根据正切函数求出邻边后,相加求和即可.解答:解:由已知,得∠=°,∠=°,=,∵ ⊥于点.∴ 在△中,∠=°,=,∴ ===在△中,∠=°,∠=°,∴ ==,∴ =+=+=(+>.故选.点评:本题考查了解直角三角形地应用,解决本题地关键是利用为直角△斜边上地高,将三角形分成两个三角形,然后求解.分别在两三角形中求出与地长..如图,过点(,>分别作轴、轴地平行线,交直线=-+于、两点,若反比例函数=(>>地图像与△有公共点,则地取值范围是 .≤≤ .≤≤ .≤≤ .≤≤ 考点:反比例函数综合题. 专题:综合题. 分析:先求出点、地坐标,根据反比例函数系数地几何意义可知,当反比例函数图象与△相交于点时地取值最小,当与线段相交时,能取到最大值,根据直线=-+,设交点为(,-+>时值最大,然后列式利用二次函数地最值问题解答即可得解.解答:解:∵ 点(,>,∥轴,∥轴,∴ 当=时,=-+=,当=时,-+=,解得=,∴ 点、地坐标分别为(,>,(,>,根据反比例函数系数地几何意义,当反比例函数与点相交时,=×=最小,设与线段相交于点(,-+>时值最大,则=(-+>=-+=-(->+,∵ ≤≤,∴ 当=时,值最大,第题图 ° °此时交点坐标为(,>,因此,地取值范围是≤≤.故选.点评:本题考查了反比例函数系数地几何意义,二次函数地最值问题,本题看似简单但不容易入手解答,判断出最大最小值地取值情况并考虑到用二次函数地最值问题解答是解题地关键.二、填空题(共小题,每题分,满分分;请将正确答案填在答题卡相应位置>.分解因式:-=.考点:因式分解——运用公式法.分析:运用平方差公式分解因式地式子特点:两项平方项,符号相反.直接运用平方差公式分解即可.-=(+>(->.解答:解:-=(+>(->.点评:本题考查因式分解.当被分解地式子只有两项平方项;符号相反,且没有公因式时,应首要考虑用平方差公式进行分解..一个袋子中装有个红球和个绿球,这些球除了颜色外都相同,从袋子中随机摸出一个球,则摸到红球地概率为.考点:概率公式.分析:根据概率地求法,找准两点:①全部情况地总数;②符合条件地情况数目;二者地比值就是其发生地概率.解答:解;布袋中球地总数为:+=,取到黄球地概率为:.故答案为:.点评:此题主要考查了概率地求法,如果一个事件有种可能,而且这些事件地可能性相同,其中事件出现种结果,那么事件地概率(>=..若是整数,则正整数地最小值为.考点:二次根式地定义.专题:存在型.分析:是正整数,则一定是一个完全平方数,首先把分解因数,确定是完全平方数时,地最小值即可.解答:解:∵=×.∴整数地最小值为.故答案是:.点评:本题考查了二次根式地定义,理解是正整数地条件是解题地关键..计算:+=.考点:分式地加减法.专题:计算题.分析:直接根据同分母地分数相加减进行计算即可.解答:解:原式==.故答案为:.点评:本题考查地是分式地加减法,同分母地分式相加减,分母不变,把分子相加减..如图,已知△,==,∠=°,∠地平分线交于点,则地长是,地值是.(结果保留根号>考点:黄金分割;相似三角形地判定与性质;锐角三角函数地定义.分析:可以证明△∽△,设=,根据相似三角形地对应边地比相等,即可列出方程,求得地值;过点作⊥于点,则为中点,由余弦定义可求出地值.解答:解:∵△,==,∠=°,∴∠=∠==°.∵是∠地平分线,∴∠=∠=∠=°.∴∠=∠=°,又∵∠=∠,∴△∽△,∴=,设=,则==.则=,解得:=(舍去>或.第题图故=.如右图,过点作⊥于点,∵=,∴为中点,即==.在△中,===.故答案是:;.点评:△、△均为黄金三角形,利用相似关系可以求出线段之间地数量关系;在求时,注意构造直角三角形,从而可以利用三角函数定义求解.三、解答题(满分分;请将正确答案及解答过程填在答题卡相应位置.作图或添辅助线用铅笔画完,再用黑色签字笔描黑>.(每小题分,共分>(> 计算:-+(π+>-.(> 化简:(->+(+>-.考点:整式地混合运算;实数地运算;零指数幂.专题:计算题.分析:(>原式第一项根据绝对值地代数意义:负数地绝对值等于它地相反数进行化简,第二项利用零指数公式化简,第三项利用=化简,合并后即可得到结果;(>利用乘法分配律将原式第一项括号外边地乘到括号里边,第二项利用完全平方数展开,合并同类项后即可得到结果.解答:解:(> 解:-+(π+>-=+-=.(> 解:(->+(+>-=-+++-=.点评:此题考查了整式地混合运算,以及实数地运算,涉及地知识有:绝对值地代数意义,零指数公式,二次根式地化简,完全平方公式,以及合并同类项法则,熟练掌握公式及法则是解本题地关键..(每小题分,共分>(> 如图,点、在上,∥,=,=.求证:△≌△.(> 如图,方格纸中地每个小方格是边长为个单位长度地正方形.① 画出将△向右平移个单位长度后地△;② 再将△绕点顺时针旋转°,画出旋转后地△,并求出旋转过程中线段所扫过地面积(结果保留π>.考点:作图——旋转变换;全等三角形地判定;扇形面积地计算;作图——平移变换.分析:(> 由∥可知∠=∠,再根据=可得出=,由=即可判断出△≌; (> 根据图形平移地性质画出平移后地图形,再根据在旋转过程中,线段所扫过地面积等于以点为圆心,以为半径,圆心角为度地扇形地面积,再根据扇形地面积公式进行解答即可.解答:证明:∵ ∥, ∴ ∠=∠.∵ =, ∴ +=+,即 =.又∵ =, ∴ △≌△.(> 解:① 如图所示;② 如图所示;在旋转过程中,线段所扫过地面积等于=π.点评:本题考查地是作图-旋转变换、全等三角形地判定及扇形面积地计算,熟知图形平移及旋转不变性地性质是解答此题地关键..(满分分>省教育厅决定在全省中小学开展“关注校车、关爱学生”为主题地交通安全教育宣传周活动.某中学为了了解本校学生地上学方式,在全校范围内随机抽查了部分学生,将收集地数据绘制成如下两幅不完整地统计图(如图所示>,请根据图中提供地信息,解答下列问题.(>(> (> 考点:分析:(> 解答:÷=; 条形图如图所示; (> (> 第(>题图第(>题图 学生上学方式扇形统计图 学生上学方式条形统计图×=(人>.点评:本题考查了条形统计图、扇形统计图及用样本估计总数地知识,解题地关键是从统计图中整理出进一步解题地信息..(满分分>某次知识竞赛共有道题,每一题答对得分,答错或不答都扣分.(> 小明考了分,那么小明答对了多少道题?(> 小亮获得二等奖(~分>,请你算算小亮答对了几道题?考点:一元一次不等式组地应用;一元一次方程地应用.分析:(>设小明答对了道题,则有-道题答错或不答,根据答对题目地得分减去答错或不答题目地扣分是分,即可得到一个关于地方程,解方程即可求解;(>小明答对了道题,则有-道题答错或不答,根据答对题目地得分减去答错或不答题目地扣分,就是最后地得分,得分满足大于或等于小于或等于,据此即可得到关于地不等式组,从而求得地范围,再根据是非负整数即可求解.解答:解:(> 设小明答对了道题,依题意得:-(->=.解得:=.答:小明答对了道题. (> 设小亮答对了道题,依题意得:.因此不等式组地解集为≤≤.∵ 是正整数, ∴ =或. 答:小亮答对了道题或道题.点评:本题考查了列方程解应用题,以及列一元一次不等式解决问题,正确列式表示出最后地得分是关键..(满分分>如图,为⊙地直径,为⊙上一点,和过点地切线互相垂直,垂足为,交⊙于点.(> 求证:平分∠;(> 若∠=º,=,求地长.考点:切线地性质;圆周角定理;相似三角形地判定与性质;解直角三角形.专题:几何综合题.分析:(>连接,由为⊙地切线,根据切线地性质得到垂直于,由垂直于,可得出平行于,根据两直线平行内错角相等可得出∠=∠,再由=,利用等边对等角得到∠=∠,等量代换可得出∠=∠,即为角平分线;(>法:由为圆地直径,根据直径所对地圆周角为直角可得出∠为直角,在直角三角形中,由∠地度数求出∠地度数为°,可得出∠地度数为°,在直角三角形中,根据°角所对地直角边等于斜边地一半,由地长求出地长,在直角三角形中,根据°及地长,利用锐角三角函数定义求出地长,进而得出半径地长,由∠为°,及=,得到三角形为等边三角形,可得出==,即可确定出地长;法:连接,由为圆地直径,根据直径所对地圆周角为直角可得出∠为直角,在直角三角形中,由∠地度数求出∠地度数为°,可得出∠地度数为°,在直角三角形中,由及°,利用锐角三角函数定义求出地长,由∠为圆内接四边形地外角,利用圆内接四边形地外角等于它地内对角,得到∠=∠,由∠地度数求出∠地度数为°,在直角三角形中,由°及地长,求出地长,最后由-即可求出地长.解答:(> 证明:如图,连接,∵ 为⊙地切线,∴ ⊥,∴ ∠=°.∵ ⊥,∴ ∠=°.∴ ∠+∠=°,∴ ∥,∴ ∠=∠,∵ =,∴ ∠=∠,∴ ∠=∠,即平分∠.第题图(> 解法一:如图,∵ 为⊙地直径, ∴ ∠=°. 又∵ ∠=°,∴ ∠=∠=°. 在△中,=, ∴ ==.在△中,=,∴ ===.连接,∵ ∠=∠=°,=,∴ △是等边三角形,∴ ===.解法二:如图,连接∵ 为⊙地直径,∴ ∠=°.又∵ ∠=°, ∴ ∠=∠=°. 在△中,=, ∴ ===.∵ 四边形是⊙地内接四边形,∴ ∠+∠=°.又∵ ∠+∠=°, ∴ ∠=∠=°.在△中,=,∴ ===.∴ =-=.点评:此题考查了切线地性质,平行线地性质,等边三角形地判定与性质,锐角三角函数定义,圆内接四边形地性质,以及圆周角定理,利用了转化及数形结合地思想,遇到直线与圆相切,常常连接圆心与切点,利用切线地性质得到垂直,利用直角三角形地性质来解决问题..(满分分>如图①,在△中,∠=º,=,=,动点从点开始沿边向点以每秒个单位长度地速度运动,动点从点开始沿边向点以每秒个单位长度地速度运动,过点作∥,交于点,连接.点、分别从点、同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为秒(≥>.(> 直接用含地代数式分别表示:=,=.(>是否存在地值,使四边形为菱形?若存在,求出地值;若不存在,说明理由.并探究如何改变点地速度(匀速运动>,使四边形在某一时刻为菱形,求点地速度;(> 如图②,在整个运动过程中,求出线段中点所经过地路径长.考点:专题:分析:(> ==,则可求得与地值;(> ,由(> 相似三角形地对应边成比例,即可求得答案.解答:解:(> =-,=.(> 不存在.在△中,∠=°,=,=, ∴ =.∵ ∥,第题图①第题图② 图 图∴ △∽△,∴ =,即:=,∴ =,∴ =-=-.∵ ∥,∴ 当=时,四边形是平行四边形,即-=,解得:=.当=时,=×=,=-×=,∴ ≠,∴ □不能为菱形.设点地速度为每秒个单位长度,则=-,=,=-.要使四边形为菱形,则==,当=时,即=-,解得:=.当=时,=时,即×=-,解得:=. (> 解法一:如图,以为原点,以所在直线为轴,建立平面直角坐标系.依题意,可知≤≤,当=时,点地坐标为(,>;当=时,点地坐标为(,>. 设直线地解读式为=+,∴ ,解得:.∴ 直线地解读式为=-+.∵ 点(,>,(-,>,∴ 在运动过程中,线段中点地坐标为(,>. 把=,代入=-+,得=-×+=.∴ 点在直线上.过点作⊥轴于点,则=,=.∴ =. ∴ 线段中点所经过地路径长为单位长度. 解法二:如图,设是地中点,连接.当=时,点与点重合,运动停止.设此时地中点为,连接. 过点作⊥,垂足为,则∥.∴ △∽△.∴ ==,即:==.∴ =,=-, ∴ =-=(->-(->=-.∴ =-=-(->= .∴ ∠==.∵ ∠地值不变,∴ 点在直线上.过作⊥,垂足为.则=,=.∴ =.∵ 当=时,点与点重合;当=时,点与点重合,∴ 线段中点所经过地路径长为单位长度.点评:此题考查了相似三角形地判定与性质、平行四边形地判定与性质、菱形地判定与性质以及一次函数地应用.此题综合性很强,难度较大,解题地关键是注意数形结合思想地应用..(满分分>如图①,已知抛物线=+(≠>经过(,>、(,>两点.(> 求抛物线地解读式;(> 将直线向下平移个单位长度后,得到地直线与抛物线只有一个公共点,求地值及点地坐标;(> 如图②,若点在抛物线上,且∠=∠,则在(>地条件下,求出所有满足△∽△地点地坐标(点、、分别与点、、对应>.考点:二次函数综合题.分析:(> 利用待定系数法求出二次函数解读式即可;(>根据已知条件可求出地解读式为=,则向下平移个单位长度后地解读式为:=-.由于抛物线与直线只有一个公共点,意味着联立解读式后得到地一元二次方程,其根地判别式等于,由此可求图图出地值和点坐标;(> 综合利用几何变换和相似关系求解.方法一:翻折变换,将△沿轴翻折;方法二:旋转变换,将△绕原点顺时针旋转°.特别注意求出点坐标之后,该点关于直线=-地对称点也满足题意,即满足题意地点有两个,避免漏解.解答:解:(> ∵. ∴∴ (> ∴ ∴∵ ∴ ∴ - ∵ 抛物线与直线只有一个公共点,∴ △=-=,解得:=.此时==,=-=-,∴ 点坐标为(,->.(> ∵ 直线地解读式为=,且(,>,∴ 点关于直线地对称点'地坐标是(,>.设直线'地解读式为=+,过点(,>,∴ +=,解得:=.∴ 直线'地解读式是=+.∵ ∠=∠,∴ 点在直线'上,∴ 设点(,+>,又点在抛物线=-上,∴ +=-,解得:=-,=(不合题意,会去>, ∴ 点地坐标为(-,>. 方法一:如图,将△沿轴翻折,得到△,则(-,->,(,->, ∴ 、、都在直线=-上. ∵ △∽△, ∴ △∽△, ∴ ==,∴ 点地坐标为(-,->. 将△沿直线=-翻折,可得另一个满足条件地点(,>.综上所述,点地坐标是(-,->或(,>.方法二:如图,将△绕原点顺时针旋转°,得到△, 则(,>,(,->, ∴ 、、都在直线=-上. ∵ △∽△, ∴ △∽△, ∴ ==,∴ 点地坐标为(,>. 将△沿直线=-翻折,可得另一个满足条件地点(-,->.综上所述,点地坐标是(-,->或(,>.点评:>段重点代数、几何知识熔于一炉,难度很大,对学生能力要求极高,具有良好地区分度,是一道非常好地中考压轴题.第题图① 第题图②申明:所有资料为本人收集整理,仅限个人学习使用,勿做商业用途.。

2012中考数学试题及答案分类汇编:平面几何基础

2012中考数学试题及答案分类汇编:平面几何基础

2012中考数学试题及答案分类汇编:平面几何基础一、选择题1.(河北省2分)如图,∠1+∠2等于A、60°B、90°C、110°D、180°【答案】B。

【考点】平角的定义。

【分析】根据平角的定义得到∠1+90°+∠2=180°,即由∠1+∠2=90°。

故选B。

2.(河北省3分)已知三角形三边长分别为2,x,13,若x为正整数则这样的三角形个数为A、2B、3C、5D、13【答案】B。

【考点】一元一次方程组的应用,三角形三边关系。

【分析】根据三角形的三边关系:三角形两边之和大于第三边,两边差小于第三边,得213132x >x <+⎧⎨+⎩,解得,11<x <15,所以,x 为12、13、14。

故选B 。

3.(山西省2分)如图所示,∠AOB 的两边、OA 、OB 均为平面反光镜,∠AOB=35°,在OB 上有一点E,从E 点射出一束光线经OA 上的点D 反射后,反射光线DC 恰好与OB平行,则∠DEB 的度数是A 、35°B 、70°C 、110°D 、120°【答案】B 。

【考点】平行线的性质,入射角与反射角的关系,三角形内角和定理,等腰三角形的性质。

【分析】过点D 作DF ⊥AO 交OB 于点F,则DF 是法线,根据入射角等于反射角的关系,得∠1=∠3,∵CD ∥OB,∴∠1=∠2(两直线平行,内错角相等)。

∴∠2=∠3(等量代换);在Rt △DOF 中,∠ODF=90°,∠AOB=35°,∴∠2=55°;∴在△DEF 中,∠DEB=180°-2∠2=70°。

故选B 。

4.(山西省2分)一个正多边形,它的每一个外角都等于45°,则该正多边形是A 、正六边形B 、正七边形C 、正八边形D 、正九边形【答案】C 。

2012福建省九地市中考数学试题汇编(3月更新)

2012福建省九地市中考数学试题汇编(3月更新)

23.(本小题满分 10 分) 如图,一次函数 y k1 x b 的图象过点 A(0,3),且与反比例函数 y 的图象相交于 B、C 两点. (1)(5 分)若 B(1,2),求 k1 k 2 的值; (2)(5 分) 若 AB=BC,则 k1 k 2 的值是否为定值?若是,请求出该定值; 若不是,请说明理由.
1 2 1 x x (0 x 10) .发射 3 s 18 6
后,导弹到达 A 点,此时位于与 L 同一水平面的 R 处雷达站测得 AR 的距离是 2 km, 再过 3s 后,导弹到达 B 点. (1)(4 分)求发射点 L 与雷达站 R 之间的距离; (2)(4 分)当导弹到达 B 点时,求雷达站测得的仰角(即∠BRL)的正切值.




(满分:150 分;考试时间:120 分钟) 一、精心选一选:本大题共 8 小题,每小题 4 分,共 32 分.每小题给出的四个选项中有且只有一个选项是符合题目要 求的.答对的得 4 分,答错、不答或答案超过一个的一律得 O 分. 1.下列各数中,最小的数是( ) A.-l B.O C.1 ) D. 3 2.下列图形中,是 中心对称图形,但不是 轴对称图形的是( . ..
2
_______ _______
0 甲班 乙班 0 0
1 1 1
2 1 0
3 3 2
4 4 5
5 11 12
6 16 15
7 12 13
8 2 2
请根据以上信息解答下列问题: (1)(2 分)甲班学生答对的题数的众数是______; (2)(2 分)若答对的题数大于或等于 7 道的为优秀,则乙班该次考试中选择题答题的优秀率=______ (优秀率=
2012 福建省九地市中考数学试题汇编

山东省各市2012年中考数学分类解析 专题8 平面几何基础

山东省各市2012年中考数学分类解析 专题8 平面几何基础

山东各市2012年中考数学试题分类解析汇编专题8:平面几何基础一、选择题1. (2012山东滨州3分)借助一副三角尺,你能画出下面哪个度数的角【】A.65°B.75°C.85°D.95°【答案】B。

【考点】角的计算。

【分析】利用一副三角板可以画出75°角,用45°和30°的组合即可。

故选B。

2. (2012山东滨州3分)一个三角形三个内角的度数之比为2:3:7,这个三角形一定是【】A.等腰三角形B.直角三角形C.锐角三角形D.钝角三角形【答案】D。

【考点】三角形内角和定理,比例的计算。

【分析】按比例计算出各角的度数即可作出判断:三角形的三个角依次为180°×22+3+7=30°,180°×32+3+7=45°,180°×72+3+7=105°,所以这个三角形是钝角三角形。

故选D。

3. (2012山东德州3分)不一定在三角形内部的线段是【】A.三角形的角平分线 B.三角形的中线 C.三角形的高 D.三角形的中位线【答案】C。

【考点】三角形的角平分线、中线、高和中位线。

【分析】因为在三角形中,它的中线、角平分线和中位线一定在三角形的内部,而钝角三角形的高在三角形的外部。

故选C。

4. (2012山东东营3分)下列图形中,是中心对称图形的是【】A. B. C. D.【答案】B。

【考点】中心称对形。

【分析】根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合。

因此,A、将此图形绕任一点旋转180度都不能与原来的图形重合,所以这个图形不是中心对称图形;B、将此图形绕圆心旋转180度正好与原来的图形重合,所以这个图形是中心对称图形;C、将此图形绕任一点旋转180度都不能与原来的图形重合,所以这个图形不是中心对称图形;D、将此图形绕任一点旋转180度都不能与原来的图形重合,所以这个图形不是中心对称图形。

贵州省各市2012年中考数学分类解析 专题8 平面几何基础

贵州省各市2012年中考数学分类解析 专题8 平面几何基础

某某各市2012年中考数学试题分类解析汇编专题8:平面几何基础一、选择题1. (2012某某某某3分)下列图案是一副扑克牌的四种花色,其中既是轴对称图形又是中心对称图形的是【】A.B.C.D.【答案】C。

【考点】轴对称图形和中心称对形。

【分析】根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合。

因此,∵根据轴对称图形的定义得出四个图案都是轴对称图形,但是中心对称图形的图形只有C,∴一副扑克牌的四种花色图案中,既是轴对称图形又是中心对称图形的图案是C。

故选C。

2. (2012某某某某3分)一个多边形的内角和是900°,则这个多边形的边数是【】A. 6 B.7 C.8 D. 9【答案】B。

【考点】多边形内角和定理。

【分析】设这个多边形的边数为n,则有(n﹣2)180°=900°,解得:n=7。

∴这个多边形的边数为7。

故选B。

3. (2012某某某某3分)下列图形是中心对称图形的是【】A. B. C. D.【答案】B。

【考点】中心称对形。

【分析】根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合。

因此,A、C、D不是中心对称图形,B是中心对称图形。

故选B。

4. (2012某某某某3分)下列命题是假命题的是【】【答案】A。

【考点】命题与定理,圆周角定理,垂径定理,平行线之间的距离,正方形的性质。

【分析】分析是否为假命题,可以举出反例;也可以分别分析各题设是否能推出结论,从而利用排除法得出答案:A、错误,同弧或等弧所对的圆周角相等或互补,是假命题;B、平分弦(不是直径)的直径垂直于弦是正确的,是真命题;C、两条平行线间的距离处处相等是正确的,是真命题;D、正方形的两条对角线互相垂直平分是正确的,是真命题。

故选A。

5. (2012某某六盘水3分)下列图形中既是中心对称图形,又是轴对称图形的是【】A.正三角形B.平行四边形C.等腰梯形D.正方形【答案】D。

2012年福建中考数学真题卷含答案解析

2012年福建中考数学真题卷含答案解析

二〇一二年福州市初中毕业会考、高级中等学校招生考试数学14A(满分:150分 时间:120分钟)第Ⅰ卷(选择题,共40分)一、选择题(共10小题,每题4分,满分40分;每小题只有一个正确的选项)1.3的相反数是( )A.-3B.13 C.3 D.-132.今年参观“5·18”海交会的总人数约为489 000人,将489 000用科学记数法表示为( ) A.48.9×104 B.4.89×105 C.4.89×104 D.0.489×1063.如图是由4个大小相同的正方体组合而成的几何体,其主视图...是( )4.如图,直线a ∥b,∠1=70°,那么∠2的度数是( )A.50°B.60°C.70°D.80° 5.下列计算正确的是( ) A.a+a=2a B .b 3·b 3=2b 3 C.a 3÷a=a 3 D.(a 5)2=a 76.式子√x -1在实数范围内有意义,则x 的取值范围是( ) A.x<1 B.x ≤1 C.x>1 D.x ≥17.某射击运动员在一次射击练习中,成绩(单位:环)记录如下:8,9,8,7,10.这组数据的平均数和中位数分别是( ) A.8,8 B.8.4,8 C.8.4,8.4 D.8,8.48.☉O 1和☉O 2的半径分别是3 cm 和4 cm,如果O 1O 2=7 cm,则这两圆的位置关系是( ) A.内含 B.相交 C.外切 D.外离9.如图,从热气球C 处测得地面A 、B 两点的俯角分别为30°、45°,如果此时热气球C 处的高度CD 为100米,点A 、D 、B 在同一直线上,则A 、B 两点的距离是( )A.200米B.200√3米C.220√3米D.100(√3+1)米10.如图,过点C(1,2)分别作x轴、y轴的平行线,交直线y=-x+6于A、B两点,若反比例函数y=kx(x>0)的图象与△ABC有公共点,则k的取值范围是()A.2≤k≤9B.2≤k≤8C.2≤k≤5D.5≤k≤8第Ⅱ卷(非选择题,共110分)二、填空题(共5小题,每题4分,满分20分)11.分解因式:x2-16=.12.一个袋子中装有3个红球和2个绿球,这些球除了颜色外都相同,从袋子中随机摸出一个球,则摸到红球的概率为.13.若√20n是整数,则正整数n的最小值为.14.计算:x-1x +1x=.15.如图,已知△ABC,AB=AC=1,∠A=36°,∠ABC的平分线BD交AC于点D,则AD的长是,cos A的值是.(结果保留根号)三、解答题(满分90分)16.(每小题7分,共14分)(1)计算:|-3|+(π+1)0-√4;(2)化简:a(1-a)+(a+1)2-1.17.(每小题7分,共14分)(1)如图(i),点E、F在AC上,AB∥CD,AB=CD,AE=CF.求证:△ABF≌△CDE.(2)如图(ii),方格纸中的每个小方格是边长为1个单位长度的正方形.①画出将Rt△ABC向右平移5个单位长度后的Rt△A1B1C1;②再将Rt△A1B1C1绕点C1顺时针...旋转90°,画出旋转后的Rt△A2B2C1,并求出旋转过程中线段A1C1所扫过的面积(结果保留π).18.(满分12分)省教育厅决定在全省中小学开展“关注校车、关爱学生”为主题的交通安全教育宣传周活动.某中学为了了解本校学生的上学方式,在全校范围内随机抽查了部分学生,将收集的数据绘制成如下两幅不完整的统计图(如图所示),请根据图中提供的信息,解答下列问题.(1)m=%,这次共抽取名学生进行调查;并补全条形图;(2)在这次抽样调查中,采用哪种上学方式的人数最多?(3)如果该校共有1500名学生,请你估计该校骑自行车上学的学生约有多少名?19.(满分11分)某次知识竞赛共有20道题,每一题答对得5分,答错或不答都扣3分.(1)小明考了68分,那么小明答对了多少道题?(2)小亮获得二等奖(70~90分),请你算算小亮答对了几道题?14B20.(满分12分)如图,AB为☉O的直径,C为☉O上一点,AD和过C点的切线互相垂直,垂足为D,AD交☉O 于点E.(1)求证:AC平分∠DAB;(2)若∠B=60°,CD=2√3,求AE的长.21.(满分13分)如图①,在Rt△ABC中,∠C=90°,AC=6,BC=8,动点P从点A开始沿边AC向点C以每秒1个单位长度的速度运动,动点Q从点C开始沿边CB向点B以每秒2个单位长度的速度运动,过点P作PD∥BC,交AB于点D,连结PQ.点P、Q分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒(t≥0).(1)直接用含t的代数式分别表示:QB=,PD=;(2)是否存在t的值,使四边形PDBQ为菱形?若存在,求出t的值;若不存在,说明理由.并探究如何改变点Q的速度(匀速运动),使四边形PDBQ在某一时刻为菱形,求点Q的速度;(3)如图②,在整个运动过程中,求出线段PQ中点M所经过的路径长.22.(满分14分)如图①,已知抛物线y=ax2+bx(a≠0)经过A(3,0)、B(4,4)两点.(1)求抛物线的解析式;(2)将直线OB向下平移m个单位长度后,得到的直线与抛物线只有一个公共点D,求m的值及点D的坐标;(3)如图②,若点N在抛物线上,且∠NBO=∠ABO,则在(2)的条件下,求出所有满足△POD∽△NOB的点P的坐标(点P、O、D分别与点N、O、B对应).二〇一二年福州市初中毕业会考、高级中等学校招生考试一、选择题1.A只有符号不同的两个数互为相反数,所以3的相反数是-3,故选A.2.B科学记数法即将数字写成a×10n(1≤|a|<10,n为整数)的形式,489000=4.89×105,故选B.3.C主视图即从正面看几何体得到的图形,根据几何体的形状可知C正确,故选C.4.C因为a∥b,所以∠1=∠2(两直线平行,同位角相等).又因为∠1=70°,所以∠2=70°,故选C.5.A合并同类项:字母及字母的指数不变,系数相加减,所以a+a=2a,故A正确;同底数幂的乘法:底数不变,指数相加,所以b3·b3=b6,故B错;同底数幂的除法:底数不变,指数相减,所以a3÷a=a2,故C错;幂的乘方,底数不变,指数相乘,所以(a5)2=a10,故D错.综上,应选A.6.D二次根式有意义,要求被开方数大于或等于零,即x-1≥0,x≥1,故选D.7.B这组数据的平均数为(8+9+8+7+10)÷5=8.4;将这组数据从大到小(从小到大)排列,中位数是8,故选B.8.C圆心距等于两圆半径的和,则两圆的位置关系是外切,故选C.9.D由题目条件易得∠A=30°,∠B=45°,在Rt△CDB中,CD=DB=100米,在Rt△CAD中AD=CD=100√3米,所以A、B两点之间的距离为100(√3+1)米,故选D.tanA评析本题考查俯角的概念及利用三角函数解直角三角形的知识,综合性较强,属中等难度题.10.A当反比例函数图象经过点C时,将C(1,2)代入y=k中,解得k=2;当反比例函数图象与直x,因为切线相切时,设切点的横坐标为a,因为切点在反比例函数图象上,则切点的纵坐标为y=ka点在直线上,若横坐标为a,则切点的纵坐标为y=-a+6,所以有k=-a+6,a2-6a+k=0,若反比例函数a图象与直线AB相切,则(-6)2-4×1×k=0,k=9.综上,当2≤k≤9时,反比例函数图象与△ABC有公共点,故选A.评析本题以反比例函数、一次函数图象为背景,考查函数、方程、不等式等知识,综合性较强,题目难度较大.二、填空题11.答案(x+4)(x-4)解析利用平方差公式对x2-16进行因式分解,x2-16=x2-42=(x+4)(x-4).12.答案35解析从袋子中随机摸出一个球的等可能结果有5个,其中恰好摸到红球的等可能结果为3.个,所以摸到红球的概率为3513.答案5解析当n=5时,√20n=√20×5=√100=10,n=1,2,3,4时,√20n都不是整数,故n的最小值是5.评析本题考查二次根式的相关知识,以及分类讨论的数学思想,题目灵活,考查学生的分析、解决问题的能力.14.答案 1 解析x -1x+1x =x -1+1x=1. 15.答案√5-12;√5+14解析 由已知易得∠ABC=∠C=∠BDC=72°,∠A=∠ABD=∠DBC=36°.因为∠A=∠ABD,所以AD=BD;同理∠BDC=∠C,所以BD=BC.综上述AD=BD=BC.又∠A=∠CBD,∠BDC=∠ACB,所以△ABC ∽△BCD,所以BCAB=CD BC,BC 1=1-BC BC,解得BC=-1±√52,根据BC>0,得BC=-1+√52,所以AD=√5-12.过点D 作AB 的垂线交AB 于点E,cos A=AE AD =12÷-1+√52=√5+14.评析 本题考查相似三角形的判定及性质,并利用对应边成比例考查解方程的知识,同时考查三角函数的相关知识,题目设置巧妙,综合性强,难度较大. 三、解答题16.解析 (1)原式=3+1-2=2; (2)原式=a-a 2+a 2+2a+1-1=3a. 17.解析 (1)证明:∵AB ∥CD, ∴∠A=∠C. ∵AE=CF,∴AE+EF=CF+EF, 即AF=CE. 又∵AB=CD,∴△ABF ≌△CDE. (2)①如图所示. ②如图所示.在旋转过程中,线段A 1C 1所扫过的面积等于90·π·42360=4π.18.解析 (1)26;50.条形图如图所示.(2)采用乘公交车上学的人数最多.(3)该校骑自行车上学的学生约为1 500×20%=300名. 19.解析 (1)设小明答对了x 道题, 依题意得5x-3(20-x)=68,解得x=16.答:小明答对了16道题. (2)设小亮答对了y 道题,依题意得{5y -3(20-y)≥70,5y -3(20-y)≤90.因此不等式组的解集为1614≤y ≤1834. ∵y 是正整数, ∴y=17或18.答:小亮答对了17道题或18道题.评析 本题考查运用一元一次不等式(组)解决实际问题的能力,根据实际问题中数量关系构建恰当的不等式是解决问题的关键,属中等难度题. 20.解析图1(1)证明:如图1,连结OC, ∵CD 为☉O 的切线, ∴OC ⊥CD, ∴∠OCD=90°. ∵AD ⊥CD, ∴∠ADC=90°.∴∠OCD+∠ADC=180°, ∴AD ∥OC, ∴∠1=∠2. ∵OA=OC, ∴∠2=∠3, ∴∠1=∠3,即AC 平分∠DAB.图2(2)解法一:如图2, ∵AB 为☉O 的直径, ∴∠ACB=90°. 又∵∠B=60°, ∴∠1=∠3=30°.在Rt △ACD 中,CD=2√3, ∴AC=2CD=4√3.在Rt △ABC 中,AC=4√3, ∴AB=ACcos ∠CAB =4√3cos30°=8. 连结OE,∵∠EAO=2∠3=60°,OA=OE,∴△AOE是等边三角形,∴AE=OA=12AB=4.图3解法二:如图3,连结CE.∵AB为☉O的直径,∴∠ACB=90°.又∵∠B=60°,∴∠1=∠3=30°.在Rt△ADC中,CD=2√3,∴AD=CDtan∠DAC =2√3tan30°=6.∵四边形ABCE是☉O的内接四边形,∴∠B+∠AEC=180°.又∵∠AEC+∠DEC=180°,∴∠DEC=∠B=60°.在Rt△CDE中,CD=2√3,∴DE=DCtan∠DEC =2√3tan60°=2,∴AE=AD-DE=4.评析本题考查运用圆与直线相切、圆的基本性质及三角函数知识解决问题的能力,作出恰当的辅助线能够使问题解决得更加快捷,题目综合性强,难度较大.21.解析(1)QB=8-2t,PD=43t.(2)不存在.在Rt△ABC中,∠C=90°,AC=6,BC=8,∴AB=10.∵PD∥BC,∴△APD∽△ACB,∴ADAB =APAC,即AD10=t6,∴AD=53t,∴BD=AB-AD=10-53t.∵BQ∥DP,∴当BQ=DP时,四边形PDBQ是平行四边形.即8-2t=43t,解得t=125.当t=125时,PD=43×125=165,BD=10-53×125=6,∴DP≠BD,∴▱PDBQ不能为菱形.设点Q的速度为每秒v个单位长度,则BQ=8-vt,PD=43t,BD=10-53t.要使四边形PDBQ 为菱形,则PD=BD=BQ, 当PD=BD 时,即43t=10-53t,解得t=103.当PD=BQ,t=103时,即43×103=8-103v,解得v=1615.∴当点Q 的速度为每秒1615个单位长度时,经过103秒,四边形PDBQ 是菱形.图1(3)解法一:如图1,以C 为原点,以AC 所在直线为x 轴,建立平面直角坐标系. 依题意,可知0≤t ≤4,当t=0时,点M 1的坐标为(3,0); 当t=4时,点M 2的坐标为(1,4). 设直线M 1M 2的解析式为y=kx+b, ∴{3k +b =0,k +b =4.解得{k =-2,b =6.∴直线M 1M 2的解析式为y=-2x+6. ∵点Q(0,2t),P(6-t,0),∴在运动过程中,线段PQ 中点M 3的坐标为(6-t2,t). 把x=6-t2代入y=-2x+6,得y=-2×6-t2+6=t.∴点M 3在直线M 1M 2上.过点M 2作M 2N ⊥x 轴于点N,则M 2N=4,M 1N=2. ∴M 1M 2=2√5.∴线段PQ 中点M 所经过的路径长为2√5个单位长度. 解法二:如图2,设E 是AC 的中点,连结ME. 当t=4时,点Q 与点B 重合,运动停止.图2设此时PQ 的中点为F,连结EF.过点M 作MN ⊥AC,垂足为N,则MN ∥BC. ∴△PMN ∽△PQC. ∴MN QC =PN PC =PMPQ ,即MN 2t =PN 6-t =12. ∴MN=t,PN=3-12t,∴CN=PC-PN=(6-t)-(3-12t)=3-12t.∴EN=CE-CN=3-(3-12t)=12t.∴tan ∠MEN=MN EN =2. ∵tan ∠MEN 的值不变,∴点M 在直线EF 上.过F 作FH ⊥AC,垂足为H.则EH=2,FH=4.∴EF=2√5.∵当t=0时,点M 与点E 重合;当t=4时,点M 与点F 重合,∴线段PQ 中点M 所经过的路径长为2√5个单位长度.评析 本题主要考查一次函数、三角形的相似、平行四边形(菱形)、三角函数等知识的综合应用,确定运动元素的各种状态,正确建立满足题意的等量关系是解题的关键,属较难题.22.解析 (1)∵抛物线y=ax 2+bx(a ≠0)经过点A(3,0)、B(4,4).∴{9a +3b =0,16a +4b =4.解得{a =1,b =-3. ∴抛物线的解析式是y=x 2-3x.(2)设直线OB 的解析式为y=k 1x,由点B(4,4),得4=4k 1,解得k 1=1.∴直线OB 的解析式是y=x.∴直线OB 向下平移m 个单位长度后的解析式为y=x-m.∵点D 在抛物线y=x 2-3x 上.∴可设D(x,x 2-3x).又点D 在直线y=x-m 上,∴x 2-3x=x-m,即x 2-4x+m=0.∵抛物线与直线只有一个公共点,∴Δ=16-4m=0,解得m=4.此时x 1=x 2=2,y=x 2-3x=-2,∴D 点坐标为(2,-2).(3)∵直线OB 的解析式为y=x,且A(3,0),∴点A 关于直线OB 的对称点A'的坐标是(0,3).设直线A'B 的解析式为y=k 2x+3,过点B(4,4),∴4k 2+3=4,解得k 2=14.∴直线A'B 的解析式是y=14x+3. ∵∠NBO=∠ABO,∴点N 在直线A'B 上,∴设点N (n,14n +3),又点N 在抛物线y=x 2-3x 上, ∴14n+3=n 2-3n,解得n 1=-34,n 2=4(不合题意,舍去),∴点N 的坐标为(-34,4516).图1解法一:如图1,将△NOB沿x轴翻折,得到△N1OB1,则N1(-34,-4516),B1(4,-4),∴O、D、B1都在直线y=-x上.∵△P1OD∽△NOB,∴△P1OD∽△N1OB1,∴OP1ON1=ODOB1=12,∴点P1的坐标为(-38,-45 32).将△OP1D沿直线y=-x翻折,可得另一个满足条件的点P2(4532,3 8 ).综上所述,点P的坐标是(-38,-4532)或(4532,38).解法二:如图2,将△NOB绕原点顺时针旋转90°,得到△N2OB2,则N2(4516,34),B2(4,-4),图2∴O、D、B2都在直线y=-x上.∵△P1OD∽△NOB,∴△P1OD∽△N2OB2,∴OP1ON2=ODOB2=12,∴点P1的坐标为(4532,3 8 ).将△OP1D沿直线y=-x翻折,可得另一个满足条件的点P2(-38,-45 32).综上所述,点P的坐标是(-38,-4532)或(4532,38).评析本题以平面直角坐标系为依托,考查一次函数、二次函数、三角形的相似等知识的综合应用,最后一问是关于点P坐标的开放性问题,考查学生通过观察、作图、分析不重不漏得到答案的能力,属难题.。

无锡新领航教育福建省各市2012年中考数学分类解析 专题8:平面几何基础

无锡新领航教育福建省各市2012年中考数学分类解析 专题8:平面几何基础

- 1 - 无锡新领航教育福建9市2012年中考数学试题分类解析汇编专题8:平面几何基础一、选择题1. (2012福建龙岩4分)下列命题中,为真命题的是【 】A .对顶角相等B .同位角相等C .若22=a b ,则=a bD .若a >b ,则22a >b -- 【答案】A 。

【考点】真命题,对顶角的性质,同位角的定义,平方根的意义,不等式的性质。

【分析】根据对顶角的性质,同位角的定义,平方根的意义,不等式的性质分别作出判断:A .对顶角相等,命题正确,是真命题;B .两平行线被第三条直线所截,同位角才相等,命题不正确,不是真命题;C .若22=a b ,则=a b ±,命题不正确,不是真命题;D .若a >b ,则22a <b --,命题不正确,不是真命题。

故选A 。

2. (2012福建龙岩4分)下列几何图形中,既是轴对称图形又是中心对称图形的是【 】A .等边三角形B .矩形C . 平行四边形D .等腰梯形 【答案】B 。

【考点】轴对称图形和中心对称图形。

【分析】根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合。

因此,只有矩形既是轴对称图形又是中心对称图形。

故选B 。

3. (2012福建南平4分)正多边形的一个外角等于30°.则这个多边形的边数为【 】A .6B .9C .12D .15【答案】C 。

【考点】多边形的外角性质。

【分析】正多边形的一个外角等于30°,而多边形的外角和为360°,则:多边形边数=多边形外角和÷一个外角度数=360°÷30°=12。

故选C 。

【中考12年】福建省福州市2001-中考数学试题分类解析 专题8 平面几何基础

【中考12年】福建省福州市2001-中考数学试题分类解析 专题8 平面几何基础

[中考12年]福州市2001-2012年中考数学试题分类解析专题8:平面几何基础一、选择题1. (2002年福建福州4分)某市在“旧城改造”中计划在市内一块如图所示的三角形空地上种植某种草皮以美化环境,已知这种草皮每平方米售价a元,则购买这种草皮至少需要2. (2003年福建福州4分)下列命题中,真命题的是【】(A)如果两个角相等,那么这两个角是对顶角(B)两条对角线相等的四边形是矩形(C)线段垂直平分线上的点和这条线段两个端点的距离相等(D)如果两个圆相交,那么这两个圆有三条公切线【答案】C。

【考点】命题与定理,矩形的判定,线段垂直平分线的性质,相交两圆的性质。

【分析】分别根据矩形的判定,线段垂直平分线的性质,相交两圆的性质作出判断:(A)如果两个角相等,那么这两个角可能是对顶角也可能是两平行线截得的同位角生平,命题错误;(B)两条对角线相等的平行四边形是才矩形,命题错误;(C)线段垂直平分线上的点和这条线段两个端点的距离相等,命题正确;(D)如果两个圆相交,那么这两个圆有两条公切线,命题错误。

故选C。

3. (2005年福建福州大纲卷3分)下列命题正确的是【】A.用正六边形能镶嵌成一个平面B.有一组对边平行的四边形是平行四边形C.正五角星是中心对称图形D.对角线互相垂直的四边形是菱形4. (2005年福建福州课标卷3分)如图,射线OC的端点O在直线AB上,∠AOC的度数比∠BOC的2倍多10度.设∠AOC和∠BOC的度数分别为x,y,则下列正确的方程组为【】A、x+y=180x=y+10⎧⎨⎩B、x+y=180x=2y+10⎧⎨⎩C、x+y=180x=102y⎧⎨-⎩D、x+y=90y=2x10⎧⎨-⎩【答案】B。

【考点】由实际问题抽象出二元一次方程组(几何问题)。

【分析】等量关系有:①∠AOC的度数比∠BOC的2倍多10°;②∠AOC和∠BOC组成了平角。

根据∠AOC的度数比∠BOC的2倍多10°,得方程x=2y+10;根据∠AOC和∠BOC组成了平角,得方程x+y=180。

2012年中考数学试题分类解析汇编专题8:平面几何基础

2012年中考数学试题分类解析汇编专题8:平面几何基础

2012年中考数学试题分类解析汇编专题8:平面几何基础一、选择题1. (2012湖北荆门3分)已知:直线l1∥l2,一块含30°角的直角三角板如图所示放置,∠1=25°,则∠2等于【】A.30°B.35°C.40°D.45°【答案】B。

【考点】三角形外角性质,平行线的性质,直角三角形两锐角的关系。

【分析】如图,∵∠3是△ADG的外角,∴∠3=∠A+∠1=30°+25°=55°,∵l1∥l2,∴∠3=∠4=55°。

∵∠4+∠EFC=90°,∴∠EFC=90°﹣55°=35°。

∴∠2=35°。

故选B。

2. (2012湖北天门、仙桃、潜江、江汉油田3分)如图,AB∥CD,∠A=48°,∠C=22°.则∠E等于【】A.70°B.26°C.36°D.16°【答案】B。

【考点】平行线的性质,三角形内角和定理。

【分析】如图,∵AB∥CD,∠A=48°,∴∠1=∠A=48°。

∵∠C=22°,∴∠E=∠1﹣∠C=48°﹣22°=26°。

故选B。

3. (2012湖北宜昌3分)在以下永洁环保、绿色食品、节能、绿色环保四个标志中,是轴对称图形是【】A.B.C.D.【答案】B。

【考点】轴对称图形。

14956【分析】根据轴对称图形的概念,如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴因此,A、不是轴对称图形,不符合题意;B、是轴对称图形,符合题意;C、不是轴对称图形,不符合题意;D、不是轴对称图形,不符合题意。

故选B。

4. (2012湖北宜昌3分)如图,将三角尺与直尺贴在一起,使三角尺的直角顶点C(∠ACB=90°)在直尺的一边上,若∠1=60°,则∠2的度数等于【】A.75°B.60°C.45°D.30°【答案】D。

福建省中考数学试题分类解析汇编 专题8:平面几何基础

福建省中考数学试题分类解析汇编 专题8:平面几何基础

专题8:平面几何基础一、选择题1.(福建福州4分)下列四个角中,最有可能与70°角互补的角是A、B、C、D、【答案】D。

【考点】补角。

【分析】根据互补的性质,与70°角互补的角等于180°﹣70°=110°,是个钝角,而选项D是钝角。

故选D。

2.(福建漳州3分)下列命题中,假命题是A.经过两点有且只有一条直线B.平行四边形的对角线相等C.两腰相等的梯形叫做等腰梯形D.圆的切线垂直于经过切点的半径【答案】B。

【考点】命题与定理,直线的性质:两点确定一条直线,平行四边形的性质,等腰梯形的定义,切线的性质。

【分析】解:A、经过两点有且只有一条直线,故本选项正确;B、平行四边形的对角线不一定相等,故本选项错误;C、两腰相等的梯形叫做等腰梯形,故本选项正确;D、圆的切线垂直于经过切点的半径,故本选项正确。

故选B。

3.(福建龙岩4分)如图.若乙、丙都在甲的北偏东70°方向上.乙在丁的正北方向上,且乙到丙、丁的距离相同.则α的度数是A.25°B.30° C.35° D.40°【答案】C。

【考点】平行线的判定和性质,三角形外角定理,等腰三角形的性质。

【分析】利用方位得到平行,再利用三角形外角定理及等腰三角形等边对等角的性质即可求解:如图,由方位和平行线同位角相等的性质,得∠2=∠1=70°。

由乙到丙、丁的距离相同,根据等腰三角形等边对等角的性质,得∠3=∠α。

由三角形外角定理,∠2=∠3+∠α,∴∠α=12∠2=35°。

故选C。

4.(福建莆田4分)等腰三角形的两条边长分别为3,6,那么它的周长为A.15 B.12 C.12或15 D.不能确定【答案】A。

【考点】等腰三角形的性质,三角形三边关系。

【分析】根据等腰三角形的性质和三角形的三边关系,可求出第三条边长,即可求得周长:∵当腰长为3时,3+3=6,显然不成立,∴腰长为6。

广西各市2012年中考数学分类解析 专题8 平面几何基础

广西各市2012年中考数学分类解析 专题8 平面几何基础

某某各市2012年中考数学试题分类解析汇编专题8:平面几何基础一、选择题3. (2012某某某某3分)如图,与∠1是内错角的是【】A.∠2 B.∠3 C.∠4 D.∠5【答案】B。

【考点】“三线八角”问题。

【分析】根据内错角的定义,两直线被第三条直线所截,两个角分别在截线的两侧,且夹在两条被截直线之间,具有这样位置关系的一对角是内错角。

因此,∠1的内错角是∠3。

故选B。

4. (2012某某某某3分)下面四个标志图是中心对称图形的是【】A B C D【答案】B。

【考点】中心对称对形。

【分析】根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合。

因此,根据各图特点,只有选项B符合。

故选B。

5. (2012某某某某3分)如图,把一块含有45角的直角三角板的两个顶点分别125,那么2的度数是【】A.30B.25 C.20D.15【答案】【考点】平行线的性质。

【分析】根据直角三角板的性质得出∠AFE的度数,再根据平行线的性质求出∠2的度数即可:如图,∵△GEF是含45°角的直角三角板,∴∠GFE=45°。

∵∠1=25°,∴∠AFE=∠GEF-∠1=45°-25°=20°。

∵AB∥CD,∴∠2=∠AFE=20°。

故选C。

6. (2012某某来宾3分)在下列平面图形中,是中心对称图形的是【】A. B. C. D.【答案】B。

【考点】中心称对形。

【分析】根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合。

因此,只有选项B符合,故选B。

7. (2012某某某某3分)小X用手机拍摄得到甲图,经放大后得到乙图,甲图中的线段AB在乙图中的对应线段是【】A.FG B.FH C.EH D.EF【答案】D。

【考点】相似图形。

【分析】观察图形,先找出对应顶点,再根据对应顶点的连线即为对应线段解答:由图可知,点A、E是对应顶点,点B、F是对应顶点,点D、H是对应顶点,所以,甲图中的线段AB在乙图中的对应线段是EF。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

福建9市2012年中考数学试题分类解析汇编专题8:平面几何基础一、选择题1. (2012福建龙岩4分)下列命题中,为真命题的是【 】A .对顶角相等B .同位角相等C .若22=a b ,则=a bD .若a >b ,则22a >b --【答案】A 。

【考点】真命题,对顶角的性质,同位角的定义,平方根的意义,不等式的性质。

【分析】根据对顶角的性质,同位角的定义,平方根的意义,不等式的性质分别作出判断:A .对顶角相等,命题正确,是真命题;B .两平行线被第三条直线所截,同位角才相等,命题不正确,不是真命题;C .若22=a b ,则=a b ±,命题不正确,不是真命题;D .若a >b ,则22a <b --,命题不正确,不是真命题。

故选A 。

2. (2012福建龙岩4分)下列几何图形中,既是轴对称图形又是中心对称图形的是【 】A .等边三角形B .矩形C . 平行四边形D .等腰梯形【答案】B 。

【考点】轴对称图形和中心对称图形。

【分析】根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合。

因此,只有矩形既是轴对称图形又是中心对称图形。

故选B 。

3. (2012福建南平4分)正多边形的一个外角等于30°.则这个多边形的边数为【 】A .6B .9C .12D .15【答案】C 。

【考点】多边形的外角性质。

【分析】正多边形的一个外角等于30°,而多边形的外角和为360°,则:多边形边数=多边形外角和÷一个外角度数=360°÷30°=12。

故选C 。

4. (2012福建宁德4分)下列两个电子数字成中心对称的是【 】【答案】A。

【考点】中心对称图形。

【分析】根据轴中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合。

因此,符合条件的只有A。

故选A。

5. (2012福建宁德4分)已知正n边形的一个内角为135º,则边数n的值是【】A.6 B.7 C.8 D.9【答案】C。

【考点】多边形内角和定理,解一元一次方程。

【分析】根据多边形内角和定理,得00-⋅⋅()180,解得n=8。

故选C。

n2=135n6. (2012福建莆田4分)下列图形中,是.中心对称图形,但不是..轴对称图形的是【】【答案】B。

【考点】中心对称图形,轴对称图形。

【分析】根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合。

因此,A、不是中心对称图形,是轴对称图形,故本选项错误;B、是中心对称图形,但不是轴对称图形,故本选项正确;C、不是中心对称图形,是轴对称图形,故本选项错误;D、是中心对称图形,也是轴对称图形,故本选项错误。

故选B。

7. (2012福建三明4分)如图,AB//CD,∠CDE=140︒,则∠A的度数为【】A.140︒B.60︒C.50︒D.40︒【答案】D。

【考点】补角的定义,平行的性质。

【分析】∵∠CDE=1400,∴∠CDA=400。

又∵AB//CD,∴∠A=∠CDA=400。

故选D。

8. (2012福建三明4分)一个多边形的内角和是720︒,则这个多边形的边数为【】A.4 B.5 C.6 D.7【答案】C。

【考点】多边形的内角和定理。

【分析】由一个多边形的内角和是7200,根据多边形的内角和定理得(n-2)1800=7200。

解得n=6。

故选C。

9. (2012福建福州4分)如图,直线a∥b,∠1=70°,那么∠2的度数是【】A.50°B.60°C.70°D.80°【答案】C。

【考点】平行线的性质。

【分析】根据两角的位置关系可知两角是同位角,利用两直线平行同位角相等即可求得结果:∵ a∥b,∴∠1=∠2。

∵∠1=70°,∴∠2=70°。

故选C。

10. (2012福建泉州3分)下列图形中,有且只有两条对称轴的中心对称图形是【】.A .正三角形 B.正方形 C.圆 D.菱形【答案】D。

【考点】轴对称图形与中心对称图形的识别。

【分析】根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合。

因此,A .正三角形是轴对称图形,但不是中心对称图形;选项错误;B.正方形既是轴对称图形,也是中心对称图形,但它有4条对称轴,选项错误;C.圆既是轴对称图形,也是中心对称图形,但它有无数条对称轴,选项错误;D.菱形既是轴对称图形,也是中心对称图形,且只有两条对称轴,选项正确。

故选D。

二、填空题1. (2012福建厦门4分)已知∠A=40°,则∠A的余角的度数是▲.【答案】50°。

【考点】余角的概念。

【分析】设∠A的余角是∠B,则∠A+∠B=90°,∵∠A=40°,∴∠B=90°-40°=50°。

2. (2012福建厦门4分)五边形的内角和的度数是▲.【答案】540°。

【考点】多边形内角和定理。

【分析】根据n边形的内角和公式:180°(n-2),将n=5代入即可求得答案:五边形的内角和的度数为:180°×(5-2)=180°×3=540°。

3.(2012福建莆田4分)将一副三角尺按如图所示放置,则 1=▲度.【答案】105。

【考点】对顶角的性质,三角形的内角和定理。

【分析】如图,∵这是一副三角尺,∴∠BAE=30°,∠ABE=45°。

∴∠1=∠AEB=180°-30°-45°=105°。

4. (2012福建宁德3分)如图,直线a∥b,∠1=60º,则∠2=▲º.【答案】60。

【考点】平行线的性质,对顶角的性质。

【分析】∵直线a∥b,∴∠1=∠3(两直线平行,同位角相等)。

又∵∠2=∠3(对顶角相等),∴∠1=∠2。

又∵∠1=60°,∴∠3=60°。

5. (2012福建龙岩3分)如图,a∥b,∠1=300,则∠2= ▲°.【答案】150。

【考点】平行线的性质,对顶角的性质。

【分析】如图,∵a∥b,∠1=30°,∴∠3=180 0-300=1500。

∴∠2=∠3=1500。

6. (2012福建泉州4分)n边形的内角和为900°,则n= ▲.【答案】7。

【考点】多边形内角和定理。

【分析】根据多边形内角和定理,得00-⨯,解得n=7。

(n2)180=9007. (2012福建泉州4分)如图,在△ABC中,∠A=60°,∠B=40°,点D、E分别在BC、AC的延长线上,则∠1= ▲°.【答案】80。

【考点】三角形的内角和,对顶角的性质。

【分析】∵三角形的内角和为180°,∠A=60°,∠B=40°,∴∠ACB=80°。

又∵∠1与∠ACB互为对顶角,∴∠1=∠ACB=80°。

8. (2012福建泉州5分)如图,点A、O、B在同一直线上,已知∠BOC=50°,则∠AOC= ▲°【答案】130。

【考点】平角的定义。

【分析】由∠BOC+∠AOC=1800和∠BOC=50°,得∠AOC=1300。

三、解答题1. (2012福建漳州8分)利用对称性可设计出美丽的图案.在边长为1的方格纸中,有如图所示的四边形(顶点都在格点上).(1)先作出该四边形关于直线l成轴对称的图形,再作出你所作的图形连同原四边形绕0点按顺时针方向旋转90o后的图形;(2)完成上述设计后,整个..图案的面积等于_________.【答案】解:(1)作图如图所示:先作出关于直线l的对称图形;再作出所作的图形连同原四边形绕0点按顺时针方向旋转90°后的图形。

(2)20。

【考点】利用旋转设计图案,利用轴对称设计图案。

【分析】(1)根据图形对称的性质先作出关于直线l的对称图形,再作出所作的图形连同原四边形绕0点按顺时针方向旋转90°后的图形即可。

(2)先利用割补法求出原图形的面积,由图形旋转及对称的性质可知经过旋转与轴对称所得图形与原图形全等即可得出结论。

∵边长为1的方格纸中一个方格的面积是1,∴原图形的面积为5。

∴整个图案的面积=4×5=20。

2. (2012福建三明8分)如图,已知△ABC三个顶点的坐标分别为A(-2,-1),B(-3,-3),C(-1,-3).①画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标;(4分)②画出△ABC关于原点O对称的△A2B2C2,并写出点A2的坐标.(4分)【答案】解:①如图所示,A1(-2,1)。

②如图所示,A2(2,1)。

【考点】轴对称和中心对称作图。

【分析】根据轴对称和中心对称的性质作图,写出A1、A2的坐标。

3. (2012福建福州7分)如图,方格纸中的每个小方格是边长为1个单位长度的正方形.①画出将Rt△ABC向右平移5个单位长度后的Rt△A1B1C1;②再将Rt△A1B1C1绕点C1顺时针旋转90°,画出旋转后的Rt△A2B2C1,并求出旋转过程中线段A1C1所扫过的面积(结果保留π).【答案】解:①如图所示;②如图所示;在旋转过程中,线段A1C1所扫过的面积等于90·π·42360=4π。

【考点】平移变换和旋转变换作图,扇形面积的计算。

【分析】根据图形平移的性质画出平移后的图形,再根据在旋转过程中,线段A1C1所扫过的面积等于以点C1为圆心,以A1C1为半径,圆心角为90度的扇形的面积,再根据扇形的面积公式进行解答即可。

4. (2012福建泉州9分)如图,在方格纸中(小正方形的边长为1),反比例函数kyx=与直线的交点A、B均在格点上,根据所给的直角坐标系(点O是坐标原点),解答下列问题:(1)分别写.出点A、B的坐标后,把直线AB向右平移平移5个单位,再在向上平移5个单位,画.出平移后的直线A′B′.(2)若点C在函数kyx=的图像上,△ABC是以AB为底边的等腰三角形,请写出点C的坐标.。

相关文档
最新文档