2010青岛中考数学试题及答案
2010年山东省青岛市九年级数学中考模拟试卷北师大版
用心 爱心 专心EACDB2010年数学中考模拟试卷班级: 姓名:一、精心选一选1、下列函数中,图象经过点(11)-,的反比例函数解析式是( ) A .1y x=B .1y x-=C .2y x=D .2y x-=2、若点(3,4)在反比例函数y =211m mx+的图象上,则此反比例函数必经过点( )A :(2,6)B :(2,-6)C :(4,-3)D :(3,-4)3、若菱形的较长对角线为24cm ,面积为120cm 2,则它的周长为( ) A:50cm B :51cm C :52cm D :56cm4、如图,在Rt⊿ABC 中,∠C=90°, ∠B=22.5°, DE 垂直平分AB 交BC 于E, 若BE=22则AC=( )A 、1B 、2C 、3D 、45、在△ABC 中,2 ,6 ,2 ,则最大边上的中线长为( ) A 2 B :3:2 D :以上都不对6、在下列命题中,是真命题的有( )A 、有两边相等的四边形是平行四边形.B 、两条对角线互相垂直且相等的四边形是菱形.C 、有两个角是直角的四边形是矩形.D 、有一个角是直角的菱形是正方形.7、如图(2),∠AOB 是一钢架,∠AOB=15°,为使钢架更加牢固,需在其内部添加一些钢管EF 、FG 、GH ……添的钢管长度都与OE 相等,则最多能添加这样的钢管( )根. A :2 B :4 C :5 D :无数 8、如图(3),已知△ABC 和△CDE 都是等边三角形,AD 、 BE 交于点F ,则∠AFB 等于( ) A :50° B:60° C:45° D:∠B CD9、用配方法解方程2420x x -+=,下列配方正确的是( ) A .2(2)2x -=B .2(2)2x +=C .2(2)2x -=-D .2(2)6x -=10、与如图所示的三视图对应的几何体是( )二、耐心填一填11、已知关于x的一元二次方程(a-1)x2-x + a2-1=0的一个根是0,那么a的值为 .12、如图,AD∥EG∥BC,AC∥EF,则图中与∠1相等的角(不含∠1)有个;若∠1=50O,则∠AHG = .13、同时抛掷两枚质地均匀的正方体骰子,骰子的六个面分别刻有1到6的点数,点数之和为12的概率是____________.14、直线y=2x与双曲线y=kx的图象的一个交点为(2,4),则它们的另一个交点的坐标是 .15、小亮和他弟弟在阳光下散步,小亮的身高为1.75米,他的影子长2米. 若此时他的弟弟的影子长为1.6米,则弟弟的身高为米.三、细心做一做16. 已知x=1是一元二次方程3x2-6x+m=0的一个解,求m的值.17.已知y与2x成反比例,当x=1时,y=2,求当x= -2时,y的值.18、画出下面立体图形的三视图.用心爱心专心用心 爱心 专心19、如图,AB 和DE 是直立在地面上的两根立柱.AB =5m ,某一时刻AB 在阳光下的投影BC =3m. (1)请你在图中画出此时DE 在阳光下的投影;(2)在测量AB 的投影时,同时测量出DE 在阳光下的投影长为6m ,请你计算DE 的长.20、你喜欢玩游戏吗?小明和小华在如图所示的两个转盘上玩一个游戏.两个转盘中指针落在每一个数字上的机会都均等,现同时自由转动甲、乙两个转盘,转盘停止后,指针各指向一个数字,若指针停在等分线上,则重转一次,直至指针指向某一数字为止.用所指的两个数字作乘积.如果积为奇数,则小明赢;如果积为偶数,则小华赢,这个游戏公平吗?如果公平,请说明理由;如果不公平,请你做一修改,使他俩获胜的机会一样大.21、如图,在四边形ABCD 中,AC ,BD 相交于点O ,AB ∥CD ,AO=CO. 求证:四边形ABCD 是平行四边形. 22、将进价为40元/个的商品按50元/个出售时,就能卖出500个. 已知这种商品每个涨价1元,其售量就减少10个. 问为了赚得8 000元的利润,售价应定为多少?商家为了用最少的成本获利仍为8 000元,应怎样定价?1 2 3 452 3 4 61用心 爱心 专心(N)(M)DCB AO 23、如图,在梯形ABCD 中,AB ∥DC, AD=BC, 延长AB 到E24、如图,已知一次函数)0(≠+=k b kx y 的图象与x 轴、y 轴分别交于A 、B 两点,且与反比例函数)0(≠=m xmy 的图象在第一象限交于C 点,CD 垂直与x 轴,垂足为D.若OA=OB=OD=1, (1)求点A ,B ,D 的坐标;(2)求一次函数和反比例函数的解析式。
10年-山东省青岛市中考真题
二○一○年山东省青岛市初级中学学业水平考试数学试题(考试时间:120分钟;满分:120分)题号一二三四合计合计人复核人15 16 17 18 19 20 21 22 23 24得分真情提示:亲爱的同学,欢迎你参加本次考试,祝你答题成功!1.请务必在指定位置填写座号,并将密封线内的项目填写清楚.2.本试题共有24道题.其中1—8题为选择题,请将所选答案的标号填写在第8题后面给出表格的相应位置上;9—14题为填空题,请将做出的答案填写在第14题后面给出表格的相应位置上;15—24题,请在试题给出的本题位置上做答.得分评卷人复核人一、选择题(本题满分24分,共有8道小题,每小题3分)下列每小题都给出标号为A、B、C、D的四个结论,其中只有一个是正确的.每小题选对得分;不选、选错或选出的标号超过一个的不得分.请将1—8各小题所选答案的标号填写在第8小题后面给出表格的相应位置上.1.下列各数中,相反数等于5的数是().A.-5B.5 C.-15D.152.如图所示的几何体的俯视图是().A.B.C.D.3.由四舍五入法得到的近似数8.8×103,下列说法中正确的是().A.精确到十分位,有2个有效数字B.精确到个位,有2个有效数字C.精确到百位,有2个有效数字D.精确到千位,有4个有效数字4.下列图形中,中心对称图形有().A.1个B.2个C.3个D.4个座号第2题图5.某外贸公司要出口一批规格为150g 的苹果,现有两个厂家提供货源,它们的价格相同,苹果的品质也相近. 质检员分别从甲、乙两厂的产品中随机抽取了50个苹果称重,并将所得数据处理后,制成如下表格. 根据表中信息判断,下列说法错误的是( ).A .本次的调查方式是抽样调查B .甲、乙两厂被抽取苹果的平均质量相同C .被抽取的这100个苹果的质量是本次调查的样本D .甲厂苹果的质量比乙厂苹果的质量波动大6.如图,在Rt △ABC 中,∠C = 90°,∠B = 30°,BC= 4 cm ,以点C 为圆心,以2 cm 的长为半径作圆,则⊙C 与AB 的位置关系是( ). A .相离 B .相切 C .相交 D .相切或相交7.如图,△ABC 的顶点坐标分别为A (4,6)、B (5,2)、C (2,1),如果将△ABC 绕点C 按逆时针方向旋转90°,得到△''A B C ,那么点A 的对应点'A 的坐标是( ). A .(-3,3) B .(3,-3) C .(-2,4) D .(1,4)8.函数y ax a =-与ay x=(a ≠0)在同一直角坐标系中的图象可能是( ).A .B .C .D .请将1—8各小题所选答案的标号填写在下表的相应位置上: 得 分 评卷人 复核人 二、填空题(本题满分18分,共有6道小题,每小题3分)请将9—14各小题的答案填写在第14小题后面给出表格的相应位置上.9.化简:483-= . 10.如图,点A 、B 、C 在⊙O 上,若∠BAC = 24°,则∠BOC = °. 11.某市为治理污水,需要铺设一段全长为300 m 的污水排放管道.铺设120 m 后,为了尽量减少施工对城市交通所造成的影响,后来个数平均 质量(g ) 质量的方差甲厂50 150 **乙厂 50 150 **题 号 1 2 3 4 5 6 7 8 答 案7O -2 -4 -3 -5 y C -1 6A 2 1 3 4 5 1 2B x 3 4 5 第7题图 xO y xy Oy xOy xOOABC第10题图·B C A 第6题图每天的工效比原计划增加20%,结果共用30天完成这一任务.求原计划每天铺设管道的长度.如果设原计划每天铺设m x 管道,那么根据题意,可得方程 .12.一个口袋中装有10个红球和若干个黄球.在不允许将球倒出来数的前提下,为估计口袋中黄球的个数,小明采用了如下的方法:每次先从口袋中摸出10个球,求出其中红球数与10的比值,再把球放回口袋中摇匀.不断重复上述过程20次,得到红球数与10的比值的平均数为0.4.根据上述数据,估计口袋中大约有 个黄球. 13.把一张矩形纸片(矩形ABCD )按如图方式折叠,使顶点B 和点D 重合,折痕为EF .若AB = 3 cm ,BC = 5 cm ,则重叠部分△DEF 的面积是 cm 2.14.如图,是用棋子摆成的图案,摆第1个图案需要7枚棋子,摆第2个图案需要19枚棋子,摆第3个图案需要37枚棋子,按照这样的方式摆下去,则摆第6个图案需要 枚棋子,摆第n 个图案需要 枚棋子. 请将9—14各小题的答案填写在下表的相应位置上:题 号 9 10 11 答 案 题 号 12 13 14答 案得 分 评卷人 复核人 三、作图题(本题满分4分)用圆规、直尺作图,不写作法,但要保留作图痕迹.15.如图,有一块三角形材料(△ABC ),请你画出一个圆,使其与△ABC 的各边都相切.解:…第14题图A BCFE 'A 第13题图('B ) D AB C结论: 四、解答题(本题满分74分,共有9道小题) 得 分 评卷人 复核人 16.(本小题满分8分,每题4分)(1)解方程组:34194.x y x y +=⎧⎨-=⎩,; (2)化简:22142a a a +--. 解: 解:原式=得 分 评卷人 复核人 17.(本小题满分6分)配餐公司为某学校提供A 、B 、C 三类午餐供师生选择,三类午餐每份的价格分别是:A餐5元,B 餐6元,C 餐8元.为做好下阶段的营销工作,配餐公司根据该校上周A 、B 、C 三类午餐购买情况,将所得的数据处理后,制成统计表(如下左图);根据以往销售量与平均每份利润之间的关系,制成统计图(如下右图).请根据以上信息,解答下列问题:(1)该校师生上周购买午餐费用的众数是 元;(2)配餐公司上周在该校销售B 餐每份的利润大约是 元; (3)请你计算配餐公司上周在该校销售午餐约盈利多少元? 解:(3)以往销售量与平均每份利润之间的关系统计图一周销售量(份)300~800 (不含800) 平均每份的利润(元)0.5 1 1.5 2 02.5 33.5 4 800~1200 (不含1200)1200及 1200以上AB C种类 数量(份) A 1000 B 1700 C400该校上周购买情况统计表得 分 评卷人 复核人 18.(本小题满分6分)“五·一”期间,某书城为了吸引读者,设立了一个可以自由转动的转盘(如图,转盘被平均分成12份),并规定:读者每购买100元的书,就可获得一次转动转盘的机会,如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么读者就可以分别获得45元、30元、25元的购书券,凭购书券可以在书城继续购书.如果读者不愿意转转盘,那么可以直接获得10元的购书券.(1)写出转动一次转盘获得45元购书券的概率;(2)转转盘和直接获得购书券,你认为哪种方式对读者更合算?请说明理由. 解:(1)(2) 得 分 评卷人 复核人 19.(本小题满分6分)小明家所在居民楼的对面有一座大厦AB ,AB =80米.为测量这座居民楼与大厦之间的距离,小明从自己家的窗户C 处测得大厦顶部A 的仰角为37°,大厦底部B 的俯角为48°.求小明家所在居民楼与大厦的距离CD 的长度.(结果保留整数)(参考数据:o o o o 33711sin37tan37sin 48tan48541010≈≈≈≈,,,)解:第18题图绿绿黄 黄绿红 B37° 48°DC A第19题图得分评卷人复核人20.(本小题满分8分)某学校组织八年级学生参加社会实践活动,若单独租用35座客车若干辆,则刚好坐满;若单独租用55座客车,则可以少租一辆,且余45个空座位.(1)求该校八年级学生参加社会实践活动的人数;(2)已知35座客车的租金为每辆320元,55座客车的租金为每辆400元.根据租车资金不超过1500元的预算,学校决定同时租用这两种客车共4辆(可以坐不满).请你计算本次社会实践活动所需车辆的租金.解:(1)(2)得分评卷人复核人21.(本小题满分8分)已知:如图,在正方形ABCD中,点E、F分别在BC和CD上,AE = AF.(1)求证:BE = DF;(2)连接AC交EF于点O,延长OC至点M,使OM = OA,连接EM、FM.判断四边形AEMF是什么特殊四边形?并证明你的结论.证明:(1)(2)A DB EFOCM 第21题图得分评卷人复核人22.(本小题满分10分)某市政府大力扶持大学生创业.李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:10500=-+.y x(1)设李明每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润?(2)如果李明想要每月获得2000元的利润,那么销售单价应定为多少元?(3)根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2000元,那么他每月的成本最少需要多少元?(成本=进价×销售量)解:(1)(2)(3)得 分 评卷人 复核人 23.(本小题满分10分)问题再现现实生活中,镶嵌图案在地面、墙面乃至于服装面料设计中随处可见.在八年级课题学习“平面图形的镶嵌”中,对于单种多边形的镶嵌,主要研究了三角形、四边形、正六边形的镶嵌问题.今天我们把正多边形....的镶嵌作为研究问题的切入点,提出其中几个问题,共同来探究.我们知道,可以单独用正三角形、正方形或正六边形镶嵌平面.如右图中,用正方形镶嵌平面,可以发现在一个顶点O 周围围绕着4个正方形的内角.试想:如果用正六边形来镶嵌平面,在一个顶点周围应该围绕着 个 正六边形的内角.问题提出如果我们要同时用两种不同的正多边形镶嵌平面,可能设计出几种不同的组合方案? 问题解决猜想1:是否可以同时用正方形、正八边形两种正多边形组合进行平面镶嵌?分析:我们可以将此问题转化为数学问题来解决.从平面图形的镶嵌中可以发现,解决问题的关键在于分析能同时用于完整镶嵌平面的两种正多边形的内角特点.具体地说,就是在镶嵌平面时,一个顶点周围围绕的各个正多边形的内角恰好拼成一个周角.验证1:在镶嵌平面时,设围绕某一点有x 个正方形和y 个正八边形的内角可以拼成一个周角.根据题意,可得方程:()82180903608x y -⨯+ =,整理得:238x y +=,我们可以找到惟一一组适合方程的正整数解为12x y =⎧⎨=⎩ .结论1:镶嵌平面时,在一个顶点周围围绕着1个正方形和2个正八边形的内角可以拼成一个周角,所以同时用正方形和正八边形两种正多边形组合可以进行平面镶嵌.猜想2:是否可以同时用正三角形和正六边形两种正多边形组合进行平面镶嵌?若能,请按照上述方法进行验证,并写出所有可能的方案;若不能,请说明理由.验证2:结论2: .上面,我们探究了同时用两种不同的正多边形组合镶嵌平面的部分情况,仅仅得到了一部分组合方案,相信同学们用同样的方法,一定会找到其它可能的组合方案.问题拓广O请你仿照上面的研究方式,探索出一个同时用三种不同的正多边形组合进行平面镶嵌的方案,并写出验证过程.猜想3:.验证3:结论3:.得分评卷人复核人24.(本小题满分12分)已知:把Rt△ABC和Rt△DEF按如图(1)摆放(点C与点E重合),点B、C(E)、F在同一条直线上.∠ACB = ∠EDF = 90°,∠DEF = 45°,AC = 8 cm,BC = 6 cm,EF = 9 cm.如图(2),△DEF从图(1)的位置出发,以1 cm/s的速度沿CB向△ABC匀速移动,在△DEF移动的同时,点P从△ABC的顶点B出发,以2 cm/s的速度沿BA向点A匀速移动.当△DEF的顶点D移动到AC边上时,△DEF停止移动,点P也随之停止移动.DE与AC相交于点Q,连接PQ,设移动时间为t(s)(0<t<4.5).解答下列问题:(1)当t为何值时,点A在线段PQ的垂直平分线上?(2)连接PE,设四边形APEC的面积为y(cm2),求y与t之间的函数关系式;是否存在某一时刻t,使面积y最小?若存在,求出y的最小值;若不存在,说明理由.(3)是否存在某一时刻t,使P、Q、F三点在同一条直线上?若存在,求出此时t的值;若不存在,说明理由.(图(3)供同学们做题使用)解:(1)(2)ADB C F(E)图(1)ADB C FE图(2)PQ(3)真情提示:亲爱的同学,请认真检查,不要漏题哟!AB C图(3)(用圆珠笔或钢笔画图)。
(免费)2010年部分省市中考数学试题分类汇编 综合型问题(含答案)
2010年部分省市中考数学试题分类汇编综合型问题20、(2010年浙江省东阳县)如图,BD 为⊙O 的直径,点A 是弧BC 的中点,AD 交BC 于E 点,AE=2,ED=4.(1)求证: ABE ∆~ABD ∆;(2) 求tan ADB ∠的值; (3)延长BC 至F ,连接FD ,使BDF ∆的面积等于 求EDF ∠的度数.【关键词】圆、相似三角形、三角形函数问题【答案】(1)∵点A 是弧BC 的中点 ∴∠ABC=∠ADB 又∵∠BAE=∠BAE ∴△ABE∽△ABD(2)∵△ABE∽△ABD ∴AB2=2×6=12 ∴AB=23在Rt△ADB中,tan∠ADB=33632=(3)连接CD,可得BF=8,BE=4,则EF=4,△DEF是正三角形, ∠EDF=60°20.(2010年山东省青岛市)某学校组织八年级学生参加社会实践活动,若单独租用35座客车若干辆,则刚好坐满;若单独租用55座客车,则可以少租一辆,且余45个空座位.(1)求该校八年级学生参加社会实践活动的人数;(2)已知35座客车的租金为每辆320元,55座客车的租金为每辆400元.根据租车资金不超过1500元的预算,学校决定同时租用这两种客车共4辆(可以坐不满).请你计算本次社会实践活动所需车辆的租金. 【关键词】不等式与方程问题 【答案】解:(1)设单独租用35座客车需x 辆,由题意得:3555(1)45x x =--,解得:5x =.∴35355175x =⨯=(人).答:该校八年级参加社会实践活动的人数为175人. ········· 3分 (2)设租35座客车y 辆,则租55座客车(4y -)辆,由题意得:3555(4)175320400(4)1500y y y y +-⎧⎨+-⎩≥≤, ······· 6分解这个不等式组,得111244y ≤≤.∵y 取正整数, ∴y = 2.∴4-y = 4-2 = 2.∴320×2+400×2 = 1440(元).所以本次社会实践活动所需车辆的租金为1440元. (2010年安徽省B 卷)23.(本小题满分12分)如图, Rt ABC △内接于O ⊙,AC BC BAC =∠,的平分线AD 与O ⊙交于点D ,与BC 交于点E ,延长BD ,与AC 的延长线交于点F ,连接CD G ,是CD 的中点,连结OG .(1)判断OG 与CD 的位置关系,写出你的结论并证明; (2)求证:AE BF =; (3)若3(2OG DE = ,求O ⊙的面积.【关键词】圆 等腰三角形 三角形全等 三角形相似 勾股定理【答案】(1)猜想:OG CD ⊥. 证明:如图,连结OC 、OD . ∵OC OD =,G 是CD 的中点,∴由等腰三角形的性质,有OG CD ⊥.(2)证明:∵AB 是⊙O 的直径,∴∠ACB =90°. 而∠CAE =∠CBF (同弧所对的圆周角相等). 在Rt △ACE 和Rt △BCF 中, ∵∠ACE =∠BCF =90°,AC =BC ,∠CAE =∠CBF , ∴Rt △ACE ≌Rt △BCF (ASA ) ∴ AE BF =.(3)解:如图,过点O 作BD 的垂线,垂足为H .则H 为BD 的中点.∴OH =12AD ,即AD =2OH . 又∠CAD =∠BAD ⇒CD =BD ,∴OH =OG . 在Rt △BDE 和Rt △ADB 中, ∵∠DBE =∠DAC =∠BAD , ∴Rt △BDE ∽Rt △ADB∴BD DE AD DB=,即2BD AD DE =·AA∴226(2BD AD DE OG DE ===·· 又BD FD =,∴2BF BD =.∴22424(2BF BD == … ① 设AC x =,则BC x =,.∵AD 是∠BAC 的平分线, ∴FAD BAD ∠=∠.在Rt △ABD 和Rt △AFD 中, ∵∠ADB =∠ADF =90°,AD =AD ,∠F AD =∠BAD , ∴Rt △ABD ≌Rt △AFD (ASA ). ∴AF =AB,BD =FD . ∴CF =AF -AC1)x x -= 在Rt △BCF 中,由勾股定理,得2222221)]2(2BF BC CF x x x =+=+= …②由①、②,得22(224(2x =. ∴212x =.解得x =-.∴AB ===∴⊙O∴π6πO S =⋅2⊙=(2010年安徽省B 卷)24.(本小题满分12分)已知:抛物线()20y ax bx c a =++≠的对称轴为1x =-与x 轴交于A B ,两点,与y 轴交于点C ,其中()30A -,、()02C -,.(1)求这条抛物线的函数表达式.(2)已知在对称轴上存在一点P ,使得PBC △的周长最小.请求出点P 的坐标.(3)若点D 是线段OC 上的一个动点(不与点O 、点C 重合).过点D 作DE PC ∥交x 轴于点E .连接PD 、PE .设CD 的长为m ,PDE △的面积为S .求S 与m 之间的函数关系式.试说明S 是否存在最大值,若存在,请求出最大值;若不存在,请说明理由.【关键词】二次函数解析式 对称点 相似三角形 三角形面积【答案】(1)由题意得129302b a a bc c ⎧=⎪⎪⎪-+=⎨⎪⎪=-⎪⎩解得23432a b c ⎧=⎪⎪⎪=⎨⎪=-⎪⎪⎩∴此抛物线的解析式为224233y x x =+- (2)连结AC 、BC .因为BC 的长度一定,所以PBC △周长最小,就是使PC PB +最小.B 点关于对称轴的对称点是A 点,AC 与对称轴1x =-的交点即为所求的点P .设直线AC 的表达式为y kx b =+则302k b b -+=⎧⎨=-⎩,解得232k b ⎧=-⎪⎨⎪=-⎩∴此直线的表达式为223y x =--.把1x =-代入得43y =-∴P 点的坐标为413⎛⎫--⎪⎝⎭, (3)S 存在最大值 理由:∵DE PC ∥,即DE AC ∥. ∴OED OAC △∽△.∴OD OE OC OA =,即223m OE-=. ∴332OE m =-,连结OPOAC OED AEP PCD S S S S S =---△△△△=()1131341323212222232m m m m ⎛⎫⨯⨯-⨯-⨯--⨯⨯-⨯⨯ ⎪⎝⎭ =()22333314244m m m -+=--+ ∵304-<∴当1m =时,34S =最大(2010年福建省晋江市)已知:如图,把矩形OCBA 放置于直角坐标系中,3=OC ,2=BC ,取AB 的中点M ,连结MC ,把MBC ∆沿x 轴的负方向平移OC 的长度后得到DAO ∆.(1)试直接写出点D 的坐标;(2)已知点B 与点D 在经过原点的抛物线上,点P 在第一象限内的该抛物线上移动,过点P 作x PQ ⊥轴于点Q ,连结OP .①若以O 、P 、Q 为顶点的三角形与DAO ∆相似,试求出点P 的坐标;②试问在抛物线的对称轴上是否存在一点T ,使得TB TO -的值最大.【关键词】二次函数、相似三角形、最值问题答案:解:(1)依题意得:⎪⎭⎫ ⎝⎛-2,23D ;(2) ① ∵3=OC ,2=BC , ∴()2,3B .∵抛物线经过原点,∴设抛物线的解析式为bx ax y +=2()0≠a又抛物线经过点()2,3B 与点⎪⎭⎫⎝⎛-2,23D∴⎪⎩⎪⎨⎧=-=+22349,239b a b a 解得:⎪⎪⎩⎪⎪⎨⎧-==32,94b a ∴抛物线的解析式为x x y 32942-=. ∵点P 在抛物线上, ∴设点⎪⎭⎫ ⎝⎛-x x x P 3294,2. 1)若PQO ∆∽DAO ∆,则AO QO DA PQ =, 22332942x xx =-,解得:01=x (舍去)或16512=x ,∴点⎪⎭⎫⎝⎛64153,1651P . 2)若OQP ∆∽DAO ∆,则AO PQ DA OQ =, 23294232xx x -=,解得:01=x (舍去)或292=x ,∴点⎪⎭⎫⎝⎛6,29P . ②存在点T ,使得TO TB -的值最大. 抛物线x x y 32942-=的对称轴为直线43=x ,设抛物线与x 轴的另一个交点为E ,则点⎪⎭⎫⎝⎛0,23E . ∵点O 、点E 关于直线43=x 对称, ∴TE TO =要使得TB TO -的值最大,即是使得TB TE -的值最大,根据三角形两边之差小于第三边可知,当T 、E 、B 三点在同一直线上时,TB TE -的值最大.设过B 、E 两点的直线解析式为b kx y +=()0≠k ,∴⎪⎩⎪⎨⎧=+=+023,23b k b k 解得:⎪⎩⎪⎨⎧-==2,34b k∴直线BE 的解析式为234-=x y . 当43=x 时,124334-=-⨯=y . ∴存在一点⎪⎭⎫⎝⎛-1,43T 使得TO TB -最大.2. (2010年福建省晋江市)如图,在等边ABC ∆中,线段AM 为BC 边上的中线. 动点D 在直线..AM 上时,以CD 为一边且在CD 的下方作等边CDE ∆,连结BE .(1) 填空:______ACB ∠=度;(2) 当点D 在线段..AM 上(点D 不运动到点A )时,试求出BEAD的值; (3)若8=AB ,以点C 为圆心,以5为半径作⊙C 与直线BE 相交于点P 、Q 两点,在点D 运动的过程中(点D 与点A 重合除外),试求PQ 的长.(2)∵ABC ∆与DEC ∆都是等边三角形∴BC AC =,CE CD =,︒=∠=∠60DCE ACB ∴BCE DCB DCB ACD ∠+∠=∠+∠ ∴BCE ACD ∠=∠CAB 备用图(1) AB C备用图(2)∴ACD ∆≌BCE ∆()SAS∴BE AD =,∴1=BEAD. (3)①当点D 在线段AM 上(不与点A 重合)时,由(2)可知ACD ∆≌BCE ∆,则︒=∠=∠30CAD CBE ,作BE CH ⊥于点H ,则HQ PQ 2=,连结CQ ,则5=CQ .在CBH Rt ∆中,︒=∠30CBH ,8==AB BC ,则421830sin =⨯=︒⋅=BC CH . 在CHQ Rt ∆中,由勾股定理得:3452222=-=-=CH CQ HQ ,则②当点D 在线段AM 的延长线上时,∵ABC ∆与DEC ∆都是等边三角形 ∴BC AC =,CE CD =,︒=∠=∠60DCE ACB ∴DCB ACB =∠+∠∴BCE ACD ∠=∠ ∴ACD ∆≌BCE ∆(∴=∠=∠CAD CBE ③当点D 在线段MA ∵ABC ∆与DEC ∆∴BC AC =,CD =∴=∠+∠ACE ACD ∴BCE ACD ∠=∠ ∴ACD ∆≌BCE ∆(∴CAD CBE ∠=∠∵︒=∠30CAM∴︒=∠=∠150CAD CBE ∴︒=∠30CBQ . 同理可得:6=PQ . 综上,PQ 的长是6.1.(2010年浙江省东阳市)如图,P 为正方形ABCD 的对称中心,A (0,3),B (1,0),直线OP 交AB 于N ,DC 于M ,点H 从原点O 出发沿x 轴的正半轴方向以1个单位每秒速度运动,同时,点R 从O 出发沿OM 方向以2个单位每秒速度运动,运动时间为t 。
青岛2010年中考数学试题
山东省青岛市初级中学2010级学业水平考试数学试题一、选择题(共8小题,每小题3分,满分24分)1.(2010•青岛)下列各数中,相反数等于5的数是()A.﹣5 B.5 C.﹣D.考点:相反数。
分析:一个数的相反数就是在这个数前面添上“﹣”号.解答:解:5的相反数是﹣5.故选A.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.如图所示的几何体的主视图是()A. B.C.D.考点:简单几何体的三视图。
分析:根据主视图是从正面看到的图形判定则可.解答:解:从正面看,是一个等腰梯形,故选C.点评:本题考查了三视图的知识,主视图是从物体的正面看得到的视图.3.(2010•青岛)由四舍五入法得到的近似数8.8×103,下列说法中正确的是()A.精确到十分位,有2个有效数字 B.精确到个位,有2个有效数字C.精确到百位,有2个有效数字D.精确到千位,有4个有效数字考点:科学记数法与有效数字。
分析:103代表1千,那是乘号前面个位的单位,那么小数点后一位是百.有效数字是从左边第一个不是0的数字起后面所有的数字都是有效数字,用科学记数法表示的数a×10n的有效数字只与前面的a有关,与10的多少次方无关.解答:解:个位代表千,那么十分位就代表百,乘号前面从左面第一个不是0的数字有2个数字,那么有效数字就是2个.故选C.点评:较大的数用a×10n表示,看精确到哪一位,需看个位代表什么;有效数字需看乘号前面的有效数字.4.(2010•青岛)下列图形中,中心对称图形有()A.1个B.2个C.3个D.4个考点:中心对称图形。
分析:根据中心对称图形的概念求解.解答:解:A、是中心对称图形,符合题意;B、是中心对称图形,符合题意;C、是中心对称图形,符合题意;D、不是中心对称图形,不符合题意.共3个中心对称图形.故选C.点评:掌握好中心对称图形的概念.中心对称图形关键是要寻找对称中心,旋转180度后两部分重合.5.(2010•青岛)某外贸公司要出口一批规格为150g的苹果,现有两个厂家提供货源,它们的价格相同,苹果的品质也相近.质检员分别从甲、乙两厂的产品中随机抽取了50个苹果称重,并将所得数据处理后,制成如下表格.根据表中信息判断,下列说法错误的是()A.本次的调查方式是抽样调查 B.甲、乙两厂被抽取苹果的平均质量相同C.被抽取的这100个苹果的质量是本次调查的样本D.甲厂苹果的质量比乙厂苹果的质量波动大考点:方差;全面调查与抽样调查;总体、个体、样本、样本容量;算术平均数。
(免费)2010年部分省市中考数学试题分类汇编 阅读理解型(含答案)
2010年部分省市中考数学试题分类汇编阅读理解型15.(2010年浙江省东阳县)阅读材料,寻找共同存在的规律:有一个运算程序a ⊕b = n , 可以使:(a+c )⊕b= n+c ,a ⊕(b+c )=n -2c , 如果1⊕1=2,那么2010⊕2010 = . 【关键词】阅读理解 【答案】-200722.(2010年山东省青岛市)某市政府大力扶持大学生创业.李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y (件)与销售单价x (元)之间的关系可近似的看作一次函数:10500y x =-+.(1)设李明每月获得利润为w (元),当销售单价定为多少元时,每月可获得最大利润?(2)如果李明想要每月获得2000元的利润,那么销售单价应定为多少元?(3)根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2000元,那么他每月的成本最少需要多少元? (成本=进价×销售量) 【关键词】函数的应用 【答案】解:(1)由题意,得:w = (x -20)·y=(x -20)·(10500x -+) 21070010000x x =-+-352b x a=-=.答:当销售单价定为35元时,每月可获得最大利润. ········ 3分 (2)由题意,得:210700100002000x x -+-= 解这个方程得:x 1 = 30,x 2 = 40.答:李明想要每月获得2000元的利润,销售单价应定为30元或40元. ···· 6分(3)法一:∵10a =-<0,∴抛物线开口向下. ∴当30≤x ≤40时,w ≥2000. ∵x ≤32, ∴当30≤x ≤32时,w ≥2000. 设成本为P (元),由题意,得: 20(10500)P x =-+ 20010000x =-+ ∵200k =-<0,∴P 随x 的增大而减小.∴当x = 32时,P 最小=3600.答:想要每月获得的利润不低于2000元,每月的成本最少为3600元.1.(2010年浙江省东阳市)阅读材料,寻找共同存在的规律:有一个运算程序a ⊕b = n ,法二:∵10a =-<0, ∴抛物线开口向下. ∴当30≤x ≤40时,w ≥2000. ∵x ≤32,∴30≤x ≤32时,w ≥2000. ∵10500y x =-+,100k =-<, ∴y 随x 的增大而减小. ∴当x = 32时,y 最小=180. ∵当进价一定时,销售量越小,成本越小,∴201803600⨯=(元).可以使:(a+c )⊕b= n+c ,a ⊕(b+c )=n -2c , 如果1⊕1=2,那么2010⊕2010 = ▲ . 关键词:阅读理解 答案:-20071、(2010年宁波市)《几何原本》的诞生,标志着几何学已成为一个有着严密理论系统和科学方法的学科,它奠定了现代数学的基础,它是下列哪位数学家的著作( ) A 、欧几里得 B 、杨辉 C 、费马 D 、刘徽【关键词】数学阅读知识 【答案】A(2010年浙江省绍兴市)在平面直角坐标系中,一次函数的图象与坐标轴围成的三角形, 叫做此一次函数的坐标三角形.例如,图中的一次函数的图象与x ,y 轴分别交于点A ,B ,则△OAB 为此函数的坐标三角形.(1)求函数y =43-x +3的坐标三角形的三条边长; (2)若函数y =43-x +b (b 为常数)的坐标三角形周长为16求此三角形面积.【答案】解:(1) ∵ 直线y =43-x +3与x 轴的交点坐标为(4,0),与y 轴交点坐标为(0,3), ∴函数y =43-x +3的坐标三角形的三条边长分别为3,4,5. (2) 直线y =43-x +b 与x 轴的交点坐标为(b 34,0),与y 轴交点坐标为(0,b ),当b >0时,163534=++b b b ,得b =4,此时,坐标三角形面积为332;当b <0时,163534=---b b b ,得b =-4,此时,坐标三角形面积为332.综上,当函数y =43-x +b 的坐标三角形周长为16时,面积为332.2010年益阳市) 我们把对称中心重合,四边分别平行的两个正方形之间的部分叫“方形环”,易知方形环四周的宽度相等..... 一条直线l 与方形环的边线有四个交点M 、'M 、'N 、N .小明在探究线段'MM 与N N ' 的数量关系时,从点'M 、'N 向对边作垂线段E M '、F N ',利用三角形全等、相似及锐角三角函数等相关知识解决了问题.请你参考小明的思路解答下列问题: ⑴当直线l 与方形环的对边相交时(如图18-),直线l 分别交AD 、D A ''、C B ''、BC 于M 、'M 、'N 、N ,小明发现'MM 与N N '相等,请你帮他说明理由; ⑵当直线l 与方形环的邻边相交时(如图28-),l 分别交AD 、D A ''、C D ''、DC于M 、'M 、'N 、N ,l 与DC 的夹角为α,你认为'MM 与N N '还相等吗?若 相等,说明理由;若不相等,求出NN MM ''的值(用含α的三角函数表示).第21题图【关键词】正方形性质、相似三角形、三角函数值 【答案】⑴解: 在方形环中,∵AD BC F N AD E M ,',⊥⊥'∥BC ∴NF N M EM FN N EM M F N E M ',90','∠='∠=∠='∠='︒ ∴△E MM '≌△F NN '∴N N M M '='⑵解法一:∵α='∠='∠︒='∠='∠M M E N FN M ME N NF ,90 ∴N NF '∆∽EM M '∆ ∴NF EM N N M M '='' ∵F N E M '='∴αtan ''='=NF F N N N MM (或ααcos sin ) ①当︒=45α时,tan α=1,则N N M M '=' ②当︒≠45α时,N N M M '≠'则 αtan =''N N M M (或ααcos sin )解法二:在方形环中,︒=∠90D又∵CD F N AD E M ⊥⊥'', ∴E M '∥E M F N DC '=', ∴α=∠='∠NF N E M M ' 在F N N Rt '∆与E M M Rt '∆中, MM EM N N F N ''='=ααcos ,'sin N N M M E M M M N N F N ''=''⋅'=='cos sin tan ααα 即 αtan =''N N M M (或ααcos sin )B18-图28-图①当︒=45α时,N N M M '=' ②当︒≠45α时,N N M M '≠'则 αtan =''N N M M (或ααcos sin )。
往年山东省青岛市中考数学真题及答案
往年山东省青岛市中考数学真题及答案一. 选择题(本题满分24分,共有8小题,每小题3分)1.( 3分)(往年•青岛)﹣2的绝对值是()B.﹣2 C.D.2A.﹣2.( 3分)(往年•青岛)下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.3.( 3分)(往年•青岛)如图,正方体表面上画有一圈黑色线条,则它的左视图是()A.B.C.D.4.( 3分)(往年•青岛)已知,⊙O1与⊙O2的半径分别是4和6,O1O2=2,则⊙O1与⊙O2的位置关系是()A.内切B.相交C.外切D.外离5.( 3分)(往年•青岛)某次知识竞赛中,10名学生的成绩统计如下:分数(分)60 70 80 90 100人数(人) 1 1 5 2 1则下列说法正确的是()A.学生成绩的极差是4 B.学生成绩的众数是5C.学生成绩的中位数是80分D.学生成绩的平均数是80分6.( 3分)(往年•青岛)如图,将四边形ABCD先向左平移3个单位,再向上平移2个单位,那么点A的对应点A′的坐标是()A.( 6,1)B.( 0,1)C.( 0,﹣3)D.( 6,﹣3)7.( 3分)(往年•青岛)用图中两个可自由转动的转盘做“配紫色”游戏:分别旋转两个转盘,若其中一个转出红色,另一个转出蓝色即可配成紫色.那么可配成紫色的概率是()A.B.C.D.8.( 3分)(往年•青岛)点A( x1,y1),B( x2,y2),C( x3,y3)都是反比例函数的图象上,若x1<x2<0<x3,则y1,y2,y3的大小关系是()A.y3<y1<y2B.y1<y2<y3C.y3<y2<y1D.y2<y1<y3二. 填空题(本题满分18分,共有6道小题,每小题3分)9.( 3分)(往年•青岛)计算:(﹣3)0+= _________ .10.( 3分)(往年•青岛)为改善学生的营养状况,中央财政从2011年秋季学期起,为试点地区在校生提供营养膳食补助,一年所需资金约为160亿元,用科学记数法表示为_ 元.11.( 3分)(往年•青岛)如图,点A. B. C在⊙O上,∠AOC=60°,则∠ABC的度数是_________ .12.( 3分)(往年•青岛)如图,在一块长为22米. 宽为17米的矩形地面上,要修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条边平行),剩余部分种上草坪,使草坪面积为300平方米.若设道路宽为x米,则根据题意可列出方程为_________ .13.( 3分)(往年•青岛)如图,Rt△ABC中,∠ACB=90°,∠ABC=30°,AC=1,将△ABC绕点C逆时针旋转至△A′B′C′,使得点A′恰好落在AB上,连接BB′,则BB′的长度为_________ .14.( 3分)(往年•青岛)如图,圆柱形玻璃杯,高为12cm,底面周长为18cm,在杯内离杯底3cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为_________ cm.三. 作图题(本题满分4分)用圆规. 直尺作图,不写作法,但要保留作图痕迹.15.( 4分)(往年•青岛)已知:线段a,c,∠α.求作:△ABC.使BC=a,AB=c,∠ABC=∠α.结论:四. 解答题(本题满分74分,共有9道小题)16.( 8分)(往年•青岛)( 1)化简:( 2)解不等式组:.17.( 6分)(往年•青岛)某校为开展每天一小时阳光体育活动,准备组建篮球. 排球. 足球. 乒乓球四个兴趣小组,并规定每名学生至少参加1个小组,也可兼报多个小组.该校对八年级全体学生报名情况进行了抽样调查,并将所得数据制成如下两幅统计图:根据图中的信息解答下列问题:( 1)补全条形统计图;( 2)若该校八年级共有400名学生,估计报名参加2个兴趣小组的人数;( 3)综合上述信息,谈谈你对该校即将开展的兴趣小组活动的意见和建议.(字数不超过30字)18.( 6分)(往年•青岛)某商场为了吸引顾客,举行抽奖活动,并规定:顾客每购买100元的商品,就可随机抽取一张奖券,抽得奖券“紫气东来”. “花开富贵”. “吉星高照”,就可以分别获得100元. 50元. 20元的购物券,抽得“谢谢惠顾”不赠购物券;如果顾客不愿意抽奖,可以直接获得购物券10元.小明购买了100元的商品,他看到商场公布的前10000张奖券的抽奖结果如下:奖券种类紫气东来花开富贵吉星高照谢谢惠顾出现张数(张) 500 1000 2000 6500( 1)求“紫气东来”奖券出现的频率;( 2)请你帮助小明判断,抽奖和直接获得购物卷,哪种方式更合算?并说明理由.19.( 6分)(往年•青岛)小丽乘坐汽车从青岛到黄岛奶奶家,她去时经过环湾高速公路,全程约84千米,返回时经过跨海大桥,全程约45千米.小丽所乘汽车去时的平均速度是返回时的1.2倍,所用时间却比返回时多20分钟.求小丽所乘汽车返回时的平均速度.20.( 8分)(往年•青岛)如图,某校教学楼AB的后面有一建筑物CD,当光线与地面的夹角是22°时,教学楼在建筑物的墙上留下高2米的影子CE;而当光线与地面夹角是45°时,教学楼顶A在地面上的影子F与墙角C有13米的距离( B. F. C在一条直线上)( 1)求教学楼AB的高度;( 2)学校要在A. E之间挂一些彩旗,请你求出A. E之间的距离(结果保留整数).(参考数据:sin22°≈,cos22°≈,tan22°≈)21.( 8分)(往年•青岛)已知:如图,四边形ABCD的对角线AC. BD交于点O,BE⊥AC于E,DF⊥AC于F,点O既是AC的中点,又是EF的中点.( 1)求证:△BOE≌△DOF;( 2)若OA=BD,则四边形ABCD是什么特殊四边形?说明理由.22.( 10分)(往年•青岛)在“母亲节”期间,某校部分团员参加社会公益活动,准备购进一批许愿瓶进行销售,并将所得利润捐给慈善机构.根据市场调查,这种许愿瓶一段时间内的销售量y(个)与销售单价x(元/个)之间的对应关系如图所示:( 1)试判断y与x之间的函数关系,并求出函数关系式;( 2)若许愿瓶的进价为6元/个,按照上述市场调查的销售规律,求销售利润w(元)与销售单价x(元/个)之间的函数关系式;( 3)若许愿瓶的进货成本不超过900元,要想获得最大利润,试确定这种许愿瓶的销售单价,并求出此时的最大利润.23.( 10分)(往年•青岛)问题提出:以n边形的n个顶点和它内部的m个点,共( m+n)个点作为顶点,可把原n边形分割成多少个互不重叠的小三角形?问题探究:为了解决上面的问题,我们将采取一般问题特殊性的策略,先从简单和具体的情形入手:探究一:以△ABC的三个顶点和它内部的1个点P,共4个点为顶点,可把△ABC分割成多少个互不重叠的小三角形?如图①,显然,此时可把△ABC分割成3个互不重叠的小三角形.探究二:以△ABC的三个顶点和它内部的2个点P. Q,共5个点为顶点,可把△ABC分割成多少个互不重叠的小三角形?在探究一的基础上,我们可看作在图①△ABC的内部,再添加1个点Q,那么点Q的位置会有两种情况:一种情况,点Q在图①分割成的某个小三角形内部.不妨假设点Q在△PAC内部,如图②;另一种情况,点Q在图①分割成的小三角形的某条公共边上.不妨假设点Q在PA上,如图③.显然,不管哪种情况,都可把△ABC分割成5个不重叠的小三角形.探究三:以△ABC的三个顶点和它内部的3个点P. Q. R,共6个点为顶点可把△ABC分割成_________ 个互不重叠的小三角形,并在图④中画出一种分割示意图.探究四:以△ABC的三个顶点和它内部的m个点,共( m+3)个顶点可把△ABC分割成_________ 个互不重叠的小三角形.探究拓展:以四边形的4个顶点和它内部的m个点,共( m+4)个顶点可把四边形分割成_________ 个互不重叠的小三角形.问题解决:以n边形的n个顶点和它内部的m个点,共( m+n)个顶点可把△ABC分割成_________ 个互不重叠的小三角形.实际应用:以八边形的8个顶点和它内部的往年个点,共2020个顶点,可把八边形分割成多少个互不重叠的小三角形?(要求列式计算)24.( 12分)(往年•青岛)已知:如图,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,D. E分别是AC. AB的中点,连接DE,点P从点D出发,沿DE方向匀速运动,速度为1cm/s;同时,点Q从点B出发,沿BA方向匀速运动,速度为2cm/s,当点P停止运动时,点Q也停止运动.连接PQ,设运动时间为t( s)( 0<t<4).解答下列问题:( 1)当t为何值时,PQ⊥AB?( 2)当点Q在BE之间运动时,设五边形PQBCD的面积为y( cm2),求y与t之间的函数关系式;( 3)在( 2)的情况下,是否存在某一时刻t,使PQ分四边形BCDE两部分的面积之比为S △PQE:S四边形PQBCD=1:29?若存在,求出此时t的值以及点E到PQ的距离h;若不存在,请说明理由.往年年山东省青岛市中考数学试卷参考答案与试题解析一. 选择题1.D 2.C 3.B 4.A 5.C 6.B 7. D 8. A二. 填空题(本题满分18分,共有6道小题,每小题3分)请将9--14各小题的答案填写在第14小题后面给出的表格相应位置上.9.7.10.1.6×1010.11.150°.12.( 22﹣x)( 17﹣x)=300.13..14.5.四. 解答题(本题满分74分,共有9道小题)16.解:( 1)原式==…4分解:( 2)解不等式①,x>,解不等式②,x≤4,∴原式不等式组的解集为<x≤4.17.解:( 1)∵从统计图知报名参加丙小组的有15人,占总数的30%∴总人数有15÷30%=50人,∴报名参加丁小组的有50﹣10﹣20﹣15=5人,统计图为:( 2)报名参加2个兴趣小组的有400×=160人( 3)合理即可:如:利用课余时间多参加几个兴趣小组.18.解:( 1)或5%;( 2)平均每张奖券获得的购物券金额为+0×=14(元)∵14>10∴选择抽奖更合算.19.解:设小丽所乘汽车返回时的平均速度是x千米/时,根据题意得:,解这个方程,得x=75,经检验,x=75是原方程的解.答:小丽所乘汽车返回时的速度是75千米/时.20.解:( 1)过点E作EM⊥AB,垂足为M.设AB为x.Rt△ABF中,∠AFB=45°,∴BF=AB=x,∴BC=BF+FC=x+13,在Rt△AEM中,∠AEM=22°,AM=AB﹣BM=AB﹣CE=x﹣2, tan22°=,则=,解得:x=12.即教学楼的高12m.( 2)由( 1)可得ME=BC=x+13=12+13=25.在Rt△AME中,cos22°=.∴AE=,即A. E之间的距离约为27m.21.( 1)证明:∵BE⊥AC.DF⊥AC,∴∠BEO=∠DFO=90°,∵点O是EF的中点,∴OE=OF,又∵∠DOF=∠BOE,∴△BOE≌△DOF( ASA);( 2)解:四边形ABCD是矩形.理由如下:∵△BOE≌△DOF,∴OB=OD,又∵OA=OC,∴四边形ABCD是平行四边形,∵OA=BD,OA=AC,∴BD=AC,∴▱ABCD是矩形.22.解:( 1)y是x的一次函数,设y=kx+b,图象过点( 10,300),( 12,240),,解得,∴y=﹣30x+600,当x=14时,y=180;当x=16时,y=120,即点( 14,180),( 16,120)均在函数y=﹣30x+600图象上.∴y与x之间的函数关系式为y=﹣30x+600;( 2)w=( x﹣6)(﹣30x+600)=﹣30x2+780x﹣3600,即w与x之间的函数关系式为w=﹣30x2+780x﹣3600;( 3)由题意得:6(﹣30x+600)≤900,解得x≥15.w=﹣30x2+780x﹣3600图象对称轴为:x=﹣=13.∵a=﹣30<0,∴抛物线开口向下,当x≥15时,w随x增大而减小,∴当x=15时,w最大=1350,即以15元/个的价格销售这批许愿瓶可获得最大利润1350元.23.解:探究三:如图,三角形内部的三点共线与不共线时都分成了7部分, 故答案为:7;分割示意图(答案不唯一)探究四:三角形内部1个点时,共分割成3部分,3=3+2( 1﹣1),三角形内部2个点时,共分割成5部分,5=3+2( 2﹣1),三角形内部3个点时,共分割成7部分,7=3+2( 3﹣1),…,所以,三角形内部有m个点时,3+2( m﹣1)或2m+1;…4分探究拓展:四边形的4个顶点和它内部的m个点,则分割成的不重叠的三角形的个数为:4+2( m﹣1)或2m+2;…6分问题解决:n+2( m﹣1)或2m+n﹣2;…8分实际应用:把n=8,m=往年代入上述代数式,得2m+n﹣2,=2×往年+8﹣2,=4024+8﹣2,=4030.…10分24.解:( 1)如图①,在Rt△ABC中,AC=6,BC=8∴AB=.∵D. E分别是AC. AB的中点.AD=DC=3,AE=EB=5,DE∥BC且DE=BC=4∵PQ⊥AB,∴∠PQB=∠C=90°又∵DE∥BC∴∠AED=∠B∴△PQE∽△ACB由题意得:PE=4﹣t,QE=2t﹣5,即,解得t=.( 2)如图②,过点P作PM⊥AB于M,由△PME∽△ABC,得,∴,得PM=( 4﹣t).S△PQE=EQ•PM=( 5﹣2t)•( 4﹣t)=t2﹣t+6, S梯形DCBE=×( 4+8)×3=18,∴y=18﹣(t2﹣t+6)=t2+t+12.( 3)假设存在时刻t,使S△PQE:S四边形PQBCD=1:29, 则此时S△PQE=S梯形DCBE,∴t2﹣t+6=×18,即2t2﹣13t+18=0,解得t1=2,t2=(舍去).当t=2时,PM=×( 4﹣2)=,ME=×( 4﹣2)=,EQ=5﹣2×2=1,MQ=ME+EQ=+1=,∴PQ===.∵PQ•h=,∴h=•=(或).。
2010年中考数学试题及答案
2010年中考数 学 试 卷*考试时间120分钟 试卷满分150分一、选择题(本大题共7小题,每小题4分,共28分)每题所给的四个选项中只有一项是符合题目要求的,请将所选项的代号字母填在答卷的相应位置处. 1) A. BC.-D2.反比例函数23m y x--=的图象位于( )A .第一、三象限B .第二、四象限C .第二、三象限D .第一、二象限3.从2、3、4、5这四个数中,任取两个数()p q p q ≠和,构成函数2y px y x q =-=+和,并使这两个函数图象的交点在直线2x =的右侧,则这样的有序数对()p q ,共有( ) A .12对 B .6对 C .5对 D .3对4.把多项式2288x x -+分解因式,结果正确的是( ) A .()224x -B .()224x -C .()222x -D .()222x +5.某等腰三角形的两条边长分别为3cm 和6cm ,则它的周长为( ) A .9cm B .12cm C .15cm D .12cm 或15cm6.一次函数y kx b =+(k b ,是常数,0k ≠)的图象如图所示,则不等式0kx b +>的解集是A .2x >-;B .0x >;C .2x <-;D .0x <7.若0a >且2x a =,3y a =,则x ya -的值为( )A .1-B .1C .23D .32二、填空题(本大题共6小题,每小题4分,共24分)把答案直接填在答卷的相应位置处.xb +8.将点(12),向左平移1个单位,再向下平移2个单位后得到对应点的坐标是 .9.幼儿园把新购进的一批玩具分给小朋友.若每人3件,那么还剩余59件;若每人5件,那么最后一个小朋友分到玩具,但不足4件,这批玩具共有 件.10.李师傅随机抽查了本单位今年四月份里6天的日用水量(单位:吨)结果如下:7,8,8,7,6,6,根据这些数据,估计四月份本单位用水总量为 吨.11.我们知道利用相似三角形可以计算不能直接测量的物体的高度,阳阳的身高是1.6m ,他在阳光下的影长是 1.2m ,在同一时刻测得某棵树的影长为 3.6m ,则这棵树的高度约为 m . 12.如图所示的半圆中,AD 是直径,且3AD =,2AC =,则sin B 的值是 .13.某个圆锥的侧面展开图形是一个半径为6cm ,圆心角为︒120的扇形,则这个圆锥的底面半径为______________cm .三、解答题(本大题Ⅰ—Ⅴ题,共10小题,共98分)解答时应在答卷的相应位置处写出文字说明、证明过程或演算过程. Ⅰ.(本题满分12分,第14题6分,第15题6分)14.计算:230116(2)(πtan60)3-⎛⎫--÷-+-- ⎪⎝⎭.15.先化简,再求值:221111121x x x x x +-÷+--+,其中1x =. Ⅱ.(本题满分28分,第16题7分,第17题10分,第18题11分)C BD A16.如图,线段AB 与⊙O 相切于点C ,连结OA ,OB ,OB 交⊙O 于点D ,已知6OA OB ==,AB =(1)求⊙O 的半径; (2)求图中阴影部分的面积.17.响应“家电下乡”的惠农政策,某商场决定从厂家购进甲、乙、丙三种不同型号的电冰箱80台,其中甲种电冰箱的台数是乙种电冰箱台数的2倍,购买三种电冰箱的总金额不超..过.132 000元.已知甲、乙、丙三种电冰箱的出厂价格分别为:1 200元/台、1 600元/台、2 000元/台.(1)至少购进乙种电冰箱多少台?(2)若要求甲种电冰箱的台数不超过丙种电冰箱的台数,则有哪些购买方案?18.甲、乙两名运动员进行长跑训练,两人距终点的路程y (米)与跑步时间x (分)之间C OABD的函数图象如图所示,根据图象所提供的信息解答问题:(1) 他们在进行 米的长跑训练,在0<x <15的时段内,速度较快的人是 ;(2) 求甲距终点的路程y (米)和跑步时间 x (分)之间的函数关系式; (3) 当x =15时,两人相距多少米?在15<x <20的时段内,求两人速度之差.Ⅲ.(本题满分36分,第19题12分,第20题12分,第21题12分)19.把一副扑克牌中的3张黑桃牌(它们的正面牌面数字分别是3、4、5)洗匀后正面朝下放在桌面上.(1)如果从中随机抽取一张牌,那么牌面数字是4的概率是多少?(2)小王和小李玩摸牌游戏,游戏规则如下:先由小王随机抽出一张牌,记下牌面数字后放回,洗匀后正面朝下,再由小李随机抽出一张牌,记下牌面数字.当2张牌面数字相同时,小王赢;当2张牌面数字不相同时,小李赢.现请你利用树状图或列表法分析游戏规则对双方是否公平?并说明理由.20.如图,河流两岸a b ,互相平行,C D ,是河岸a 上间隔50m 的两个电线杆.某人在河分)岸b 上的A 处测得30DAB ∠= ,然后沿河岸走了100m 到达B 处,测得60CBF ∠=,求河流的宽度CF 的值(结果精确到个位).21.三个生产日光灯管的厂家在广告中宣称,他们生产的日光灯管在正常情况下,灯管的使用寿命为12个月.工商部门为了检查他们宣传的真实性,从三个厂家各抽取11只日光灯管进行检测,灯管的使用寿命(单位:月)如下:试问:(1)这三个厂家的广告,分别利用了统计中的哪一个特征数(平均数、中位数、众数)进行宣传?(2)如果三种产品的售价一样,作为顾客的你选购哪个厂家的产品?请说明理由.Ⅳ(本题满分8分)BED CFab A22.如图, 已知等边三角形ABC 中,点D ,E ,F 分别为边AB ,AC ,BC 的中点,M 为直线BC 上一动点,△DMN 为等边三角形(点M 的位置改变时, △DMN 也随之整体移动) . (1)如图①,当点M 在点B 左侧时,请你判断EN 与MF 有怎样的数量关系?点F 是否在直线NE 上?都请直接....写出结论,不必证明或说明理由; (2)如图②,当点M 在BC 上时,其它条件不变,(1)的结论中EN 与MF 的数量关系是否仍然成立?若成立,请利用图②证明;若不成立,请说明理由;(3)若点M 在点C 右侧时,请你在图③中画出相应的图形,并判断(1)的结论中EN 与MF 的数量关系是否仍然成立?若成立?请直接写出结论,不必证明或说明理由.Ⅴ(本题满分14分)图① 图② 图③A·BCD EF··N MFEDCB ANMF EDCBA·23.如图,在平面直角坐标系中,以点(11)C ,为圆心,2为半径作圆,交x 轴于A B ,两点,开口向下的抛物线经过点A B ,,且其顶点P 在C 上.(1)求ACB 的大小;(2)写出A B ,两点的坐标; (3)试确定此抛物线的解析式;(4)在该抛物线上是否存在一点D ,使线段OP 与CD 互相平分?若存在,求出点D 的坐标;若不存在,请说明理由.2010年中考数学试题参考答案及评分标准二、填空题(本大题共6小题,每小题4分,共24分) 8.(00),;9.152;10.210;11.4.8;12.23;13.4 三、解答题(本大题Ⅰ—Ⅴ题,共10小题,共98分) Ⅰ.(本题满分12分,第14题6分,第15题6分) 14.解:原式=9-16÷(-8)+1-23×23……………………2分 =9+2+1-3.……………………………………4分 =9 ………………………………6分15.解:原式211(1)1(1)(1)1x x x x x -=-++-+······································································ 2分 2211(1)(1)1(1)(1)x x x x x x -+--=-=+++ ······························································· 4分 22(1)x =+ ········································································································ 5分当1x =时,原式23== ··································································· 6分 Ⅱ.(本题满分28分,第16题7分,第17题10分,第18题11分)16.(1)连结OC ,则 OC AB ⊥. …………………………………………………1分∵OA OB =,∴1122AC BC AB ===⨯ ………………………………………2分在Rt AOC △中,3OC ===.∴ ⊙O 的半径为3. …………………………………………………………3分 (2)∵ OC =12OB , ∴ ∠B =30o , ∠COD =60o . ……………………………………5分 ∴扇形OCD 的面积为OCD S 扇形=260π3360⨯⨯=32π. …………………………………5分阴影部分的面积为:Rt Δ=OBC OCD S S S -阴影扇形=12OC CB ⋅-3π2-3π2.…………………………7分 17.解:(1)设购买乙种电冰箱x 台,则购买甲种电冰箱2x 台,丙种电冰箱(803)x -台,根据题意,列不等式: ································································ 1分120021600(803)2000132000x x x ⨯++-⨯≤. ···························································· 3分解这个不等式,得14x ≥. ·································································································· 4分 ∴至少购进乙种电冰箱14台. ····························································································· 5分 (2)根据题意,得2803x x -≤. ····················································································· 6分 解这个不等式,得16x ≤. ·································································································· 7分 由(1)知14x ≥. 1416x ∴≤≤. 又x 为正整数, 141516x ∴=,,. ···················································································································· 8分 所以,有三种购买方案:方案一:甲种电冰箱为28台,乙种电冰箱为14台,丙种电冰箱为38台; 方案二:甲种电冰箱为30台,乙种电冰箱为15台,丙种电冰箱为35台; 方案三:甲种电冰箱为32台,乙种电冰箱为16台,丙种电冰箱为32台. ··················· 10分 18.解:(1)5000…………………………………2分甲 ………………………………4分(2)设所求直线的解析式为:y =kx +b (0≤x ≤20), ………5分由图象可知:b =5000,当x =20时,y =0, ∴0=20k +5000,解得k = -250. …7分即y = -250x +5000 (0≤x ≤20) ……………7分(3)当x =15时,y = -250x +5000= -250×15+5000=5000-3750=1250. ………8分 两人相距:(5000 -1250)-(5000-2000)=750(米)………………9分 两人速度之差:750÷(20-15)=150(米/分)……………11分Ⅲ.(本题满分36分,第19题12分,第20题12分,第21题12分) 19解:(1)P (抽到牌面数字是4)13=; ········································································ 2分(2)游戏规则对双方不公平. ················································································· 5分 理由如下:由上述树状图或表格知:所有可能出现的结果共有9种. P (抽到牌面数字相同)=3193=, P (抽到牌面数字不相同)=6293=.∵1233<,∴此游戏不公平,小李赢的可能性大. ············································ 12分 (说明:答题时只需用树状图或列表法进行分析即可)20.解:过点C 作CE AD ∥,交AB 于E CD AE ∥,CE AD ∥ ····································································································· 2分∴四边形AECD 是平行四边形 ······························································································ 4分 50AE CD ∴==m ,50EB AB AE =-=m ,30CEB DAB ∠=∠= ···························· 6分又60CBF ∠=,故30ECB ∠=,50CB EB ∴==m ···················································· 8分∴在Rt CFB △中,sin 50sin 6043CF CB CBF =∠=≈m ········································ 11分 答:河流的宽度CF 的值为43m . ······················································································ 12分21.答:(1)甲厂的广告利用了统计中的平均数. ····························································· 2分乙厂的广告利用了统计中的众数. ············································································ 4分 丙厂的广告利用了统计中的中位数. ············································································ 7分分…………………………8分11F B C (2) 选用甲厂的产品. 因为它的平均数较真实地反映灯管的使用寿命 ······················· 10分 或选用丙厂的产品.因为丙厂有一半以上的灯管使用寿命超过12个月 ··························· 10分Ⅳ.(本题满分8分)22.(1)判断:EN 与MF 相等 (或EN=MF ),点F 在直线NE 上, ········ 2分(2)成立. ······························ 3分 证明:法一:连结DE ,DF .∵△ABC 是等边三角形, ∴AB =AC =BC .又∵D ,E ,F 是三边的中点,∴DE ,DF ,EF 为三角形的中位线.∴DE =DF =EF ,∠FDE =60°.又∠MDF +∠FDN =60°, ∠NDE +∠FDN =60°,∴∠MDF =∠NDE .在△DMF 和△DNE 中,DF =DE ,DM =DN , ∠MDF =∠NDE ,∴△DMF ≌△DNE . 8∴MF =NE . ·························· 6分法二:延长EN ,则EN 过点F .∵△ABC 是等边三角形, ∴AB =AC =BC .又∵D ,E ,F 是三边的中点, ∴EF =DF =BF .∵∠BDM +∠MDF =60°, ∠FDN +∠MDF =60°,∴∠BDM =∠FDN .又∵DM =DN , ∠ABM =∠DFN =60°,∴△DBM ≌△DFN .∴BM =FN .∵BF =EF , ∴MF =EN . ·························· 6分(3)画出图形(连出线段NE ), 6MF 与EN 相等的结论仍然成立(或MF =NE 成立). ·············· 8分Ⅴ.(本题满分14分)23.解:(1)作CHN C A B F M D E NC A B F MD E12 1CH = ,半径2CB = ·························································· 1分60BCH ∠= ,120ACB ∴∠= ········································· 3分(2)1CH = ,半径2CB =HB ∴=(1A ,················································ 5分(1B ··············································································· 6分 (3)由圆与抛物线的对称性可知抛物线的顶点P 的坐标为(13), ······································· 7分 设抛物线解析式2(1)3y a x =-+ ·························································································· 8分把点(1B 代入上式,解得1a =- ·············································································· 9分 222y x x ∴=-++ ·············································································································· 10分 (4)假设存在点D 使线段OP 与CD 互相平分,则四边形OCPD 是平行四边形 ·········· 11分 PC OD ∴∥且PC OD =.PC y ∥轴,∴点D 在y 轴上. ····················································································· 12分又2PC = ,2OD ∴=,即(02)D ,. 又(02)D ,满足222y x x =-++, ∴点D 在抛物线上 ··············································································································· 13分 所以存在(02)D ,使线段OP 与CD 互相平分. ·································································· 14分。
2010年中考数学真题选择题平面直角坐标系
选择题1.(2010江苏苏州)函数11y x =-的自变量x 的取值范围是 A .x ≠0 B .x ≠1 C .x ≥1 D .x ≤1 【答案】B2.(2010甘肃兰州)函数y =x -2+31-x 中自变量x 的取值范围是A .x ≤2B .x =3C .x <2且x ≠3D .x ≤2且x ≠3【答案】A 3.(2010江苏南京)如图,在平面直角坐标系中,菱形OABC 的顶点坐标是(3,4)则顶点A 、B 的坐标分别是 A. (4,0)(7,4) B. (4,0)(8,4) C. (5,0)(7,4) D. (5,0)(8,4)【答案】D 4.(2010江苏南京)如图,夜晚,小亮从点A 经过路灯C 的正下方沿直线走到点B ,他的影长y 随他与点A 之间的距离x 的变化而变化,那么表示y 与x 之间的函数关系的图像大致为【答案】A 5.(2010江苏泰州)已知点A 、B 的坐标分别为(2,0),(2,4),以A 、B 、P 为顶点的三角形与△ABO 全等,写出一个符合条件的点P 的坐标: .【答案】(4,0);(4,4);(0,4);(0,0)(只要写出一个即可)6.(2010江苏南通)在平面直角坐标系xOy 中,已知点P (2,2),点Q 在y 轴上,△PQO 是等腰三角形,则满足条件的点Q 共有A .5个B .4个C .3个D .2个 【答案】B 7.(2010广东珠海)在平面直角坐标系中,将点P (-2,3)沿x 轴方向向右平移3个单位得到点Q ,则点Q 的坐标是( )A.(-2,6)B.(-2,0)C.(-5,3)D.(1,3) 【答案】D 8.(2010 山东省德州)某游泳池的横截面如图所示,用一水管向池内持续注水,若单位时间内注入的水量保持不变,则在注水过程中,下列图象能反映深水区水深h 与注水时间t 关系的是(A) (B) (C) (D)【答案】A9.(2010山东威海)如图,点A ,B ,C 的坐标分别为(2,4),(5,2),(3,-1).若以点A ,B ,C ,D 为顶点的四边形既是轴对称图形,又是中心对称图形,则点D 的坐标为 .【答案】﹙0,1﹚;10.(2010 河北)一艘轮船在同一航线上往返于甲、乙两地.已知轮船在静水中的速度为15 km /h ,水流速度为5 km /h .轮船先从甲地顺水航行到乙地,在乙地停留一段时间后,又从乙地逆水航行返回到甲地.设轮船从甲地出发后所用时间为t (h ),航行的路程为s (km ),则s 与t 的函数图象大致是【答案】C 11.(2010辽宁丹东市)如图,在平面直角坐标系中,以O (0,0),A (1,1), B (3,0)为顶点,构造平行四边形,下列各点中 不能..作为平行四边形顶点坐标的是( ) tsOAtsOBtsOCtsODt hOt hO t hO ht O 第5题图深 水 区浅水区A .(-3,1) B .(4,1) C .(-2,1) D .(2,-1) 【答案】A12.(2010山东济宁)如图,是张老师出门散步时离家的距离y 与时间x 之间的函数关系的图象,若用黑点表示张老师家的位置,则张老师散步行走的路线可能是【答案】D13.(2010山东威海)在平面直角坐标系中,正方形ABCD 的位置如图所示,点A 的坐标为(1,0),点D 的坐标为(0,2).延长CB 交x 轴于点A 1,作正方形A 1B 1C 1C ;延长C 1B 1交x 轴于点A 2,作正方形A 2B 2C 2C 1…按这样的规律进行下去,第2010个正方形的面积为A .2009235⎪⎭⎫⎝⎛B .2010495⎪⎭⎫ ⎝⎛C .2008495⎪⎭⎫ ⎝⎛D .4018235⎪⎭⎫ ⎝⎛【答案】D 14.(2010山东青岛)如图,△ABC 的顶点坐标分别为A (4,6)、B (5,2)、C (2,1),如果将△ABC 绕点C 按逆时针方向旋转90°,得到△''A B C ,那么点A 的对应点'A 的坐标是( ). A .(-3,3) B .(3,-3) C .(-2,4) D .(1,4)O ABCDA 1B 1C 1A 2C 2B 2 xyyxO .AB.第7题图∙∙∙∙ABCDyxO(第7题)【答案】A 15.(2010山东日照)在平面直角坐标系内,把点P (-2,1)向右平移一个单位,则得到的对应点P ′的坐标是(A ) (-2,2) (B )(-1,1) (C )(-3,1) (D )(-2,0) 【答案】B16.(2010 山东莱芜)在一次自行车越野赛中,甲乙两名选手行驶的路程y (千米) 随时间x (分)变化的图象(全程)如图,根据图象判定下 列结论不正确...的是A .甲先到达终点B .前30分钟,甲在乙的前面C .第48分钟时,两人第一次相遇D .这次比赛的全程是28千米【答案】D17.(2010四川凉山)在函数121x y x +=-中,自变量x 的取值范围是 A .1x -≥ B .1x >-且12x ≠C .错误!未找到引用源。
2010年山东省青岛市中考数学试题及答案(word版)
二○一○年山东省青岛市初级中学学业水平考试数 学 试 题(考试时间:120分钟;满分:120分)真情提示:亲爱的同学,欢迎你参加本次考试,祝你答题成功!1.请务必在指定位置填写座号,并将密封线内的项目填写清楚.2.本试题共有24道题.其中1—8题为选择题,请将所选答案的标号填写在第8题后面给出表格的相应位置上;9—14题为填空题,请将做出的答案填写在第14题后面给出表格的相应位置上;15—24题,请在试题给出的本题位置上做答. 一、选择题(本题满分24分,共有8道小题,每小题3分)下列每小题都给出标号为A 、B 、C 、D 的四个结论,其中只有一个是正确的.每小题选对得分;不选、选错或选出的标号超过一个的不得分.请将1—8各小题所选答案的标号填写在第8小题后面给出表格的相应位置上. 1.下列各数中,相反数等于5的数是( ).A .-5B .5C .-15D .152.如图所示的几何体的俯视图是( ). B .C .D .3.由四舍五入法得到的近似数8.8×103,下列说法中正确的是( ).A .精确到十分位,有2个有效数字B .精确到个位,有2个有效数字C .精确到百位,有2个有效数字D .精确到千位,有4个有效数字4.下列图形中,中心对称图形有( ). A .1个 B .2个 C .3个 D .4个 5.某外贸公司要出口一批规格为150g 的苹果,现有两个厂家提供货源,它们的价格相同,苹果的品质也相近. 质检员分别从甲、乙两厂的产品中随机抽取了50个苹果称重,并将所得数据处理后,制成如下表格. 根据表中信息判断,下列说法错误的是( ).A .本次的调查方式是抽样调查B .甲、乙两厂被抽取苹果的平均质量相同C .被抽取的这100个苹果的质量是本次调查的样本D .甲厂苹果的质量比乙厂苹果的质量波动大6.如图,在Rt△ABC 中,∠C = 90°,∠B = 30°,BC = 4 cm ,以点C 为圆心,以2 cm 的长为半径作圆,则⊙C 与AB 的位置关系是( ). A .相离 B .相切 C .相交 D .相切或相交第2题图7.如图,△ABC 的顶点坐标分别为A (4,6)、B (5,2)、C (2,1),如果将△ABC 绕点C 按逆时针方向旋转90°,得到△''A B C ,那么点A 的对应点'A 的坐标是( ). A .(-3,3) B .(3,-3) C .(-2,4) D .(1,4)8.函数y ax a =-与ay x=(a ≠0)在同一直角坐标系中的图象可能是( ).9 .10.如图,点A 、B 、C 在⊙O 上,若∠BAC = 24°,则∠BOC = °. 11.某市为治理污水,需要铺设一段全长为300 m 的污水排放管道.铺设120 m 后,为了尽量减少施工对城市交通所造成的影响,后来每天的工效比原计划增加20%,结果共用30天完成这一任务.求原计划每天铺设管道的长度.如果设原计划每天铺设mx 管道,那么根据题意,可得方程 .12.一个口袋中装有10个红球和若干个黄球.在不允许将球倒出来数的前提下,为估计口袋中黄球的个数,小明采用了如下的方法:每次先从口袋中摸出10个球,求出其中红球数与10的比值,再把球放回口袋中摇匀.不断重复上述过程20次,得到红球数与10的比值的平均数为0.4.根据上述数据,估计口袋中大约有 个黄球.13.把一张矩形纸片(矩形ABCD )按如图方式折叠,使顶点B 和点D 重合,折痕为EF .若AB = 3 cm ,BC = 5 cm ,则重叠部分△DEF 的面积是 cm 2.14.如图,是用棋子摆成的图案,摆第个图案需要7枚棋子,摆第2个图案需要19枚棋子,摆第3个图案需要37枚棋子,按照这样的方式摆下去,则摆第6个图案需要 枚棋子,摆第n 个图案需要 枚棋子.请将9—14OAB C第10题图·…AB C E'A 第13题图('B ) D A15.如图,有一块三角形材料(△ABC ),请你画出一个圆,使其与△ABC 的各边都相切.解:8分,每题4分)(1)解方程组:34194x y x y +=⎧⎨-=⎩; (2)化简:22142a a a +--. 17.配餐公司为某学校提供A 、B 、C 5元,B 餐6元,C餐8制成统计表(如下左图).B 18.由转动的转盘(如图,转盘被平均分成12份)就可获得一次转色区域,那么读者就可以分别获得45元、30元、25书城继续购书.如(1)写出转动一次转盘获得45(2算?请说明理由.解:(1) (2)19.(本小题满分6分)该校上周购买情况统计表第18题图小明家所在居民楼的对面有一座大厦AB ,AB =80米.为测量这座居民楼与大厦之间的距离,小明从自己家的窗户C 处测得大厦顶部A 的仰角为37°,大厦底部B 的俯角为48°.求小明家所在居民楼与大厦的距离CD 的长度.(结果保留整数)(参考数据:oo o o 337sin37tan37sin 48tan485410≈≈≈,,,解:20.(本小题满分8分)某学校组织八年级学生参加社会实践活动,若单独租用35座客车若干辆,则刚好坐满;若单独租用55座客车,则可以少租一辆,且余45个空座位.(1)求该校八年级学生参加社会实践活动的人数;(2)已知35座客车的租金为每辆320元,55座客车的租金为每辆400元.根据租车资金不超过1500元的预算,学校决定同时租用这两种客车共4辆(可以坐不满).请你计算本次社会实践活动所需车辆的租金.解:(1) 21.(本小题满分8分)已知:如图,在正方形ABCD 中,点E 、F 分别在BC 和CD 上,AE = AF .(1)求证:BE = DF ;(2)连接AC 交EF 于点O ,延长OC 至点M ,使OM = OA ,连接EM 、FM .判断四边形AEMF 是什么特殊四边形?并证明你的结论.证明:(1)(2)22.(本小题满分10分)某市政府大力扶持大学生创业.李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y (件)与销售单价x (元)之间的关系可近似的看作一次函数:10500y x =-+.(1)设李明每月获得利润为w (元),当销售单价定为多少元时,每月可获得最大利润?(2)如果李明想要每月获得2000元的利润,那么销售单价应定为多少元?(3)根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2000元,那么他每月的成本最少需要多少元? (成本=进价×销售量)A DB EFOCM第21题图解:(1) (2) (3)23.(本小题满分10分)问题再现现实生活中,镶嵌图案在地面、墙面乃至于服装面料设计中随处可见.在八年级课题学习“平面图形的镶嵌”中,对于单种多边形的镶嵌,主要研究了三角形、四边形、正六边形的镶嵌问题.今天我们把正多边形....的镶嵌作为研究问题的切入点,提出其中几个问题,共同来探究.我们知道,可以单独用正三角形、正方形或正六边形镶嵌平面.如右图中,用正方形镶嵌平面,可以发现在一个顶点O 周围围绕着4个正方形的内角.试想:如果用正六边形来镶嵌平面,在一个顶点周围应该围绕着 个 正六边形的内角.问题提出如果我们要同时用两种不同的正多边形镶嵌平面,可能设计出几种不同的组合方案? 问题解决猜想1:是否可以同时用正方形、正八边形两种正多边形组合进行平面镶嵌?分析:我们可以将此问题转化为数学问题来解决.从平面图形的镶嵌中可以发现,解决问题的关键在于分析能同时用于完整镶嵌平面的两种正多边形的内角特点.具体地说,就是在镶嵌平面时,一个顶点周围围绕的各个正多边形的内角恰好拼成一个周角.验证1:在镶嵌平面时,设围绕某一点有x 个正方形和y 个正八边形的内角可以拼成一个周角.根据题意,可得方程:()82180903608x y -⨯+ =,整理得:238x y +=,我们可以找到惟一一组适合方程的正整数解为12x y =⎧⎨=⎩ .结论1:镶嵌平面时,在一个顶点周围围绕着1个正方形和2个正八边形的内角可以拼成一个周角,所以同时用正方形和正八边形两种正多边形组合可以进行平面镶嵌.猜想2:是否可以同时用正三角形和正六边形两种正多边形组合进行平面镶嵌?若能,请按照上述方法进行验证,并写出所有可能的方案;若不能,请说明理由.验证2:结论2: .上面,我们探究了同时用两种不同的正多边形组合镶嵌平面的部分情况,仅仅得到了一部分组合方案,相信同学们用同样的方法,一定会找到其它可能的组合方案.问题拓广请你仿照上面的研究方式,探索出一个同时用三种不同的正多边形组合进行平面镶嵌的方案,并写出验证过程.猜想3: .验证3:结论3: .O已知:把Rt△ABC 和Rt△DEF 按如图(1)摆放(点C 与点E 重合),点B 、C (E )、F 在同一条直线上.∠ACB= ∠EDF = 90°,∠DEF = 45°,AC = 8 cm ,BC = 6 cm ,EF = 9 cm .如图(2),△DEF 从图(1)的位置出发,以1 cm/s 的速度沿CB 向△ABC 匀速移动,在△DEF 移动的同时,点P 从△ABC 的顶点B 出发,以2 cm/s 的速度沿BA 向点A 匀速移动.当△DEF 的顶点D 移动到AC 边上时,△DEF 停止移动,点P 也随之停止移动.DE 与AC 相交于点Q ,连接PQ ,设移动时间为t (s )(0<t <4.5).解答下列问题:(1)当t 为何值时,点A 在线段PQ 的垂直平分线上?(2)连接PE ,设四边形APEC 的面积为y (cm 2),求y 与t 之间的函数关系式;是否存在某一时刻t ,使面积y 最小?若存在,求出y 的最小值;若不存在,说明理由.(3)是否存在某一时刻t ,使P 、Q 、F 三点在同一条直线上?若存在,求出此时t 的值;若不存在,说明理由.(图(3)供同学们做题使用)解:(1)(2)(3)二○一○年山东省青岛市初级中学学业水平考试 说明:1.如果考生的解法与本解法不同,可参照本评分标准制定相应评分细则.2.当考生的解答在某一步出现错误,影响了后继部分时,如果这一步以后的解答未改变这道题的内容和难度,可视影响程度决定后面部分的给分,但不得超过后面部分应给分数的一半;如果这一步以后的解答有较严重的错误,就不给分.3.为阅卷方便,本解答中的推算步骤写得较为详细,但允许考生在解答过程中,合理省略非关键性的推算步骤.4.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 一、选择题(本题满分24分,共有8道小题,每小题3分)真情提示: 亲爱的同学,请认真检查,不要漏题哟!A D B E ) 图(1) F )图(3)(用圆珠笔或钢笔画图)三、作图题(本题满分4分)15.正确画出两条角平分线,确定圆心; ········ 2分确定半径; ········ 3分 正确画出圆并写出结论. ········ 4分 四、解答题(本题满分74分,共有9道小题) 16.(本小题满分8分) (1)34194x y x y +=⎧⎨-=⎩解:②×4得:4416x y -=,③①+③得:7x = 35, 解得:x = 5.把x = 5代入②得,y = 1. ∴原方程组的解为51x y =⎧⎨=⎩.········ 4分(2)解:原式 =()()21222a a a a -+-- 12a =+. ········ 4分17.(本小题满分6分)解:(1)6元; ········ 2分 (2)3元;········ 4分 (3)1.5×1000+3×1700+3×400 = 1500+5100+1200 = 7800(元).答:配餐公司上周在该校销售午餐约盈利7800元. ········ 6分18.(本小题满分6分)解:(1)P (获得45元购书券) = 112; ········ 2分(2)12345302515121212⨯+⨯+⨯=(元). ∵15元>10元,∴转转盘对读者更合算.········ 6分② ①19.(本小题满分6分) 解:设CD = x . 在Rt △ACD 中,tan37ADCD︒=, 则34AD x =, ∴34AD x =.在Rt△BCD 中,tan48° = BDCD ,则1110BD x=, ∴1110BD x =. ……………………4分∵AD +BD = AB , ∴31180410x x +=. 解得:x ≈43.答:小明家所在居民楼与大厦的距离CD 大约是43米. ………………… 6分 20.(本小题满分8分)解:(1)设单独租用35座客车需x 辆,由题意得:3555(1)45x x =--,解得:5x =.∴35355175x =⨯=(人).答:该校八年级参加社会实践活动的人数为175人. ········ 3分 (2)设租35座客车y 辆,则租55座客车(4y -)辆,由题意得:3555(4)175320400(4)1500y y y y +-⎧⎨+-⎩≥≤, ········ 6分 解这个不等式组,得111244y ≤≤.∵y 取正整数, ∴y = 2.∴4-y = 4-2 = 2.∴320×2+400×2 = 1440(元).所以本次社会实践活动所需车辆的租金为1440元. ········ 8分21.(本小题满分8分)证明:(1)∵四边形ABCD 是正方形,∴AB =AD ,∠B = ∠D = 90°. ∵AE = AF ,∴Rt Rt ABE ADF △≌△. ∴BE =DF .········ 4分(2)四边形AEMF 是菱形.第19题图∵BE =DF ,∴BC -BE = DC -DF . 即CE CF =. ∴OE OF =. ∵OM = OA ,∴四边形AEMF 是平行四边形. ∵AE = AF ,∴平行四边形AEMF 是菱形. ········ 8分22.(本小题满分10分)解:(1)由题意,得:w = (x -20)·y=(x -20)·(10500x -+)352b x a=-=.答:当销售单价定为35元时,每月可获得最大利润. ········ 3分 (2)由题意,得:210700100002000x x -+-= 解这个方程得:x 1 = 30,x 2 = 40.答:李明想要每月获得2000元的利润,销售单价应定为30元或40元. ······ 6分(3)法一:∵10a =-<0,∴抛物线开口向下. ∴当30≤x ≤40时,w ≥2000. ∵x ≤32, ∴当30≤x ≤32时,w ≥2000. 设成本为P (元),由题意,得: ∵200k =-<0, ∴P 随x 的增大而减小. ∴当x = 32时,P 最小=3600.答:想要每月获得的利润不低于2000元,每月的成本最少为3600元.········· 10分23.(本小题满分10分)解:3个; ········ 1分验证2:在镶嵌平面时,设围绕某一点有a 个正三角形和b 个正六边形的内角可以拼成一个周角.根据题意,可得方程:60120360a b +=. 整理得:26a b +=,可以找到两组适合方程的正整数解为22a b =⎧⎨=⎩和41a b =⎧⎨=⎩. ······ 3分结论2:镶嵌平面时,在一个顶点周围围绕着2个正三角形和2个正六边形的内角或者围绕着4个正三角形和1个正六边形的内角可以拼成一个周角,所以同时 用正三角形和正六边形两种正多边形组合可以进行平面镶嵌. ··· 5分猜想3:是否可以同时用正三角形、正方形和正六边形三种正多边形组合进行平面镶嵌? ········ 6分验证3:在镶嵌平面时,设围绕某一点有m 个正三角形、n 个正方形和c 个正六边形的内角可以拼成一个周角. 根据题意,可得方程: 6090120360m n c ++=, 整理得:23412m n c ++=,可以找到惟一一组适合方程的正整数解为121m n c =⎧⎪=⎨⎪=⎩. ········ 8分法二:∵10a =-<0, ∴抛物线开口向下. ∴当30≤x ≤40时,w ≥2000. ∵x ≤32,∴30≤x ≤32时,w ≥2000. ∵10500y x =-+,100k =-<, ∴y 随x 的增大而减小. ∴当x = 32时,y 最小=180. ∵当进价一定时,销售量越小,成本越小,∴201803600⨯=(元).结论3:镶嵌平面时,在一个顶点周围围绕着1个正三角形、2个正方形和1个正六边形的内角可以拼成一个周角,所以同时用正三角形、正方形和正六边形三种正多边形组合可以进行平面镶嵌. (说明:本题答案不惟一,符合要求即可.) ········ 10分 24.(本小题满分12分)解:(1)∵点A 在线段PQ 的垂直平分线上,∴AP = AQ .∵∠DEF = 45°,∠ACB = 90°,∠DEF +∠ACB +∠EQC = 180°,∴∠EQC = 45°.∴∠DEF =∠EQC . ∴CE = CQ .由题意知:CE = t ,BP =2 t , ∴CQ = t . ∴AQ = 8-t .在Rt△ABC 中,由勾股定理得:AB = 10 cm . 则AP = 10-2 t . ∴10-2 t = 8-t . 解得:t = 2.答:当t = 2 s 时,点A 在线段PQ 的垂直平分线上. ······ 4分(2)过P 作PM BE ⊥,交BE 于M ,∴90BMP ∠=︒.在Rt△ABC 和Rt△BPM 中,sin AC PMB AB BP==, ∴8210PM t = . ∴PM = 85t . ∵BC = 6 cm ,CE = t , ∴ BE = 6-t .∴y = S △ABC -S △BPE =12BC AC ⋅-12BE PM ⋅= 1682⨯⨯-()186t t 25⨯-⨯=24242455t t -+ = ()2484355t -+. ∵405a =>,∴抛物线开口向上.∴当t = 3时,y 最小=845.答:当t = 3s 时,四边形APEC 的面积最小,最小面积为845cm 2.···· 8分(3)假设存在某一时刻t ,使点P 、Q 、F 三点在同一条直线上.过P 作PN AC ⊥,交AC 于N , ∴90ANP ACB PNQ ∠=∠=∠=︒.∵PAN BAC ∠=∠,∴△PAN ∽△BAC .∴PN AP AN BC AB AC==. ∴1026108PN t AN -==. ∴665PN t =-,885AN t =-. ∵NQ = AQ -AN ,∴NQ = 8-t -(885t -) = 35t .图(2)图(3)----------------------------精品word 文档 值得下载 值得拥有---------------------------------------------- ----------------------------------------------------------------------------------------------------------------------------- ∴∠QCF = 90°,∠QCF = ∠PNQ .∵∠FQC = ∠PQN ,∴△QCF ∽△QNP . ∴PN NQ FC CQ= . ∴636559t t t t -=- . ∵0t <<4.5 ∴663595t t -=- 解得:t = 1.答:当t = 1s ,点P 、Q 、F 三点在同一条直线上. 12分。
青岛2010-2011初三上期末试卷 (含答案)
学校 年级 姓名装 订 线2010-2011初三学年度期末试卷一、选择题(本题满分24分,共有8道小题,每小题3分)下列每小题都给出标号为A 、B 、C 、D 的四个结论,其中只有一个是正确的.每小题选对得分;不选、选错或选出的标号超过一个的不得分.请将1—8各小题所选答案的标号填写在第8小题后面给出表格的相应位置上.1.如图所示的几何体的俯视图是( ). C .2.已知a b ,是关于x 的一元二次方程210x nx +-=的两实数根,则式子b aa b+的值是( ) A .22n +B .22n -+C .22n -D .22n --3.小明在窗前向窗外眺望,他离窗子越远,他的盲区( ).A .越小 B.越小 C.不变 D.以上都有可能4.在反比例函数a y x=中,当0x >时,y 随x 的增大而减小,则二次函数2y ax ax =-的图象大致是下图中的( )5.若梯形的面积为28cm ,高为2cm ,则此梯形的中位线长是( )A .2cmB .4cmC .6cmD .8cm6.随机掷一枚质地均匀的硬币两次,落地后至多有一次正面朝下的概率为 ( ) A.43 B.32 C.21 D.41 7.顺次连结等腰梯形四边中点得到一个四边形,再顺次连结所得四边形四边的中点得到的图形是( )A.等腰梯形B.直角梯形C.菱形D.矩形 8.如图,在等腰三角形ABC 中,120ABC ∠=,点P 是底 边AC 上一个动点,M N ,分别是AB BC ,的中点,若 PM PN +的最小值为2,则ABC △的周长是( )A .2B .2C .4D .4+请将1—8各小题所选答案的标号填写在下表的相应位置上:二、填空题(本题满分18分,共有6道小题,每小题3分)请将9—14各小题的答案填写在第14小题后面给出表格的相应位置上.9.已知m 是方程022=--x x 的一个根,则代数式m m -2的值等于 .10.若将四根木条钉成的矩形木框变形为平行四边形ABCD 的形状,并使其面积为矩形面积的一半,则这个平行四边形的一个最小内角的值等于第10题11.一个口袋中有12个白球和若干个黑球,在不允许将球倒出来数的前提下,小亮为估计口袋中黑球的个数,采用了如下的方法:每次先从口袋中摸出10个球,求出其中白球数与10的比值,再把球放回口袋中摇匀.不断重复上述过程5次,得到的白球数与10的比值分别为:0.4,0.1,0.2,0.1,0.2.根据上述数据,小亮可估计口袋中大约有 个黑球.12.张明同学想利用数影测量校园内的数高.他在某一时刻测得小树高为1.5米时,其影长为1.2米,他测量教学楼旁的一棵大树影长为5米,那么这棵大树高约________米.13.如图,ABC △是等腰直角三角形,BC 是斜边,将ABP △绕点A 逆时针旋转后,能与ACP '△重合,如果3AP =,那么PP '的长等于 .A .B .C .第1题图 第13题图学校 年级 姓名 装 订 线第14题图D 114.如图,边长为1的菱形ABCD 中,︒=∠60DAB .连结对角线AC ,以AC 为边作第二个菱形11D ACC ,使 ︒=∠601AC D ;连结1AC ,再以1AC 为边作第三个菱形221D C AC ,使︒=∠6012AC D ;……,按此规律所作的第n 个菱形的边长为 .请将9—14各小题的答案填写在下表的相应位置上:三、作图题(本题满分4分)用圆规、直尺作图,不写作法,但要保留作图痕迹.15.青岛国际帆船中心要修建一处公共服务设施,使它到三所运动员公寓A 、B 、C 的距离相等. 若三所运动员公寓A 、B 、C 的位置如图所示,请你在图中确定这处公共服务设施(用点P 表示)的位置四、解答题(本题满分74分,共有9道小题)16.(本小题满分8分,每题4分)(1) 用配方法解方程:2213x x +=.(2)31sin 60273⎛⎫- ⎪⎝⎭1.732≈,结果精确到0.01)17.(本小题满分6分)小明和小刚用如图的两个转盘做游戏,游戏规则如下:分别旋转两个转盘,当两个转盘所转到的数字之积为奇数时,小明得2分;当所转到的数字之积为偶数时,小刚得1分.这个游戏对双方公平吗?转盘1 转盘2A B C学校年级姓名装订线18.(本小题满分6分)如图,在□ABCD中,BC=2AB=4,点E、F分别是BC、AD的中点.(1)求证:△ABE≌△CDF;(2)当四边形AECF为菱形时,求出该菱形的面积.19.(本小题满分6分)已知质量一定的某物体的体积V(m3)是密度ρ(kg/m3)的反比例函数,其图象如图所示:(1)请写出该物体的体积V与密度ρ的函数关系式;(2)当该物体的密度ρ=3.2Kg/m3时,它的体积v是多少?(3)如果将该物体的体积控制在10m3~40m3之间,那么该物体的密度应在什么范围内变化?20.(本小题满分8分)一艘轮船自西向东航行,在A处测得东偏北21.3°方向有一座小岛C,继续向东航行60海里到达B处,测得小岛C此时在轮船的东偏北63.5°方向上.之后,轮船继续向东航行多少海里,距离小岛C最近?(参考数据:sin21.3°≈925,tan21.3°≈25,sin63.5°≈910,tan63.5°≈2)(Kg/m3)3_A_B_东学校 年级 姓名装 订 线21.(本小题满分8分)如图所示,电工李师傅借助梯子安装天花板上距地面2 .90m 的顶灯.已知梯子由两个相同的矩形面组成,每个矩形面的长都被六条踏板七等分,使用时梯脚的固定跨度为1m .矩形面与地面所成的角α为78°.李师傅的身高为l.78m ,当他攀升到头顶距天花板0.05~0.20m 时,安装起来比较方便.他现在竖直站立在梯子的第三级踏板上,请你通过计算判断他安装是否比较方便? (参考数据:sin78°≈0.98,cos78°≈0.21,tan78°≈4.70.)22.(本小题满分10分)某批发市场批发甲、乙两种水果,根据以往经验和市场行情,预计夏季某一段时间内,甲种水果的销售利润y 甲(万元)与进货量x (吨)近似满足函数关系0.3y x =甲;乙种水果的销售利润y 乙(万元)与进货量x (吨)近似满足函数关系2y ax bx =+乙(其中0a a b ≠,,为常数),且进货量x 为1吨时,销售利润y 乙为1.4万元;进货量x 为2吨时,销售利润y 乙为2.6万元. (1)求y 乙(万元)与x (吨)之间的函数关系式.(2)如果市场准备进甲、乙两种水果共10吨,设乙种水果的进货量为t 吨,请你写出这两种水果所获得的销售利润之和W (万元)与t (吨)之间的函数关系式.并求出这两种水果各进多少吨时获得的销售利润之和最大,最大利润是多少?学校 年级 姓名 装 订 线23.(本小题满分10分)如图,为直角,点C 为线段BA 的中点,点D 是射线BM 上的一个动点(不与点B 重合),连结AD ,作BE AD ⊥,垂足为E ,连结CE ,过点E 作EF CE ⊥,交BD 于F . (1)求证:BF FD =;(2)A ∠在什么范围内变化时,四边形ACFE 是梯形,并说明理由; (3)A ∠在什么范围内变化时,线段DE 上存在点G ,满足条件14DG DA =,并说明理由.24.(本小题满分12分)ABC △中,90C ∠=,60A ∠=,2AC =cm .长为1cm 的线段MN 在ABC △的边AB 上沿AB 方向以1cm/s 的速度向点B 运动(运动前点M 与点A 重合).过M N ,分别作AB 的垂线交直角边于P Q ,两点,线段MN 运动的时间为t s .(1)若AMP △的面积为y ,写出y 与t 的函数关系式(写出自变量t 的取值范围);(2)线段MN 运动过程中,四边形MNQP 有可能成为矩形吗?若有可能,求出此时t 的值;若不可能,说明理由;(3)t 为何值时,以C P Q ,,为顶点的三角形与ABC △相似?ABC D FEM学校 年级 姓名 装 订 线2011.12初三数学模拟(六)1-5 BDBAB 6-8 ADD 9. 2 10. 30度 11. 48 12 4 13. 3√2 14.()13-n15.略16.(1)解:原式2312=+-+ 2分= 3分1.7320.8660.872≈=≈ 4分 (2)解:移项,得2231x x -=- 1分二次项系数化为1,得23122x x -=- 2分配方22233132424x x ⎛⎫⎛⎫-+=-+ ⎪ ⎪⎝⎭⎝⎭231416x ⎛⎫-= ⎪⎝⎭ 3分 由此可得3144x -=± 11x =,212x =4分 17. 解:∵P (奇数)=31 P (偶数)=32(4分)∵31×2=32×1 ∴这个游戏对双方是公平的(6分)18.(1)证明略; (3分)(2)当四边形AECF 为菱形时,△ABE 为等边三角形, (5分)四边形ABCD 的高为3,∴菱形AECF 的面积为23. (6分) 19. 解:(1)设ρkV =,∵206.1==v 时,ρ,∴326.120=⨯==V k ρ. ∴V=ρ32. (2分)(2)当)(时,3102.3322.3m V ===ρ. (4分) (3)8.0403240=∴==ρρ,时,V . 由(2)知2.310==ρ时,V即该物体的体积在10m 3~40 m 3时,该物体的密度在0.8Kg/ m 3~3.2 Kg/ m 3的范围内变化. (6分)学校 年级 姓名 装 订 线20.解:过C 作AB 的垂线,交直线AB 于点D ,得到Rt △ACD 与Rt △BCD .设BD =x 海里,在Rt △BCD 中,tan ∠CBD =CDBD,∴CD =x ·tan63.5°.(2分)在Rt △ACD 中,AD =AB +BD =(60+x)海里,tan ∠A =CDAD,∴CD =( 60+x ) ·tan21.3°. (4分)∴x ·tan63.5°=(60+x )·tan21.3°,即 ()22605x x =+解得,x =15.答:轮船继续向东航行15海里,距离小岛C 最近(6分)21.过点A 作AE ⊥BC 于点E ,过点D 作DF ⊥BC 于点F . 1分∵AB =AC , ∴CE =12BC =0.5. 2分 在Rt △ABC 和Rt △DFC 中,∵tan780=AEEC, ∴AE =EC ×tan780 ≈0.5×4.70=2.35. 4分又∵sin α=AE AC =DFDC,DF =DC AC ·AE =37×AE ≈1.007. ( 7分) 李师傅站在第三级踏板上时,头顶距地面高度约为: 1.007+1.78=2.787.头顶与天花板的距离约为:2.90-2.787≈0.11. ∵0.05<0.11<0.20,∴它安装比较方便. ( 8分)22.解:(1)由题意,得: 1.442 2.6a b a b +=⎧⎨+=⎩,.解得0.11.5a b =-⎧⎨=⎩,.(2分)∴20.1 1.5y x x =-+乙.(3分)(2)()()20.3100.1 1.5W y y t t t =+=-+-+乙甲. ∴20.1 1.23W t t =-++.(6分) ()20.16 6.6W t =--+.∴6t =时,W 有最大值为6.6(8分)∴1064-=(吨).答:甲、乙两种水果的进货量分别为4吨和6吨时,获得的销售利润之和最大,最大利润是6.6万元. (10分)23.(1)在Rt AEB △中,AC BC =,12CE AB ∴=,CB CE ∴=,CEB CBE ∴∠=∠. 90CEF CBF ∠=∠=,BEF EBF ∴∠=∠,EF BF ∴=.90BEF FED ∠+∠=,90EBD EDB ∠+∠=,FED EDF ∴∠=∠. EF FD =.BF FD ∴=.(3分) (2)由(1)BF FD =,而BC CA =, CF AD ∴∥,即AE CF ∥.若AC EF ∥,则AC EF =,BC BF ∴=.ABC D FEMG HB C DA学校 年级 姓名 装 订 线BA BD ∴=,45A ∠=.∴当045A <∠<或4590A <∠<时,四边形ACFE 为梯形.(6分)(3)作GH BD ⊥,垂足为H ,则GH AB ∥.14DG DA =,14DH DB ∴=.又F 为BD 中点,H ∴为DF 的中点. GH ∴为DF 的中垂线. GDF GFD ∴∠=∠.点G 在ED h 上,EFD GFD ∴∠∠≥.180EFD FDE DEF ∠+∠+∠=,180GFD FDE DEF ∴∠+∠+∠≤.3180EDF ∴∠≤. 60EDF ∴∠≤.又90A EDF ∠+∠=,3090A ∴∠<≤.∴当3090A ∠<≤时,DE 上存在点G ,满足条件14DG DA =.(10分)24.解:(1)当点P 在AC 上时,AM t =,tg 603PM AM t ∴==.2133(01)2y tt t t ∴==≤≤.2分 当点P 在BC 上时,3tan 30(4)3PM BM t ==-.213(4)(13)2363y t t t t t =-=-+≤≤.3分(2)2AC =,4AB ∴=.413BN AB AM MN t t ∴=--=--=-.3tan 30(3)3QN BN t ∴==-.5分 由条件知,若四边形MNQP 为矩形,需PM QN =(3)3t =-, 34t ∴=. ∴当34t =s 时,四边形MNQP 为矩形.7分(3)由(2)知,当34t =s 时,四边形MNQP 为矩形,此时PQ AB ∥,PQC ABC ∴△∽△.8分除此之外,当30CPQ B ∠=∠=时,QPC ABC △∽△,此时3tan 30CQ CP ==. 1cos602AM AP ==,22AP AM t ∴==.22CP t ∴=-3cos302BN BQ ==,(3)3BQ t ∴==-.又2BC =(3)33CQ t ∴=-=.9分 322t ∴=-,12t =. ∴当12t =s 或34s 时,以C P Q ,,为顶点的三角形与ABC △相似.10分。
2010年部分省市中考数学试题分类汇编 有理数(含答案)
2010年部分省市中考数学试题分类汇编 有理数一 选择题1.(2010重庆市) 3的倒数是()A .13B .— 13C .3D .—3解析:由一个不为0的数a 倒数是a 1知: 3的倒数是— 13 .答案:B.2. (2010重庆市潼南县)2的倒数是( )A .21 B .-2 C . -21D . 2 答案:A3.(2010年四川省眉山市)5-的倒数是A .5B .15C .5-D .15- 【关键词】有理数的倒数的概念和性质 【答案】D4.(2010年福建省晋江市)51-的相反数是( ). A. 51 B. 51- C. 5 D.5-【关键词】倒数的概念与性质 【答案】D5.(2010年浙江省东阳市)73是 ( ) A .无理数B .有理数C .整数D .负数【关键词】有理数的概念 【答案】B6.(2010年浙江省东阳市)73是 ( ) A .无理数B .有理数C .整数D .负数【关键词】有理数的概念 【答案】B7.(2010年四川省眉山市)5-的倒数是A .5B .15 C .5- D .15- 【关键词】有理数的倒数的概念和性质 【答案】D8.(2010年福建省晋江市)51-的相反数是( ). A.51 B. 51- C. 5 D.5- 【关键词】倒数的概念与性质 【答案】D9.(2010重庆市) 3的倒数是()A .13B .— 13C .3D .—3解析:由一个不为0的数a 倒数是a 1知: 3的倒数是— 13 .答案:B.10.(2010江苏宿迁)3)2(-等于( )A .-6B .6C .-8D .8 【关键词】有理数的乘方【答案】C11.(2010江苏宿迁)有理数a 、b 在数轴上的位置如图所示,则b a +的值A .大于0B .小于0C .小于aD .大于b 【关键词】数轴 【答案】A12.(2010江苏宿迁)下列运算中,正确的是( )A .325=-m mB .222)(n m n m +=+C .n m nm =22 D .222)(mn n m =⋅【关键词】有理数的运算【答案】D13.(2010年毕节地区)若23(2)0m n -++=,则2m n +的值为( ) A .4- B .1- C .0 D .4 【关键词】绝对值、代数式的值、两个非负数的和 【答案】B14.(2010年重庆市潼南县)2的倒数是( )A .21 B .-2 C . -21D . 2 【关键词】有理数运算、倒数 【答案】A(第3题)15. (2010年浙江省东阳市)73是 ( ) A .无理数 B .有理数C .整数D .负数【关键词】有理数 【答案】B16. (2010年浙江省东阳市)某电视台报道,截止到2010年5月5日,慈善总会已接受支援玉树地震灾区的捐款15510000元.将15510000用科学记数法表示为 ( )A.8101551.0⨯ B. 4101551⨯ C.710551.1⨯ D.61051.15⨯【关键词】科学记数法 【答案】C17.(2010年安徽中考) 在2,1,0,1-这四个数中,既不是正数也不是负数的是( ) A )1- B )0 C )1 D )2 【关键词】有理数 【答案】B18. (2010年安徽中考) 2010年一季度,全国城镇新增就业人数为289万人,用科学记数法表示289万正确的是…………………………( )A )2.89×107.B )2.89×106 .C )2.89×105.D )2.89×104. 【关键词】科学记数法 【答案】B19. (2010年宁波市)-3的相反数是( ) A 、3 B 、31 C 、-3 D 、31- 【关键词】相反数【答案】A 20、(2010年宁波市)据《中国经济周刊》报道,上海世博会第四轮环保活动投资总金额高达820亿元,其中820亿用科学记数法表示为( ) A 、111082.0⨯ B 、10102.8⨯ C 、9102.8⨯ D 、81082⨯ 【关键词】科学记数法 【答案】B21.(2010·重庆市潼南县)2的倒数是( )A .21 B .-2 C. -21D. 2 【关键词】倒数的概念 【答案】A22.(2010年山东聊城)据市旅游局统计,今年“五·一”小长假期间,我市旅游市场走势良好,假期旅游总收入达到8.55亿元,用科学记数法可以表示为A .8.55×106B .8.55×107C .8.55×108D .8.55×109 【关键词】科学记数法 【答案】C23.(2010·重庆市潼南县)2的倒数是( )A .21 B .-2 C. -21D. 2 【关键词】倒数的概念 【答案】A24.(2010年辽宁省丹东市)在“2008北京”奥运会国家体育场的“鸟巢”钢结构工程施工建设中,首次使用了我国科研人员自主研制的强度为84.610⨯帕的钢材,那么84.610⨯的原数为( )A .4 600 000B .46 000 000C .460 000 000D .4 600 000 000 【关键词】科学计数法 【答案】C 25(2010辽宁省丹东市)1在“2008北京”奥运会国家体育场的“鸟巢”钢结构工程施工建设中,首次使用了我国科研人员自主研制的强度为84.610⨯帕的钢材,那么84.610⨯的原数为( )A .4 600 000B .46 000 000C .460 000 000D .4 600 000 000 【关键词】科学记数法 【答案】C 25.(2010年山东聊城)据市旅游局统计,今年“五·一”小长假期间,我市旅游市场走势良好,假期旅游总收入达到8.55亿元,用科学记数法可以表示为A .8.55×106B .8.55×107C .8.55×108D .8.55×109 【关键词】科学记数法 【答案】C 1、(2010年宁波)-3的相反数是( ) A 、3 B 、31 C 、-3 D 、31- 答案:A27、(2010年宁波)据《中国经济周刊》报道,上海世博会第四轮环保活动投资总金额高达820亿元,其中820亿用科学记数法表示为( ) A 、111082.0⨯ B 、10102.8⨯ C 、9102.8⨯ D 、81082⨯ 答案:B28.(2009年山东省济南市)某市2009年元旦的最高气温为2℃,最低气温为-8℃,那么这天的最高气温比最低气温高 ( ) A .-10℃ B .-6℃ C .6℃ D .10℃ 【关键词】有理数 【答案】D29.(2010年台湾省)下列何者是0.000815的科学记号?(A) 8.15⨯10-3 (B) 8.15⨯10-4 (C) 815⨯10-3 (D) 815⨯10-6 。
2010年青岛市中考数学试题及答案
二○一○年山东省青岛市初级中学学业水平考试题试学数座号分)120分钟;满分:120(考试时间:人核复人计合合计三四二一号题 24 2322 21 20 19 18 17 16 15 分得真情提示:亲爱的同学,欢迎你参加本次考试,祝你答题成功!.请务必在指定位置填写座号,并将密封线内的项目填写清楚.1题后8题为选择题,请将所选答案的标号填写在第8—1道题.其中24.本试题共有2题后面给出表14题为填空题,请将做出的答案填写在第14—9面给出表格的相应位置上;题,请在试题给出的本题位置上做答.24—15格的相应位置上;复核人评卷人分得道小题,每小题分)83分,共有24一、选择题(本题满分的四个结论,其中只有一个是正确的.每小题选D、C、B、A下列每小题都给出标号为各小题所选答案的标号填8—1对得分;不选、选错或选出的标号超过一个的不得分.请将小题后面给出表格的相应位置上.8写在第.)的数是(5.下列各数中,相反数等于111 5 .B 5.-A .D .-C 55 .).如图所示的几何体的俯视图是(2.A .D .C .B 题图2第3 .),下列说法中正确的是(8.8×10.由四舍五入法得到的近似数3个有效数字2.精确到个位,有B个有效数字2.精确到十分位,有A 个有效数字4.精确到千位,有 D个有效数字2.精确到百位,有 C .).下列图形中,中心对称图形有(4页17 共页1 第个4.D 个3.C 个2.B 个1.A 的苹果,现有两个厂家提供货源,它们的价格相同,150g.某外贸公司要出口一批规格为5 . 苹果的品质也相近并将个苹果称重,50乙两厂的产品中随机抽取了质检员分别从甲、.)根据表中信息判断,下列说法错误的是(. 所得数据处理后,制成如下表格平均.本次的调查方式是抽样调查A 个数质量的方差)g质量(.甲、乙两厂被抽取苹果的平均质量相同B 2.6 150 50 甲厂个苹果的质量是本次调查的样100.被抽取的这C 3.1 150 50 乙厂本.甲厂苹果的质量比乙厂苹果的质量波动大D C BC B C ABC.如图,在6的2 cm为圆心,以,以点= 4 cm30°,= 90°,∠= 中,∠Rt△AB C .)的位置关系是(与长为半径作圆,则⊙.相离A .相切或相交D .相交C .相切B y 7 A A 6 5 4 3 B 2 B 1 C C 题图6第 x O -1 -3 -4 -5 5 4 3 2 -2 1 题图7第CABCCBAABC绕点,如果将△)1,2(、,)25(、)6,4(的顶点坐标分别为.如图,△7A么那.)(是标坐的点,应对的点△90°,得到按逆时针方向旋转'AC'B'A )3,3(-.A )4,1(.D )4,2(-.C )3,-3(.Baa.函数8 .))在同一直角坐标系中的图象可能是(0≠(与a ax y y x y y y y x x x x O O O O .D .C .B .A 1请将各小题所选答案的标号填写在下表的相应位置上:8—题 8 7 65 4 3 2 1 号答案分)3道小题,每小题6分,共有18二、填空题(本题满分复核人评卷人分得小题后面给出表格的14各小题的答案填写在第14—9请将相应位置上. B ..化简:9 3 48 C BOC BAC OC、B、A = 若∠上,在⊙点如图,.10 °.= 则∠°,24 · A O 页17 共页2 第题图10第后,为了尽m120 的污水排放管道.铺设m300 .某市为治理污水,需要铺设一段全长为1130,结果共用20%量减少施工对城市交通所造成的影响,后来每天的工效比原计划增加管道,那天完成这一任务.求原计划每天铺设管道的长度.如果设原计划每天铺设m x.么根据题意,可得方程个红球和若干个黄球.在不允许将球倒出来数的前提下,为估计口10.一个口袋中装有12个球,求出其中红10袋中黄球的个数,小明采用了如下的方法:每次先从口袋中摸出次,得到红球数与20的比值,再把球放回口袋中摇匀.不断重复上述过程10球数与个黄球..根据上述数据,估计口袋中大约有0.4的比值的平均数为10EFDBABCD重合,折痕为和点)按如图方式折叠,使顶点.把一张矩形纸片(矩形13.若2DEFBC AB .cm的面积是,则重叠部分△= 5 cm,= 3 cm'AE A D )('B… C BF 题图13第题图14第2枚棋子,摆第7个图案需要1.如图,是用棋子摆成的图案,摆第14枚棋19个图案需要个图案需要6枚棋子,按照这样的方式摆下去,则摆第37个图案需要3子,摆第n枚棋子.个图案需要枚棋子,摆第各小题的答案填写在下表的相应位置上:14—9请将 11 10 9 号题案答 14 13 12 号题案答复核人评卷人分得分)4三、作图题(本题满分用圆规、直尺作图,不写作法,但要保留作图痕迹.ABCABC . 的各边都相切,请你画出一个圆,使其与△).如图,有一块三角形材料(△15 解: A C B 页17 共页3 第结论:道小题)9分,共有74四、解答题(本题满分复核人评卷人分得分)4分,每题8(本小题满分.16 19 y4 x3 1a2.)化简:2(;)解方程组:1( 24 y xa 24 a 解:原式=解:复核人评卷人分得分)6(本小题满分.17 ACBA三类午餐供师生选择,三类午餐每份的价格分别是:、、配餐公司为某学校提供C、B、ACB元.为做好下阶段的营销工作,配餐公司根据该校上周8餐元,6餐元,5餐;根据以往销售量与平三类午餐购买情况,将所得的数据处理后,制成统计表(如下左图). 均每份利润之间的关系,制成统计图(如下右图)以往销售量与平均每份利润之间的关系统计图该校上周购买情况统计表平均每份的利润(元) 4 A (份)数量种类 3.5 B 3 1000 A 2.5 C 2 1700 B 1.5 400 C 1 0.5 0 及12001200 ~800800 ~300 一周销售量(份)页17 共页4 第(不含以上1200800) 1200) 不含(请根据以上信息,解答下列问题:元;)该校师生上周购买午餐费用的众数是1(B元;餐每份的利润大约是)配餐公司上周在该校销售2()请你计算配餐公司上周在该校销售午餐约盈利多少元?3(3(解:)复核人评卷人分得分)6(本小题满分.18 “五·一”期间,某书城为了吸引读者,设立了一个可以自12由转动的转盘(如图,转盘被平均分成,并规定:读者每份)绿红元的书,就可获得一次转动转盘的机会,如果转盘停止100购买后,指针正好对准红色、黄色、绿色区域,那么读者就可以分别绿绿元的购书券,凭购书券可以在书城继续购25元、30元、45获得元的购书券.10书.如果读者不愿意转转盘,那么可以直接获得黄黄元购书券的概率;45)写出转动一次转盘获得1()转转盘和直接获得购书券,你认为哪种方式对读者更合2(题图18第算?请说明理由.)1(解:)2(评卷人分得复核人分)6(本小题满分.19 ABAB米.为测量这座居民楼与大厦之间的=,小明家所在居民楼的对面有一座大厦80BAC求48°.的俯角为大厦底部37°,的仰角为处测得大厦顶部小明从自己家的窗户距离,CD(结果保留整数)的长度.小明家所在居民楼与大厦的距离 A 11733oooo)(参考数据: tan48, 48sin, tan37, sin37101045解: °37 D °48 C 页17 共页5 第B 题图19第复核人评卷人分得分)8(本小题满分.20 则刚好坐满;座客车若干辆,35若单独租用某学校组织八年级学生参加社会实践活动,个空座位.45座客车,则可以少租一辆,且余55若单独租用)求该校八年级学生参加社会实践活动的人数;1(320座客车的租金为每辆35)已知2(元.根据租车400座客车的租金为每辆55元,请你计算.(可以坐不满)辆4学校决定同时租用这两种客车共元的预算,1500资金不超过本次社会实践活动所需车辆的租金.)1(解:)2(页17 共页6 第。
青岛中考数学试题分析(三)
青岛中考数学试题分析(三)21、题图形证明题(本小题8分)主要考查全等三角形的性质及判定,特殊平行四边形的性质及判定,此题常以两问的形式出现,第一问证三角形全等,第二问判断四边形是什么特殊四边形,并加以证明。
(2007青岛中考)21.(本小题满分8分)将平行四边形纸片ABCD 按如图方式折叠,使点C 与A 重合,点D 落到D ′ 处,折痕为EF .(1)求证:△ABE ≌△AD ′F ;(2)连接CF ,判断四边形AECF 是什么特殊四边形?证明你的结论.(2008青岛中考)21.(本小题满分8分)已知:如图,在正方形ABCD 中,G 是CD 上一点,延长BC 到E ,使CE C G =,连接BG并延长交DE 于F .(1)求证:BCG DCE △≌△;(2)将DCE △绕点D 顺时针旋转90得到DAE '△, 判断四边形E BGD '是什么特殊四边形?并说明理由.(2009青岛中考)21.(本小题满分8分)已知:如图,在□ABCD 中,AE 是BC 边上的高,将ABE △沿BC 方向平移,使点E 与点C 重合,得GFC △.(1)求证:BE DG =;(2)若60B ∠=°,当AB 与BC 满足什么数量关系时,四边形ABFG 是菱形?证明你的结论.A BCDEF D ′ ABCDEF E 'GA D G CB F E 第21题图A E BCF D(2010青岛中考)21.(本小题满分8分)已知:如图,在正方形ABCD 中,点E 、F 分别在BC 和CD 上,AE = AF .(1)求证:BE = DF ;(2)连接AC 交EF 于点O ,延长OC 至点M ,使OM = OA ,连接EM 、FM .判断四边形AEMF是什么特殊四边形?并证明你的结论. 证明:(1)(2011青岛中考) 21.(8分)在□ABCD 中,E 、F 分别是AB 、CD 的中点,连接AF 、CE .(1)求证:△BEC ≌△DFA ;(2)连接AC ,当CA =CB 时,判断四边形AECF 是什么特殊四边形?并证明你的结论.22题为函数应用题(本小题10分)是一道一次函数与二次函数相结合的应用题.考查学生综合运用两个函数解决实际问题的能力及学生建立一次函数与二次函数数学模型的能力.该试题往往设置成至少两道小题,呈现的形式往往借助于经济生活——利润的有关背景。
青岛市中考数学试题及答案(word解析版)
山东省青岛市中考数学试卷一、选择题(本题满分24分,共有8道小题,每小题3分)下列每小题都给出标号为A、B、C、D的四个结论,其中只有一个是正确的.每小题选对得分;不选、选错或选出的标号超过一个的不得分.1.(3分)(•青岛)﹣7的绝对值是()D.A.﹣7 B.7C.﹣考点:绝对值.分析:根据负数的绝对值是它的相反数,可得答案.解答:解:|﹣7|=7,故选:B.点评:本题考查了绝对值,负数的绝对值是它的相反数.2.(3分)(•青岛)下列四个图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形.分析:根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.解答:解:A、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,不是轴对称图形,故此选项错误;B、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,不是轴对称图形,故此选项错误;C、此图形旋转180°后能与原图形重合,此图形是中心对称图形,不是轴对称图形,故此选项错误;D、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确.故选:D.点评:此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.3.(3分)(•青岛)据统计,我国全年完成造林面积约6090000公顷.6090000用科学记数法可表示为()A.6.09×106B.6.09×104C.609×104D.60.9×105考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将6090000用科学记数法表示为:6.09×106.故选:A.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(•青岛)在一个有15万人的小镇,随机调查了3000人,其中有300人看电视台的早间新闻.据此,估计该镇看电视台早间新闻的约有()A.2.5万人B.2万人C.1.5万人D.1万人考点:用样本估计总体.分析:求得调查样本的看早间新闻的百分比,然后乘以该镇总人数即可.解答:解:该镇看电视台早间新闻的约有15×=1.5万,故选B.点评:本题考查了用样本估计总体的知识,解题的关键是求得样本中观看的百分比,难度不大.5.(3分)(•青岛)已知⊙O1与⊙O2的半径分别是2和4,O1O2=5,则⊙O1与⊙O2的位置关系是()A.内含B.内切C.相交D.外切考点:圆与圆的位置关系.分析:由⊙O1、⊙O2的半径分别是2、4,O1O2=5,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系即可得出两圆位置关系.解答:解:∵⊙O1、⊙O2的半径分别是2、4,∴半径和为:2+4=6,半径差为:4﹣2=2,∵O1O2=5,2<6<6,∴⊙O1与⊙O2的位置关系是:相交.故选C.点评:此题考查了圆与圆的位置关系.注意掌握两圆位置关系与圆心距d,两圆半径R,r 的数量关系间的联系.6.(3分)(•青岛)某工程队准备修建一条长1200m的道路,由于采用新的施工方式,实际每天修建道路的速度比原计划快20%,结果提前2天完成任务.若设原计划每天修建道路xm,则根据题意可列方程为()A.B.﹣=2﹣=2D.﹣=2C.﹣=2考点:由实际问题抽象出分式方程.分析:设原计划每天修建道路xm,则实际每天修建道路为(1+20%)xm,根据采用新的施工方式,提前2天完成任务,列出方程即可.解答:解:设原计划每天修建道路xm,则实际每天修建道路为(1+20%)xm,由题意得,﹣=2.故选D.点评:本题考查了由实际问题抽象出分式方程,关键是读懂题意,设出未知数,找出合适的等量关系,列出方程.7.(3分)(•青岛)如图,将矩形ABCD沿EF折叠,使顶点C恰好落在AB边的中点C′上.若AB=6,BC=9,则BF的长为()A.4B.3C.4.5 D.5考点:翻折变换(折叠问题).分析:先求出BC′,再由图形折叠特性知,C′F=CF=BC﹣BF=9﹣BF,在直角三角形C′BF中,运用勾股定理BF2+BC′2=C′F2求解.解答:解:∵点C′是AB边的中点,AB=6,∴BC′=3,由图形折叠特性知,C′F=CF=BC﹣BF=9﹣BF,在直角三角形C′BF中,BF2+BC′2=C′F2,∴BF2+9=(9﹣BF)2,解得,BF=4,故选:A.点评:本题考查了折叠问题及勾股定理的应用,综合能力要求较高.同时也考查了列方程求解的能力.解题的关键是找出线段的关系.8.(3分)(•青岛)函数y=与y=﹣kx2+k(k≠0)在同一直角坐标系中的图象可能是()A.B.C.D.考点:二次函数的图象;反比例函数的图象.分析:本题可先由反比例函数的图象得到字母系数的正负,再与二次函数的图象相比较看是否一致.解答:解:由解析式y=﹣kx2+k可得:抛物线对称轴x=0;A、由双曲线的两支分别位于二、四象限,可得k<0,则﹣k>0,抛物线开口方向向上、抛物线与y轴的交点为y轴的负半轴上;本图象与k的取值相矛盾,错误;B、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象符合题意,正确;C、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,错误;D、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,错误.故选:B.点评:本题主要考查了二次函数及反比例函数和图象,解决此类问题步骤一般为:(1)先根据图象的特点判断k取值是否矛盾;(2)根据二次函数图象判断抛物线与y轴的交点是否符合要求.二、填空题(本题满分18分,共有6道小题,每小题3分)9.(3分)(•青岛)计算:=2+1.考点:二次根式的混合运算.专题:计算题.分析:根据二次根式的除法法则运算.解答:解:原式=+=2+1.故答案为2+1.点评:本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.10.(3分)(•青岛)某茶厂用甲、乙两台分装机分装某种茶叶(每袋茶叶的标准质量为200g).为了监控分装质量,该厂从它们各自分装的茶叶中随机抽取了50袋,测得它们的实际质量分析如下:平均数(g)方差甲分装机200 16.23乙分装机200 5.84则这两台分装机中,分装的茶叶质量更稳定的是乙(填“甲”或“乙”).考点:方差.分析:根据方差的意义,方差越小数据越稳定,比较甲,乙两台包装机的方差可判断.解答:解:∵=16.23,=5.84,∴>,∴这两台分装机中,分装的茶叶质量更稳定的是乙.故答案为:乙.点评:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.11.(3分)(•青岛)如图,△ABC的顶点都在方格线的交点(格点)上,如果将△ABC绕C点按逆时针方向旋转90°,那么点B的对应点B′的坐标是(1,0).考点:坐标与图形变化-旋转.专题:数形结合.分析:先画出旋转后的图形,然后写出B′点的坐标.解答:解:如图,将△ABC绕C点按逆时针方向旋转90°,点B的对应点B′的坐标为(1,0).故答案为(1,0).点评:本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.12.(3分)(•青岛)如图,AB是⊙O的直径,BD,CD分别是过⊙O上点B,C的切线,且∠BDC=110°.连接AC,则∠A的度数是35°.考点:切线的性质.分析:首先连接OC,由BD,CD分别是过⊙O上点B,C的切线,且∠BDC=110°,可求得∠BOC的度数,又由圆周角定理,即可求得答案.解答:解:连接OC,∵BD,CD分别是过⊙O上点B,C的切线,∴OC⊥CD,OB⊥BD,∴∠OCD=∠OBD=90°,∵∠BDC=110°,∴∠BOC=360°﹣∠OCD﹣∠BDC﹣∠OBD=70°,∴∠A=∠BOC=35°.故答案为:35.点评:此题考查了切线的性质以及圆周角定理.此题难度不大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.13.(3分)(•青岛)如图,在等腰梯形ABCD中,AD=2,∠BCD=60°,对角线AC平分∠BCD,E,F分别是底边AD,BC的中点,连接EF.点P是EF上的任意一点,连接PA,PB,则PA+PB的最小值为2.考点:轴对称-最短路线问题;等腰梯形的性质.分析:要求PA+PB的最小值,PA、PB不能直接求,可考虑转化PA、PB的值,从而找出其最小值求解.解答:解:∵E,F分别是底边AD,BC的中点,四边形ABCD是等腰梯形,∴B点关于EF的对称点C点,∴AC即为PA+PB的最小值,∵∠BCD=60°,对角线AC平分∠BCD,∴∠ABC=60°,∠BCA=30°,∴∠BAC=90°,∵AD=2,∴PA+PB的最小值=AB•tan60°=.故答案为:2.点评:考查等腰梯形的性质和轴对称等知识的综合应用.综合运用这些知识是解决本题的关键.14.(3分)(•青岛)如图,是由一些小立方块所搭几何体的三种视图,若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个大正方体,至少还需要54个小立方块.考点:由三视图判断几何体.分析:首先根据该几何体的三视图确定需要的小立方块的块数,然后确定搭成一个大正方体需要的块数.解答:解:由俯视图易得最底层有7个小立方体,第二层有2个小立方体,第三层有1个小立方体,那么共有7+2+1=10个几何体组成.若搭成一个大正方体,共需4×4×4=64个小立方体,所以还需64﹣10=54个小立方体,故答案为:54.点评:考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.三、作图题(本题满分4分)用圆规、直尺作图,不写作法,但要保留作图痕迹.15.(4分)(•青岛)已知:线段a,∠α.求作:△ABC,使AB=AC=a,∠B=∠α.考点:作图—复杂作图.分析:首先作∠ABC=α,进而以B为圆心a的长为半径画弧,再以A为圆心a为半径画弧即可得出C的位置.解答:解:如图所示:△ABC即为所求.点评:此题主要考查了复杂作图,得出正确的作图顺序是解题关键.四、解答题(本题满分74分,共有9道小题)16.(8分)(•青岛)(1)计算:÷;(2)解不等式组:.考点:解一元一次不等式组;分式的乘除法.分析:(1)首先转化为乘法运算,然后进行约分即可;(2)先求出不等式组中每一个不等式的解集,再求出它们的公共部分就是不等式组的解集.解答:解:(1)原式===;(2)解不等式①,得x>.解不等式②,得x<3.所以原不等式组的解集是<x<3.点评:本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.17.(6分)(•青岛)空气质量状况已引起全社会的广泛关注,某市统计了每月空气质量达到良好以上的天数,整理后制成如下折线统计图和扇形统计图.根据以上信息解答下列问题:(1)该市每月空气质量达到良好以上天数的中位数是14天,众数是13天;(2)求扇形统计图中扇形A的圆心角的度数;(3)根据以上统计图提供的信息,请你简要分析该市的空气质量状况(字数不超过30字).考点:折线统计图;扇形统计图;中位数;众数.分析:(1)利用折线统计图得出各数据,进而求出中位数和众数;(2)利用(1)中数据得出空气为优的所占比例,进而得出扇形A的圆心角的度数;(3)结合空气质量进而得出答案.解答:解:(1)由题意可得,数据为:8,9,12,13,13,13,15,16,17,19,21,21,最中间的是:13,15,故该市每月空气质量达到良好以上天数的中位数是14天,众数是13天故答案为:14,13;(2)由题意可得:360°×=60°.答:扇形A的圆心角的度数是60°.(3)该市空气质量为优的月份太少,应对该市环境进一步治理,合理即可.点评:此题主要考查了折线统计图以及中位数和众数的概念,利用折线统计图分析数据是解题关键.18.(6分)(•青岛)某商场为了吸引顾客,设立了可以自由转动的转盘(如图,转盘被均匀分为20份),并规定:顾客每购买200元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得200元、100元、50元的购物券,凭购物券可以在该商场继续购物.如果顾客不愿意转转盘,那么可以直接获得购物券30元.(1)求转动一次转盘获得购物券的概率;(2)转转盘和直接获得购物券,你认为哪种方式对顾客更合算?考点:概率公式.分析:(1)由转盘被均匀分为20份,转动一次转盘获得购物券的有10种情况,直接利用概率公式求解即可求得答案;(2)首先求得指针正好对准红色、黄色、绿色区域的概率,继而可求得转转盘的情况,继而求得答案.解答:解:(1)∵转盘被均匀分为20份,转动一次转盘获得购物券的有10种情况,∴P(转动一次转盘获得购物券)==.(2分)(2)∵P(红色)=,P(黄色)=,P(绿色)==,∴(元)∵40元>30元,∴选择转转盘对顾客更合算.(6分)点评:此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.19.(6分)(•青岛)甲、乙两人进行赛跑,甲比乙跑得快,现在甲让乙先跑10米,甲再起跑.图中l1和l2分别表示甲、乙两人跑步的路程y(m)与甲跑步的时间x(s)之间的函数关系,其中l1的关系式为y1=8x,问甲追上乙用了多长时间?考点:一次函数的应用.分析:设l2表示乙跑步的路程y(m)与甲跑步的时间x(s)之间的函数关系为y2=kx+b,代入(0,10),(2,22)求得函数解析式,进一步与l1的关系式为y1=8x联立方程解决问题.解答:解:设y2=kx+b(k≠0),代入(0,10),(2,22)得解这个方程组,得所以y2=6x+10.当y1=y2时,8x=6x+10,解这个方程,得x=5.答:甲追上乙用了5s.点评:本题考查了一次函数的应用及一元一次方程的应用,解题的关键是根据题意结合图象说出其图象表示的实际意义,这样便于理解题意及正确的解题.20.(8分)(•青岛)如图,小明想测山高和索道的长度.他在B处仰望山顶A,测得仰角∠B=31°,再往山的方向(水平方向)前进80m至索道口C处,沿索道方向仰望山顶,测得仰角∠ACE=39°.(1)求这座山的高度(小明的身高忽略不计);(2)求索道AC的长(结果精确到0.1m).(参考数据:tan31°≈,sin31°≈,tan39°≈,sin39°≈)考点:解直角三角形的应用-仰角俯角问题.分析:(1)过点A作AD⊥BE于D,设山AD的高度为xm,在Rt△ABD和Rt△ACD中分别表示出BD和CD的长度,然后根据BD﹣CD=80m,列出方程,求出x的值;(2)在Rt△ACD中,利用sin∠ACD=,代入数值求出AC的长度.解答:解:(1)过点A作AD⊥BE于D,设山AD的高度为xm,在Rt△ABD中,∵∠ADB=90°,tan31°=,∴BD=≈=x,在Rt△ACD中,∵∠ADC=90°,tan39°=,∴CD=≈=x,∵BC=BD﹣CD,∴x﹣x=80,解得:x=180.即山的高度为180米;(2)在Rt△ACD中,∠ADC=90°,sin39°=,∴AC==≈282.9(m).答:索道AC长约为282.9米.点评:本题考查了解直角三角形的应用,解答本题关键是利用仰角构造直角三角形,利用三角函数的知识表示出相关线段的长度.21.(8分)(•青岛)已知:如图,▱ABCD中,O是CD的中点,连接AO并延长,交BC 的延长线于点E.(1)求证:△AOD≌△EOC;(2)连接AC,DE,当∠B=∠AEB=45°时,四边形ACED是正方形?请说明理由.考点:平行四边形的性质;全等三角形的判定与性质;正方形的判定.分析:(1)根据平行线的性质可得∠D=∠OCE,∠DAO=∠E,再根据中点定义可得DO=CO,然后可利用AAS证明△AOD≌△EOC;(2)当∠B=∠AEB=45°时,四边形ACED是正方形,首先证明四边形ACED是平行四边形,再证对角线互相垂直且相等可得四边形ACED是正方形.解答:证明:(1)∵四边形ABCD是平行四边形,∴AD∥BC.∴∠D=∠OCE,∠DAO=∠E.∵O是CD的中点,∴OC=OD,在△ADO和△ECO中,,∴△AOD≌△EOC(AAS);(2)当∠B=∠AEB=45°时,四边形ACED是正方形.∵△AOD≌△EOC,∴OA=OE.又∵OC=OD,∴四边形ACED是平行四边形.∵∠B=∠AEB=45°,∴AB=AE,∠BAE=90°.∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∴∠COE=∠BAE=90°.∴▱ACED是菱形.∵AB=AE,AB=CD,∴AE=CD.∴菱形ACED是正方形.故答案为:45.点评:此题主要考查了全等三角形的判定与性质,以及正方形的判定,关键是掌握对角线互相垂直且相等的平行四边形是正方形.22.(10分)(•青岛)某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内?(每天的总成本=每件的成本×每天的销售量)考点:二次函数的应用.分析:(1)根据“利润=(售价﹣成本)×销售量”列出方程;(2)把(1)中的二次函数解析式转化为顶点式方程,利用二次函数图象的性质进行解答;(3)把y=4000代入函数解析式,求得相应的x值;然后由“每天的总成本不超过7000元”列出关于x的不等式50(﹣5x+550)≤7000,通过解不等式来求x的取值范围.解答:解:(1)y=(x﹣50)[50+5(100﹣x)]=(x﹣50)(﹣5x+550)=﹣5x2+800x﹣27500∴y=﹣5x2+800x﹣27500(50≤x≤100);(2)y=﹣5x2+800x﹣27500=﹣5(x﹣80)2+4500∵a=﹣5<0,∴抛物线开口向下.∵50≤x≤100,对称轴是直线x=80,∴当x=80时,y最大值=4500;(3)当y=4000时,﹣5(x﹣80)2+4500=4000,解得x1=70,x2=90.∴当70≤x≤90时,每天的销售利润不低于4000元.由每天的总成本不超过7000元,得50(﹣5x+550)≤7000,解得x≥82.∴82≤x≤90,∵50≤x≤100,∴销售单价应该控制在82元至90元之间.点评:本题考查二次函数的实际应用.此题为数学建模题,借助二次函数解决实际问题.23.(10分)(•青岛)数学问题:计算+++…+(其中m,n都是正整数,且m≥2,n≥1).探究问题:为解决上面的数学问题,我们运用数形结合的思想方法,通过不断地分割一个面积为1的正方形,把数量关系和几何图形巧妙地结合起来,并采取一般问题特殊化的策略来进行探究.探究一:计算+++…+.第1次分割,把正方形的面积二等分,其中阴影部分的面积为;第2次分割,把上次分割图中空白部分的面积继续二等分,阴影部分的面积之和为+;第3次分割,把上次分割图中空白部分的面积继续二等分,…;…第n次分割,把上次分割图中空白部分的面积最后二等分,所有阴影部分的面积之和为+++…+,最后空白部分的面积是.根据第n次分割图可得等式:+++…+=1﹣.探究二:计算+++…+.第1次分割,把正方形的面积三等分,其中阴影部分的面积为;第2次分割,把上次分割图中空白部分的面积继续三等分,阴影部分的面积之和为+;第3次分割,把上次分割图中空白部分的面积继续三等分,…;…第n次分割,把上次分割图中空白部分的面积最后三等分,所有阴影部分的面积之和为+++…+,最后空白部分的面积是.根据第n次分割图可得等式:+++…+=1﹣,两边同除以2,得+++…+=﹣.探究三:计算+++…+.(仿照上述方法,只画出第n次分割图,在图上标注阴影部分面积,并写出探究过程)解决问题:计算+++…+.(只需画出第n次分割图,在图上标注阴影部分面积,并完成以下填空)根据第n次分割图可得等式:+++…+=1﹣,所以,+++…+=﹣.拓广应用:计算+++…+.考点:作图—应用与设计作图;规律型:图形的变化类.专题:规律型.分析:探究三:根据探究二的分割方法依次进行分割,然后表示出阴影部分的面积,再除以3即可;解决问题:按照探究二的分割方法依次分割,然后表示出阴影部分的面积及,再除以(m﹣1)即可得解;拓广应用:先把每一个分数分成1减去一个分数,然后应用公式进行计算即可得解.解答:解:探究三:第1次分割,把正方形的面积四等分,其中阴影部分的面积为;第2次分割,把上次分割图中空白部分的面积继续四等分,阴影部分的面积之和为;第3次分割,把上次分割图中空白部分的面积继续四等分,…,第n次分割,把上次分割图中空白部分的面积最后四等分,所有阴影部分的面积之和为:+++…+,最后的空白部分的面积是,根据第n次分割图可得等式:+++…+=1﹣,两边同除以3,得+++…+=﹣;解决问题:+++…+=1﹣,+++…+=﹣;故答案为:+++…+=1﹣,﹣;拓广应用:+++…+,=1﹣+1﹣+1﹣+…+1﹣,=n﹣(+++…+),=n﹣(﹣),=n﹣+.点评:本题考查了应用与设计作图,图形的变化规律,读懂题目信息,理解分割的方法以及求和的方法是解题的关键.24.(12分)(•青岛)已知:如图,菱形ABCD中,对角线AC,BD相交于点O,且AC=12cm,BD=16cm.点P从点B出发,沿BA方向匀速运动,速度为1cm/s;同时,直线EF从点D 出发,沿DB方向匀速运动,速度为1cm/s,EF⊥BD,且与AD,BD,CD分别交于点E,Q,F;当直线EF停止运动时,点P也停止运动.连接PF,设运动时间为t(s)(0<t<8).解答下列问题:(1)当t为何值时,四边形APFD是平行四边形?(2)设四边形APFE的面积为y(cm2),求y与t之间的函数关系式;(3)是否存在某一时刻t,使S四边形APFE:S菱形ABCD=17:40?若存在,求出t的值,并求出此时P,E两点间的距离;若不存在,请说明理由.考点:四边形综合题.分析:(1))由四边形ABCD是菱形,OA=AC,OB=BD.在Rt△AOB中,运用勾股定理求出AB=10.再由△DFQ∽△DCO.得出=.求出DF.由AP=DF.求出t.(2)过点C作CG⊥AB于点G,由S菱形ABCD=AB•CG=AC•BD,求出CG.据S梯=(AP+DF)•CG.S△EFD=EF•QD.得出y与t之间的函数关系式;形APFD(3)过点C作CG⊥AB于点G,由S菱形ABCD=AB•CG,求出CG,由S四边形APFE:S=17:40,求出t,再由△PBN∽△ABO,求得PN,BN,据线段关系求出EM,菱形ABCDPM再由勾股定理求出PE.解答:解:(1)∵四边形ABCD是菱形,∴AB∥CD,AC⊥BD,OA=OC=AC=6,OB=OD=BD=8.在Rt△AOB中,AB==10.∵EF⊥BD,∴∠FQD=∠COD=90°.又∵∠FDQ=∠CDO,∴△DFQ∽△DCO.∴=.即=,∴DF=t.∵四边形APFD是平行四边形,∴AP=DF.即10﹣t=t,解这个方程,得t=.∴当t=s时,四边形APFD是平行四边形.(2)如图,过点C作CG⊥AB于点G,∵S菱形ABCD=AB•CG=AC•BD,即10•CG=×12×16,∴CG=.∴S梯形APFD=(AP+DF)•CG=(10﹣t+t)•=t+48.∵△DFQ∽△DCO,∴=.即=,∴QF=t.同理,EQ=t.∴EF=QF+EQ=t.∴S△EFD=EF•QD=×t×t=t2.∴y=(t+48)﹣t2=﹣t2+t+48.(3)如图,过点P作PM⊥EF于点M,PN⊥BD于点N,若S四边形APFE:S菱形ABCD=17:40,则﹣t2+t+48=×96,即5t2﹣8t﹣48=0,解这个方程,得t1=4,t2=﹣(舍去)过点P作PM⊥EF于点M,PN⊥BD于点N,当t=4时,∵△PBN∽△ABO,∴==,即==.∴PN=,BN=.∴EM=EQ﹣MQ==.PM=BD﹣BN﹣DQ==.在Rt△PME中,PE===(cm).点评:本题主要考查了四边形的综合知识,解题的关键是根据三角形相似比求出相关线段.。
(免费)2010年部分省市中考数学试题分类汇编 解直角三角形(含答案)
∴CD=ACtan30°=1,
∴AD= .
∴BD=2AD=4.
∴AB= ,
∴△ABC的周长=AB +AC+ BC=5+ + .
15.(2010江苏泰州)庞亮和李强相约周六去登山,庞亮从北坡山脚C处出发,以24米/分钟的速度攀登,同时,李强从南坡山脚B处出发.如图,已知小山北坡的坡度 ,山坡长为240米,南坡的坡角是45°.问李强以什么速度攀登才能和庞亮同时到达山顶A?(将山路AB、AC看成线段,结果保留根号)
(2010年福建省德化县).(本题满分10分)小明在某风景区的观景台O处观测到北偏东 的P处有一艘货船,该船正向南匀速航行,30分钟后再观察时,该船已航行到O的南偏东40 ,且与O相距2km的Q处.如图所示.
求: (1)∠OPQ和∠OQP的度数;
(2)货船的航行速度是多少km/h?
(结果精确到0.1km/h,已知sin =cos =0.7660,
【答案】A
2.(2010江苏宿迁)小明沿着坡度为1:2的山坡向上走了1000m,则他升高了()
A. mB.500mC. mD.1000m
【关键词】坡角
【答案】A
3.(2010年日照市)如图,在等腰Rt△ABC中,∠C=90o,AC=6,D是AC上一点,若tan∠DBA= ,则AD的长为
(A)2(B) (C) (D)1
【答案】2≦AD < 3
10.(2010重庆市潼南县)如图所示,小明在家里楼顶上的点A处,测量建在与小明家楼房同一水平线上相邻的电梯楼的高,在点A处看电梯楼顶部点B处的仰角为60°,在点A处看这栋电梯楼底部点C处的俯角为45°,两栋楼之间的距离为30m,则电梯楼的高BC为米(精确到0.1).(参考数据: )
(免费)2010年部分省市中考数学试题分类汇编 反比例函数(含答案)
2010年部分省市中考数学试题分类汇编反比例函数3. (2010年浙江省东阳县)某反比例函数的图象经过点(-2,3),则此函数图象也经过点 ( ) A .(2,-3) B .(-3,-3) C .(2,3) D .(-4,6)【关键词】反比例函数【答案】A8.(2010年山东省青岛市)函数y ax a =-与a y x=(a ≠0)在同一直角坐标系中的图象可能是( ).A .B .C .D .【关键词】一次函数与反比例函数【答案】D1、(2010年宁波市)已知反比例函数xy 1=,下列结论不正确的是( )A 、图象经过点(1,1)B 、图象在第一、三象限C 、当1>x 时,10<<yD 、当0<x 时,y 随着x 的增大而增大 【关键词】反比例函数 【答案】D10.(2010年安徽省芜湖市)二次函数y =ax 2+bx +c 的图象如图所示,反比例函数y = a x与正比例函数y =(b +c )x 在同一坐标系中的大致图象可能是()A .B .C .D .x【关键词】二次函数、一次函数、反比例函数图像的性质【答案】B 20.(2010浙江省喜嘉兴市)一辆汽车匀速通过某段公路,所需时间t (h )与行驶速度v (km/h )满足函数关系:t =k v,其图象为如图所示的一段曲线且端点为A (40,1)和B (m ,0.5).(1)求k 和m 的值;(2)若行驶速度不得超过60 km/h ,则汽车通过该路段最少需要多少时间?【关键词】反比例函数 【答案】(1)将)1,40(代入vk t =,得401k =,解得40=k .函数解析式为:vt 40=.当5.0=t 时,m405.0=,解得80=m .所以,40=k ,80=m . …4分 (2)令60=v ,得326040==t .结合函数图象可知,汽车通过该路段最少需要32小时. …4分8.(2010年浙江台州市)反比例函数xy 6=图象上有三个点)(11y x ,,)(22y x ,,)(33y x ,,其中3210x x x <<<,则1y ,2y ,3y 的大小关系是(▲)A .321y y y <<B .312y y y <<C .213y y y <<D .123y y y << 【关键词】反比例函数、增减性 【答案】B13.(2010年益阳市)如图6,反比例函数xk y =的图象位于第一、三象限,其中第一象限内的图象经过点A (1,2),请在第三象限内的图象上找一个你喜欢的点P ,你选择的P 点坐标为 . 【关键词】反比例函数 【答案】答案不唯一,x 、y 满足2=xy 且0,0<<y x 即可6.(2010江西) 如图,反例函数4y x=图象的对称轴的条数是( )A .0B .1C .2D .3y1ox2A【关键词】反比例函数、对称轴 【答案】C(2010年四川省眉山)如图,已知双曲线(0)k y k x=<经过直角三角形OAB 斜边OA 的中点D ,且与直角边AB 相交于点C .若点A 的 坐标为(6-,4),则△AOC 的面积为 A .12 B .9 C .6 D .4【关键词】中点坐标、反比例函数的待定系数法与三角形的面积 【答案】B(2010年广东省广州市)已知反比例函数y =8m x-(m 为常数)的图象经过点A (-1,6).(1)求m 的值;(2)如图9,过点A 作直线AC 与函数y =8m x-的图象交于点B ,与x 轴交于点C ,且AB =2BC ,求点C 的坐标.【关键词】反比例函数、相似三角形 【答案】解:(1)∵ 图像过点A (-1,6),861m -=-.∴m -8-1=6 (2)分别过点A 、B 作x 轴的垂线,垂足分别为点D 、E ,(第6题图)由题意得,AD =6,OD =1,易知,AD ∥BE , ∴△CBE ∽△CAD ,∴C B BE C A AD= .∵AB =2BC ,∴13C B C A=∴136BE =,∴BE =2.即点B 的纵坐标为2当y =2时,x =-3,易知:直线AB 为y =2x +8, ∴C (-4,0)22.(2010年重庆)已知:如图,在平面直角坐标系xOy 中,直线AB 与x 轴交于点A (-2,0),与反比例函数在第一象限内的图象交于点B(2,n),连接BO ,若S △AOB =4. (1)求该反比例函数的解析式和直线AB 的解析式; (2)若直线AB 与y 轴的交点为C,求△OCB 的面积.【答案】解:(1)由A(-2,0),得OA=2. ∵点B(2,n)在第一象限,S △AOB =4. ∴.421=⋅n OA ∴4=n .∴点B 的坐标是(2,4). 设该反比例函数的解析式为)0(≠=a xa y .将点B 的坐标代入,得,24a =∴8=a∴反比例函数的解析式为:xy 8=.设直线AB 的解析式为)0(≠+=k bkx y .将点A,B 的坐标分别代入,得⎩⎨⎧=+=+-.42,02b k b k解得⎩⎨⎧==.2,1b k∴直线AB 的解析式为.2+=x y(2)在2+=x y 中,令,0=x 得.2=y∴点C 的坐标是(0,2).∴OC=2.∴S △OCB =.2222121=⨯⨯=⋅B x OC5.(2010江苏泰州,5,3分)下列函数中,y 随x 增大而增大的是( )A.xy 3-= B. 5+-=x y C. 12y x = D. )0(212<=x x y【答案】C【关键词】一次函数、反比例函数、二次函数的增减性26.(2010江苏泰州,26,10分)保护生态环境,建设绿色社会已经从理念变为人们的行动.某化工厂2009年1 月的利润为200万元.设2009年1 月为第1个月,第x 个月的利润为y 万元.由于排污超标,该厂决定从2009年1 月底起适当限产,并投入资金进行治污改造,导致月利润明显下降,从1月到5月,y 与x 成反比例.到5月底,治污改造工程顺利完工,从这时起,该厂每月的利润比前一个月增加20万元(如图). ⑴分别求该化工厂治污期间及治污改造工程完工后y 与x 之间对应的函数关系式. ⑵治污改造工程完工后经过几个月,该厂月利润才能达到2009年1月的水平? ⑶当月利润少于100万元时为该厂资金紧张期,问该厂资金紧张期共有几个月?【答案】⑴①当1≤x ≤5时,设k y x=,把(1,200)代入,得200k =,即200y x=;②当5x =时,40y =,所以当x >5时,4020(5)2060y x x =+-=-;⑵当y =200时,20x -60=200,x=13,所以治污改造工程顺利完工后经过13-5=8个月后,该厂利润达到200万元; ⑶对于200y x=,当y =100时,x =2;对于y =20x -60,当y =100时,x =8,所以资金紧张的时间为8-2=6个月.【关键词】反比例函数、一次函数的性质及应用1. (2010年浙江省绍兴市)已知(x 1, y 1),(x 2, y 2),(x 3, y 3)是反比例函数xy 4-=的图象上的三个点,且x 1<x 2<0,x 3>0,则y 1,y 2,y 3的大小关系是( )A . y 3<y 1<y 2B . y 2<y 1<y 3C . y 1<y 2<y 3D . y 3<y 2<y 1 【答案】A2..(2010年宁德市)反比例函数1yx=(x >0)的图象如图所示,随着x 值的增大,y 值( ).A .减小B .增大C .不变 D【答案】A(2010年浙江省东阳市)某反比例函数的图象经过点(-2,3),则此函数图象也经过点 ( ) A .(2,-3)B .(-3,-3)C .(2,3)D .(-4,6)【关键词】反比例函数【答案】A1.(2010年四川省眉山市)如图,已知双曲线(0)k y k x=<经过直角三角形OAB 斜边OA 的中点D ,且与直角边AB 相交于点C .若点A 的 坐标为(6-,4),则△AOC 的面积为 A .12 B .9 C .6 D .4【关键词】反比例函数的比例系数的几何意义、中点坐标 【答案】B2.(2010年辽宁省丹东市)函数124y x =-中,自变量x 的取值范围是 .【关键词】反比例函数的意义 【答案】2x ≠3.(2010年辽宁省丹东市)写出具有“图象的两个分支分别位于第二、四象限内”的反 比例函数__ __(写出一个即可). 【关键词】反比例函数 【答案】xy 1-=等4.(2010年辽宁省丹东市) 某服装厂承揽一项生产夏凉小衫1600件的任务,计划用t 天完成.(1)写出每天生产夏凉小衫w (件)与生产时间t (天)(t >4)之间的函数关系式; (2)由于气温提前升高,商家与服装厂商议调整计划,决定提前4天交货,那么服装厂每天要多做多少件夏凉小衫才能完成任务?第8题图【关键词】反比例函数、分式的减法 【答案】解:(1) 1600w t=(2) 160016004t t--16001600(4)(4)t t t t --=-264006400()(4)4t t t t--=.或答:每天多做)4(6400-t t (或tt 464002-)件夏凉小衫才能完成任务.23. (2010重庆市潼南县)如图, 已知在平面直角坐标系xOy 中,一次函数b kx y +=(k ≠0)的图象与反比例函数xm y =(m ≠0)的图象相交于A 、B 两点,且点B 的纵坐标为21-,过点A 作AC ⊥x 轴于点C , AC =1,OC求:(1)求反比例函数的解析式;(2)求一次函数的解析式.解:(1)∵A C ⊥x 轴 AC=1 OC=2∴点A 的坐标为(2,1)------------------------------1分 ∵反比例函数xm y =的图像经过点A (2,1)∴ m =2------------------------------------------4分 ∴反比例函数的解析式为xy 2=---------------------5分(2)由(1)知,反比例函数的解析式为xy 2=∵反比例函数xy 2=的图像经过点B 且点B 的纵坐标为-21∴点B 的坐标为(-4,-21)---------------------------6分∵一次函数y =kx +b 的图象经过点A (2,1)点B (-4,-21)题图23∴⎪⎩⎪⎨⎧-=+-=+21412b k b k 解得:k =41 b =21----------------------------------9分∴一次函数的解析式为2141+=x y ----------------------10分24. (2010年福建晋江)已知:如图,有一块含︒30的直角三角板OAB 的直角边长BO 的长恰与另一块等腰直角三角板ODC 的斜边OC 的长相等,把该套三角板放置在平面直角坐标系中,且3=AB .(1)若双曲线的一个分支恰好经过点A ,求双曲线的解析式;(2)若把含︒30的直角三角板绕点O 按顺时针方向旋转后,斜边OA 恰好与x 轴重叠,点A 落在点A ',试求图中阴影部分的面积(结果保留π).解:(1) 在OBA Rt ∆中,︒=∠30AOB ,3=AB ,ABOB AOB =∠cot ,……………………………………………………………(1分)∴3330cot =︒⋅=AB OB ,………………………………(2分) ∴点()33,3A 设双曲线的解析式为()0≠=k xk y∴333k =,39=k ,则双曲线的解析式为xy 39=…………………………………………………(4分) (2) 在OBA Rt ∆中,︒=∠30AOB ,3=AB ,OAAB AOB =∠sin ,OA330sin =︒,∴6=OA .………………………………………(5分) 由题意得:︒=∠60AOC, ππ63606602'=⋅⋅=AOA S 扇形………………………(7分)在OCD Rt ∆中,︒=∠45DOC ,33==OB OC ,∴263223345cos =⋅=︒⋅=OC OD .………………………………………(8分)∴427263212122=⎪⎪⎭⎫ ⎝⎛==∆ODS ODC . ∴'27S 64O D C A O A S S π∆-=-阴扇形=……………………………………(10分)12. (2010浙江衢州)若点(4,m )在反比例函数8y x=(x ≠0)的图象上,则m 的值是 . 答案:2(2010年日照市)已知反比例函数y =x2,则下列点中在这个反比例函数图象的上的是(A )(-2,1) (B )(1,-2) (C )(-2,-2) (D )(1,2)3. (2010年浙江省东阳市)某反比例函数的图象经过点(-2,3),则此函数图象也经过点 ( ) A .(2,-3)B .(-3,-3)C .(2,3)D .(-4,6)【关键词】反比例函数 【答案】A17. (2010年安徽中考) 点P(1,a )在反比例函数xk y =的图象上,它关于y 轴的对称点在一次函数42+=x y 的图象上,求此反比例函数的解析式。
2010年山东青岛中考数学试题及答案
二○一○年山东省青岛市初级中学学业水平考试数学试题(考试时间:120分钟;满分:120分)三四合计合计人复核人题号一二15 16 17 18 19 20 21 22 23 24得分真情提示:亲爱的同学,欢迎你参加本次考试,祝你答题成功!1.请务必在指定位置填写座号,并将密封线内的项目填写清楚.2.本试题共有24道题.其中1—8题为选择题,请将所选答案的标号填写在第8题后面给出表格的相应位置上;9—14题为填空题,请将做出的答案填写在第14题后面给出表格的相应位置上;15—24题,请在试题给出的本题位置上做答.得分评卷人复核人一、选择题(本题满分24分,共有8道小题,每小题3分)下列每小题都给出标号为A、B、C、D的四个结论,其中只有一个是正确的.每小题选对得分;不选、选错或选出的标号超过一个的不得分.请将1—8各小题所选答案的标号填写在第8小题后面给出表格的相应位置上.1.下列各数中,相反数等于5的数是().A.-5 B.5 C.-D.2.如图所示的几何体的俯视图是().A. B. C. D.3.由四舍五入法得到的近似数8.8×103,下列说法中正确的是().A.精确到十分位,有2个有效数字 B.精确到个位,有2个有效数字C.精确到百位,有2个有效数字 D.精确到千位,有4个有效数字4.下列图形中,中心对称图形有().A.1个 B.2个 C.3个 D.4个5.某外贸公司要出口一批规格为150g的苹果,现有两个厂家提供货源,它们的价格相同,苹果的品质也相近. 质检员分别从甲、乙两厂的产品中随机抽取了50个苹果称重,并将所得数据处理后,制成如下表格. 根据表中信息判断,下列说法错误的是().个数平均质量(g)质量的方差甲厂50 150 2.6 乙厂50 150 3.1A.本次的调查方式是抽样调查B.甲、乙两厂被抽取苹果的平均质量相同C.被抽取的这100个苹果的质量是本次调查的样本D.甲厂苹果的质量比乙厂苹果的质量波动大6.如图,在Rt△ABC中,∠C = 90°,∠B = 30°,BC = 4 cm,以点C为圆心,以2 cm的长为半径作圆,则⊙C与AB的位置关系是().A.相离 B.相切 C.相交 D.相切或相交7.如图,△ABC的顶点坐标分别为A(4,6)、B(5,2)、C(2,1),如果将△ABC绕点C按逆时针方向旋转90°,得到△,那么点A的对应点的坐标是().A.(-3,3) B.(3,-3) C.(-2,4) D.(1,4)8.函数与(a≠0)在同一直角坐标系中的图象可能是().A. B. C. D.请将1—8各小题所选答案的标号填写在下表的相应位置上:题号 1 2 3 4 5 6 7 8答案得分评卷人复核人二、填空题(本题满分18分,共有6道小题,每小题3分)请将9—14各小题的答案填写在第14小题后面给出表格的相应位置上.9.化简:.10.如图,点A、B、C在⊙O上,若∠BAC = 24°,则∠BOC= °.11.某市为治理污水,需要铺设一段全长为300 m的污水排放管道.铺设120 m后,为了尽量减少施工对城市交通所造成的影响,后来每天的工效比原计划增加20%,结果共用30天完成这一任务.求原计划每天铺设管道的长度.如果设原计划每天铺设管道,那么根据题意,可得方程.12.一个口袋中装有10个红球和若干个黄球.在不允许将球倒出来数的前提下,为估计口袋中黄球的个数,小明采用了如下的方法:每次先从口袋中摸出10个球,求出其中红球数与10的比值,再把球放回口袋中摇匀.不断重复上述过程20次,得到红球数与10的比值的平均数为0.4.根据上述数据,估计口袋中大约有个黄球.13.把一张矩形纸片(矩形ABCD)按如图方式折叠,使顶点B和点D重合,折痕为EF.若AB = 3 cm,BC = 5 cm,则重叠部分△DEF的面积是 cm2.14.如图,是用棋子摆成的图案,摆第1个图案需要7枚棋子,摆第2个图案需要19枚棋子,摆第3个图案需要37枚棋子,按照这样的方式摆下去,则摆第6个图案需要枚棋子,摆第n个图案需要枚棋子.请将9—14各小题的答案填写在下表的相应位置上:15.如图,有一块三角形材料(△ABC),请你画出一个圆,使其与△ABC的各边都相切.解:结论:四、解答题(本题满分74分,共有9道小题)(1)解方程组:;(2)化简:.解:解:原式=.(本小题满分配餐公司为某学校提供A、B、C三类午餐供师生选择,三类午餐每份的价格分别是:A餐5元,B餐6元,C餐8元.为做好下阶段的营销工作,配餐公司根据该校上周A、B、C三类午餐购买情况,将所得的数据处理后,制成统计表(如下左图);根据以往销售量与平均每份利润之间的关系,制成统计图(如下右图).以往销售量与平均每份利润之间的关系统计图请根据以上信息,解答下列问题:(1)该校师生上周购买午餐费用的众数是元;(2)配餐公司上周在该校销售B餐每份的利润大约是元;(3)请你计算配餐公司上周在该校销售午餐约盈利多少元?解:(3)得分评卷人复核人18.(本小题满分6分)“五·一”期间,某书城为了吸引读者,设立了一个可以自由转动的转盘(如图,转盘被平均分成12份),并规定:读者每购买100元的书,就可获得一次转动转盘的机会,如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么读者就可以分别获得45元、30元、25元的购书券,凭购书券可以在书城继续购书.如果读者不愿意转转盘,那么可以直接获得10元的购书券.(1)写出转动一次转盘获得45元购书券的概率;(2)转转盘和直接获得购书券,你认为哪种方式对读者更合算?请说明理由.解:(1)(2)A小明家所在居民楼的对面有一座大厦AB,AB=米.为测量这座居民楼与大厦之间的距离,小明从自己家的窗户C处测得大厦顶部A的仰角为37°,大厦底部B的俯角为48°.求小明家所在居民楼与大厦的距离CD的长度.(结果保留整数)(参考数据:)解:D37°C48°B第19题图某学校组织八年级学生参加社会实践活动,若单独租用35座客车若干辆,则刚好坐满;若单独租用55座客车,则可以少租一辆,且余45个空座位.(1)求该校八年级学生参加社会实践活动的人数;(2)已知35座客车的租金为每辆320元,55座客车的租金为每辆400元.根据租车资金不超过1500元的预算,学校决定同时租用这两种客车共4辆(可以坐不满).请你计算本次社会实践活动所需车辆的租金.解:(1)(2)已知:如图,在正方形ABCD中,点E、F分别在BC和CD上,AE = AF.(1)求证:BE = DF;DA(2)连接AC交EF于点O,延长OC至点M,使OM = OA,连接EM、FM.判断四边形AEMF是什么特殊四边形?并证明你的结论.证明:(1)FOCEB第21题图M(2)某市政府大力扶持大学生创业.李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:.(1)设李明每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润?(2)如果李明想要每月获得2000元的利润,那么销售单价应定为多少元?(3)根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2000元,那么他每月的成本最少需要多少元?(成本=进价×销售量)解:(1)(2)(3)问题再现现实生活中,镶嵌图案在地面、墙面乃至于服装面料设计中随处可见.在八年级课题学习“平面图形的镶嵌”中,对于单种多边形的镶嵌,主要研究了三角形、四边形、正六边形的镶嵌问题.今天我们把正多边形的镶嵌作为研究问题的切入点,提出其中几个问题,共同来探究.我们知道,可以单独用正三角形、正方形或正六边形镶嵌平面.如右图中,用正方形镶嵌平面,可以发现在一个顶点O周围围绕着4个正方形的内角.试想:如果用正六边形来镶嵌平面,在一个顶点周围应该围绕着个正六边形的内角.问题提出如果我们要同时用两种不同的正多边形镶嵌平面,可能设计出几种不同的组合方案?问题解决猜想1:是否可以同时用正方形、正八边形两种正多边形组合进行平面镶嵌?分析:我们可以将此问题转化为数学问题来解决.从平面图形的镶嵌中可以发现,解决问题的关键在于分析能同时用于完整镶嵌平面的两种正多边形的内角特点.具体地说,就是在镶嵌平面时,一个顶点周围围绕的各个正多边形的内角恰好拼成一个周角.验证1:在镶嵌平面时,设围绕某一点有x个正方形和y个正八边形的内角可以拼成一个周角.根据题意,可得方程:,整理得:,我们可以找到惟一一组适合方程的正整数解为继续阅读。
2010青岛中考数学试题-答案
二○一○年山东省青岛市初级中学学业水平考试数学试题参考答案及评分标准说明:1.如果考生的解法与本解法不同,可参照本评分标准制定相应评分细则.2.当考生的解答在某一步出现错误,影响了后继部分时,如果这一步以后的解答未改变这道题的内容和难度,可视影响程度决定后面部分的给分,但不得超过后面部分应给分数的一半;如果这一步以后的解答有较严重的错误,就不给分.3.为阅卷方便,本解答中的推算步骤写得较为详细,但允许考生在解答过程中,合理省略非关键性的推算步骤.4.解答右端所注分数,表示考生正确做到这一步应得的累加分数.一、选择题(本题满分24分,共有8道小题,每小题3分)二、填空题(本题满分18分,共有6道小题,每小题3分)三、作图题(本题满分4分)15.正确画出两条角平分线,确定圆心;········ 2分确定半径;········ 3分正确画出圆并写出结论.········ 4分四、解答题(本题满分74分,共有9道小题)16.(本小题满分8分)(1)34194x yx y+=⎧⎨-=⎩②①解:②×4得:4416x y -=,③①+③得:7x = 35, 解得:x = 5.把x = 5代入②得,y = 1. ∴原方程组的解为51x y =⎧⎨=⎩.········ 4分(2)解:原式 =()()21222a a a a -+--()()()()222222a a a a a a +=-+-+-()()()()()2222222a a a a a a a -+=+--=+-12a =+. ········ 4分17.(本小题满分6分)解:(1)6元; ········ 2分 (2)3元;········ 4分 (3)1.5×1000+3×1700+3×400 = 1500+5100+1200 = 7800(元).答:配餐公司上周在该校销售午餐约盈利7800元. ········ 6分18.(本小题满分6分)解:(1)P (获得45元购书券) = 112; ········ 2分(2)12345302515121212⨯+⨯+⨯=(元). ∵15元>10元,∴转转盘对读者更合算.········ 6分19.(本小题满分6分)解:设CD = x . 在Rt △ACD 中,tan37ADCD ︒=, 则34AD x=, ∴34AD x =.在Rt△BCD 中,tan48° = BDCD,则1110BDx=, ∴1110BD x =. ……………………4分∵AD +BD = AB , ∴31180410x x +=. 解得:x ≈43.答:小明家所在居民楼与大厦的距离CD 大约是43米. ………………… 6分 20.(本小题满分8分)解:(1)设单独租用35座客车需x 辆,由题意得:3555(1)45x x =--,解得:5x =.∴35355175x =⨯=(人).答:该校八年级参加社会实践活动的人数为175人. ········ 3分 (2)设租35座客车y 辆,则租55座客车(4y -)辆,由题意得:3555(4)175320400(4)1500y y y y +-⎧⎨+-⎩≥≤, ······· 6分 解这个不等式组,得111244y ≤≤.∵y 取正整数,∴y = 2.∴4-y = 4-2 = 2.∴320×2+400×2 = 1440(元).所以本次社会实践活动所需车辆的租金为1440元. ········ 8分21.(本小题满分8分)证明:(1)∵四边形ABCD 是正方形,∴AB =AD ,∠B = ∠D = 90°. ∵AE = AF ,∴Rt Rt ABE ADF △≌△. ∴BE =DF .········ 4分 (2)四边形AEMF 是菱形.∵四边形ABCD 是正方形,∴∠BCA = ∠DCA = 45°,BC = DC . ∵BE =DF ,∴BC -BE = DC -DF . 即CE CF =. ∴OE OF =. ∵OM = OA ,∴四边形AEMF 是平行四边形. ∵AE = AF ,∴平行四边形AEMF 是菱形.········ 8分22.(本小题满分10分)解:(1)由题意,得:w = (x -20)·y=(x -20)·(10500x -+) 21070010000x x =-+-AD BEFOC第21题图352bx a=-=. 答:当销售单价定为35元时,每月可获得最大利润. ········ 3分(2)由题意,得:210700100002000x x -+-= 解这个方程得:x 1 = 30,x 2 = 40.答:李明想要每月获得2000元的利润,销售单价应定为30元或40元. ······ 6分(3)法一:∵10a =-<0,∴抛物线开口向下. ∴当30≤x ≤40时,w ≥2000. ∵x ≤32, ∴当30≤x ≤32时,w ≥2000. 设成本为P (元),由题意,得: 20(10500)P x =-+ 20010000x =-+ ∵200k =-<0,∴P 随x 的增大而减小.∴当x = 32时,P 最小=3600.答:想要每月获得的利润不低于2000元,每月的成本最少为3600元.········· 10分23.(本小题满分10分)解:3个; ········ 1分验证2:在镶嵌平面时,设围绕某一点有a 个正三角形和b 个正六边形的内角可以拼成一个周角.根据题意,可得方程:60120360a b +=. 整理得:26a b +=,可以找到两组适合方程的正整数解为22a b =⎧⎨=⎩和41a b =⎧⎨=⎩. ······ 3分结论2:镶嵌平面时,在一个顶点周围围绕着2个正三角形和2个正六边形的内角或者围绕着4个正三角形和1个正六边形的内角可以拼成一个周角,所以同时 用正三角形和正六边形两种正多边形组合可以进行平面镶嵌. ··· 5分猜想3:是否可以同时用正三角形、正方形和正六边形三种正多边形组合进行平面镶嵌? ········ 6分验证3:在镶嵌平面时,设围绕某一点有m 个正三角形、n 个正方形和c 个正六边形的内角可以拼成一个周角. 根据题意,可得方程: 6090120360m n c ++=, 整理得:23412m n c ++=,可以找到惟一一组适合方程的正整数解为121m n c =⎧⎪=⎨⎪=⎩. ········ 8分结论3:镶嵌平面时,在一个顶点周围围绕着1个正三角形、2个正方形和1个正六边形的内角可以拼成一个周角,所以同时用正三角形、正方形和正六边形三种正多边形组合可以进行平面镶嵌. (说明:本题答案不惟一,符合要求即可.) ········ 10分 24.(本小题满分12分)解:(1)∵点A 在线段PQ 的垂直平分线上,∴AP = AQ .∵∠DEF = 45°,∠ACB = 90°,∠DEF +∠ACB +∠EQC = 180°,法二:∵10a =-<0, ∴抛物线开口向下. ∴当30≤x ≤40时,w ≥2000. ∵x ≤32,∴30≤x ≤32时,w ≥2000. ∵10500y x =-+,100k =-<, ∴y 随x 的增大而减小. ∴当x = 32时,y 最小=180. ∵当进价一定时,销售量越小,成本越小,∴201803600⨯=(元).∴∠EQC = 45°.∴∠DEF =∠EQC . ∴CE = CQ .由题意知:CE = t ,BP =2 t , ∴CQ = t . ∴AQ = 8-t .在Rt△ABC 中,由勾股定理得:AB = 10 cm . 则AP = 10-2 t . ∴10-2 t = 8-t . 解得:t = 2.答:当t = 2 s 时,点A 在线段PQ 的垂直平分线上. ······ 4分(2)过P 作PM BE ⊥,交BE 于M ,∴90BMP ∠=︒.在Rt△ABC 和Rt△BPM 中,sin AC PMB AB BP==, ∴8210PM t = . ∴PM = 85t .∵BC = 6 cm ,CE = t , ∴ BE = 6-t .∴y = S △ABC -S △BPE =12BC AC ⋅-12BE PM ⋅= 1682⨯⨯-()186t t 25⨯-⨯=24242455t t -+ = ()2484355t -+. ∵405a =>,∴抛物线开口向上.∴当t = 3时,y 最小=845.答:当t = 3s 时,四边形APEC 的面积最小,最小面积为845cm 2. ··· 8分(3)假设存在某一时刻t ,使点P 、Q 、F 三点在同一条直线上.过P 作PN AC ⊥,交AC 于N , ∴90ANP ACB PNQ ∠=∠=∠=︒.∵PAN BAC ∠=∠,∴△PAN ∽△BAC .∴PN AP AN BC AB AC ==. ∴1026108PN t AN -==. ∴665PN t =-,885AN t =-.∵NQ = AQ -AN ,∴NQ = 8-t -(885t -) = 35t .∵∠ACB = 90°,B 、C (E )、F 在同一条直线上, ∴∠QCF = 90°,∠QCF = ∠PNQ . ∵∠FQC = ∠PQN , ∴△QCF ∽△QNP .∴PN NQ FC CQ = . ∴636559t tt t-=- . 图(2)图(3)∵0t <<4.5 ∴663595tt -=- 解得:t = 1.答:当t = 1s ,点P 、Q 、F 三点在同一条直线上. 12分。
2010年山东省青岛市中考数学试题及标准答案(word版)
2010年山东省青岛市中考数学试题(考试时间:120分钟;满分:120分)题号一二三四合计合计人复核人21222324得分真情提示:亲爱的同学,欢迎你参加本次考试,祝你答题成功!1.请务必在指定位置填写座号,并将密封线内的项目填写清楚.2.本试题共有24道题.其中1—8题为选择题,请将所选答案的标号填写在第8题后面给出表格的相应位置上;9—14题为填空题,请将做出的答案填写在第14题后面给出表格的相应位置上;15—24题,请在试题给出的本题位置上做答.得分评卷人复核人一、选择题(本题满分24分,共有8道小题,每小题3分)下列每小题都给出标号为A、B、C、D的四个结论,其中只有一个是正确的.每小题选对得分;不选、选错或选出的标号超过一个的不得分.请将1—8各小题所选答案的标号填写在第8小题后面给出表格的相应位置上.1.下列各数中,相反数等于5的数是().A.-5ﻩ B.5 ﻩ C.-15ﻩD.152.如图所示的几何体的俯视图是( ).ﻩA.B.ﻩ C.ﻩ D.3.由四舍五入法得到的近似数8.8×103,下列说法中正确的是().A.精确到十分位,有2个有效数字 B.精确到个位,有2个有效数字ﻩ C.精确到百位,有2个有效数字 D.精确到千位,有4个有效数字4.下列图形中,中心对称图形有( ).座号第2题图ﻩ A.1个 B .2个 ﻩ C.3个 D.4个5.某外贸公司要出口一批规格为150g 的苹果,现有两个厂家提供货源,它们的价格相同,苹果的品质也相近. 质检员分别从甲、乙两厂的产品中随机抽取了50个苹果称重,并将所得数据处理后,制成如下表格. 根据表中信息判断,下列说法错误的是( ).ﻩ A.本次的调查方式是抽样调查 B.甲、乙两厂被抽取苹果的平均质量相同C.被抽取的这100个苹果的质量是本次调查的样本D .甲厂苹果的质量比乙厂苹果的质量波动大6.如图,在Rt△ABC 中,∠C = 90°,∠B = 30°,B C = 4 cm ,以点C 为圆心,以2 c m的长为半径作圆,则⊙C 与AB 的位置关系是( ). A .相离ﻩB .相切 ﻩ C.相交 D.相切或相交7.如图,△ABC 的顶点坐标分别为A(4,6)、B (5,2)、C (2,1),如果将△ABC 绕点C按逆时针方向旋转90°,得到△''A B C ,那么点A 的对应点'A 的坐标是( ). ﻩA .(-3,3) ﻩB.(3,-3) C.(-2,4) ﻩD .(1,4)8.函数y ax a =-与ay x=(a ≠0)在同一直角坐标系中的图象可能是( ).A .ﻩ B.ﻩ C.ﻩ D.请将1—8各小题所选答案的标号填写在下表的相应位置上: 9.化简= . 10.如图,点A 、B 、C 在⊙O 上,若∠B AC = 24°,则∠BO C = °.11.某市为治理污水,需要铺设一段全长为300 m 的污水排放管道.第7题图 xOAB C第10题图·B C A 第6题图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二0一0年山东省青岛市初级中学学业水平考试数学试题(考试时间:120分钟;满分:120分)一、选择题(本题满分24分,共有8道小题,每小题3分)下列每小题都给出标号为A、B、C、D的四个结论,其中只有一个是正确的.每小题选对得分;不选、选错或选出的标号超过一个的不得分.请将1—8各小题所选答案的标号填写在第8小题后面给出表格的相应位置上.1.下列各数中,相反数等于5的数是().A.-5B.5 C.-15 D.152.如图所示的几何体的俯视图是().A.B.C.D.3.由四舍五入法得到的近似数8.8×103,下列说法中正确的是().A.精确到十分位,有2个有效数字 B.精确到个位,有2个有效数字C.精确到百位,有2个有效数字 D.精确到千位,有4个有效数字4.下列图形中,中心对称图形有().第2题图A .1个B .2个C .3个D .4个5.某外贸公司要出口一批规格为150g 的苹果,现有两个厂家提供货源,它们的价格相同,苹果的品质也相近. 质检员分别从甲、乙两厂的产品中随机抽取了50个苹果称重,并将所得数据处理后,制成如下表格. 根据表中信息判断,下列说法错误的是( ).A .本次的调查方式是抽样调查B .甲、乙两厂被抽取苹果的平均质量相同C .被抽取的这100个苹果的质量是本次调查的样本D .甲厂苹果的质量比乙厂苹果的质量波动大6.如图,在Rt △ABC 中,∠C = 90°,∠B = 30°,BC = 4 cm ,以点C 为圆心,以2 cm 的长为半径作圆,则⊙C 与AB 的位置关系是( ). A .相离 B .相切 C .相交第7题图BCA第6题图7.如图,△ABC 的顶点坐标分别为A (4,6)、B (5,2)、C (2,1),如果将△ABC 绕点C 按逆时针方向旋转90°,得到△''A B C ,那么点A 的对应点'A 的坐标是( ). A .(-3,3) B .(3,-3) C .(-2,4)D .(1,4)8.函数y ax a =-与a y x =(a ≠0)在同一直角坐标系中的图象可)A. B . C . D. 二、填空题(本题满分18分,共有6道小题,每小题3分)请将9—14各小题的答案填写在第14小题后面给出表格的相应位置上.9= .10.、C 在⊙O 上,若∠BAC = 24°,则∠BOC = °.11.某市为治理污水,需要铺设一段全长为300 m 的污水排放管道.铺设120 m 后,为了尽量减少施工对城市交通所造成的影响,后来每天的工效比原计划增加20%,结果共用30天完成这一任务.求原计划每天铺设管道的长度.如果设原计划每天铺设m x 管道,那么根据题意,可得方程 .12.一个口袋中装有10个红球和若干个黄球.在不允许将球倒出来数的前提下,为估计口袋中黄球的个数,小明采用了如下的方法:每次先从口袋中摸出10个球,求出其中红球数与10的比值,再把球放回口袋中摇xOABC第10题图·匀.不断重复上述过程20次,得到红球数与10的比值的平均数为0.4.根据上述数据,估计口袋中大约有 个黄球.13.把一张矩形纸片(矩形ABCD )按如图方式折叠,使顶点B 和点D 重合,折痕为EF .若AB = 3 cm ,BC = 5 cm ,则重叠部分△DEF 的面积是 cm 2.14.如图,是用棋子摆成的图案,摆第1个图案需要7枚棋子,摆第2个图案需要19枚棋子,摆第3个图案需要37枚棋子,按照这样的方式摆下去,则摆第6个图案需要 枚棋子,摆第n 个图案需要 枚棋子.三、作图题(本题满分4分)用圆规、直尺作图,不写作法,但要保留作图痕迹.15.如图,有一块三角形材料(△ABC ),请你画出一个圆,使其与△ABC 的各边都相切. 解:结论: 四、解答题(本题满分74分,共有9道小题) 16.(本小题满分8分,每题4分)(1)解方程组:34194x y x y +=⎧⎨-=⎩; (2)化简:22142a a a+--. 解: 解:原式=… 第14题图 A BC F E 'A 第13题图 ('B )D A BC17.(本小题满分6分)配餐公司为某学校提供A 、B 、C 三类午餐供师生选择,三类午餐每份的价格分别是:A 餐5元,B 餐6元,C 餐8元.为做好下阶段的营销工作,配餐公司根据该校上周A 、B 、C 三类午餐购买情况,将所得的数据处理后,制成统计表(如下左图);根据以往销售量与平均每份利润之间的关系,制成统计图(如下右图).以往销售量与平均每份利润之间的关系统计图一周销售量(份)300~800 (不含800) 800~1200 (不含1200)1200及 1200以上该校上周购买情况统计表请根据以上信息,解答下列问题:(1)该校师生上周购买午餐费用的众数是元;(2)配餐公司上周在该校销售B餐每份的利润大约是元;(3)请你计算配餐公司上周在该校销售午餐约盈利多少元?解:(3)18.(本小题满分6分)“五·一”期间,某书城为了吸引读者,设立了一个可以自由转动的转盘(如图,转盘被平均分成12份),并规定:读者每购买100元的书,就可获得一次转动转盘的机会,如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么读者就可以分别获得45元、30元、25元的购书券,凭购书券可以Array在书城继续购书.如果读者不愿意转转盘,那么可以直接获得10(1)写出转动一次转盘获得45元购书券的概率;(2)转转盘和直接获得购书券,你认为哪种方式对读者更合算?请说明理由. 解:(1) (2)19.(本小题满分6分)小明家所在居民楼的对面有一座大厦AB ,AB =80米.为测量这座居民楼与大厦之间的距离,小明从自己家的窗户C 处测得大厦顶部A 的仰角为37°,大厦底部B 的俯角为48°.求小明家所在居民楼与大厦的距离CD 的长度.(结果保留整数) (参考数据:oo o o 33711sin37tan37sin 48tan48541010≈≈≈≈,,,)解:37° 48°DCA20.(本小题满分8分)某学校组织八年级学生参加社会实践活动,若单独租用35座客车若干辆,则刚好坐满;若单独租用55座客车,则可以少租一辆,且余45个空座位.(1)求该校八年级学生参加社会实践活动的人数; (2)已知35座客车的租金为每辆320元,55座客车的租金为每辆400元.根据租车资金不超过1500元的预算,学校决定同时租用这两种客车共4辆(可以坐不满).请你计算本次社会实践活动所需车辆的租金. 解:(1) (2)B第19题图21.(本小题满分8分)已知:如图,在正方形ABCD 中,点E 、F 分别在BC 和CD 上,AE = AF . (1)求证:BE = DF ;(2)连接AC 交EF 于点O ,延长OC 至点M ,使OM = OA ,连接EM 、FM .判断四边形AEMF 是什么特殊四边形?并证明你的结论. 证明:(1) (2)22.(本小题满分10分)某市政府大力扶持大学生创业.李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y (件)与销售单价xA DB E FOCM第21题图(元)之间的关系可近似的看作一次函数:10500=-+.y x (1)设李明每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润?(2)如果李明想要每月获得2000元的利润,那么销售单价应定为多少元?(3)根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2000元,那么他每月的成本最少需要多少元?(成本=进价×销售量)解:(1)(2)(3)23.(本小题满分10分)问题再现现实生活中,镶嵌图案在地面、墙面乃至于服装面料设计中随处可见.在八年级课题学习“平面图形的镶嵌”中,对于单种多边形的镶嵌,主要研究了三角形、四边形、正六边形的镶嵌问题.今天我们把正多边形....的镶嵌作为研究问题的切入点,提出其中几个问题,共同来探究.我们知道,可以单独用正三角形、正方形或正六边形镶嵌平面.如右图中,用正方形镶嵌平面,可O以发现在一个顶点O周围围绕着4个正方形的内角.试想:如果用正六边形来镶嵌平面,在一个顶点周围应该围绕着个正六边形的内角.问题提出如果我们要同时用两种不同的正多边形镶嵌平面,可能设计出几种不同的组合方案?问题解决猜想1:是否可以同时用正方形、正八边形两种正多边形组合进行平面镶嵌?分析:我们可以将此问题转化为数学问题来解决.从平面图形的镶嵌中可以发现,解决问题的关键在于分析能同时用于完整镶嵌平面的两种正多边形的内角特点.具体地说,就是在镶嵌平面时,一个顶点周围围绕的各个正多边形的内角恰好拼成一个周角.验证1:在镶嵌平面时,设围绕某一点有x个正方形和y个正八边形的内角可以拼成一个周角.根据题意,可得方程:()82180903608x y -⨯+=,整理得:238x y +=,我们可以找到惟一一组适合方程的正整数解为12x y =⎧⎨=⎩. 结论1:镶嵌平面时,在一个顶点周围围绕着1个正方形和2个正八边形的内角可以拼成一个周角,所以同时用正方形和正八边形两种正多边形组合可以进行平面镶嵌.猜想2:是否可以同时用正三角形和正六边形两种正多边形组合进行平面镶嵌?若能,请按照上述方法进行验证,并写出所有可能的方案;若不能,请说明理由.验证2:结论2: .上面,我们探究了同时用两种不同的正多边形组合镶嵌平面的部分情况,仅仅得到了一部分组合方案,相信同学们用同样的方法,一定会找到其它可能的组合方案.问题拓广请你仿照上面的研究方式,探索出一个同时用三种不同的正多边形组合进行平面镶嵌的方案,并写出验证过程.猜想3:.验证3:结论3: .24.(本小题满分12分)已知:把Rt △ABC 和Rt △DEF 按如图(1)摆放(点C 与点E 重合),点B 、C (E )、F 在同一条直线上.∠ACB = ∠EDF = 90°,∠DEF = 45°,AC = 8 cm ,BC = 6 cm ,EF = 9 cm .如图(2),△DEF 从图(1)的位置出发,以 1 cm/s 的速度沿CB 向△ABC 匀速移动,在△DEF 移动的同时,点P 从△ABC 的顶点B 出发,以2 cm/s 的速度沿BA 向点A 匀速移动.当△DEF 的顶点D 移动到AC 边上时,△DEF 停止移动,点P 也随之停止移动.DE 与AC 相交于点Q ,连接PQ ,设移动时间为t (s )(0<t <4.5).解答下列问题:(1)当t 为何值时,点A 在线段PQ 的垂直平分线上? (2)连接PE ,设四边形APEC 的面积为y (cm 2),求y 与t 之间的函数关系式;是否存在某一时刻t ,使面积y 最小?若存在,求出y 的最小值;若不存在,说明理由.(3)是否存在某一时刻t ,使P 、Q 、F 三点在同一条直线上?若存在,求出此时的值;若不存在,说明理由.(图(3)供同学们做题使用)ADBE )图(1)图(2)ABC图(3)(用圆珠笔或钢笔画图)解:(1)(2)(3)二○一○年山东省青岛市初级中学学业水平考试数学试题参考答案及评分标准说明:1.如果考生的解法与本解法不同,可参照本评分标准制定相应评分细则.2.当考生的解答在某一步出现错误,影响了后继部分时,如果这一步以后的解答未改变这道题的内容和难度,可视影响程度决定后面部分的给分,但不得超过后面部分应给分数的一半;如果这一步以后的解答有较严重的错误,就不给分.3.为阅卷方便,本解答中的推算步骤写得较为详细,但允许考生在解答过程中,合理省略非关键性的推算步骤.4.解答右端所注分数,表示考生正确做到这一步应得的累加分数.一、选择题(本题满分24分,共有8道小题,每小题3分)二、填空题(本题满分18分,共有6道小题,每小题3分)三、作图题(本题满分4分)15.正确画出两条角平分线,确定圆心;··· 2分 确定半径;··· 3分正确画出圆并写出结论. ··· 4分四、解答题(本题满分74分,共有9道小题) 16.(本小题满分8分)(1)34194x y x y +=⎧⎨-=⎩解:②×4得:4416x y -=,③①+③得:7x = 35, 解得:x = 5.把x = 5代入②得,y = 1.∴原方程组的解为51x y =⎧⎨=⎩. ··· 4分 (2)解:原式 =()()21222a a a a -+--②①()()()()222222a a a a a a +=-+-+-()()()()()2222222a a a a a a a -+=+--=+-12a =+.··· 4分17.(本小题满分6分)解:(1)6元; ··· 2分 (2)3元;··· 4分(3)1.5×1000+3×1700+3×400 = 1500+5100+1200 = 7800(元).答:配餐公司上周在该校销售午餐约盈利7800元.··· 6分 18.(本小题满分6分)解:(1)P (获得45元购书券) = 112; ··· 2分(2)12345302515121212⨯+⨯+⨯=(元). ∵15元>10元,∴转转盘对读者更合算. ··· 6分19.(本小题满分6分)解:设CD = x . 在Rt △ACD 中,tan37ADCD︒=,则34ADx=, ∴34AD x =. 在Rt △BCD 中,tan48° = BDCD ,则1110BD x=, ∴1110BD x =.……………………4分∵AD +BD = AB ,∴31180410x x +=. 解得:x ≈43.答:小明家所在居民楼与大厦的距离CD 大约是43米. ………………… 6分 20.(本小题满分8分)解:(1)设单独租用35座客车需x 辆,由题意得:3555(1)45x x =--,解得:5x =.∴35355175x =⨯=(人).答:该校八年级参加社会实践活动的人数为175人.··· 3分(2)设租35座客车y 辆,则租55座客车(4y -)辆,由题意得:3555(4)175320400(4)1500y y y y +-⎧⎨+-⎩≥≤,······················ 6分解这个不等式组,得111244y ≤≤. ∵y 取正整数, ∴y = 2.∴4-y = 4-2 = 2.∴320×2+400×2 = 1440(元). 所以本次社会实践活动所需车辆的租金为1440元.··· 8分21.(本小题满分8分)证明:(1)∵四边形ABCD 是正方形,∴AB =AD ,∠B = ∠D = 90°. ∵AE = AF ,∴Rt Rt ABE ADF △≌△. ∴BE =DF . ··· 4分 (2)四边形AEMF 是菱形. ∵四边形ABCD 是正方形,∴∠BCA = ∠DCA = 45°,BC = DC .∵BE =DF ,∴BC -BE = DC -DF . 即CE CF =.∴OE OF =.∵OM = OA ,∴四边形AEMF 是平行四边形. ∵AE = AF ,∴平行四边形AEMF 是菱形. ··· 8分22.(本小题满分10分)A DB E FOCM 第21题图解:(1)由题意,得:w = (x -20)·y=(x -20)·(10500x -+) 21070010000x x =-+- 352b x a=-=. 答:当销售单价定为35元时,每月可获得最大利润. 3分(2)由题意,得:210700100002000x x -+-=解这个方程得:x 1 = 30,x 2 = 40.答:李明想要每月获得2000元的利润,销售单价应定为30元或40元.··· 6分 (3)法一:∵10a =-<0, ∴抛物线开口向下. ∴当30≤x ≤40时,w ≥2000. ∵x ≤32, ∴当30≤x ≤32时,w ≥2000. 设成本为P (元),由题意,得: 20(10500)P x =-+ 20010000x =-+ ∵200k =-<0,∴P 随x 的增大而减小.∴当x = 32时,P 最小=3600.答:想要每月获得的利润不低于2000元,每月的成本最少为3600元.10分23.(本小题满分10分)解:3个;····················· 1分法二:∵10a =-<0, ∴抛物线开口向下.∴当30≤x ≤40时,w ≥2000.∵x ≤32,∴30≤x ≤32时,w ≥2000.∵10500y x =-+,100k =-<, ∴y 随x 的增大而减小.∴当x = 32时,y 最小=180.∵当进价一定时,销售量越小, 成本越小,∴201803600⨯=(元).验证2:在镶嵌平面时,设围绕某一点有a 个正三角形和b 个正六边形的内角可以拼成一个周角.根据题意,可得方程:60120360a b +=.整理得:26a b +=,可以找到两组适合方程的正整数解为22a b =⎧⎨=⎩和41a b =⎧⎨=⎩. ··········· 3分 结论2:镶嵌平面时,在一个顶点周围围绕着2个正三角形和2个正六边形的内角或者围绕着4个正三角形和1个正六边形的内角可以拼成一个周角,所以同时用正三角形和正六边形两种正多边形组合可以进行平面镶嵌.5分 猜想3:是否可以同时用正三角形、正方形和正六边形三种正多边形组合进行平面镶嵌?··· 6分 验证3:在镶嵌平面时,设围绕某一点有m 个正三角形、n 个正方形和c 个正六边形的内角可以拼成一个周角. 根据题意,可得方程:6090120360m n c ++=,整理得:23412m n c ++=,可以找到惟一一组适合方程的正整数解为121mnc=⎧⎪=⎨⎪=⎩. ···8分结论3:镶嵌平面时,在一个顶点周围围绕着1个正三角形、2个正方形和1个正六边形的内角可以拼成一个周角,所以同时用正三角形、正方形和正六边形三种正多边形组合可以进行平面镶嵌. (说明:本题答案不惟一,符合要求即可.)···10分24.(本小题满分12分)解:(1)∵点A在线段PQ的垂直平分线上,∴AP = AQ.∵∠DEF = 45°,∠ACB= 90°,∠DEF+∠ACB +∠EQC = 180°,∴∠EQC = 45°.∴∠DEF =∠EQC.∴CE = CQ.由题意知:CE = t,BP =2 t,∴CQ = t.∴AQ = 8-t.在Rt△ABC中,由勾股定理得:AB= 10 cm .则AP = 10-2 t.∴10-2 t = 8-t.解得:t = 2.答:当t = 2 s 时,点A 在线段PQ 的垂直平分线上. ·········· 4分(2)过P 作PM BE ⊥,交BE 于M∴90BMP ∠=︒. 在Rt △ABC 和Rt △BPM∴8210PM t = . ∴PM = 85t . ∵BC = 6 cm ,CE = t , ∴ BE = 6-t .∴y = S △ABC -S △BPE =12BC AC ⋅-12BE PM ⋅= 1682⨯⨯-()186t t 25⨯-⨯=24242455t t -+ = ()2484355t -+.∵405a =>,∴抛物线开口向上.∴当t = 3时,y 最小=845. 答:当t = 3s 时,四边形APEC 的面积最小,最小面积为845cm 2. 8分 (3)假设存在某一时刻t ,使点P 、Q 、F 三点在同一条直线上.过P 作PN AC ⊥,交AC 于N ,∴90ANP ACB PNQ ∠=∠=∠=︒.∵PAN BAC ∠=∠,∴△PAN ∴PN AP AN BC AB AC==. ∴1026108PN t AN -==. ∴665PN t =-,885AN t =-.∵NQ = AQ -AN ,∴NQ = 8-t -(885t -) = 35t . ∵∠ACB = 90°,B 、C (E )、F 在同一条直线上,图(2) 图(3)∴∠QCF = 90°,∠QCF = ∠PNQ . ∵∠FQC = ∠PQN ,∴△QCF ∽△QNP . ∴PN NQ FC CQ = . ∴636559t t t t-=- . ∵0t <<4.5 ∴663595t t -=-解得:t = 1.答:当t = 1s ,点P 、Q 、F 三点在同一条直线上. 12分。