高中物理 第四章 波粒二象性 第3节 光的波粒二象性教学案 教科版选修35

合集下载

高中物理 教科版选修3-5 4.3 光的波粒二象性 学案

高中物理 教科版选修3-5 4.3 光的波粒二象性 学案

3光的波粒二象性一、康普顿效应1.光的散射光子在介质中与物质微粒相互作用,因而传播方向发生改变,这种现象叫做光的散射.2.康普顿效应美国物理学家康普顿在研究石墨对X射线的散射时,发现在散射的X射线中,除了与入射波长λ0相同的成分外,还有波长大于λ0的成分,这个现象称为康普顿效应.3.康普顿效应的意义康普顿效应表明光子除了具有能量之外,还具有动量,深入揭示了光的粒子性的一面.4.光子的动量(1)表达式:p=h λ.(2)说明:在康普顿效应中,入射光子与晶体中电子碰撞时,把一部分动量转移给电子,光子的动量变小.因此,有些光子散射后波长变大.二、光的波粒二象性1.光的波粒二象性(1)光的干涉和衍射现象说明光具有波动性,光电效应和康普顿效应说明光具有粒子性.(2)光子的能量ε=hν,光子的动量p=h λ.(3)光子既有粒子的特征,又有波的特征;即光具有波粒二象性.2.对光的波粒二象性的理解(1)大量光子产生的效果显示出波动性;个别光子产生的效果显示出粒子性.(2)光子的能量与其对应的频率成正比,而频率是描述波动性特征的物理量,因此ε=hν揭示了光的粒子性和波动性之间的密切联系.(3)频率低、波长长的光,波动性特征显著,而频率高、波长短的光,粒子性特征显著.(4)光在传播时体现出波动性,在与其他物质相互作用时体现出粒子性.光的粒子性和波动性组成一个有机的统一体.三、光是一种概率波在双缝干涉实验中,屏上亮纹的地方,是光子到达概率大的地方,暗纹的地方是光子到达概率小的地方.所以光波是一种概率波.即光波在某处的强度代表着光子在该处出现概率的大小.在生活中我们会拍很多照片,通常我们都认为,这是由人和景物发出或反射的光波经过照相机的镜头聚焦在底片上形成的.实际上照片上的图像也是由光子撞击底片,使上面的感光材料发生化学反应形成的.下图是用不同曝光量洗印的照片,请你根据自己对光的理解作出说明.用不同曝光量洗印的照片提示:光是一种概率波,在照片的有些地方光子出现的概率大,有些地方光子出现的概率小.在曝光量很小的情况下,在照片上出现的是一些随机分布的光点,随着曝光量的增大,图像逐渐清晰起来.考点一对康普顿效应的理解假定X射线光子与电子发生弹性碰撞,这种碰撞跟台球比赛中的两球碰撞很相似.按照爱因斯坦的光子说,一个X射线光子不仅具有能量E=hν,而且还有动量.如图所示.这个光子与静止的电子发生弹性斜碰,光子把部分能量转移给了电子,能量由hν减小为hν′,因此频率减小,波长增大.同时,光子还使电子获得一定的动量.这样就圆满地解释了康普顿效应.【例1】康普顿效应证实了光子不仅具有能量,也有动量.如图给出了光子与静止电子碰撞后,电子的运动方向,则碰后光子可能沿方向________运动,并且波长________(填“不变”“变短”或“变长”).根据碰撞过程中动量、能量均守恒以及动量是矢量分析此题.【解析】因光子与电子的碰撞过程动量守恒,所以碰撞之后光子和电子的总动量的方向与光子碰前动量的方向一致,可见碰后光子可能沿1方向运动,不可能沿2或3方向;通过碰撞,光子将一部分能量转移给电子,能量减少,由E=hν知,频率变小,再根据c=λν知,波长变长.【答案】1变长总结提能①宏观世界中物体间的相互作用过程中所遵循的规律,也适用于微观粒子的相互作用过程;②康普顿效应进一步揭示了光的粒子性,也再次证明了爱因斯坦光子说的正确性.科学研究证明,光子有能量也有动量,当光子与电子碰撞时,光子的一些能量转移给了电子.则在光子与电子的碰撞过程中,下列说法中正确的是(D)A.能量守恒,动量守恒,且碰撞后光子的波长变短B.能量不守恒,动量不守恒,且碰撞后光子的波长变短C.只有碰撞前后两者的运动方向在一条直线上,能量和动量才守恒,且碰撞后光子的波长变长D.能量守恒,动量守恒,且碰撞后光子的波长变长解析:不论碰撞前后光子和电子的运动方向是否在一条直线上,能量和动量均守恒;由于碰撞过程中光子的一部分能量转移给了电子,由E=hν可知,光子的能量E变小使得频率ν变小,由λ=c知ν波长λ变长.考点二光的波粒二象性1.大量光子产生的效果显示出波动性;个别光子产生的效果显示出粒子性.2.光子和电子、质子等实物粒子一样,具有能量和动量.和其他物质相互作用时,粒子性起主导作用;在光的传播过程中,光子在空间各点出现的可能性的大小(概率),由波动性起主导作用,因此称光波为概率波.3.频率低、波长长的光,波动性特征显著,而频率高、波长短的光,粒子性特征显著.4.光子的能量与其对应的频率成正比,而频率是描述波动性特征的物理量,因此ε=hν揭示了光的粒子性和波动性之间的密切联系.【例2】下列有关光的波粒二象性的说法中,正确的是() A.有的光是波,有的光是粒子B.光子与电子是同样的一种粒子C.光的波长越长,其波动性越显著;波长越短,其粒子性越显著D.大量光子的行为往往显示出粒子性(1)在宏观现象中,波与粒子是对立的概念,而在微观世界中,波与粒子可以统一.(2)光具有波粒二象性是指光在传播过程中和其他物质作用时分别表现出波和粒子的特性.【解析】一切光都具有波粒二象性,光的有些行为(如干涉、衍射)表现出波动性,有些行为(如光电效应)表现出粒子性,所以,不能说有的光是波,有的光是粒子.虽然光子与电子都是微观粒子,都具有波粒二象性,但电子是实物粒子,有静止质量,光子不是实物粒子,没有静止质量,电子是以实物形式存在的物质,光子是以场形式存在的物质,所以,不能说光子与电子是同样的一种粒子.光的波粒二象性的理论和实验表明,大量光子的行为表现出波动性,个别光子的行为表现出粒子性.光的波长越长,衍射性越好,即波动性越显著,光的波长越短,其光子能量越大,个别或少数光子的作用就足以引起光接收装置的反应,所以其粒子性就很显著,故选项C正确,A、B、D错误.【答案】 C(多选)人类对光的本性的认识经历了曲折的过程.下列关于光的本性的陈述符合科学规律或历史事实的是(BCD)A.牛顿的“微粒说”与爱因斯坦的“光子说”本质上是一样的B.光的双缝干涉实验显示了光具有波动性C.麦克斯韦预言了光是一种电磁波D.光具有波粒二象性解析:牛顿的“微粒说”认为光是一种物质微粒,爱因斯坦的“光子说”认为光是一份一份不连续的能量,显然选项A错误;干涉、衍射是波的特性,光能发生干涉说明光具有波动性,选项B正确;麦克斯韦根据光的传播不需要介质以及电磁波在真空中的传播速度与光速近似相等,从而认为光是一种电磁波,后来赫兹用实验证实了光的电磁说,选项C正确;光具有波动性与粒子性,称为光的波粒二象性,选项D正确.考点三对概率波的理解1.单个粒子运动的偶然性我们可以知道粒子落在某点的概率,但不能预言粒子落在什么位置,即粒子到达什么位置是随机的,是预先不确定的.2.大量粒子运动的必然性由波动规律,我们可以准确地知道,大量粒子运动时的统计规律,因此我们可以对宏观现象进行预言.3.概率波体现了波粒二象性的和谐统一概率波的主体是光子、实物粒子,体现了粒子性的一面;同时粒子在某一位置出现的概率受波动规律支配,体现了波动性的一面,所以说,概率波将波动性和粒子性统一在一起.【例3】(多选)物理学家做了一个有趣的实验:在双缝干涉实验中,在光屏处放上照相底片,若减弱光的强度,使光子只能一个一个地通过狭缝,实验结果表明,如果曝光时间不太长,底片上只出现一些不规则的点子;如果曝光时间足够长,底片上就出现了规则的干涉条纹,对这个实验结果有下列认识,其中正确的是() A.曝光时间不长时,光子的能量太小,底片上的条纹看不清楚,故出现不规则的点子B.单个光子的运动没有确定的轨道C.干涉条纹中明亮的部分是光子到达机会较多的地方D.只有大量光子的行为才能表现出波动性光是概率波,单个光子的运动具有偶然性,大量光子的运动具有必然性.【解析】光波是概率波,单个光子没有确定的轨道,其到达某点的概率受波动规律支配,大量光子的行为符合统计规律,受波动规律支配,才表现出波动性,出现干涉中的亮纹或暗纹,故A错误,B、D正确;干涉条纹中的亮纹处是光子到达机会多的地方,暗纹处是光子到达机会少的地方,但也有光子到达,故C正确.故选BCD.【答案】BCD总结提能物质波是一种概率波,但不能将实物粒子的波动性等同于宏观的机械波.更不能理解为粒子做曲线运动;单个光子到达的位置是不确定的,大量光子遵循波动规律.(多选)在单缝衍射实验中,中央亮纹的光强占从单缝射入的整个光强的95%以上,假设现在只让一个光子通过单缝,那么该光子(CD)A.一定落在中央亮纹处B.一定落在亮纹处C.可能落在暗纹处D.落在中央亮纹处的可能性最大解析:根据光是概率波的概念,对于一个光子通过单缝落在何处,是不可确定的,但概率最大的是落在中央亮纹处,可达95%以上,当然也可落在其他亮纹处,还可能落在暗纹处,不过,落在暗纹处的概率很小,故C、D选项正确.1.关于光的波粒二象性,下列说法中不正确的是(C)A.波粒二象性指光有时表现为波动性,有时表现为粒子性B.光波频率越高,粒子性越明显C.能量较大的光子其波动性越显著D.个别光子易表现出粒子性,大量光子易表现出波动性解析:光的波粒二象性是指光波同时具有波和粒子的双重性质,但有时表现为波动性,有时表现为粒子性,选项A正确;在光的波粒二象性中,频率越大的光,光子的能量越大,粒子性越显著,频率越小的光其波动性越显著,选项B正确,C错误;光既具有粒子性,又具有波动性,大量的光子波动性比较明显,个别光子粒子性比较明显,选项D正确.2.有关光的本性,下列说法正确的是(D)A.光既具有波动性,又具有粒子性,这是互相矛盾和对立的B.光的波动性类似于机械波,光的粒子性类似于质点C.大量光子才具有波动性,个别光子只具有粒子性D.由于光既具有波动性,又具有粒子性,无法只用其中一种去说明光的一切行为,只能认为光具有波粒二象性解析:19世纪初,人们成功地在实验中观察到了光的干涉、衍射现象,这属于波的特征,微粒说无法解释.但到了19世纪末又发现了光的新现象——光电效应,证实光具有粒子性.这种现象波动说不能解释,因此,光既具有波动性,又具有粒子性,但不同于宏观的机械波和机械粒子.波动性和粒子性是光在不同的情况下的不同表现,是同一物体的两个不同侧面,不同属性,我们无法用其中的一种去说明光的一切行为,只能认为光具有波粒二象性,选项D正确.3.光电效应和康普顿效应都包含有电子与光子的相互作用过程,对此下列说法正确的是(D)A.两种效应中电子与光子组成的系统都服从动量守恒定律和能量守恒定律B.两种效应都相当于电子与光子的弹性碰撞过程C.两种效应都属于吸收光子的过程D.光电效应是吸收光子的过程,而康普顿效应相当于光子和电子弹性碰撞的过程解析:光电效应吸收光子放出电子,其过程能量守恒,但动量不守恒,康普顿效应相当于光子与电子弹性碰撞的过程,并且遵守动量守恒定律和能量守恒定律,两种效应都说明光具有粒子性,故D正确.4.下列说法正确的是(B)A.概率波就是机械波B.物质波是一种概率波C.概率波和机械波的本质是一样的,都能发生干涉和衍射现象D.在光的双缝干涉实验中,若有一个光子,则能确定这个光子落在哪个点上解析:概率波与机械波是两个概念,本质不同,选项A、C错误;物质波是一种概率波,符合概率波的特点;在光的双缝干涉实验中,若有一个光子,则不能确定这个光子落在哪个点上,选项D错误,B正确.5.(多选)利用金属晶格(大小约10-10m)作为障碍物观察电子的衍射图样,方法是让电子通过电场加速后,让电子束照射到金属晶格上,从而得到电子的衍射图样,如图所示.已知电子质量为m,电荷量为e,初速度为0,加速电压为U,普朗克常量为h,则下列说法中正确的是(AB)A.该实验说明了电子具有波动性B.实验中电子束的德布罗意波的波长为λ=h2meUC.加速电压U越大,电子的衍射现象越明显D.若用相同动能的质子替代电子,衍射现象将更加明显解析:得到电子的衍射图样,说明电子具有波动性,故A项正确;由德布罗意波波长公式λ=hp,而动量p=2mE k=2meU,所以λ=h2meU,B项正确;从公式λ=h2meU可知,加速电压越大,电子波长越小,衍射现象就越不明显;用相同动能的质子替代电子,质子的波长变小,衍射现象相比电子不明显,故C、D项错误.。

教科版高中物理选修3-5课件第四章波粒二象性第3节光的波粒二象性第4节实物粒子的波粒二象性第5节不确定关系

教科版高中物理选修3-5课件第四章波粒二象性第3节光的波粒二象性第4节实物粒子的波粒二象性第5节不确定关系
现在只让一个光子通过单缝,那么该光子( A.一定落在中央亮纹处 B.一定落在亮纹处 C.可能落在暗纹处 D.落在中央亮纹处的可能性最大
解析:选CD.根据光的概率波的概念,对于一个 光子通过单缝落在何处,是不可确定的,但概 率最大的是落在中央亮纹处,可达95%以 上.当然也可能落在其他亮纹处,还可能落在 暗纹处,只不过落在暗纹处的概率很小而已, 故只有C、D正确.
A.①②③对
C.①③④对D.②③④对
B.①②④对
答案:A
三、对德布罗意物质波的理解 1.任何物体,小到电子、质子,大到行星、太 阳都存在波动性,我们之所以观察不到宏观物 体的波动性,是因为宏观物体对应的波长太小 的缘故. 2.德布罗意波是一种概率波,粒子在空间各处
出现的概率受波动规律支配,不要以宏观观点
第3节 光的波粒二象性
第4节 实物粒子的波粒二象性
第5节 不确定关系
课标定位 课前自主学案 第 5 节
Байду номын сангаас
核心要点突破
课堂互动讲练 知能优化训练
课标定位
1.知道康普顿效应,理解康普顿效应实验现象. 2.知道光具有波粒二象性,且光是概率波. 3.理解德布罗意物质波假说,知道一切实物粒子都 具有波粒二象性. 4.理解不确定关系,了解不确定关系在微观世界与 宏观世界中的不同作用.
子性,大量光子表现出光的波动性.如果时间 足够长,通过狭缝的光子数也就足够多,粒子 的分布遵从波动规律,底片上将会显示出衍射
图样,A、D选项正确.单个光子通过狭缝后,
路径是随机的,底片上也不会出现完整的衍射
图样,B、C选项错.
【答案】 AD
变式训练2
在单缝衍射实验中,中央亮纹的光 )
强占从单缝射入的整个光强的95%以上.假设

高中物理 第4章 波粒二象性 粒子的波动性、不确定关系学案 教科版选修3-5

高中物理 第4章 波粒二象性 粒子的波动性、不确定关系学案 教科版选修3-5

—————————— 新学期 新成绩 新目标 新方向 ——————————粒子的波动性、不确定关系【学习目标】1.知道康普顿效应及其理论解释;2.知道光具有波粒二象性,从微观角度理解光的波动性和粒子性; 3.了解概率波的含义,了解光是一种概率波. 4.知道微观粒子和光子一样具有波粒二象性;5.掌握波长hpλ=的应用; 6.知道“不确定性关系”以及氢原子中“电子云”的具体含义.【要点梳理】要点一、粒子的波动性 1.光的散射光在介质中与物质微粒相互作用,因而传播方向发生改变,这种现象叫做光的散射. 2.康普顿效应(1)美国物理学家康普顿在研究X 射线通过金属、石墨等物质的散射时,发现在散射的X 射线中,除了有与入射波长0λ相同的成分外,还有波长大于0λ的成分.人们把这种波长变长的现象叫做康普顿效应. (2)经典电磁理论的困难:散射前后光的频率不变,因而散射光的波长与入射光的波长应该相同,不应出现0λλ>的散射光.(3)爱因斯坦的光子说:光子不仅具有能量E h ν=,而且光子具有动量h hp c νλ==. (4)康普顿用光子说成功解释了康普顿效应:他认为散射后X 射线波长改变,是X 射线光子和物质中电子碰撞的结果.由于光子的速度是光速,非常大,而物质中的电子速度相对很小,因此可以看做电子静止.碰撞前后动量和能量都守恒.碰撞后电子动量和能量增加,光子的动量和能量减小,故散射后光子的频率要减小,光子的波长变长.(5)康普顿效应进一步揭示了光的粒子性,也再次证明了爱因斯坦光子说的正确性. 3.光的波粒二象性 (1)光电效应和康普顿效应表明光具有粒子性,光的干涉、衍射、偏振现象表明光具有波动性.光既有波动性又有粒子性,单独使用任何一种都无法完整地描述光的所有性质,把这种性质叫做光的波粒二象性.(2)光波是一种慨率波.光子在空间各点出现的可能性大小(概率),可以用波动规律来描述.如单个光子通过双缝后的落点无法预测,但光子遵循的分布规律可预测,(通过双缝后)产生干涉条纹,亮纹处光子到达的机会大,暗纹处光子到达的机会小.4.光的波动性与粒子性的统一(1)光子和电子、质子等实物粒子一样,具有能量和动量.和其他物质相互作用时,粒子性起主导作用,在光的传播过程中,光子在空间各点出现的可能性的大小(概率)由波动性起主导作用,因此称光波为概率波.=揭示了光(2)光子的能量跟其对应的频率成正比,而频率是波动性特征的物理量,因此E hν的粒子性和波动性之间的密切联系.(3)对不同频率的光,频率低、波长长的光,波动性特征显著;而频率高、波长短的光,粒子性特征显著.要点诠释:光子是能量为hν的微粒,表现出粒子性,而光子的能量与频率ν有关,体现了波动性,所以光子是统一了波粒二象性的微粒,但是,在不同的条件下的表现不同,大量光子表现出波动性,个别光子表现出粒子性;光在传播时表现出波动性,光和其他物质相互作用时表现出粒子性;频率低的光波动性更强,频率高的光粒子性更强.综上所述,光的粒子性和波动性组成一个有机的统一体,相互间并不是独立存在.5.再探光的双缝干涉实验物理学家做了图甲所示的实验,帮助我们认识光的波动性和粒子性的统一.在双缝干涉的屏处放上照相底片,如果让光子一个一个通过双缝,在曝光量很小时,底片上出现如图乙所示的不规则分布的点,表现出光的粒子性.如果曝光量很大,底片上出现规则的干涉条纹反映光子分布规律,遵循波的规律,如图中丙、丁所示.要点诠释:实验表明个别光子的行为无法预测,表现出粒子性;大量光子的行为表现出波动性,在干涉条纹中,光波强度大的地方,即光子出现概率大的地方;光波强度小的地方,是光子到达机会少的地方,即光子出现概率小的地方.因此,光波是一种概率波.要点诠释:曝光量很小时可以清楚地看出光的粒子性,曝光量很大时可以看出粒子的分布遵从波动规律.6.光的波粒二象性的理解光的干涉、衍射、偏振说明光不可怀疑地具有波动性,学习了光电效应、康普顿效应和光子说,认识到光的波动理论具有一定的局限性,光还具有粒子性,经过长期的探索表明:光既具有波动性,又具有粒子性,即具有波粒二象性.惠更斯的波动说认为光是一种机械波,是一种纯机械运动的形式,没有物质性,因此不能解释光在真空中的传播.麦克斯韦的光的电磁说认为光是一种电磁波,是物质的一种特殊形态,从而揭示了光的电磁本质,能圆满地解释光在真空中的传播以及光的反射、折射、干涉和衍射等现象.牛顿主张的微粒说,认为光是一种“弹性粒子流”,是一种实物粒子,没有波动性;爱因斯坦的=,其中ν是光的频率,属于波的特光子说认为光是由光子构成的不连续的特殊物质,光的能量E hν征物理量之一,因此光子学本身没有否定光的波动性.惠更斯的波动说与牛顿的微粒说由于受传统宏观观念的影响,都试图用一种观点去说明光的本性,因而它们是相互排斥、对立的两种不同的学说.麦克斯韦的光的电磁说与爱因斯坦的光子说是对立的统一体,揭示了光的行为的二重性:既具有波动性,又具有粒子性,即光具有波粒二象性.要点二、不确定关系1.物质的分析物理学把物质分为两大类:一类是分子、原子、电子、质子及由这些粒子所组成的物体,我们称它们为实物;另一类是场,如电场、磁场等,它们并不是由微观粒子所构成的,而是客观存在的一种特殊物质.(1)问题猜想:大家知道,光具有波动性,但同时也具有粒子性,即光具有波粒二象性,那么像分子、原子、质子、电子等微观粒子是否具有波动性呢?(2)德布罗意假设与物质波:1924年,32岁的法国物理学家德布罗意在他的博士论文中提出了一个大胆的假设:任何一个运动着的物体,小到电子、质子,大到行星、太阳,都有一种波与它相对应.这种波叫物质波,也称为德布罗意波.(3)物质波波长的计算公式:hλ=,式中h是普朗克常量,p是运动物体的动量.p(4)物质波的实验验证——电子束的衍射:1927年美国物理学家戴维孙和英国物理学家汤姆孙分别获得了电子束在晶体上的衍射图样(如图所示),从而证实了实物粒子——电子的波动性.他们为此获得了1937年的诺贝尔物理学奖.要点诠释:①1960年约恩孙直接做了电子双缝干涉实验,从屏上摄得了微弱电子束的干涉图样和光的干涉图样是非常相似的(如图所示).这也证明了实物粒子的确具有波动性.②除了电子以外,后来还陆续证实了质子、中子以及原子、分子的波动性,对于这些粒子,德布罗意给出的Ehν=和h p λ=关系同样正确.1929年,德布罗意获得了诺贝尔物理学奖,成为以学位论文获此殊荣的人.3.物质波是概率波电子和其他微观粒子同光子一样,具有波粒二象性,所以与它们相联系的物质波也是概率波.要点诠释:(1)波粒二象性是包括光子在内的一切微观粒子的共同特征.(2)德布罗意波是概率波,在电子束的衍射图样中,电子落在“亮环”上的概率大,落在“暗环”上的概率小,但概率的大小受波动规律支配.4.不确定性关系(1)在经典力学中,一个质点的位置和动量是可以同时精确测定的,而在量子理论中,要同时准确地测出微观粒子的位置和动量是不可能的,也就是说不能同时用位置和动量来描述微观粒子的运动.我们把这种关系叫做不确定性关系.(2)海森伯(德国物理学家)的不确定性关系对于微观粒子的运动,如果以x ∆表示粒子位置的不确定量,以p ∆表示粒子在x 方向上的动量的不确定量,那么4h x p π∆∆≥, 式中h 是普朗克常量. (3)海森伯的不确定性关系是量子力学的一条基本原理,是物质波粒二象性的生动体现.它表明:在对粒子位置和动量进行测量时,精确度存在一个基本极限,不可能同时准确地知道粒子的位置和动量.5.电子云由不确定性关系可知原子中的电子在原子核周围的运动是不确定的,因而不能用“轨道”来描述它的运动.电子在空间各点出现的概率是不同的.当原子处于稳定状态时,电子会形成一个稳定的概率分布.人们常用一些小黑圆点来表示这种概率分布,概率大的地方小黑圆点密一些,概率小的地方小黑圆点疏一些,这样电子的概率分布图的结果如同电子在原子核周围形成云雾,称为“电子云”.电子云是原子核外电子位置不确定的反映. 要点诠释:(1)电子云描述的是电子在原子核外空间各点出现的概率大小的一种形象化的图示,并不是代表电子的位置.(2)我们通常认为的“核外电子轨道”,只不过是电子出现概率最大的地方. 6.位置和动量的不确定性关系的理解 (1)粒子位置的不确定性.单缝衍射现象中,入射的粒子有确定的动量,但它们可以处于挡板左侧的任何位置,也就是说,粒子在挡板左侧的位置是完全不确定的. (2)粒子动量的不确定性.微观粒子具有波动性,会发生衍射.大部分粒子到达狭缝之前沿水平方向运动,而在经过狭缝之后,有些粒子跑到投影位置以外.这些粒子具有与其原来运动方向垂直的动量.由于哪个粒子到达屏上的哪个位置是完全随机的,所以粒子在垂直方向上的动量也具有不确定性,不确定量的大小可以由中央亮条纹的宽度来衡量.(3)位置和动节的不确定性关系:4h x p π∆∆≥. 由4hx p π∆∆≥可以知道,在微观领域,要准确地测定粒子的位置,动量的不确定性就更大;反之,要准确确定粒子的动量,那么位置的不确定性就更大.如将狭缝变成宽缝,粒子的动量能被精确测定(可认为此时不发生衍射),但粒子通过缝的位置的不确定性却增大了;反之取狭缝0x ∆→,粒子的位置测定精确了,但衍射范围会随Δx 的减小而增大,这时动量的测定就更加不准确了. (4)微观粒子的运动具有特定的轨道吗? 由不确定关系4hx p π∆∆≥可知,微观粒子的位置和动量是不能同时被确定的,这也就决定了不能用“轨道”的观点来描述粒子的运动,因为“轨道”对应的粒子某时刻应该有确定的位置和动量,但这是不符合实验规律的.微观粒子的运动状态,不能像宏观物体的运动那样通过确定的轨迹来描述,而是只能通过概率波作统计性的描述. 7.显微镜的分辨本领最好的光学显微镜能够分辨200 nm 大小的物体.衍射现象限制了光学显微镜的分辨本领.波长越长,衍射现象越明显.可见光波长为370750 nm ~,日常生活中的物体大小比可见光波长大得多,光的衍射不明显,所以我们才说光沿直线传播.当被观察物太小时,衍射现象不能忽略,这样物体的像就模糊了,影响了显微镜的分辨本领.电子显微镜是使用电子束工作的.电子束也是一种波,如果把它加速,电子动量很大,它的德布罗意波波长就很短,衍射现象的影响就很小.现代电子显微镜的分辨本领可以达到0.2 nm .由于加速电压越高电子获得的动量越大,它的波长就越短,分辨本领也就越强,所以电子显微镜的分辨本领大小常用它的加速电压来表示.要点三、本章知识概括1.知识网络2.要点回顾不确定性关系:4hx p π∆∆≥,x ∆表示粒子位置的不确定量,p ∆表示粒子在x 方向上的动量的不确定量.电子云:电子在原子核外空间出现的概率大小的形象表示.黑体辐射的实验规律:随着温度的升高,各种波长的幅度都增加,辐射强度的 极大值向波长较短的方向移动能量子:微观粒子的能量是量子化的;h εν= 能量量子化 (1)产生条件:入射光频率大于被照射金属的极限频率(2)入射光频率→决定每个光子能量E h ν=→决定光电子逸出后最大初动能(3)入射光强度→决定每秒钟逸出的光电子数→决定光电流大小(4)爱因斯坦光电效应方程k E h W ν=- W 表示金属的逸出功,又c ν表示金属的极限频率,则c W h ν=W=h νc 光电效应用X 射线照射物体时,散射出来的X 射线的波长会变长 光子不仅具有能量,也具有动量,hp λ= 康普顿效应 (1)光既具有波动性,又具有粒子性,光的波动性和粒子性是光在不同条件下的不同表现 (2)大量的光子产生的效果显示波动性;个别光子产生的效果显示粒子性 (3)波长短的光粒子性显著,波长长的光波动性显著(4)当光和其他物质发生相互作用时表现为粒子性,当光在传播时表现为波动性 (5)光波不同于宏观观念中那种连续的波,它是表示大量光子运动规律的一种概率波光的波粒二象性(1)一切运动的物体都具有波粒二象性(2)物质波波长h pλ=(3)物质波既不是机械波,也不是电磁波,而是概率波粒子的波动性【典型例题】类型一、粒子的波动性例1.科学研究表明:能量守恒和动量守恒是自然界的普遍规律.从科学实践的角度来看,迄今为止,人们还没有发现这些守恒定律有任何例外.相反,每当在实验中观察到似乎是违反守恒定律的现象时,物理学家们就会提出新的假设来补救,最后总是以有新的发现而胜利告终.如人们发现,两个运动着的微观粒子在电磁场的相互作用下,两个粒子的动量的矢量和似乎是不守恒的.这时物理学家又把动量的概念推广到了电磁场,把电磁场的动量也考虑进去,总动量就又守恒了.现有沿一定方向运动的光子与一个原来静止的自由电子发生碰撞后自由电子向某一方向运动,而光子沿另一方向散射出去.这个散射出去的光子与入射前相比较,其波长________(填“增大”“减小”或“不变”).【思路点拨】光子具有动量且与其他物质相互作用时,动量守恒。

高中物理 4.3 光的波粒二象性课件 科教版选修35

高中物理 4.3 光的波粒二象性课件 科教版选修35
【例1】 康普顿效应证实了光子不仅具有能量,也有动量.图 4-3-1给出了光子与静止电子碰撞后,电子的运动方向, 则碰撞后光子可能沿方向______”“变短”或“变长”).
第五页,共16页。
图4-3-1 答案 1 变长 解析 因光子与电子的碰撞过程动量守恒,所以碰撞后光子和 电子的总动量的方向(fāngxiàng)与光子碰撞前动量的方向 (fāngxiàng)一致,可见碰撞后光子运动的方向(fāngxiàng)可 能沿1方向(fāngxiàng),不可能沿2或3方向(fāngxiàng);通过 碰撞,光子将一部分能量转移给电子,光子的能量减少,由ε =hν知,频率变小,再根据c=λν知,波长变长.
波动性 ①大量光子易显示波动性,而 和粒子 少量光子易显示出粒子性. 性的对 . ②波长长(频率低)的光波动 立、统 性强,而波长短(频率高)的光
一 粒子性强
动,性ν和,λ就E=是h波ν=的概hλ中c念
②波和粒子在宏观世 界是不能统一的,而 在微观世界却是统一

第八页,共16页。
【例2】 (2014·伊犁哈萨克高二检测)关于光的波粒二象性的理
第十页,共16页。
(3)光的粒子性在它与物质的相互作用时体现出来,光子具有 一定的能量(E=hν)和动量p=hλ .
第十一页,共16页。
针对训练 有关光的本性,下列说法正确的是
(
)
A.光既具有波动性,又具有粒子(lìzǐ)性,这是互相矛盾
和对
立的
B.光的波动性类似于机械波,光的粒子(lìzǐ)性类似于质
第十六页,共16页。
解正确的是
()
A.大量光子的行为往往表现出波动性,个别光子的行为
往往表现出粒子性
B.光在传播时是波,而与物质(wùzhì)相互作用时就转变成

2015-2016学年高中物理 第四章 波粒二象性 第3节 光的波粒二象性课件 教科版选修3-5

2015-2016学年高中物理 第四章 波粒二象性 第3节 光的波粒二象性课件 教科版选修3-5

3) A和B狭缝同时打开 —— 子弹是经典粒子 原来通过A狭缝的子弹 —— 还是通过A 原来通过B狭缝的子弹 —— 还是通过B
不因两个狭缝同时打开 每颗子弹会有新的选择!
屏幕C上子弹的概率分布
P P1 P2
—— 电子双缝衍射
—— 电子枪发射出的电子,在屏幕P上观察电子数目
1) 将狭缝B挡住
电子显微镜
电子双缝衍射 1) 用足够强的电子束进行双缝衍射
—— 得到的结果与光的双缝衍射结果一样 —— 出现了明暗相间的衍射条纹,体现电子的波动性 —— 衍射条纹掩饰了电子的粒子性
未能体现电子在空间分布的概率性质
2) 用非常弱的电子束进行双缝衍射
—— 开始电子打在屏幕上的位置是任意的 随着时间推移,电子具有稳定的分布 出现清晰衍射条纹__和强电子束在短时间形成的一样
h= 6.63×10-34
(2)子弹:


h
=
1.0×10-40m
p
可见,只有微观粒子的波动性较显著;而宏观
粒子(如子弹)的波动性根本测不出来。
一个质量为m的实物粒子以速率v 运动和波长
所描述的波动性。
德布罗意关系
Eh
=h P
如速度v=5.0102m/s飞行的子 弹,质量为m=10-2Kg,对应的 德布罗意波长为:
1. 根据经典电磁波理论,当电磁波通 过物质时,物质中带电粒子将作受迫振动,
其频率等于入射光频率,所以它所发射的散 射光频率应等于入射光频率。
2. 无法解释波长改变和散射角的关系。
光子理论对康普顿效应的解释
康普顿效应是光子和电子作弹性碰撞的 结果,具体解释如下:
1. 若光子和外层电子相碰撞,光子有一 部分能量传给电子,散射光子的能量减少,于 是散射光的波长大于入射光的波长。

4.3光的波粒二象性 学案(2020年教科版高中物理选修3-5)

4.3光的波粒二象性 学案(2020年教科版高中物理选修3-5)

4.3光的波粒二象性学案(2020年教科版高中物理选修3-5)3光的波粒二象性光的波粒二象性学科素养与目标要求物理观念1.了解康普顿效应及其意义,了解光子理论对康普顿效应的解释.2.知道光的波粒二象性,知道波和粒子的对立.统一的关系.3.了解什么是概率波,知道光也是一种概率波.科学态度与责任学会用辩证的观点看待问题,认识到物理学各种观点的局限性.一.康普顿效应1.光的散射光在介质中与物质微粒相互作用,因而传播方向发生改变,这种现象叫做光的散射.2.康普顿效应美国物理学家康普顿在研究石墨对X射线的散射时,发现在散射的X射线中,除了与入射波长0相同的成分外,还有波长大于0的成分,这个现象称为康普顿效应.3.康普顿效应的意义康普顿效应表明光子除了具有能量之外,还具有动量,深入揭示了光的粒子性的一面.4.光子的动量1表达式ph.2说明在康普顿效应中,入射光子与晶体中电子碰撞时,把一部分动量转移给电子,光子的动量变小.因此,有些光子散射后波长变大.二.光的波粒二象性1.光的干涉和衍射现象说明光具有波动性,光电效应和康普顿效应说明光具有粒子性.2.光子的能量h,光子的动量ph.3.光子既有粒子的特征,又有波的特征,即光具有波粒二象性.三.光是一种概率波在双缝干涉实验中,屏上亮纹的地方,是光子到达概率大的地方,暗纹的地方是光子到达概率小的地方.所以光波是一种概率波.即光波在某处的强度代表着光子在该处出现概率的大小.判断下列说法的正误.1光子的动量与波长成反比.2光子发生散射后,其动量大小发生变化,但光子的频率不发生变化.3光的干涉.衍射.偏振现象说明光具有波动性.4光子数量越大,其粒子性越明显.5光具有粒子性,但光子又是不同于宏观观念的粒子.6光在传播过程中,有的光是波,有的光是粒子.一.康普顿效应1.康普顿效应康普顿在研究石墨对X射线的散射时,发现在散射的X射线中,除了与入射波长0相同的成分外,还有波长大于0的成分,这个现象称为康普顿效应.2.康普顿效应的解释假定光子与电子发生弹性碰撞,按照爱因斯坦的光子说,一个光子不仅具有能量h,而且还有动量.如图1所示.这个光子与静止的电子发生弹性碰撞,光子把部分能量转移给了电子,能量由h减小为h,因此频率减小,波长增大.同时,光子还使电子获得一定的动量.这样就圆满地解释了康普顿效应.图13.康普顿效应的意义康普顿效应进一步揭示了光的粒子性,也再次证明了爱因斯坦光子说的正确性.例1科学研究证明,光子既有能量也有动量,当光子与电子碰撞时,光子的一些能量转移给了电子.假设光子与电子碰撞前的波长为,碰撞后的波长为,则碰撞过程中A.能量守恒,动量守恒,且B.能量不守恒,动量不守恒,且C.能量守恒,动量守恒,且答案C解析能量守恒和动量守恒是自然界的普遍规律,既适用于宏观世界也适用于微观世界.光子与电子碰撞时遵循这两个守恒定律,光子与电子碰撞前光子的能量hhc,当光子与电子碰撞时,光子的一些能量转移给了电子,光子的能量hhc,由,可知,选项C正确.提示光子不仅具有能量h,而且还具有动量,光子与物质中的微粒碰撞时要遵守能量守恒定律和动量守恒定律.二.光的波粒二象性1.对光的本性认识史人类对光的认识经历了漫长的历程,从牛顿的光的微粒说到托马斯杨和菲涅耳的波动说,从麦克斯韦的光的电磁说到爱因斯坦的光子说.直到二世纪初,对于光的本性的认识才提升到一个更高层次,即光具有波粒二象性.对于光的本性认识史,列表如下学说名称微粒说波动说电磁说光子说波粒二象性代表人物牛顿托马斯杨和菲涅耳麦克斯韦爱因斯坦实验依据光的直线传播.光的反射光的干涉.衍射光能在真空中传播,是横波,光速等于电磁波的传播速度光电效应.康普顿效应光既有波动现象,又有粒子特征内容要点光是一群弹性粒子光是一种机械波光是一种电磁波光是由一份一份光子组成的光是具有电磁本性的物质,既有波动性又有粒子性2.对光的波粒二象性的理解1光的波动性实验基础光的干涉和衍射.表现a.光子在空间各点出现的可能性大小可用波动规律来描述;b.足够能量的光在传播时,表现出波的性质.说明a.光的波动性是光子本身的一种属性,不是光子之间相互作用产生的;b.光的波动性不同于宏观观念的波.2光的粒子性实验基础光电效应.康普顿效应.表现a.当光同物质发生作用时,这种作用是“一份一份”进行的,表现出粒子的性质;b.少量或个别光子容易显示出光的粒子性.说明a.粒子的含义是“不连续”“一份一份”的;b.光子不同于宏观观念的粒子.例2多选下列有关光的波粒二象性的说法中,正确的是A.有的光是波,有的光是粒子B.光子与电子是同样的一种粒子C.光的波长越长,其波动性越显著;波长越短,其粒子性越显著D.康普顿效应表明光具有粒子性答案CD解析一切光都具有波粒二象性,光的有些行为如干涉.衍射表现出波动性,光的有些行为如光电效应.康普顿效应表现出粒子性,所以,不能说有的光是波,有的光是粒子.虽然光子与电子都是微观粒子,都具有波粒二象性,但电子是实物粒子,有静止质量,光子不是实物粒子,没有静止质量,电子是以实物形式存在的物质,光子是以场形式存在的物质,所以,不能说光子与电子是同样的一种粒子.光的波长越长,衍射性越好,即波动性越显著,光的波长越短,粒子性就越显著,故选项C.D正确,A.B错误.三.光是一种概率波1.单个粒子运动的偶然性我们可以知道粒子落在某点的概率,但不能预言粒子落在什么位置,即粒子到达什么位置是随机的,是预先不能确定的.2.大量粒子运动的必然性由波动规律我们可以准确地知道大量粒子运动时的统计规律,因此我们可以对宏观现象进行预言.3.概率波体现了波粒二象性的和谐统一概率波的主体是光子.实物粒子,体现了粒子性的一面;同时粒子在某一位置出现的概率受波动规律支配,体现了波动性的一面,所以说概率波将波动性和粒子性统一在一起.例3多选在单缝衍射实验中,中央亮纹的光强占从单缝射入的整个光强的95以上,假设现在只让一个光子通过单缝,那么该光子A.一定落在中央亮纹处B.一定落在亮纹处C.可能落在暗纹处D.落在中央亮纹处的可能性最大答案CD解析根据光波是概率波的概念,对于一个光子通过单缝落在何处,是不确定的,但概率最大的是落在中央亮纹处,可达95以上,当然也可能落在其他亮纹处,还可能落在暗纹处,不过,落在暗纹处的概率很小,故C.D选项正确.1.对康普顿效应的理解多选关于康普顿效应,下列说法正确的是A.康普顿在研究X射线散射时,发现散射光的波长发生了变化,为波动说提供了依据B.X射线散射时,波长改变了多少与散射角有关C.发生散射时,波长较短的X射线或射线入射时,产生康普顿效应D.爱因斯坦的光子说能够解释康普顿效应,所以康普顿效应支持粒子说答案BCD2.对光的波粒二象性的认识对于光的波粒二象性的说法,正确的是A.一束传播的光,有的光是波,有的光是粒子B.光波与机械波是同样的一种波C.光的波动性是由于光子间的相互作用而形成的D.光是一种波,同时也是一种粒子,光子说并未否定电磁说,在光子能量h中,频率表示的是波的特性答案D3.对光的波粒二象性的理解有关光的本性,下列说法中正确的是A.光具有波动性,又具有粒子性,这是相互矛盾和对立的B.光的波动性类似于机械波,光的粒子性类似于质点C.大量光子才具有波动性,个别光子只具有粒子性D.由于光既具有波动性,又具有粒子性,无法只用其中一种去说明光的一切行为,只能认为光具有波粒二象性答案D解析光在不同条件下表现出不同的行为,其波动性和粒子性并不矛盾,A 错,D对;光的波动性不同于机械波,其粒子性也不同于质点,B 错;大量光子往往表现出波动性,个别光子往往表现出粒子性,C 错.4.对概率波的理解下列关于概率波的说法中,正确的是A.概率波就是机械波B.物质波是一种概率波C.概率波和机械波的本质是一样的,都能发生干涉和衍射现象D.在光的双缝干涉实验中,若只有一个粒子,则可以确定它从其中的哪一个缝中穿过答案B解析概率波具有波粒二象性,因此,概率波不是机械波,A错;对于电子和其他微观粒子,由于同样具有波粒二象性,所以与它们相联系的物质波也是概率波,B正确;概率波和机械波都能发生干涉和衍射现象,但它们的本质不一样,C错;在光的双缝干涉实验中,若只有一个粒子,则不能确定它从哪个缝中穿过,D错.。

3.光的波粒二象性-教科版选修3-5教案

3.光的波粒二象性-教科版选修3-5教案

3.光的波粒二象性-教科版选修3-5教案一、教学目标1.了解光的电磁波和光的粒子性。

2.了解黑体辐射和光电效应。

3.学会运用普朗克常数和光速计算光子的能量。

4.掌握德布罗意波长和动量的定量计算。

二、教学内容2.1光的电磁波1.电磁波的定义。

2.电磁波的特点:波长、频率、振幅、速度。

3.电磁波的谱系:可见光谱系。

2.2光的粒子性1.几何光学的示例:光的直线传播、反射、折射。

2.光量子的定义。

3.光子的能量计算:E = hv。

2.3黑体辐射和光电效应1.黑体的定义和特点。

2.斯特法定律和维恩位移定律。

3.光电效应的定义和实验现象。

4.光电效应的工作原理和应用。

2.4德布罗意波长和动量的定量计算1.德布罗意波长的定义。

2.德布罗意波长和物质的特征长度的关系。

3.德布罗意波长和电子速度的关系。

4.德布罗意波长和动量的定量计算。

三、教学过程3.1教学设计1.教师讲解光的电磁波的基本概念和特点。

2.教师将黑体辐射和光电效应等实验现象介绍给学生,并让学生理解这些现象背后的科学原理。

3.教师介绍德布罗意波长和光子能量计算方法,并进行相关的例题和练习。

4.教师让学生进行小组讨论,分析光的双重性和他们的物理实现。

3.2教学过程第一步:光的电磁波的基本概念和特点1.教师让学生打开学科网站,查找电磁波的基本概念,并解释电磁波的特征(波长、频率、振幅、速度)。

2.教师引导学生进行互动讨论,以帮助他们更好地了解电磁波的性质。

第二步:黑体辐射和光电效应的实验现象介绍1.教师将黑体辐射和光电效应的实验现象展示给学生,并解释现象背后的物理原理。

2.教师给出一些案例,如光电效应的应用,帮助学生更好地理解光电效应。

第三步:德布罗意波长和光子能量计算方法1.教师简要介绍德布罗意波长和光子能量计算方法。

2.教师给出相关的题目,并进行解释。

第四步:小组讨论分析光的双重性和物理实现1.教师组织学生进行小组讨论,制定合适的学习计划,讨论光的波粒二象性和他们的物理实现。

高中物理44实物粒子的波粒二象性教案教科版选修35

高中物理44实物粒子的波粒二象性教案教科版选修35

4.4 实物粒子的波粒二象性三维教学目标1、知识与技能(1)了解光既具有波动性,又具有粒子性;(2)知道实物粒子和光子一样具有波粒二象性;(3)知道德布罗意波的波长和粒子动量关系。

(4)了解不确定关系的概念和相关计算;2、过程与方法(1)了解物理真知形成的历史过程;(2)了解物理学研究的基础是实验事实以及实验对于物理研究的重要性;(3)知道某一物质在不同环境下所表现的不同规律特性。

3、情感、态度与价值观(1)通过学生阅读和教师介绍讲解,使学生了解科学真知的得到并非一蹴而就,需要经过一个较长的历史发展过程,不断得到纠正与修正;(2)通过相关理论的实验验证,使学生逐步形成严谨求实的科学态度;(3)通过了解电子衍射实验,使学生了解创造条件来进行有关物理实验的方法。

教学重点:实物粒子和光子一样具有波粒二象性,德布罗意波长和粒子动量关系。

教学难点:实物粒子的波动性的理解。

教学方法:学生阅读-讨论交流-教师讲解-归纳总结。

教学用具:课件:PP演示文稿(科学家介绍,本节知识结构)。

多媒体教学设备(一)引入新课提问:前面我们学习了有关光的一些特性和相应的事实表现,那么我们究竟怎样来认识光的本质和把握其特性呢?(光是一种物质,它既具有粒子性,又具有波动性。

在不同条件下表现出不同特性,分别举出有关光的干涉衍射和光电效应等实验事实)。

我们不能片面地认识事物,能举出本学科或其他学科或生活中类似的事或物吗?(二)进行新课1、光的波粒二象性讲述光的波粒二象性,进行归纳整理。

(1)我们所学的大量事实说明:光是一种波,同时也是一种粒子,光具有波粒二象性。

光的分立性和连续性是相对的,是不同条件下的表现,光子的行为服从统计规律。

(2)光子在空间各点出现的概率遵从波动规律,物理学中把光波叫做概率波。

2、光子的能量与频率以及动量与波长的关系。

hv//cvhv/h/h pp=提问:作为物质的实物粒子(如电子、原子、分子等)是否也具有波动性呢?3、粒子的波动性提问:谁大胆地将光的波粒二象性推广到实物粒子?只是因为他大胆吗?(法国科学家德布罗意考虑到普朗克能量子和爱因斯坦光子理论的成功,大胆地把光的波粒二象性推广到实物粒子。

2019-2020学年高中物理 第4章 3 光的波粒二象性学案 教科版选修3-5

2019-2020学年高中物理 第4章 3 光的波粒二象性学案 教科版选修3-5

3.光的波粒二象性[学习目标] 1.知道什么是康普顿效应及康普顿散射实验原理.(重点)2.理解光的波粒二象性,了解光是一种概率波.一、康普顿效应1.光的散射:光在介质中与物体微粒的相互作用,使光的传播方向发生偏转,这种现象叫光的散射.蔚蓝的天空、殷红的晚霞是大气层对阳光散射形成的,夜晚探照灯或激光的光柱,是空气中微粒对光散射形成的.2.康普顿效应康普顿在研究石墨对X射线的散射时,发现在散射的X射线中,除原波长外,还发现了波长随散射角的增大而增大的谱线.X射线经物质散射后波长变长的现象,称为康普顿效应.3.康普顿的理论当光子与电子相互作用时,既遵守能量守恒定律,又遵守动量守恒定律.在碰撞中光子将能量hν的一部分传递给了电子,光子能量减少,波长变长.4.康普顿效应的意义康普顿效应表明光子除了具有能量之外,还具有动量,深入揭示了光的粒子性的一面,为光子说提供了又一例证.二、光的波粒二象性光是一种概率波1.光的波粒二象性(1)光既具有波动性,又具有粒子性,即光具有波粒二象性.光的波动性是指光的运动形态具有各种波动的共同特征,如干涉、衍射和色散等都有波动的表现.光的粒子性是指光与其他物质相互作用时所交换的能量和动量具有不连续性,如光电效应、康普顿效应等.(2)光子的能量和动量①能量:ε=hν.②动量:p=hλ.(3)意义能量ε和动量p是描述物质的粒子性的重要物理量;波长λ和频率ν是描述物质的波动性的典型物理量.因此ε=hν和p=hλ2.光是一种概率波光波在某处的强度代表着光子在该处出现概率的大小,所以光是一种概率波.1.正误判断(正确的打“√”,错误的打“×”)(1)康普顿效应证实了光子不仅具有能量,也具有动量.(√)(2)康普顿效应进一步说明光具有粒子性.(√)(3)光子发生散射时,其动量大小发生变化,但光子的频率不发生变化.(×)(4)光的干涉、衍射、偏振现象说明光具有波动性.(√)(5)光子数量越大,其粒子性越明显.(×)(6)光子通过狭缝后落在屏上明纹处的概率大些.(√)2.(多选)美国物理学家康普顿在研究石墨对X射线的散射时,发现在散射的X射线中,除了与入射波长λ0相同的成分外,还有波长大于λ0的成分,这个现象称为康普顿效应.关于康普顿效应,以下说法正确的是( )A.康普顿效应说明光子具动量B.康普顿效应现象说明光具有波动性C.康普顿效应现象说明光具有粒子性D.当光子与晶体中的电子碰撞后,其能量增加AC[康普顿效应说明光具有粒子性,B项错误,A、C项正确;光子与晶体中的电子碰撞时满足动量守恒和能量守恒,故二者碰撞后,光子要把部分能量转移给电子,光子的能量会减少,D项错误.]3.关于光的波粒二象性,下列说法中正确的是( )A.光的频率越高,衍射现象越容易看到B.光的频率越高,粒子性越显著C.大量光子产生的效果往往显示粒子性D.光的波粒二象性否定了光的电磁说B[光具有波粒二象性,波粒二象性并不否定光的电磁说,只是说某些情况下粒子性明显,某些情况下波动性明显,故D错误.光的频率越高,波长越短,粒子性越明显,波动性越不明显,越不易看到其衍射现象,故B正确,A错误.大量光子的行为表现出波动性,个别光子的行为表现出粒子性,故C错误.]1X射线管发出波长为λ0的X射线,通过小孔投射到散射物石墨上.X射线在石墨上被散射,部分散射光的波长变长,波长改变的多少与散射角有关.2.康普顿效应与经典物理理论的矛盾按照经典物理理论,入射光引起物质内部带电粒子的受迫振动,振动着的带电粒子从入射光吸收能量,并向四周辐射,这就是散射光.散射光的频率应该等于粒子受迫振动的频率(即入射光的频率).因此散射光的波长与入射光的波长应该相同,不应该出现波长变长的散射光.另外,经典物理理论无法解释波长改变与散射角的关系.3.光子说对康普顿效应的解释假定X射线光子与电子发生弹性碰撞.(1)光子和电子相碰撞时,光子有一部分能量传给电子,散射光子的能量减少,于是散射光的波长大于入射光的波长.(2)因为碰撞中交换的能量与碰撞的角度有关,所以波长的改变与散射角有关.4.康普顿的散射理论进一步证实了爱因斯坦的光量子理论,也有力证明了光具有波粒二象性.【例1】康普顿效应证实了光子不仅具有能量,也有动量.如图给出了光子与静止电子碰撞后电子的运动方向,则碰后光子可能沿__________方向运动,并且波长__________(选填“不变”“变短”或“变长”).[解析]因光子与电子在碰撞过程中动量守恒,所以碰撞之后光子和电子的总动量的方向与光子碰前动量的方向一致,可见碰后光子运动的方向可能沿1方向,不可能沿2或3方向;通过碰撞,光子将一部分能量转移给电子,能量减少,由ε=hν知,频率变小,再根据c=λν知,波长变长.[答案] 1 变长(1)动量守恒定律不但适用于宏观物体,也适用于微观粒子间的作用;(2)康普顿效应进一步揭示了光的粒子性,也再次证明了爱因斯坦光子说的正确性.1.频率为ν的光子,具有的能量为h ν,动量为h νc,将这个光子打在处于静止状态的电子上,光子将偏离原运动方向,这种现象称为光子的散射,下列关于光子散射的说法正确的是( )A .光子改变原来的运动方向,且传播速度变小B .光子改变原来的传播方向,但传播速度不变C .光子由于在与电子碰撞中获得能量,因而频率增大D .由于受到电子碰撞,散射后的光子波长小于入射光子的波长B [碰撞后光子改变原来的运动方向,但传播速度不变,A 错误,B 正确;光子由于在与电子碰撞中损失能量,因而频率减小,即ν>ν′,再由c =λ1ν=λ2ν′,得到λ1<λ2,C 、D 错误.]1在双缝干涉实验中,光子通过双缝后,对某一个光子而言,不能肯定它落在哪一点,但屏上各处明暗条纹的不同亮度,说明光子落在各处的可能性即概率是不相同的.光子落在明条纹处的概率大,落在暗条纹处的概率小.这就是说光子在空间出现的概率可以通过波动的规律来确定,因此说光是一种概率波. 【例2】 有关光的本性,下列说法正确的是( ) A .光既具有波动性,又具有粒子性,两种性质是不相容的 B .光的波动性类似于机械波,光的粒子性类似于质点 C .大量光子才具有波动性,个别光子只具有粒子性D .由于光既具有波动性,又具有粒子性,无法只用其中一种去说明光的一切行为,只能认为光具有波粒二象性D [光既具有波动性,又具有粒子性,但它又不同于宏观观念中的机械波和粒子.波动性和粒子性是光在不同情况下的不同表现,是同一客体的两个不同侧面、不同属性,我们无法用其中的一种去说明光的一切行为,只能认为光具有波粒二象性.只有选项D 正确.]光子是能量为h ν的微粒,表现出粒子性,而光子的能量与频率ν有关,体现了波动性,所以光子是统一了波粒二象性的微粒.但是它在不同条件下的表现不同,大量光子表现出波动性,个别光子表现出粒子性;光在传播时表现出波动性,光和其他物质相互作用时表现出粒子性;频率低的光波动性更强,频率高的光粒子性更强.2.(多选)对光的认识,下列说法中正确的是( )A .个别光子的行为表现为粒子性,大量光子的行为表现为波动性B.光的波动性是光子本身的一种属性,不是光子之间的相互作用引起的C.光表现出波动性时,就不具有粒子性了;光表现出粒子性时,就不具有波动性了D.光的波粒二象性应理解为:在某种场合下光的波动性表现明显,在另外某种场合下,光的粒子性表现明显ABD[个别光子的行为表现为粒子性,大量光子的行为表现为波动性;光与物质相互作用,表现为粒子性,光的传播表现为波动性;光的波动性与粒子性都是光的本质属性,因为波动性表现为粒子分布概率,光的粒子性表现明显时仍具有波动性,因为大量粒子的个别行为呈现出波动规律,故正确选项有A、B、D.]1.(多选)关于光的波粒二象性的理解正确的是( )A.大量光子的行为往往表现出波动性,个别光子的行为往往表现出粒子性B.光在传播时是波,而与物质相互作用时就转变成粒子C.高频光是粒子,低频光是波D.波粒二象性是光的根本属性,有时它的波动性显著,有时它的粒子性显著AD[光的波粒二象性指光有时候表现出的粒子性较明显,有时候表现出的波动性较明显,选项D正确;大量光子的效果往往表现出波动性,个别光子的行为往往表现出粒子性,选项A正确;光在传播时波动性显著,光与物质相互作用时粒子性显著,选项B错误;频率高的光粒子性显著,频率低的光波动性显著,选项C错误.]2.(多选)能说明光具有波粒二象性的实验是( )A.光的干涉和衍射B.光的干涉和光电效应C.光的衍射和康普顿效应D.光电效应和康普顿效应BC[光的干涉和光的衍射只说明光具有波动性,光电效应和康普顿效应只说明光具有粒子性,B、C正确.]3.(多选)关于光的波粒二象性,下列正确的说法是( )A.光的频率越高,光子的能量越大,粒子性越显著B.光的波长越长,光的能量越小,波动性越显著C.频率高的光子不具有波动性,波长较长的光子不具有粒子性D.个别光子产生的效果往往显示粒子性,大量光子产生的效果往往显示波动性ABD[光具有波粒二象性,但在不同情况下表现不同,频率越高,波长越短,粒子性越强,反之波动性明显,个别光子易显示粒子性,大量光子显示波动性,故选项A、B、D正确.]。

学年高中物理第4章波粒二象性量子、光的粒子性学案教科版选修35

学年高中物理第4章波粒二象性量子、光的粒子性学案教科版选修35

量子、光的粒子性【学习目标】1.了解黑体和黑体辐射的实验规律; 2.知道普朗克提出的能量子的假说.3.理解光电效应的实验规律及光电效应与电磁理论的矛盾;4.理解爱因斯坦的光子说及光电效应的解释,了解光电效应方程,并会用来解决简单问题. 【要点梳理】要点一、能量量子化 1.热辐射(1)定义:我们周围的一切物体都在辐射电磁波,这种辐射与物体的温度有关,所以叫热辐射. 物体在任何温度下,都会发射电磁波,温度不同,所发射的电磁波的频率、强度也不同.物理学中把这种现象叫做热辐射.(2)热辐射的特性:辐射强度按波长的分布情况随物体的温度而有所不同.当物体温度较低时(如室温),热辐射的主要成分是波长较长的电磁波(在红外线区域),不能引起人的视觉;当温度升高时,热辐射中较短波长的成分越来越强,可见光所占份额增大,如燃烧的炭块会发出醒目的红光.2.绝对黑体(简称黑体)(1)定义:在热辐射的同时,物体表面还会吸收和反射外界射来的电磁波.如果一个物体能够完全吸收入射到其表面的各种波长的电磁波而不发生反射,这种物体就是绝对黑体,简称黑体.所谓“黑体”是指能够全部吸收所有频率的电磁辐射的理想物体.绝对的黑体实际上是不存在的,但可以用某种装置近似地代替. (2)黑体辐射的实验规律:对于一般材料的物体,辐射的电磁波除与温度有关外,还与材料的种类及表面状况有关.而黑体的辐射规律最为简单,黑体辐射电磁波的强度按波长的分布只与黑体的温度有关.随着温度的升高,一方面黑体辐射各种波长电磁波的本领都有所增加,另一方面辐射本领的极大值向波长较短的方向移动. 辐射强度3.普朗克能量量子化假说 (1)能量子.黑体的空腔壁是由大量振子(振动着的带电微粒)组成的,其能量只能是某一最小能量值ε的整数倍.例如可能是ε或2ε、3ε、….当振子辐射或吸收能量时,也是以这个最小能量值为单位一份一份地进行.这个不可再分的最小能量值ε叫做能量子,h εν=,其中ν是电磁波的频率,h 是普朗克常量(346.62610J s h =⨯⋅-).(2)能量的量子化.在微观世界里,能量不能连续变化,只能取分立值,这种现象叫做能量的量子化. (3)普朗克的量子化假设的意义.传统的电磁理论认为光是一种电磁波,能量是连续的,能量大小决定于波的振幅和光照时间.普朗克为了克服经典物理学对黑体辐射现象解释的困难而提出了能量子假说,普朗克的能量子假说,使人类对微观世界的本质有了全新的认识,对现代物理学的发展产生了革命性的影响.普朗克常量危是自然界最基本的常量之一,它体现了微观世界的基本特征. 4.什么样的物体可看成黑体(1)黑体是一个理想化的物理模型.(2)如图所示,如果在一个空腔壁上开一个很小的孔,那么射入小孔的电磁波在空腔内表面会发生多次反射和吸收,最终不能从空腔射出.这个小孔近似看成一个绝对黑体.(3)黑体看上去不一定是黑的,有些可看做黑体的物体由于自身有较强的辐射,看起来还会很明亮,如炼钢炉口上的小孔.一些发光体(如太阳、白炽灯丝)也被当作黑体来处理.要点二、光的粒子性 1.光电效应现象19世纪末赫兹用实验验证了麦克斯韦的电磁场理论,明确了光的电磁波说.但赫兹也最早发现了光电效应现象.如图所示。

教科版高中物理选修3-5:《实物粒子的波粒二象性》教案-新版

教科版高中物理选修3-5:《实物粒子的波粒二象性》教案-新版

4.4《实物粒子的波粒二象性》教案三维教学目标1、知识与技能(1)了解光既具有波动性,又具有粒子性;(2)知道实物粒子和光子一样具有波粒二象性;(3)知道德布罗意波的波长和粒子动量关系。

2、过程与方法(1)了解物理真知形成的历史过程;(2)了解物理学研究的基础是实验事实以及实验对于物理研究的重要性;(3)知道某一物质在不同环境下所表现的不同规律特性。

3、情感、态度与价值观(1)通过学生阅读和教师介绍讲解,使学生了解科学真知的得到并非一蹴而就,需要经过一个较长的历史发展过程,不断得到纠正与修正;(2)通过相关理论的实验验证,使学生逐步形成严谨求实的科学态度;(3)通过了解电子衍射实验,使学生了解创造条件来进行有关物理实验的方法。

教学重点:实物粒子和光子一样具有波粒二象性,德布罗意波长和粒子动量关系。

教学难点:实物粒子的波动性的理解。

教学方法:学生阅读-讨论交流-教师讲解-归纳总结。

教学用具:课件:PPt演示文稿(科学家介绍,本节知识结构)。

多媒体教学设备(一)引入新课提问:前面我们学习了有关光的一些特性和相应的事实表现,那么我们究竟怎样来认识光的本质和把握其特性呢?(光是一种物质,它既具有粒子性,又具有波动性。

在不同条件下表现出不同特性,分别举出有关光的干涉衍射和光电效应等实验事实)。

我们不能片面地认识事物,能举出本学科或其他学科或生活中类似的事或物吗?(二)进行新课1、光的波粒二象性讲述光的波粒二象性,进行归纳整理。

(1)我们所学的大量事实说明:光是一种波,同时也是一种粒子,光具有波粒二象性。

光的分立性和连续性是相对的,是不同条件下的表现,光子的行为服从统计规律。

(2)光子在空间各点出现的概率遵从波动规律,物理学中把光波叫做概率波。

2、光子的能量与频率以及动量与波长的关系。

hv =ελ/h p =λ/h p ==c v hv //ελ=提问:作为物质的实物粒子(如电子、原子、分子等)是否也具有波动性呢?3、粒子的波动性提问:谁大胆地将光的波粒二象性推广到实物粒子?只是因为他大胆吗?(法国科学家德布罗意考虑到普朗克能量子和爱因斯坦光子理论的成功,大胆地把光的波粒二象性推广到实物粒子。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第3节光的波粒二象性(对应学生用书页码P56)一、康普顿效应1.光的散射光在介质中与物体微粒的相互作用,使光的传播方向发生改变的现象。

2.康普顿效应在光的散射中,光经物质散射后波长变长的现象。

3.康普顿效应的意义康普顿效应表明光子除了具有能量之外,还具有动量,深入揭示了光的粒子性的一面。

二、光的波粒二象性1.光的本性光的干涉、衍射、偏振现象表明光具有波动性,光电效应和康普顿效应表明光具有粒子性,即光具有波粒二象性。

2.光子的能量和动量关系式(1)关系式:ε=hν,p=hλ。

(2)意义:能量ε和动量p是描述物质的粒子性的重要物理量;波长λ和频率ν是描述物质的波动性的典型物理量。

因此ε=hν和p=hλ揭示了光的波动性和粒子性之间的密切关系。

[特别提醒] 普朗克常量h架起了粒子性与波动性的桥梁。

三、光是一种概率波1.不同强弱下光的干涉图样(1)大量光子表现出光的波动性。

(2)少量光子表现出光的粒子性。

2.光是概率波干涉条纹是光子在感光片上各点的概率分布的反映。

这种概率分布就好像波的强度的分布,称光波是一种概率波。

即,光波在某处的强度代表着光子在该处出现概率的大小。

(对应学生用书页码P56)1.单色电磁波作用于比波长尺寸小的带电粒子上时,引起受迫振动,向各方向辐射同频率的电磁波。

经典理论解释频率不变的一般散射可以,但对康普顿效应不能作出合理解释。

2.利用光子说解释康普顿效应假定X射线光子与电子发生弹性碰撞,这种碰撞跟台球比赛中的两球碰撞很相似。

按照爱因斯坦的光子说,一个X射线光子不仅具有能量E=hν,而且还有动量。

如图4­3­1所示。

这个光子与静止的电子发生弹性斜碰,光子把部分能量转移给了电子,能量由hν减小为hν′,因此频率减小,波长增大。

同时,光子还使电子获得一定的动量。

这样就圆满地解释了康普顿效应。

图4­3­11.科学研究证明,光子有能量也有动量,当光子与电子碰撞时,光子的一些能量转移给了电子。

假设光子与电子碰撞前的波长为λ,碰撞后的波长为λ′,则碰撞过程中( ) A.能量守恒,动量守恒,且λ=λ′B.能量不守恒,动量不守恒,且λ=λ′C.能量守恒,动量守恒,且λ<λ′D.能量守恒,动量守恒,且λ>λ′解析:选C 能量守恒和动量守恒是自然界的普遍规律,适用于宏观世界也适用于微观世界。

光子与电子碰撞时遵循这两个守恒定律。

光子与电子碰撞前光子的能量E=hν=h cλ,当光子与电子碰撞时,光子的一些能量转移给了电子,光子的能量E′=hν′=h cλ′,由E>E′,可知λ<λ′,选项C正确。

1.光具有波动性的例证是光的干涉和衍射,光具有粒子性的例证是光电效应和康普顿效应。

2.有关光的本性,下列说法正确的是( )A.光既具有波动性,又具有粒子性,这是互相矛盾和对立的B.光的波动性类似于机械波,光的粒子性类似于质点C.大量光子才具有波动性,个别光子只具有粒子性D.由于光既有波动性,又有粒子性,无法只用其中一种去说明光的一切行为,只能认为光具有波粒二象性解析:选D 19世纪初,人们成功地在实验中观察到了光的干涉、衍射现象,这属于波的特性,微粒说无法解释,但到了19世纪末又发现了光的新现象——光电效应,这种现象波动说不能解释,证实光具有粒子性。

因此,光既具有波动性,又具有粒子性,但不同于宏观的机械波和机械粒子,波动性和粒子性是光在不同的情况下的不同表现,是同一客体的两个不同侧面、不同属性,只能认为光具有波粒二象性,故选项A、B、C错,D正确。

(对应学生用书页码P57)[例1]普顿让一束X射线投射到一块石墨上发生散射,测定不同散射方向上X射线的波长情况。

结果在散射的各个方向上测到了波长比原来更长的X射线。

这种改变波长的散射实验被称为康普顿效应。

试用光子的概念和能量守恒的概念解释这种波长变长的现象。

[解析] X射线投射到石墨上,X射线的光子和石墨中的实物粒子(如自由电子、原子等)发生碰撞,碰撞后,光子将沿某一方向散射,同时把一部分能量传给实物粒子,根据能量守恒的原理,散射光子的能量就比入射光子的能量低,根据光子理论,光子能量E=hν,所以散射光的频率比入射光的频率小,即散射光的波长较长。

[答案] 见解析根据光子理论运用能量守恒和动量守恒解释康普顿效应,不仅验证了光子理论,而且也说明了微观领域的现象也严格遵循能量守恒和动量守恒定律。

[例2]A.有的光是波,有的光是粒子B.光子与电子是同样的一种粒子C.光的波长越长,其波动性越显著;波长越短,其粒子性越显著D.大量光子的行为往往显示出粒子性[解析] 一切光都具有波粒二象性,光的有些行为(如干涉、衍射)表现出波动性,光的有些行为(如光电效应)表现出粒子性,所以,不能说有的光是波,有的光是粒子。

虽然光子与电子都是微观粒子,都具有波粒二象性,但电子是实物粒子,有静止质量,光子不是实物粒子,没有静止质量,电子是以实物形式存在的物质,光子是以场形式存在的物质,所以,不能说光子与电子是同样的一种粒子。

光的波粒二象性的理论和实验表明,大量光子的行为表现出波动性,个别光子的行为表现出粒子性。

光的波长越长,衍射性越好,即波动性越显著,光的波长越短,其光子能量越大,个别或少数光子的作用就足以引起光接收装置的反应,所以其粒子性就很显著。

故选项C正确,A、B、D错误。

[答案] C光具有波粒二象性,是指每一个光子都既有波动性又有粒子性,不能理解成有的光子具有波动性,有的光子具有粒子性。

(对应学生用书页码P58) 1.关于康普顿效应,下列说法不.正确的是( )A.康普顿在研究X射线散射时,发现散射光的波长发生了变化,为波动说提供了依据B.X射线散射时,波长改变的多少与散射角有关C.发生散射时,波长较短的X射线或γ射线入射时,发生康普顿效应D.爱因斯坦的光子说能够解释康普顿效应,所以康普顿效应支持粒子说解析:选A 美国物理学家康普顿在研究X射线散射时,发现散射光波长发生了变化,这种现象用波动说无法解释,用光子说却可以解释,A错,波长改变的多少与散射角有关,B对。

当波长较短时发生康普顿效应,较长时发生光电效应,C、D对。

2.关于光的本性,下列说法中正确的是( )A.光子说否定了光的电磁说B.光电效应现象反映了光的粒子性C.光的波粒二象性是综合了牛顿的微粒说和惠更斯的波动说得出来的D.大量光子产生的效果往往显示出粒子性,个别光子产生的效果往往显示出波动性解析:选B 光既有粒子性,又有波动性,但这两种特性并不是牛顿所支持的微粒说和惠更斯提出的波动说,它体现出的规律不再是宏观粒子和机械波所表现出的规律,而是自身体现的一种微观世界特有的规律。

光子说和电磁说各自能解释光特有的现象,两者构成一个统一的整体,而微粒说和波动说是相互对立的。

3.在单缝衍射实验中,中央亮纹的光强占从单缝射入的整个光强的95%以上。

假设现在只让一个光子通过单缝,那么该光子( )A.一定落在中央亮纹处B.一定落在亮纹处C.可能落在暗纹处D.落在中央亮纹处的可能性最大解析:选CD 对于一个光子通过单缝落在何处,是不可确定的,但概率最大的是落在中央亮纹处,可达到95%以上,也可落在其他亮纹处,还可能落在暗纹处,不过,落在暗纹处的概率很小,故选项C、D正确。

4.下列各组现象能说明光具有波粒二象性的是( )A.光的色散和光的干涉B.光的干涉和光的衍射C.泊松亮斑和光电效应D.光的反射和光电效应解析:选C 光的干涉、衍射、泊松亮斑是光的波动性的证据,光电效应说明光具有粒子性,反射和色散不能说明光具有波动性或粒子性,因此C正确。

5.人类对光的本性的认识经历了曲折的过程。

下列关于光的本性的陈述符合科学规律或历史事实的是( )A.牛顿的“微粒说”与爱因斯坦的“光子说”本质上是一样的B.光的双缝干涉实验显示了光具有波动性C.麦克斯韦预言了光是一种电磁波D.光具有波粒二象性解析:选BCD 牛顿的“微粒说”认为光是一种物质微粒,爱因斯坦的“光子说”认为光是一份一份不连续的能量,显然A选项错误。

干涉、衍射现象是波的特性,光能发生干涉说明光具有波动性,选项B正确。

麦克斯韦根据光的传播不需要介质,以及电磁波在真空中的传播速度与光速近似相等认为光是一种电磁波,后来赫兹用实验验证了光的电磁说,选项C正确。

光具有波动性与粒子性,称为光的波粒二象性,所以选项D正确。

6.在做双缝干涉实验时,在观察屏的某处是亮纹,则对光子到达观察屏的位置,下列说法正确的是( )A.到达亮纹处的概率比到达暗纹处的概率大B.到达暗纹处的概率比到达亮纹处的概率大C.该光子可能到达光屏的任何位置D.以上说法均有可能解析:选AC 根据概率波的含义,一个光子到达亮纹处的概率要比到达暗纹处的概率要大得多,但并不是一定能够到达亮纹处,故A、C正确。

7.白天的天空各处都是亮的,是大气分子对太阳光散射的结果。

美国物理学家康普顿由于在这方面的研究而荣获了1927年的诺贝尔物理学奖。

假设一个运动的光子和一个静止的自由电子碰撞以后,电子向某一个方向运动,光子沿另一方向散射出去,则这个散射光子跟原来的光子相比( )A .频率变大B .速度变小C .光子能量变大D .波长变长解析:选D 光子与自由电子碰撞时,遵守动量守恒和能量守恒,自由电子碰撞前静止,碰撞后动量、能量增加,所以光子的动量、能量减小,故C 错误;由λ=hp,E =h ν,可知光子频率变小,波长变长,故A 错误,D 正确。

由于光子速度是不变的,故B 错误。

8.关于光的波粒二象性,正确的说法是( ) A .光的频率越高,光子的能量越大,粒子性越明显 B .光的波长越长,光子的能量越小,波动性越明显C .频率高的光子不具有波动性,波长较长的光子不具有粒子性D .个别光子产生的效果往往显示粒子性,大量光子产生的效果往往显示波动性 解析:选ABD 从光的波粒二象性可知:光是同时具有波粒二象性,只不过在有的情况下波动性显著,有的情况下粒子性显著。

频率高、个数少时粒子性明显,波长长、数量大时波动性明显。

9.下列说法中正确的是( )A .光的干涉和衍射现象说明光具有波动性B .光的频率越大,波长越长C .光的波长越大,光子的能量越大D .光在真空中的传播速度为3.0×108m/s解析:选AD 干涉和衍射是波的特性,A 正确;由ν=λf 知B 错;由爱因斯坦光子理论E =h ν=hcλ知波长越大,光的频率越小,光子能量越小,C 错;任何光在真空中的传播速度均为3.0×108m/s ,D 正确。

10.在双缝干涉实验中,若在像屏处放上照相底片,并使光子流减弱到使光子只能一个一个地通过狭缝,实验结果证明,如果曝光时间不太长,底片上出现__________;如果曝光时间足够长,底片上出现__________________。

相关文档
最新文档