2019-2020学年山东省烟台市高一(上)期中数学试卷

合集下载

山东省烟台市高一数学上学期期末试题(含解析)-人教版高一全册数学试题

山东省烟台市高一数学上学期期末试题(含解析)-人教版高一全册数学试题

2015-2016学年某某省某某市高一(上)期末数学试卷一、选择题:本大题共10小题,每小题5分,共50分,每小题给出四个选项,只有一个选项符合题目要求.1.下列命题中正确的个数是()(1)空间中如果两个角的两边分别对应平行,那么这两个角相等(2)若直线l与平面α平行,则直线l与平面α内的直线平行或异面(3)夹在两个平行平面间的平行线段相等(4)垂直于同一直线的两条直线平行.A.0 B.1 C.2 D.32.如果两条直线l1:ax+2y+6=0与l2:x+(a﹣1)y+3=0平行,那么实数a等于()A.﹣1 B.2 C.2或﹣1 D.3.函数f(x)=e x+2x﹣3的零点所在的一个区间是()A.()B.()C.()D.()4.一个几何体的三视图如图所示,其中正视图和俯视图的都是腰长为1的两个全等的等腰直角三角形,则该几何体的体积为()A.B.C.D.5.若函数f(x)=ax+1在区间(﹣1,1)上存在一个零点,则实数a的取值X围是()A.a>1 B.a<1 C.a<﹣1或a>1 D.﹣1<a<16.过球的一条半径的中点,作垂直于该半径的平面,则所得截面的面积与球的表面积的比为()A.B.C.D.7.在坐标平面内,与点A(﹣2,﹣1)和点B(4,7)的距离均为5的直线共有()A.1条B.2条C.3条D.4条8.若圆锥的侧面展开图的圆心角为90°,半径为r,则该圆锥的全面积为()A.B.C.D.9.如图,AB为圆O的直径,点C在圆周上(异于点A,B),直线PA垂直于圆O所在的平面,点M,N分别为线段PB,BC的中点,有以下三个命题:①OC∩平面PAC;②MO∥平面PAC;③平面PAC∥平面MON,其中正确的命题是()A.①②B.①③C.②③D.①②③10.定义在R上的奇函数f(x),当x≥0时,f(x)=,则关于x的函数F(x)=f(x)﹣a(0<a<1)的所有零点之和为()A.1﹣2a B.2a﹣1 C.1﹣2﹣a D.2﹣a﹣1二、填空题:本大题共5小题,每小题5分,共25分.11.通过市场调查知某商品每件的市场价y(单位:圆)与上市时间x(单位:天)的数据如下:上市时间x天 4 10 36市场价y元 90 51 90根据上表数据,当a≠0时,下列函数:①y=ax+k;②y=ax2+bx+c;③y=alog m x中能恰当的描述该商品的市场价y与上市时间x的变化关系的是(只需写出序号即可).12.如图所示,在直四棱柱ABCD﹣A1B1C1D1中,当底面四边形A1B1C1D1满足条件时,有A1C⊥B1D1(注:填上你认为正确的一种情况即可,不必考虑所有可能的情况).13.若直线m被两条平行直线l1:x﹣y+1=0与l2:2x﹣2y+5=0所截得的线段长为,则直线m的倾斜角等于.14.已知函数f(x)对任意的x∈R满足f(﹣x)=f(x),且当x≥0时,f(x)=x2﹣x+1,若f(x)有4个零点,则实数a的取值X围是.15.如图,在棱长都相等的四面体SABC中,给出如下三个命题:①异面直线AB与SC所成角为60°;②BC与平面SAB所成角的余弦值为;③二面角S﹣BC﹣A的余弦值为,其中所有正确命题的序号为.三、解答题:本大题共6小题,满分75分,解答须写出文字说明、证明过程或演算步骤、16.如图,AA1B1B是圆柱的轴截面,C是底面圆周上异于A,B的一点,AA1=AB=2.(1)求证:平面AA1C⊥平面BA1C;(2)若AC=BC,求几何体A1﹣ABC的体积V.17.如图,棱长为1的正方体ABCD﹣A1B1C1D1中,E是AA1的中点.(1)求证:A1C∥平面BDE;(2)求二面角E﹣BD﹣A的正切值.18.某产品生产厂家根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产产品x(百台),其总成本为G(x)(万元),其中固定成本为2.8万元,并且每生产1百台的生产成本为1万元(总成本=固定成本+生产成本).销售收入R(x)(万元)满足,假定该产品产销平衡(即生产的产品都能卖掉),根据上述统计规律,请完成下列问题:(1)写出利润函数y=f(x)的解析式(利润=销售收入﹣总成本);(2)要使工厂有盈利,求产量x的X围;(3)工厂生产多少台产品时,可使盈利最多?19.在△ABC中,A(2,﹣1),AB边上的中线CM所在直线方程为3x+2y+1=0.角B的平分线所在直线BT的方程为x﹣y+2=0.(1)求顶点B的坐标;(2)求直线BC的方程.20.如图,AB为圆O的直径,点E,F在圆O上,且AB∥EF,矩形ABCD所在的平面与圆O 所在的平面互相垂直,且AB=2,AD=EF=1.(1)设FC的中点为M,求证:OM∥面DAF;(2)求证:AF⊥面CBF.21.设直线l的方程为(a+1)x+y+2﹣a=0(a∈R).(1)若l在两坐标轴上的截距相等,求l的方程;(2)若l不经过第二象限,某某数a的取值X围;(3)若l与x轴正半轴的交点为A,与y轴负半轴的交点为B,求△AOB(O为坐标原点)面积的最小值.2015-2016学年某某省某某市高一(上)期末数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分,每小题给出四个选项,只有一个选项符合题目要求.1.下列命题中正确的个数是()(1)空间中如果两个角的两边分别对应平行,那么这两个角相等(2)若直线l与平面α平行,则直线l与平面α内的直线平行或异面(3)夹在两个平行平面间的平行线段相等(4)垂直于同一直线的两条直线平行.A.0 B.1 C.2 D.3【分析】根据空间中的平行与垂直关系,得出命题A、B、C正确,命题D错误【解答】解:对于(1),空间中如果两个角的两边分别对应平行,那么这两个角相等或互补,∴命题(1)错误;对于(2),若直线l与平面α平行,则直线l与平面α内的直线平行或异面,根据线面平行的性质得到命题(2)正确;对于(3),夹在两个平行平面间的平行线段相等;命题(3)正确;对于(4),垂直于同一条直线的两个直线平行、相交或异面,∴命题(4)错误.故正确的命题有2个;故选:C.【点评】本题考查了空间中的平行与垂直关系的应用问题,是基础题目.2.如果两条直线l1:ax+2y+6=0与l2:x+(a﹣1)y+3=0平行,那么实数a等于()A.﹣1 B.2 C.2或﹣1 D.【分析】两条直线l1:ax+2y+6=0与l2:x+(a﹣1)y+3=0平行,直线l1的斜率存在,利用两条直线相互平行的充要条件即可得出.【解答】解:∵两条直线l1:ax+2y+6=0与l2:x+(a﹣1)y+3=0平行,直线l1的斜率存在,分别化为:y=﹣x﹣3,y=﹣,∴,﹣3≠﹣,解得a=﹣1.故选:A.【点评】本题考查了两条直线相互平行的充要条件,考查了推理能力与计算能力,属于中档题.3.函数f(x)=e x+2x﹣3的零点所在的一个区间是()A.()B.()C.()D.()【分析】将选项中各区间两端点值代入f(x),满足f(a)f(b)<0(a,b为区间两端点)的为答案.【解答】解:因为f()=<0,f(1)=e﹣1>0,所以零点在区间()上,故选C.【点评】本题考查了函数零点的概念与零点定理的应用,属于容易题.函数零点附近函数值的符号相反,这类选择题通常采用代入排除的方法求解.4.一个几何体的三视图如图所示,其中正视图和俯视图的都是腰长为1的两个全等的等腰直角三角形,则该几何体的体积为()A.B.C.D.【分析】根据三视图知几何体为一直四棱锥,结合图中数据求出该四棱锥的体积.【解答】解:由三视图知几何体为一直四棱锥,其直观图如图所示;∵正视图和侧视图是腰长为1的两个全等的等腰直角三角形,∴四棱锥的底面是正方形,且边长为1,其中一条侧棱垂直于底面且侧棱长也为1,∴该四棱锥的体积为×12×1=.故选:B.【点评】本题考查了由三视图求几何体体积的应用问题,解题的关键是判断几何体的形状,是基础题.5.若函数f(x)=ax+1在区间(﹣1,1)上存在一个零点,则实数a的取值X围是()A.a>1 B.a<1 C.a<﹣1或a>1 D.﹣1<a<1【分析】由函数的零点的判定定理可得f(﹣1)f(1)<0,解不等式求得实数a的取值X 围.【解答】解:函数f(x)=ax+1在区间(﹣1,1)上存在一个零点,则f(﹣1)f(1)<0,即(1﹣a)(1+a)<0,解得a<﹣1或a>1.故选:C.【点评】本题主要考查函数的零点的判定定理的应用,属于基础题.6.过球的一条半径的中点,作垂直于该半径的平面,则所得截面的面积与球的表面积的比为()A.B.C.D.【分析】由题意设出球的半径,圆M的半径,二者与OM构成直角三角形,求出圆M的半径,然后可求球的表面积,截面面积,再求二者之比.【解答】解:设球的半径为R,圆M的半径r,由图可知,R2=R2+r2,∴R2=r2,∴S球=4πR2,截面圆M的面积为:πr2=πR2,则所得截面的面积与球的表面积的比为:.故选A.【点评】本题是基础题,考查球的体积、表面积的计算,仔细体会,理解并能够应用小圆的半径、球的半径、以及球心与圆心的连线的关系,是本题的突破口.7.在坐标平面内,与点A(﹣2,﹣1)和点B(4,7)的距离均为5的直线共有()A.1条B.2条C.3条D.4条【分析】先求出线段AB的长度为10,等于5的2倍,故满足条件的直线有3条,其中有2条和线段AB平行,另一条是线段AB的中垂线.【解答】解:线段AB的长度为=10,故在坐标平面内,与点A(﹣2,﹣1)和点B(4,7)的距离均为5的直线共有3条,其中有2条在线段AB的两侧,且都和线段AB平行,另一条是线段AB的中垂线,故选 C.【点评】本题考查两点间的距离公式的应用,线段的中垂线的性质,体现了分类讨论的数学思想.8.若圆锥的侧面展开图的圆心角为90°,半径为r,则该圆锥的全面积为()A.B.C.D.【分析】根据扇形的弧长等于圆锥底面周长求出圆锥底面半径.【解答】解:圆锥的侧面积为,侧面展开图的弧长为=,设圆锥的底面半径为r′,则2πr′=,∴r′=.∴圆锥的全面积S=+=.故选:D.【点评】本题考查了圆锥的结构特征,面积计算,属于基础题.9.如图,AB为圆O的直径,点C在圆周上(异于点A,B),直线PA垂直于圆O所在的平面,点M,N分别为线段PB,BC的中点,有以下三个命题:①OC∩平面PAC;②MO∥平面PAC;③平面PAC∥平面MON,其中正确的命题是()A.①②B.①③C.②③D.①②③【分析】利用线面平行,面面平行的判定定理即可.【解答】解:点M,N分别为线段PB,BC的中点,o为AB的中点,∴MO∥PA,ON∥AC,OM∩ON=O,∴MO∥平面PAC;平面PAC∥平面MON,②③故正确;故选:C.【点评】考查了线面平行,面面平行的判断,属于基础题型,应熟练掌握.10.定义在R上的奇函数f(x),当x≥0时,f(x)=,则关于x的函数F(x)=f(x)﹣a(0<a<1)的所有零点之和为()A.1﹣2a B.2a﹣1 C.1﹣2﹣a D.2﹣a﹣1【分析】函数F(x)=f(x)﹣a(0<a<1)的零点转化为:在同一坐标系内y=f(x),y=a 的图象交点的横坐标.作出两函数图象,考查交点个数,结合方程思想,及零点的对称性,根据奇函数f(x)在x ≥0时的解析式,作出函数的图象,结合图象及其对称性,求出答案.【解答】解:∵当x≥0时,f(x)=;即x∈[0,1)时,f(x)=(x+1)∈(﹣1,0];x∈[1,3]时,f(x)=x﹣2∈[﹣1,1];x∈(3,+∞)时,f(x)=4﹣x∈(﹣∞,﹣1);画出x≥0时f(x)的图象,再利用奇函数的对称性,画出x<0时f(x)的图象,如图所示;则直线y=a,与y=f(x)的图象有5个交点,则方程f(x)﹣a=0共有五个实根,最左边两根之和为﹣6,最右边两根之和为6,∵x∈(﹣1,0)时,﹣x∈(0,1),∴f(﹣x)=(﹣x+1),又f(﹣x)=﹣f(x),∴f(x)=﹣(﹣x+1)=(1﹣x)﹣1=log2(1﹣x),∴中间的一个根满足log2(1﹣x)=a,即1﹣x=2a,解得x=1﹣2a,∴所有根的和为1﹣2a.故选:A.【点评】本题考查分段函数的图象与性质的应用问题,也考查了利用函数零点与方程的应用问题,是综合性题目.二、填空题:本大题共5小题,每小题5分,共25分.11.通过市场调查知某商品每件的市场价y(单位:圆)与上市时间x(单位:天)的数据如下:上市时间x天 4 10 36市场价y元 90 51 90根据上表数据,当a≠0时,下列函数:①y=ax+k;②y=ax2+bx+c;③y=alog m x中能恰当的描述该商品的市场价y与上市时间x的变化关系的是(只需写出序号即可)②.【分析】随着时间x的增加,y的值先减后增,结合函数的单调性即可得出结论【解答】解:∵随着时间x的增加,y的值先减后增,而所给的三个函数中y=ax+k和y=alog m x 显然都是单调函数,不满足题意,∴y=ax2+bx+c.故答案为:②.【点评】本题考查函数模型的选择,考查学生利用数学知识解决实际问题的能力,确定函数模型是关键.12.如图所示,在直四棱柱ABCD﹣A1B1C1D1中,当底面四边形A1B1C1D1满足条件AC⊥BD或四边形ABCD为菱形时,有A1C⊥B1D1(注:填上你认为正确的一种情况即可,不必考虑所有可能的情况).【分析】由假设A1C⊥B1D1,结合直四棱柱的性质及线面垂直的判定和性质定理,我们易得到A1C1⊥B1D1,即AC⊥BD,又由菱形的几何特征可判断出四边形ABCD为菱形,又由本题为开放型题目上,故答案可以不唯一.【解答】解:若A1C⊥B1D1,由四棱柱ABCD﹣A1B1C1D1为直四棱柱,AA1⊥B1D1,易得B1D1⊥平面AA1BB1,则A1C1⊥B1D1,即AC⊥BD,则四边形ABCD为菱形,故答案为:AC⊥BD或四边形ABCD为菱形.【点评】本题主要考查了空间中直线与直线之间的位置关系,属于知识的考查,属于中档题.13.若直线m被两条平行直线l1:x﹣y+1=0与l2:2x﹣2y+5=0所截得的线段长为,则直线m的倾斜角等于135°.【分析】由两平行线间的距离,得直线m和两平行线的夹角为90°.再根据两条平行线的倾斜角为45°,可得直线m的倾斜角的值.【解答】解:由两平行线间的距离为=,直线m被平行线截得线段的长为,可得直线m 和两平行线的夹角为90°.由于两条平行线的倾斜角为45°,故直线m的倾斜角为135°,故答案为:135°.【点评】本题考查两平行线间的距离公式,两条直线的夹角公式,本题属于基础题.14.已知函数f(x)对任意的x∈R满足f(﹣x)=f(x),且当x≥0时,f(x)=x2﹣x+1,若f(x)有4个零点,则实数a的取值X围是(4,+∞).【分析】根据条件可判断函数为偶函数,则要使(x)有4个零点,只需当x≥0时,f(x)=x2﹣x+1=0有两不等正根,根据二次方程的根的判定求解.【解答】解:对任意的x∈R满足f(﹣x)=f(x),∴函数为偶函数,若f(x)有4个零点,∴当x≥0时,f(x)=x2﹣x+1=0有两不等正根,∴△=a﹣4>0,∴a>4.【点评】考查了偶函数的应用和二次方程根的性质.15.如图,在棱长都相等的四面体SABC中,给出如下三个命题:①异面直线AB与SC所成角为60°;②BC与平面SAB所成角的余弦值为;③二面角S﹣BC﹣A的余弦值为,其中所有正确命题的序号为②③.【分析】①根据线面垂直性质可判断;②根据公式cosθ=cosθ1cosθ2求解即可;③找出二面角的平面角,利用余弦定理求解.【解答】解:①取AB中点M,易证AB垂直平面SMC,可得AB垂直SC,故错误;②易知BC在平面上的射影为∠ABC的角平分线,∴cos60°=cosθcos30°,∴cosθ=,故正确;③取BC中点N,∴二面角为∠ANC,不妨设棱长为1,∴cos∠ANC==,故正确,故答案为:②③.【点评】考查了线面垂直,线面角,二面角的求法.属于基础题型.三、解答题:本大题共6小题,满分75分,解答须写出文字说明、证明过程或演算步骤、16.如图,AA1B1B是圆柱的轴截面,C是底面圆周上异于A,B的一点,AA1=AB=2.(1)求证:平面AA1C⊥平面BA1C;(2)若AC=BC,求几何体A1﹣ABC的体积V.【分析】(1)证明BC⊥平面AA1C,即可证明平面AA1C⊥平面BA1C;(2)求出AC,直接利用体积公式求解即可.【解答】(1)证明:因为C是底面圆周上异于A,B的一点,AB是底面圆的直径,所以AC⊥BC.因为AA1⊥平面ABC,BC⊂平面ABC,所以AA1⊥BC,而AC∩AA1=A,所以BC⊥平面AA1C.又BC⊂平面BA1C,所以平面AA1C⊥平面BA1C.…(6分)(2)解:在Rt△ABC中,AB=2,则由AB2=AC2+BC2且AC=BC,得,所以.…(12分)【点评】本题考查线面垂直的判定,考查平面与平面垂直,考查几何体A1﹣ABC的体积,考查学生分析解决问题的能力,属于中档题.17.如图,棱长为1的正方体ABCD﹣A1B1C1D1中,E是AA1的中点.(1)求证:A1C∥平面BDE;(2)求二面角E﹣BD﹣A的正切值.【分析】(1)连AC,设AC与BD交于点O,连EO,则A1C∥EO,由此能证明A1C∥平面BDE.(2)由BD⊥AC,BD⊥EO,得∠AOE是二面角E﹣BD﹣A的平面角,由此能求出二面角E﹣BD ﹣A的正切值.【解答】证明:(1)连AC,设AC与BD交于点O,连EO,∵E是AA1的中点,O是BD的中点,∴A1C∥EO,又EO⊂面BDE,AA1⊄面BDE,所以A1C∥平面BDE.…(6分)解:(2)由(1)知,BD⊥AC,BD⊥EO,∴∠AOE是二面角E﹣BD﹣A的平面角,在Rt△AOE中,tan∠AOE==.∴二面角E﹣BD﹣A的正切值为.…(12分)【点评】本题考查线面平行的证明,考查二面角的正切值的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.18.某产品生产厂家根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产产品x(百台),其总成本为G(x)(万元),其中固定成本为2.8万元,并且每生产1百台的生产成本为1万元(总成本=固定成本+生产成本).销售收入R(x)(万元)满足,假定该产品产销平衡(即生产的产品都能卖掉),根据上述统计规律,请完成下列问题:(1)写出利润函数y=f(x)的解析式(利润=销售收入﹣总成本);(2)要使工厂有盈利,求产量x的X围;(3)工厂生产多少台产品时,可使盈利最多?【分析】(1)由题意得G(x)=2.8+x.由,f(x)=R (x)﹣G(x),能写出利润函数y=f(x)的解析式.(2)当0≤x≤5时,由f(x)=﹣0.4x2+3.2x﹣2.8>0,得1<x≤5;当x>5时,由f(x)=8.2﹣x>0,得5<x<8.2.由此能求出要使工厂有盈利,产量x的X围.(3)当x>5时,由函数f(x)递减,知f(x)<f(5)=3.2(万元).当0≤x≤5时,函数f(x)=﹣0.4(x﹣4)2+3.6,当x=4时,f(x)有最大值为3.6(万元).由此能求出工厂生产多少台产品时,可使盈利最多.【解答】解:(1)由题意得G(x)=2.8+x.…(2分)∵,…(4分)∴f(x)=R(x)﹣G(x)=.…(6分)(2)∵f(x)=,∴当0≤x≤5时,由f(x)=﹣0.4x2+3.2x﹣2.8>0,得1<x≤5;.…(7分)当x>5时,由f(x)=8.2﹣x>0,得5<x<8.2.∴要使工厂有盈利,求产量x的X围是(1,8.2)..…(8分)(3)∵f(x)=,∴当x>5时,函数f(x)递减,∴f(x)<f(5)=3.2(万元).…(10分)当0≤x≤5时,函数f(x)=﹣0.4(x﹣4)2+3.6,当x=4时,f(x)有最大值为3.6(万元).…(14分)所以当工厂生产4百台时,可使赢利最大为3.6万元.…(15分)【点评】本题考查函数知识在生产实际中的具体应用,解题时要认真审题,仔细解答,注意挖掘题设中的隐含条件,合理地进行等价转化.19.在△ABC中,A(2,﹣1),AB边上的中线CM所在直线方程为3x+2y+1=0.角B的平分线所在直线BT的方程为x﹣y+2=0.(1)求顶点B的坐标;(2)求直线BC的方程.【分析】(1)设B(x0,y0),利用中点坐标公式可得:AB的中点M,代入直线CM.又点B在直线BT上,联立即可得出.(2)设点A(2,﹣1)关于直线BT的对称点的坐标为A′(a,b),则点A′在直线BC上,利用对称的性质即可得出.【解答】解:(1)设B(x0,y0),则AB的中点M在直线CM上,所以+1=0,即3x0+2y0+6=0 ①…(2分)又点B在直线BT上,所以x0﹣y0+2=0 ②…(4分)由①②得:x0=﹣2,y0=0,即顶点B(﹣2,0).…(6分)(2)设点A(2,﹣1)关于直线BT的对称点的坐标为A′(a,b),则点A′在直线BC上,由题意知,,解得a=﹣3,b=4,即A′(﹣3,4).…(9分)因为k BC===﹣4,…(11分)所以直线BC的方程为y=﹣4(x+2),即4x+y+8=0.…(12分)【点评】本题考查了角平分线的性质、相互垂直的直线斜率之间的关系、中点坐标公式,考查了推理能力与计算能力,属于中档题.20.如图,AB为圆O的直径,点E,F在圆O上,且AB∥EF,矩形ABCD所在的平面与圆O 所在的平面互相垂直,且AB=2,AD=EF=1.(1)设FC的中点为M,求证:OM∥面DAF;(2)求证:AF⊥面CBF.【分析】(1)先证明OM∥AN,根据线面平行的判定定理即可证明OM∥面DAF;(2)由题意可先证明AF⊥CB,由AB为圆O的直径,可证明AF⊥BF,根据线面垂直的判定定理或面面垂直的性质定理即可证明AF⊥面CBF.【解答】解:(1)设DF的中点为N,连接MN,则MN∥CD,MN=CD,又∵AO∥CD,AO=CD,∴MN∥AO,MN=AO,∴MNAO为平行四边形,∴OM∥AN.又∵AN⊂面DAF,OM⊄面DAF,∴OM∥面DAF.(2)∵面ABCD⊥面ABEF,CB⊥AB,CB⊂面ABCD,面ABCD∩面ABEF=AB,∴CB⊥面ABEF.∵AF⊂面ABEF,∴AF⊥CB.又∵AB为圆O的直径,∴AF⊥BF,又∵CB∩BF=B,CB,BF⊂面CBF.∴AF⊥面CBF.【点评】本题主要考查了平面与平面垂直的判定,直线与平面平行的判定,考查了空间想象能力和转化思想,属于中档题.21.设直线l的方程为(a+1)x+y+2﹣a=0(a∈R).(1)若l在两坐标轴上的截距相等,求l的方程;(2)若l不经过第二象限,某某数a的取值X围;(3)若l与x轴正半轴的交点为A,与y轴负半轴的交点为B,求△AOB(O为坐标原点)面积的最小值.【分析】(1)对a分类讨论,利用截距式即可得出;(2)y=﹣(a+1)x+a﹣2,由于l不经过第二象限,可得,解出即可得出.(3)令x=0,解得y=a﹣2<0,解得aX围;令y=0,解得x=>0,解得aX围.求交集可得:a<﹣1.利用S△AOB= [﹣(a﹣2)]×,变形利用基本不等式的性质即可得出.【解答】解:(1)若2﹣a=0,解得a=2,化为3x+y=0.若a+1=0,解得a=﹣1,化为y+3=0,舍去.若a≠﹣1,2,化为: +=1,令=a﹣2,化为a+1=1,解得a=0,可得直线l的方程为:x+y+2=0.(2)y=﹣(a+1)x+a﹣2,∵l不经过第二象限,∴,解得:a≤﹣1.∴实数a的取值X围是(﹣∞,﹣1].(3)令x=0,解得y=a﹣2<0,解得a<2;令y=0,解得x=>0,解得a>2或a<﹣1.因此,解得a<﹣1.∴S△AOB=|a﹣2|||==3+≥3+=6,当且仅当a=﹣4时取等号.∴△AOB(O为坐标原点)面积的最小值是6.【点评】本题考查了直线的方程、不等式的性质、三角形的面积计算公式,考查了分类讨论方法、推理能力与计算能力,属于中档题.。

2020-2021学年山东省烟台市高二(上)期中数学试卷+答案解析(附后)

2020-2021学年山东省烟台市高二(上)期中数学试卷+答案解析(附后)

2020-2021学年山东省烟台市高二(上)期中数学试卷一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.下列说法正确的是( )A. 任何三个不共线的向量可构成空间向量的一个基底B. 空间的基底有且仅有一个C. 两两垂直的三个非零向量可构成空间的一个基底D. 直线的方向向量有且仅有一个2.直线的倾斜角是( )A. B. C.D.3.已知,,,若P ,A ,B ,C 四点共面,则( )A. 9B.C. D. 34.已知实数x ,y 满足,那么的最小值为( )A. B.C. 2D. 45.直线的一个方向向量是( )A.B.C.D.6.正四面体ABCD 中,M ,N 分别是BC ,AD 的中点,则直线AM 和CN 夹角的余弦值为( )A.B.C. D.7.棱长为1的正方体中,O 是面的中心,则O 到平面的距离是( )A.B.C. D.8.已知圆C 的方程为,过直线l :上任意一点作圆C 的切线,若切线长的最小值为,则直线l 的斜率为( )A. 4B.C.D.二、多选题:本题共4小题,共20分。

在每小题给出的选项中,有多项符合题目要求。

全部选对的得5分,部分选对的得2分,有选错的得0分。

9.下列叙述正确的有( )A. 平面直角坐标系中的任意一条直线都有斜率B. 平面直角坐标系中的任意一条直线都有倾斜角C. 若,则D. 任意两个空间向量共面10.古希腊数学家阿波罗尼奥斯著作《圆锥曲线论》是古代世界光辉的科学成果,著作中有这样一个命题:平面内与两定点距离的比为常数且的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.已知,,圆C:上有且仅有一个点P满足,则r的取值可以为( )A. 2B. 4C. 6D. 811.如图,棱长为1的正方体中,E,F分别为,的中点,则( )A. 直线与底面ABCD所成的角为B. 平面与底面ABCD夹角的余弦值为C.直线与直线AE的距离为D. 直线与平面的距离为12.设有一组圆:,下列说法正确的是( )A. 这组圆的半径均为1B.直线平分所有的圆C.直线被圆截得的弦长相等D. 存在一个圆与x轴和y轴均相切三、填空题:本题共4小题,每小题5分,共20分。

2020年山东省烟台市中考数学试卷(附详解)

2020年山东省烟台市中考数学试卷(附详解)

择不同项目的概率.
21.(9 分)(2020•烟台)新冠疫情期间,口罩成为了人们出行必备的防护工具.某药店三 月份共销售 A,B 两种型号的口罩 9000 只,共获利润 5000 元,其中 A,B 两种型号口罩 所获利润之比为 2:3.已知每只 B 型口罩的销售利润是 A 型口罩的 1.2 倍. (1)求每只 A 型口罩和 B 型口罩的销售利润; (2)该药店四月份计划一次性购进两种型号的口罩共 10000 只,其中 B 型口罩的进货量 不超过 A 型口罩的 1.5 倍,设购进 A 型口罩 m 只,这 1000 只口罩的销售总利润为 W 元.该 药店如何进货,才能使销售总利润最大?
y 的结果为

第 4页(共 27页)
17.(3 分)(2020•烟台)如图,已知点 A(2,0),B(0,4),C(2,4),D(6,6),连
接 AB,CD,将线段 AB 绕着某一点旋转一定角度,使其与线段 CD 重合(点 A 与点 C
重合,点 B 与点 D 重合),则这个旋转中心的坐标为

18.(3 分)(2020•烟台)二次函数 y=ax2+bx+c 的图象如图所示,下列结论: ①ab>0;②a+b﹣1=0;③a>1;④关于 x 的一元二次方程 ax2+bx+c=0 的一个根为 1,
可显示以“度”“分”“秒”为单位的结果
D.计算器显示结果为 时,若按
键,则结果切换为小数格式 0.333333333
7.(3 分)(2020•烟台)如图,△OA1A2 为等腰直角三角形,OA1=1,以斜边 OA2 为直角边 作等腰直角三角形 OA2A3,再以 OA3 为直角边作等腰直角三角形 OA3A4,…,按此规律 作下去,则 OAn 的长度为( )

2020年山东省烟台市中考数学试卷和答案解析

2020年山东省烟台市中考数学试卷和答案解析

2020年山东省烟台市中考数学试卷和答案解析一、选择题(本题共12个小题,每小题3分,满分36分)每小题都给出标号为A,B,C,D四个备选答案,其中有且只有一个是正确的.1.(3分)4的平方根是()A.2B.﹣2C.±2D.解析:根据平方根的定义,求数4的平方根即可.参考答案:解:4的平方根是±2.故选:C.点拨:本题考查了平方根的定义.解题的关键是掌握平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.2.(3分)下列关于数字变换的图案中,是中心对称图形但不是轴对称图形的是()A.B.C.D.解析:根据轴对称图形与中心对称图形的概念求解即可.参考答案:解:A、是中心对称图形,不是轴对称图形,故此选项符合题意;B、不是中心对称图形,是轴对称图形,故此选项不符合题意;C、既不是中心对称图形,也不是轴对称图形,故此选项不符合题意;D、既是轴对称图形,也是中心对称图形,故此选项不符合题意.故选:A.点拨:此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180度后与原图形重合.解题的关键是轴对称图形与中心对称图形的概念:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.3.(3分)实数a,b,c在数轴上的对应点的位置如图所示,那么这三个数中绝对值最大的是()A.a B.b C.c D.无法确定解析:根据有理数大小比较方法,越靠近原点其绝对值越小,进而分析得出答案.参考答案:解:有理数a,b,c在数轴上的对应点的位置如图所示,这三个数中,实数a离原点最远,所以绝对值最大的是:a.故选:A.点拨:此题主要考查了有理数大小比较,正确掌握有理数大小的比较方法是解题关键.4.(3分)如图,是一个几何体的三视图,则这个几何体是()A.B.C.D.解析:结合三视图确定各图形的位置后即可确定正确的选项.参考答案:解:结合三个视图发现,这个几何体是长方体和圆锥的组合图形.故选:B.点拨:本题考查了由三视图判断几何体的知识,解题的关键是能够正确的确定各个图形的位置,难度不大.5.(3分)如果将一组数据中的每个数都减去5,那么所得的一组新数据()A.众数改变,方差改变B.众数不变,平均数改变C.中位数改变,方差不变D.中位数不变,平均数不变解析:由每个数都减去5,那么所得的一组新数据的众数、中位数、平均数都减少5,方差不变,据此可得答案.参考答案:解:如果将一组数据中的每个数都减去5,那么所得的一组新数据的众数、中位数、平均数都减少5,方差不变,故选:C.点拨:本题主要考查方差,解题的关键是掌握方差、众数、中位数和平均数的定义.6.(3分)系统找不到该试题7.(3分)如图,△OA1A2为等腰直角三角形,OA1=1,以斜边OA2为直角边作等腰直角三角形OA2A3,再以OA3为直角边作等腰直角三角形OA3A4,…,按此规律作下去,则OA n的长度为()A.()n B.()n﹣1C.()n D.()n﹣1解析:利用等腰直角三角形的性质以及勾股定理分别求出各边长,依据规律即可得出答案.参考答案:解:∵△OA1A2为等腰直角三角形,OA1=1,∴OA 2=;∵△OA2A3为等腰直角三角形,∴OA 3=2=;∵△OA3A4为等腰直角三角形,∴OA 4=2=.∵△OA4A5为等腰直角三角形,∴OA 5=4=,……∴OA n的长度为()n﹣1.故选:B.点拨:此题主要考查了等腰直角三角形的性质以及勾股定理,熟练应用勾股定理得出斜边是解题关键.8.(3分)量角器测角度时摆放的位置如图所示,在△AOB中,射线OC交边AB于点D,则∠ADC的度数为()A.60°B.70°C.80°D.85°解析:根据等腰三角形的性质,三角形的外角的性质即可得到结论.参考答案:解:∵OA=OB,∠AOB=140°,∴∠A=∠B=(180°﹣140°)=20°,∵∠AOC=60°,∴∠ADC=∠A+∠AOC=20°+60°=80°,故选:C.点拨:本题考查了圆周角定理,等腰三角形的性质,三角形外角的性质,正确的识别图形是解题的关键.9.(3分)七巧板是我们祖先的一项创造,被誉为“东方魔板”.在一次数学活动课上,小明用边长为4cm的正方形纸片制作了如图所示的七巧板,并设计了下列四幅作品﹣﹣“奔跑者”,其中阴影部分的面积为5cm2的是()A.B.C.D.解析:先求出最小的等腰直角三角形的面积=××42=1cm2,可得平行四边形面积为2cm2,中等的等腰直角三角形的面积为2cm2,最大的等腰直角三角形的面积为4cm2,再根据阴影部分的组成求出相应的面积即可求解.参考答案:解:最小的等腰直角三角形的面积=××42=1(cm2),平行四边形面积为2cm2,中等的等腰直角三角形的面积为2cm2,最大的等腰直角三角形的面积为4cm2,则A、阴影部分的面积为2+2=4(cm2),不符合题意;B、阴影部分的面积为1+2=3(cm2),不符合题意;C、阴影部分的面积为4+2=6(cm2),不符合题意;D、阴影部分的面积为4+1=5(cm2),符合题意.故选:D.点拨:本题考查图形的剪拼、七巧板,解题的关键是求出最小的等腰直角三角形的面积,学会利用分割法求阴影部分的面积.10.(3分)如图,点G为△ABC的重心,连接CG,AG并延长分别交AB,BC于点E,F,连接EF,若AB=4.4,AC=3.4,BC=3.6,则EF的长度为()A.1.7B.1.8C.2.2D.2.4解析:由已知条件得EF是三角形的中位线,进而根据三角形中位线定理求得EF的长度.参考答案:解:∵点G为△ABC的重心,∴AE=BE,BF=CF,∴EF==1.7,故选:A.点拨:本题主要考查了三角形的重心,三角形的中位线定理,关键正确利用重心定义得EF为三角形的中位线.11.(3分)如图,在矩形ABCD中,点E在DC上,将矩形沿AE折叠,使点D落在BC边上的点F处.若AB=3,BC=5,则tan ∠DAE的值为()A.B.C.D.解析:先根据矩形的性质得AD=BC=5,AB=CD=3,再根据折叠的性质得AF=AD=5,EF=DE,在Rt△ABF中,利用勾股定理计算出BF=4,则CF=BC﹣BF=1,设CE=x,则DE=EF=3﹣x,然后在Rt△ECF中根据勾股定理得到x2+12=(3﹣x)2,解方程即可得到x,进一步得到EF的长,再根据正弦函数的定义即可求解.参考答案:解:∵四边形ABCD为矩形,∴AD=BC=5,AB=CD=3,∵矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上的F处,∴AF=AD=5,EF=DE,在Rt△ABF中,BF===4,∴CF=BC﹣BF=5﹣4=1,设CE=x,则DE=EF=3﹣x在Rt△ECF中,∵CE2+FC2=EF2,∴x2+12=(3﹣x)2,解得x=,∴DE=EF=3﹣x=,∴tan∠DAE===,故选:D.点拨:本题考查了翻折变换,矩形的性质,解直角三角形,勾股定理,灵活运用这些性质进行推理是本题的关键.12.(3分)如图,正比例函数y1=mx,一次函数y2=ax+b和反比例函数y3=的图象在同一直角坐标系中,若y3>y1>y2,则自变量x的取值范围是()A.x<﹣1B.﹣0.5<x<0或x>1C.0<x<1D.x<﹣1或0<x<1解析:根据图象,找出双曲线y3落在直线y1上方,且直线y1落在直线y2上方的部分对应的自变量x的取值范围即可.参考答案:解:由图象可知,当x<﹣1或0<x<1时,双曲线y3落在直线y1上方,且直线y1落在直线y2上方,即y3>y1>y2,所以若y3>y1>y2,则自变量x的取值范围是x<﹣1或0<x<1.故选:D.点拨:本题考查了反比例函数与一次函数的交点问题,利用数形结合是解题的关键.二、填空题(本大题共6个小题,每小题3分,满分18分)13.(3分)5G是第五代移动通信技术,其网络下载速度可以达到每秒1300000KB以上,正常下载一部高清电影约需1秒.将1300000用科学记数法表示为 1.3×106.解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.参考答案:解:将数据1300000用科学记数法可表示为:1.3×106.故答案为:1.3×106.点拨:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.(3分)已知正多边形的一个外角等于40°,则这个正多边形的内角和的度数为1260°.解析:利用任意多边形的外角和均为360°,正多边形的每个外角相等即可求出它的边数,再根据多边形的内角和公式计算即可.参考答案:解:∵正n边形的每个外角相等,且其和为360°,∴=40°,解得n=9.∴(9﹣2)×180°=1260°,即这个正多边形的内角和为1260°.故答案为:1260°.点拨:本题主要考查了正多边形外角和与内角和等知识.解题的关键是明确正多边形的每个外角相等,且其和为360°,比较简单.15.(3分)关于x的一元二次方程(m﹣1)x2+2x﹣1=0有两个不相等的实数根,则m的取值范围是m>0且m≠1.解析:根据一元二次方程的定义和判别式的意义得到m﹣1≠0且△=22﹣4(m﹣1)×(﹣1)>0,然后求出两个不等式的公共部分即可.参考答案:解:根据题意得m﹣1≠0且△=22﹣4(m﹣1)×(﹣1)>0,解得m>0且m≠1.故答案为:m>0且m≠1.点拨:本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.16.(3分)按如图所示的程序计算函数y的值,若输入的x值为﹣3,则输出y的结果为18.解析:根据﹣3<﹣1确定出应代入y=2x2中计算出y的值.参考答案:解:∵﹣3<﹣1,把x=﹣3代入y=2x2,得y=2×9=18,故答案为:18.点拨:本题主要考查函数值的计算,理解题意是前提条件,熟练掌握函数值的定义是解题的关键.17.(3分)如图,已知点A(2,0),B(0,4),C(2,4),D(6,6),连接AB,CD,将线段AB绕着某一点旋转一定角度,使其与线段CD重合(点A与点C重合,点B与点D重合),则这个旋转中心的坐标为(4,2).解析:画出平面直角坐标系,作出线段AC,BD的垂直平分线的交点P,点P即为旋转中心.参考答案:解:平面直角坐标系如图所示,旋转中心是P点,P(4,2).故答案为(4,2).点拨:本题考查坐标与图形变化﹣旋转,解题的关键是理解对应点连线段的垂直平分线的交点即为旋转中心.18.(3分)二次函数y=ax2+bx+c的图象如图所示,下列结论:①ab>0;②a+b﹣1=0;③a>1;④关于x的一元二次方程ax2+bx+c=0的一个根为1,另一个根为﹣.其中正确结论的序号是②③④.解析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点得出c的值,然后根据抛物线与x轴交点的个数及x=1时二次函数的值的情况进行推理,进而对所得结论进行判断.参考答案:解:①由二次函数的图象开口向上可得a>0,对称轴在y轴的右侧,b<0,∴ab<0,故①错误;②由图象可知抛物线与x轴的交点为(1,0),与y轴的交点为(0,﹣1),∴c=﹣1,∴a+b﹣1=0,故②正确;③∵a+b﹣1=0,∴a﹣1=﹣b,∵b<0,∴a﹣1>0,∴a>1,故③正确;④∵抛物线与与y轴的交点为(0,﹣1),∴抛物线为y=ax2+bx﹣1,∵抛物线与x轴的交点为(1,0),∴ax2+bx﹣1=0的一个根为1,根据根与系数的关系,另一个根为﹣,故④正确;故答案为②③④.点拨:主要考查图象与二次函数系数之间的关系,二次函数与方程之间的转换.会利用特殊值代入法求得特殊的式子,如:y=a+b+c,然后根据图象判断其值.三、解答题(本大题共7个小题,满分66分)19.(6分)先化简,再求值:(﹣)÷,其中x=+1,y=﹣1.解析:先将括号里面的两个分式通分,进而进行分式的减法,再将除法转化为乘法,进行约分化简,最后代入求值即可.参考答案:解:(﹣)÷,=[﹣]÷,=×,=,当x=+1,y=﹣1时,原式==2﹣.点拨:本题考查分式的混合运算,掌握计算法则,依据运算顺序进行计算是得出正确答案的前提.20.(8分)奥体中心为满足暑期学生对运动的需求,欲开设球类课程,该中心随机抽取部分学生进行问卷调查,被调查学生须从“羽毛球”、“篮球”、“足球”、“排球”、“乒乓球”中选择自己最喜欢的一项.根据调查结果绘制了不完整的条形统计图和扇形统计图,请根据图中信息,解答下列问题:(1)此次共调查了多少名学生?(2)将条形统计图补充完整;(3)我们把“羽毛球”“篮球”,“足球”、“排球”、“乒乓球”分别用A,B,C,D,E表示.小明和小亮分别从这些项目中任选一项进行训练,利用树状图或表格求出他俩选择不同项目的概率.解析:(1)用羽毛球的人数除以所占的百分比即可得出答案;(2)用总人数减去其他项目的人数求出足球的人数,从而补全统计图;(3)根据题意画出树状图得出所有等可能的情况数和他俩选择不同项目的情况数,然后根据概率公式即可得出答案.参考答案:解:(1)此次共调查的学生有:40÷=200(名);(2)足球的人数有:200﹣40﹣60﹣20﹣30=50(人),补全统计图如下:(3)根据题意画树状图如下:共用25种等可能的情况数,其中他俩选择不同项目的有20种,则他俩选择不同项目的概率是=.点拨:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.21.(9分)新冠疫情期间,口罩成为了人们出行必备的防护工具.某药店三月份共销售A,B两种型号的口罩9000只,共获利润5000元,其中A,B两种型号口罩所获利润之比为2:3.已知每只B 型口罩的销售利润是A型口罩的1.2倍.(1)求每只A型口罩和B型口罩的销售利润;(2)该药店四月份计划一次性购进两种型号的口罩共10000只,其中B型口罩的进货量不超过A型口罩的1.5倍,设购进A型口罩m只,这10000只口罩的销售总利润为W元.该药店如何进货,才能使销售总利润最大?解析:(1)设销售A型口罩x只,销售B型口罩y只,根据“药店三月份共销售A,B两种型号的口罩9000只,共获利润5000元,其中A,B两种型号口罩所获利润之比为2:3”列方程组解答即可;(2)根据题意即可得出W关于m的函数关系式;根据题意列不等式得出m的取值范围,再结合根据一次函数的性质解答即可.参考答案:解:设销售A型口罩x只,销售B型口罩y只,根据题意得:,解得,经检验,x=4000,y=5000是原方程组的解,∴每只A型口罩的销售利润为:(元),每只B型口罩的销售利润为:0.5×1.2=0.6(元).答:每只A型口罩和B型口罩的销售利润分别为0.5元,0.6元.(2)根据题意得,W=0.5m+0.6(10000﹣m)=﹣0.1m+6000,10000﹣m≤1.5m,解得m≥4000,∵﹣0.1<0,∴W随m的增大而减小,∵m为正整数,∴当m=4000时,W取最大值,则﹣0.1×4000+6000=5600,即药店购进A型口罩4000只、B型口罩6000只,才能使销售总利润最大,最大利润为5600元.点拨:本题主要考查了一次函数的应用,二元一次方程组及一元一次不等式的应用,解题的关键是根据一次函数x值的增大而确定y 值的增减情况.22.(9分)如图,在▱ABCD中,∠D=60°,对角线AC⊥BC,⊙O 经过点A,B,与AC交于点M,连接AO并延长与⊙O交于点F,与CB的延长线交于点E,AB=EB.(1)求证:EC是⊙O的切线;(2)若AD=2,求的长(结果保留π).解析:(1)证明:连接OB,根据平行四边形的性质得到∠ABC=∠D=60°,求得∠BAC=30°,根据等腰三角形的性质和三角形的外角的性质得到∠ABO=∠OAB=30°,于是得到结论;(2)根据平行四边形的性质得到BC=AD=2,过O作OH⊥AM于H,则四边形OBCH是矩形,解直角三角形即可得到结论.参考答案:(1)证明:连接OB,∵四边形ABCD是平行四边形,∴∠ABC=∠D=60°,∵AC⊥BC,∴∠ACB=90°,∴∠BAC=30°,∵BE=AB,∴∠E=∠BAE,∵∠ABC=∠E+∠BAE=60°,∴∠E=∠BAE=30°,∵OA=OB,∴∠ABO=∠OAB=30°,∴∠OBC=30°+60°=90°,∴OB⊥CE,∴EC是⊙O的切线;(2)∵四边形ABCD是平行四边形,∴BC=AD=2,过O作OH⊥AM于H,则四边形OBCH是矩形,∴OH=BC=2,∴OA==4,∠AOM=2∠AOH=60°,∴的长度==.点拨:本题考查了切线的判定,平行四边形的性质,矩形的判定和性质,弧长的计算,正确的作出辅助线是解题的关键.23.(9分)今年疫情期间,针对各种入口处人工测量体温存在的感染风险高、效率低等问题,清华大学牵头研制一款“测温机器人”,如图1,机器人工作时,行人抬手在测温头处测量手腕温度,体温合格则机器人抬起臂杆行人可通行,不合格时机器人不抬臂杆并报警,从而有效阻隔病原体.(1)为了设计“测温机器人”的高度,科研团队采集了大量数据.下表是抽样采集某一地区居民的身高数据:测量对象男性(18~60岁)女性(18~55岁)抽样人数(人)20005000200002000500020000平均身高(厘米)173175176164165164根据你所学的知识,若要更准确的表示这一地区男、女的平均身高,男性应采用176厘米,女性应采用164厘米;(2)如图2,一般的,人抬手的高度与身高之比为黄金比时给人的感觉最舒适,由此利用(1)中的数据得出测温头点P距地面105厘米.指示牌挂在两臂杆AB,AC的连接点A处,A点距地面110厘米.臂杆落下时两端点B,C在同一水平线上,BC=100厘米,点C在点P的正下方5厘米处.若两臂杆长度相等,求两臂杆的夹角.(参考数据表)计算器按键顺序计算结果(近似值)计算器按键顺序计算结果(近似值)0.178.70.284.31.7 5.73.511.3解析:(1)根据样本平均数即可解决问题.(2)利用等腰三角形的性质求出∠BAC即可.参考答案:解:(1)用表格可知,男性应采用176厘米,女性应采用164厘米.故答案为176,164.(2)如图2中,∵AB=AC,AF⊥BC,∴BF=FC=50cm,∠FAC=∠FAB,由题意FC=10cm,∴tan∠FAC===5,∴∠FAC=78.7°,∴∠BAC=2∠FAC=157.4°,答:两臂杆的夹角为157.4°点拨:本题考查解直角三角形的应用,样本平均数等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.24.(12分)如图,在等边三角形ABC中,点E是边AC上一定点,点D是直线BC上一动点,以DE为一边作等边三角形DEF,连接CF.【问题解决】如图1,若点D在边BC上,求证:CE+CF=CD;【类比探究】如图2,若点D在边BC的延长线上,请探究线段CE,CF与CD 之间存在怎样的数量关系?并说明理由.解析:【问题解决】在CD上截取CH=CE,易证△CEH是等边三角形,得出EH=EC=CH,证明△DEH≌△FEC(SAS),得出DH =CF,即可得出结论;【类比探究】过D作DG∥AB,交AC的延长线于点G,由平行线的性质易证∠GDC=∠DGC=60°,得出△GCD为等边三角形,则DG=CD=CG,证明△EGD≌△FCD(SAS),得出EG=FC,即可得出FC=CD+CE.参考答案:【问题解决】证明:在CD上截取CH=CE,如图1所示:∵△ABC是等边三角形,∴∠ECH=60°,∴△CEH是等边三角形,∴EH=EC=CH,∠CEH=60°,∵△DEF是等边三角形,∴DE=FE,∠DEF=60°,∴∠DEH+∠HEF=∠FEC+∠HEF=60°,∴∠DEH=∠FEC,在△DEH和△FEC中,,∴△DEH≌△FEC(SAS),∴DH=CF,∴CD=CH+DH=CE+CF,∴CE+CF=CD;【类比探究】解:线段CE,CF与CD之间的等量关系是FC=CD+CE;理由如下:∵△ABC是等边三角形,∴∠A=∠B=60°,过D作DG∥AB,交AC的延长线于点G,如图2所示:∵GD∥AB,∴∠GDC=∠B=60°,∠DGC=∠A=60°,∴∠GDC=∠DGC=60°,∴△GCD为等边三角形,∴DG=CD=CG,∠GDC=60°,∵△EDF为等边三角形,∴ED=DF,∠EDF=∠GDC=60°,∴∠EDG=∠FDC,在△EGD和△FCD中,,∴△EGD≌△FCD(SAS),∴EG=FC,∴FC=EG=CG+CE=CD+CE.点拨:本题考查了等边三角形的判定与性质、全等三角形的判定与性质、平行线的性质等知识;作辅助线构建等边三角形是解题的关键.25.(13分)如图,抛物线y=ax2+bx+2与x轴交于A,B两点,且OA=2OB,与y轴交于点C,连接BC,抛物线对称轴为直线x =,D为第一象限内抛物线上一动点,过点D作DE⊥OA于点E,与AC交于点F,设点D的横坐标为m.(1)求抛物线的表达式;(2)当线段DF的长度最大时,求D点的坐标;(3)抛物线上是否存在点D,使得以点O,D,E为顶点的三角形与△BOC相似?若存在,求出m的值;若不存在,请说明理由.解析:(1)点A、B的坐标分别为(2t,0)、(﹣t,0),则x==(2t﹣t),即可求解;(2)点D(m,﹣m2+m+2),则点F(m,﹣m+2),则DF=﹣m2+m+2﹣(﹣m+2)=﹣m2+2m,即可求解;(3)以点O,D,E为顶点的三角形与△BOC相似,则,即=2或,即可求解.参考答案:解:(1)设OB=t,则OA=2t,则点A、B的坐标分别为(2t,0)、(﹣t,0),则x==(2t﹣t),解得:t=1,故点A、B的坐标分别为(2,0)、(﹣1,0),则抛物线的表达式为:y=a(x﹣2)(x+1)=ax2+bx+2,解得:a=﹣1,故抛物线的表达式为:y=﹣x2+x+2;(2)对于y=﹣x2+x+2,令x=0,则y=2,故点C(0,2),由点A、C的坐标得,直线AC的表达式为:y=﹣x+2,设点D的横坐标为m,则点D(m,﹣m2+m+2),则点F(m,﹣m+2),则DF=﹣m2+m+2﹣(﹣m+2)=﹣m2+2m,∵﹣1<0,故DF有最大值,DF最大时m=1,∴点D(1,2);(3)存在,理由:点D(m,﹣m2+m+2)(m>0),则OE=m,DE=﹣m2+m+2,以点O,D,E为顶点的三角形与△BOC相似,则,即=2或,即=2或,解得:m=1或﹣2(舍去)或或(舍去),故m=1或.点拨:主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.。

2023-2024学年山东省烟台市高一(上)期中数学试卷【答案版】

2023-2024学年山东省烟台市高一(上)期中数学试卷【答案版】

2023-2024学年山东省烟台市高一(上)期中数学试卷一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若集合A={1,2m,m2﹣m},且0∈A,则m的值为()A.0B.1C.0或1D.0或﹣12.命题“∀x∈R,x2﹣x>0”的否定为()A.∃x∈R,x2﹣x≤0B.∃x∈R,x2﹣x>0C.∀x∈R,x2﹣x≤0D.∀x∈R,x2﹣x<03.已知a>b,且ab≠0,则()A.a2>ab B.a2>b2C.1a <1bD.1ab2>1a2b4.某地民用燃气执行“阶梯气价”,按照用气量收费,具体计费方法如下表所示.若某户居民去年缴纳的燃气费为868元,则该户居民去年的用气量为()A.180m3B.220m3C.260m3D.320m35.在同一坐标系内,函数y=x m(x>0)和y=mx+1m的图象可能是()A.B.C.D.6.若函数y=ax2(a≠0)的图象恒在y=2x﹣1图象的上方,则()A.a>1B.a≥1C.0<a<1D.0<a≤17.若f(x)={⬚在(﹣∞,+∞)上单调递减,则实数a的取值范围为()A.(0,3)B.(0,3]C.(2,3)D.[2,3]8.已知f (x )是定义在R 上的奇函数,且在(﹣∞,0)上单调递增,若f (﹣2)=0,则(x +1)(f (x )﹣2f (﹣x ))<0的解集是( ) A .(﹣2,0)∪(0,2) B .(﹣2,0)∪(1,2)C .(﹣2,﹣1)∪(0,2)D .(﹣2,﹣1)∪(1,2)二、选择题:本题共4小题,每小题5分,共20分。

在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分。

9.以下各组函数中,表示同一函数的有( ) A .y =√x 2,y =|x | B .y =√x ⋅√x +1,y =√x 2+xC .y =x +1,y =t +1D .y =x +2,y =x 2−4x−210.给定集合M ,N ,定义M ﹣N ={x |x ∈M ,且x ∉N }.若M ={x |﹣2≤x ≤2},N ={y |y =x +1x+1,x >﹣1},则( ) A .N ={y |y ≥1} B .M ﹣N ={x |﹣2≤x <1}C .N ﹣M ={x |x ≥2}D .N ﹣(N ﹣M )={x |1≤x ≤2}11.已知a >0,b >0,2a +b =1则( ) A .ab 的最大值为18B .1a+2b的最小值为6C .a −18b 的最大值为0D .a +18b 的最小值为1812.德国数学家康托尔是集合论的创立者,为现代数学的发展作出了重要贡献.某数学小组类比拓扑学中的康托尔三等分集,定义了区间[0,1]上的函数f (x ),且满足:①任意0≤x 1<x 2≤1,f (x 1)≤f (x 2);②f(x)=2f(x4);③f (x )+f (1﹣x )=1,则( ) A .f (x )在[0,1]上单调递增 B .f (x )的图象关于点(12,12)对称C .当x =116时,f(x)=14D .当x ∈[116,1516]时,f(f(x))=12三、填空题:本题共4小题,每小题5分,共20分。

山东省烟台市2019年中考数学真题试题(含解析)

山东省烟台市2019年中考数学真题试题(含解析)

山东省烟台市2019年中考数学真题试题(含解析)一、选择题(本题共12个小题,每小题3分,满分36分)每小题都给出标号为A,B,C,D四个备选答案,其中有且只有一个是正确的.1.(3分)﹣8的立方根是()A.2 B.﹣2 C.±2 D.﹣22.(3分)下列智能手机的功能图标中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(3分)如图所示的几何体是由9个大小相同的小正方体组成的,将小正方体①移走后,所得几何体的三视图没有发生变化的是()A.主视图和左视图B.主视图和俯视图C.左视图和俯视图D.主视图、左视图、俯视图4.(3分)将一枚飞镖任意投掷到如图所示的正六边形镖盘上,飞镖落在白色区域的概率为()A.B.C.D.无法确定5.(3分)某种计算机完成一次基本运算的时间约为1纳秒(ns),已知1纳秒=0.000 000 001秒,该计算机完成15次基本运算,所用时间用科学记数法表示为()A.1.5×10﹣9秒B.15×10﹣9秒C.1.5×10﹣8秒D.15×10﹣8秒6.(3分)当b+c=5时,关于x的一元二次方程3x2+bx﹣c=0的根的情况为()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定7.(3分)某班有40人,一次体能测试后,老师对测试成绩进行了统计.由于小亮没有参加本次集体测试因此计算其他39人的平均分为90分,方差s2=41.后来小亮进行了补测,成绩为90分,关于该班40人的测试成绩,下列说法正确的是()A.平均分不变,方差变大B.平均分不变,方差变小C.平均分和方差都不变D.平均分和方差都改变8.(3分)已知∠AOB=60°,以O为圆心,以任意长为半径作弧,交OA,OB于点M,N,分别以点M,N 为圆心,以大于MN的长度为半径作弧,两弧在∠AOB内交于点P,以OP为边作∠POC=15°,则∠BOC 的度数为()A.15°B.45°C.15°或30°D.15°或45°9.(3分)南宋数学家杨辉在其著作《详解九章算法》中揭示了(a+b)n(n为非负整数)展开式的项数及各项系数的有关规律如下,后人也将右表称为“杨辉三角”(a+b)0=1(a+b)1=a+b(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5…则(a+b)9展开式中所有项的系数和是()A.128 B.256 C.512 D.102410.(3分)如图,面积为24的▱ABCD中,对角线BD平分∠ABC,过点D作DE⊥BD交BC的延长线于点E,DE=6,则sin∠DCE的值为()A.B.C.D.11.(3分)已知二次函数y=ax2+bx+c的y与x的部分对应值如表:下列结论:①抛物线的开口向上;②抛物线的对称轴为直线x=2;③当0<x<4时,y>0;④抛物线与x轴的两个交点间的距离是4;⑤若A(x1,2),B(x2,3)是抛物线上两点,则x1<x2,其中正确的个数是()A.2 B.3 C.4 D.512.(3分)如图,AB是⊙O的直径,直线DE与⊙O相切于点C,过A,B分别作AD⊥DE,BE⊥DE,垂足为点D,E,连接AC,BC,若AD=,CE=3,则的长为()A.B.πC.πD.π二、填空题(本大题共6个小题,每小题3分,满分18分)13.(3分)|﹣6|×2﹣1﹣cos45°=.14.(3分)若关于x的分式方程﹣1=有增根,则m的值为.15.(3分)如图,在直角坐标系中,每个小正方形的边长均为1个单位长度,△ABO的顶点坐标分别为A (﹣2,﹣1),B(﹣2,﹣3),O(0,0),△A1B1O1的顶点坐标分别为A1(1,﹣1),B1(1,﹣5),O1(5,1),△ABO与△A1B1O1是以点P为位似中心的位似图形,则P点的坐标为.16.(3分)如图,直线y=x+2与直线y=ax+c相交于点P(m,3),则关于x的不等式x+2≤ax+c的解为.17.(3分)小明将一张正方形纸片按如图所示顺序折叠成纸飞机,当机翼展开在同一平面时(机翼间无缝隙),∠AOB的度数是.18.(3分)如图,分别以边长为2的等边三角形ABC的三个顶点为圆心,以边长为半径作弧,三段弧所围成的图形是一个曲边三角形,已知⊙O是△ABC的内切圆,则阴影部分面积为.三、解答题(本大题共7个小题,满分66分)19.(6分)先化简(x+3﹣)÷,再从0≤x≤4中选一个适合的整数代入求值.20.(8分)十八大以来,某校已举办五届校园艺术节,为了弘扬中华优秀传统文化,每届艺术节上都有一些班级表演“经典诵读”“民乐演奏”、“歌曲联唱”、“民族舞蹈”等节目.小颖对每届艺术节表演这些节目的班级数进行统计,并绘制了如图所示不完整的折线统计图和扇形统计图.(1)五届艺术节共有个班级表演这些节目,班数的中位数为,在扇形统计图中,第四届班级数的扇形圆心角的度数为;(2)补全折线统计图;(3)第六届艺术节,某班决定从这四项艺术形式中任选两项表演(“经典诵读”、“民乐演奏”、“歌曲联唱”、“民族舞蹈”分别用A,B,C,D表示),利用树状图或表格求出该班选择A和D两项的概率.21.(9分)亚洲文明对话大会召开期间,大批的大学生志愿者参与服务工作.某大学计划组织本校全体志愿者统一乘车去会场,若单独调配36座新能源客车若干辆,则有2人没有座位;若只调配22座新能源客车,则用车数量将增加4辆,并空出2个座位.(1)计划调配36座新能源客车多少辆?该大学共有多少名志愿者?(2)若同时调配36座和22座两种车型,既保证每人有座,又保证每车不空座,则两种车型各需多少辆?22.(9分)如图,在矩形ABCD中,CD=2,AD=4,点P在BC上,将△ABP沿AP折叠,点B恰好落在对角线AC上的E点,O为AC上一点,⊙O经过点A,P(1)求证:BC是⊙O的切线;(2)在边CB上截取CF=CE,点F是线段BC的黄金分割点吗?请说明理由.23.(10分)如图所示,一种适用于笔记本电脑的铝合金支架,边OA,OB可绕点O开合,在OB边上有一固定点P,支柱PQ可绕点P转动,边OA上有六个卡孔,其中离点O最近的卡孔为M,离点O最远的卡孔为N.当支柱端点Q放入不同卡孔内,支架的倾斜角发生变化.将电脑放在支架上,电脑台面的角度可达到六档调节,这样更有利于工作和身体健康,现测得OP的长为12cm,OM为10cm,支柱PQ为8m.(1)当支柱的端点Q放在卡孔M处时,求∠AOB的度数;(2)当支柱的端点Q放在卡孔N处时,∠AOB=20.5°,若相邻两个卡孔的距离相同,求此间距.(结果精确到十分位)参考数据表24.(11分)【问题探究】(1)如图1,△ABC和△DEC均为等腰直角三角形,∠ACB=∠DCE=90°,点B,D,E在同一直线上,连接AD,BD.①请探究AD与BD之间的位置关系:;②若AC=BC=,DC=CE=,则线段AD的长为;【拓展延伸】(2)如图2,△ABC和△DEC均为直角三角形,∠ACB=∠DCE=90°,AC=,BC=,CD=,CE=1.将△DCE绕点C在平面内顺时针旋转,设旋转角∠BCD为α(0°≤α<360°),作直线BD,连接AD,当点B,D,E在同一直线上时,画出图形,并求线段AD的长.25.(13分)如图,顶点为M的抛物线y=ax2+bx+3与x轴交于A(﹣1,0),B两点,与y轴交于点C,过点C作CD⊥y轴交抛物线于另一点D,作DE⊥x轴,垂足为点E,双曲线y=(x>0)经过点D,连接MD,BD.(1)求抛物线的表达式;(2)点N,F分别是x轴,y轴上的两点,当以M,D,N,F为顶点的四边形周长最小时,求出点N,F 的坐标;(3)动点P从点O出发,以每秒1个单位长度的速度沿OC方向运动,运动时间为t秒,当t为何值时,∠BPD的度数最大?(请直接写出结果)2019年山东省烟台市中考数学试卷参考答案与试题解析一、选择题(本题共12个小题,每小题3分,满分36分)每小题都给出标号为A,B,C,D四个备选答案,其中有且只有一个是正确的.1.【解答】解:∵﹣2的立方等于﹣8,∴﹣8的立方根等于﹣2.故选:B.2.【解答】解:A、不是轴对称图形,是中心对称图形,故本选项错误;B、是轴对称图形,不是中心对称图形,故本选项错误;C、既是轴对称图形,也是中心对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误.故选:C.3.【解答】解:将正方体①移走后,主视图不变,俯视图变化,左视图不变,故选:A.4.【解答】解:设正六边形边长为a,则灰色部分面积为3×=,白色区域面积为a×=,所以正六边形面积为a2,镖落在白色区域的概率P==,故选:B.5.【解答】解:所用时间=15×0.000 000 001=1.5×10﹣8.故选:C.6.【解答】解:∵b+c=5,∴c=5﹣b.△=b2﹣4×3×(﹣c)=b2+12c=b2﹣12b+60=(b﹣6)2+24.∵(b﹣6)2≥0,∴(b﹣6)2+24>0,∴△>0,∴关于x的一元二次方程3x2+bx﹣c=0有两个不相等的实数根.故选:A.7.【解答】解:∵小亮的成绩和其他39人的平均数相同,都是90分,∴该班40人的测试成绩的平均分为90分,方差变小,故选:B.8.【解答】解:(1)以O为圆心,以任意长为半径作弧,交OA,OB于点M,N,分别以点M,N为圆心,以大于MN的长度为半径作弧,两弧在∠AOB内交于点P,则OP为∠AOB的平分线,(2)两弧在∠AOB内交于点P,以OP为边作∠POC=15°,则为作∠POB或∠POA的角平分线,则∠BOC=15°或45°,故选:D.9.【解答】解:由“杨辉三角”的规律可知,(a+b)9展开式中所有项的系数和为(1+1)9=29=512 故选:C.10.【解答】解:连接AC,过点D作DF⊥BE于点E,∵BD平分∠ABC,∴∠ABD=∠DBC,∵▱ABCD中,AD∥BC,∴∠ADB=∠DBC,∴∠ADB=∠ABD,∴AB=BC,∴四边形ABCD是菱形,∴AC⊥BD,OB=OD,∵DE⊥BD,∴OC∥ED,∵DE=6,∴OC=,∵▱ABCD的面积为24,∴,∴BD=8,∴==5,设CF=x,则BF=5+x,由BD2﹣BF2=DC2﹣CF2可得:82﹣(5+x)2=52﹣x2,解得x=,∴DF=,∴sin∠DCE=.故选:A.11.【解答】解:设抛物线解析式为y=ax(x﹣4),把(﹣1,5)代入得5=a×(﹣1)×(﹣1﹣4),解得a=1,∴抛物线解析式为y=x2﹣4x,所以①正确;抛物线的对称性为直线x=2,所以②正确;∵抛物线与x轴的交点坐标为(0,0),(4,0),∴当0<x<4时,y<0,所以③错误;抛物线与x轴的两个交点间的距离是4,所以④正确;若A(x1,2),B(x2,3)是抛物线上两点,则x2<x1<2或2<x1<x2,所以⑤错误.故选:B.12.【解答】解:连接OC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACD+∠BCE=90°,∵AD⊥DE,BE⊥DE,∴∠DAC+∠ACD=90°,∴∠DAC=∠ECB,∵∠ADC=∠CEB=90°,∴△ADC∽△CEB,∴=,即=,∵tan∠ABC==,∴∠ABC=30°,∴AB=2AC,∠AOC=60°,∵直线DE与⊙O相切于点C,∴∠ACD=∠ABC=30°,∴AC=2AD=2,∴AB=4,∴⊙O的半径为2,∴的长为:=π,故选:D.二、填空题(本大题共6个小题,每小题3分,满分18分)13.【解答】解:原式=6×﹣×=3﹣1=2.故答案为:2.14.【解答】.解:方程两边都乘(x﹣2),得3x﹣x+2=m+3∵原方程有增根,∴最简公分母(x﹣2)=0,解得x=2,当x=2时,m=3.故答案为3.15.【解答】解:如图,P点坐标为(﹣5,﹣1).故答案为(﹣5,﹣1).16.【解答】解:点P(m,3)代入y=x+2,∴m=1,∴P(1,3),结合图象可知x+2≤ax+c的解为x≤1;故答案为x≤1;17.【解答】解:在折叠过程中角一直是轴对称的折叠,∠AOB=22.5°×2=45°;故答案为45°;18.【解答】解:连接OB,作OD⊥BC于D,如图,∵△ABC为等边三角形,∴AB=BC=AC=2,∠ABC=60°,∵⊙O是△ABC的内切圆,∴OH为⊙O的半径,∠OBH=30°,∵O点为等边三角形的外心,∴BH=CH=1,在Rt△OBH中,OH=BH=,∵S弓形AB=S扇形ACB﹣S△ABC,∴阴影部分面积=3S弓形AB+S△ABC﹣S⊙O=3(S扇形ACB﹣S△ABC)+S△ABC﹣S⊙O=3S扇形ACB﹣2S△ABC﹣S⊙O=3×﹣2××22﹣π×()2=π﹣2.故答案为π﹣2.三、解答题(本大题共7个小题,满分66分)19.【解答】解:(x+3﹣)÷=(﹣)÷=•=,当x=1时,原式==.20.【解答】解:(1)第一届、第二届和第三届参加班级所占的百分比为1﹣22.5%﹣=45%,所以五届艺术节参加班级表演的总数为(5+7+6)÷45%=40(个);第四届参加班级数为40×22.5%=9(个),第五届参加班级数为40﹣18﹣9=13(个),所以班数的中位数为7(个)在扇形统计图中,第四届班级数的扇形圆心角的度数为360°×22.5%=81°;故答案为40,7,81°;(2)如图,(3)画树状图为:共有12种等可能的结果数,其中该班选择A和D两项的结果数为2,所以该班选择A和D两项的概率==.21.【解答】解:(1)设计划调配36座新能源客车x辆,该大学共有y名志愿者,则需调配22座新能源客车(x+4)辆,依题意,得:,解得:.答:计划调配36座新能源客车6辆,该大学共有218名志愿者.(2)设需调配36座客车m辆,22座客车n辆,依题意,得:36m+22n=218,∴n=.又∵m,n均为正整数,∴.答:需调配36座客车3辆,22座客车5辆.22.【解答】解:(1)连接OP,则∠PAO=∠APO,而△AEP是由△ABP沿AP折叠而得:故AE=AB=4,∠OAP=∠PAB,∴∠BAP=∠OPA,∴AB∥OP,∴∠OPC=90°,∴BC是⊙O的切线;(2)CF=CE=AC﹣AE=﹣4=2﹣2,=,故:点F是线段BC的黄金分割点.23.【解答】解:(1)如图,过点P作PH⊥OA于点H.设OH=x,则HM=10﹣x,由勾股定理得OP2﹣OH2=PH2,MP2﹣HM2=PH2,∴OP2﹣OH2=MP2﹣HM2,即122﹣x2=82﹣(10﹣x)2,解得x=9,即OH=9(cm),∴cos∠AOB===0.75,由表可知,∠AOB为41°;(2)过点P作PH⊥OA于点H.在Rt△OPH中,,OH=11.244(cm),,∴PH=4.2(cm),∴HN=(cm),∴ON=OH+HN=11.244+6.8=18.044(cm),∴MN=ON﹣OM=18.044﹣10=8.044(cm)∵电脑台面的角度可达到六档调节,相邻两个卡孔的距离相同,∴相邻两个卡孔的距离为8.044÷(6﹣1)≈1.6(cm)答:相邻两个卡孔的距离约为1.6cm.24.【解答】解:【问题探究】(1)∵△ABC和△DEC均为等腰直角三角形,∴AC=BC,CE=CD,∠ABC=∠DEC=45°=∠CDE∵∠ACB=∠DCE=90°,∴∠ACD=∠BCE,且AC=BC,CE=CD∴△ACD≌△BCE(SAS)∴∠ADC=∠BEC=45°∴∠ADE=∠ADC+∠CDE=90°∴AD⊥BD故答案为:AD⊥BD②如图,过点C作CF⊥AD于点F,∵∠ADC=45°,CF⊥AD,CD=∴DF=CF=1∴AF==3∴AD=AF+DF=4故答案为:4【拓展延伸】(2)若点D在BC右侧,如图,过点C作CF⊥AD于点F,∵∠ACB=∠DCE=90°,AC=,BC=,CD=,CE=1.∴∠ACD=∠BCE,∴△ACD∽△BCE∴∠ADC=∠BEC,∵CD=,CE=1∴DE==2∵∠ADC=∠BEC,∠DCE=∠CFD=90°∴△DCE∽△CFD,∴即∴CF=,DF=∴AF==∴AD=DF+AF=3若点D在BC左侧,∵∠ACB=∠DCE=90°,AC=,BC=,CD=,CE=1.∴∠ACD=∠BCE,∴△ACD∽△BCE∴∠ADC=∠BEC,∴∠CED=∠CDF∵CD=,CE=1∴DE==2∵∠CED=∠CDF,∠DCE=∠CFD=90°∴△DCE∽△CFD,∴即∴CF=,DF=∴AF==∴AD=AF﹣DF=225.【解答】解;(1)C(0,3)∵CD⊥y,∴D点纵坐标是3,∵D在y=上,∴D(2,3),将点A(﹣1,0)和D(2,3)代入y=ax2+bx+3,∴a=﹣1,b=2,∴y=﹣x2+2x+3;(2)M(1,4),B(3,0),作M关于y轴的对称点M',作D关于x轴的对称点D',连接M'D'与x轴、y轴分别交于点N、F,则以M,D,N,F为顶点的四边形周长最小即为M'D'+MD的长;∴M'(﹣1,4),D'(2,﹣3),∴M'D'直线的解析式为y=﹣x+∴N(,0),F(0,);(3)设P(0,t),N(r,t),作△PBD的外接圆N,当⊙N与y轴相切时,∠BPD的度数最大;∴PN=ND,∴r=,∴t2﹣6t﹣4r+13=0,易求BD的中点为(,),直线BD的解析式为y=﹣3x+9,∴BD的中垂线解析式y=x+,N在中垂线上,∴t=r+,∴t2﹣18t+21=0,∴t=9+2或t=9﹣2,∵0<t<3,∴t=9﹣2,∴P(0,9﹣2);。

山东省烟台市2020年中考数学试题(解析版)

山东省烟台市2020年中考数学试题(解析版)

2020年山东省烟台市中考数学试卷一、选择题(本题共12个小题,每小题3分,满分36分)1.4的平方根是()A.2B.﹣2C.±2D.2.下列关于数字变换的图案中,是中心对称图形但不是轴对称图形的是()A.B.C.D.3.实数a,b,c在数轴上的对应点的位置如图所示,那么这三个数中绝对值最大的是()A.a B.b C.c D.无法确定4.如图,是一个几何体的三视图,则这个几何体是()A.B.C.D.5.如果将一组数据中的每个数都减去5,那么所得的一组新数据()A.众数改变,方差改变B.众数不变,平均数改变C.中位数改变,方差不变D.中位数不变,平均数不变6.利用如图所示的计算器进行计算,按键操作不正确的是()A.按键即可进入统计计算状态B.计算的值,按键顺序为:C.计算结果以“度”为单位,按键可显示以“度”“分”“秒”为单位的结果D.计算器显示结果为时,若按键,则结果切换为小数格式0.333333333 7.如图,△OA1A2为等腰直角三角形,OA1=1,以斜边OA2为直角边作等腰直角三角形OA2A3,再以OA3为直角边作等腰直角三角形OA3A4,…,按此规律作下去,则OA n的长度为()A.()n B.()n﹣1C.()n D.()n﹣1 8.量角器测角度时摆放的位置如图所示,在△AOB中,射线OC交边AB于点D,则∠ADC 的度数为()A.60°B.70°C.80°D.85°9.七巧板是我们祖先的一项创造,被誉为“东方魔板”.在一次数学活动课上,小明用边长为4cm的正方形纸片制作了如图所示的七巧板,并设计了下列四幅作品﹣﹣“奔跑者”,其中阴影部分的面积为5cm2的是()A.B.C.D.10.如图,点G为△ABC的重心,连接CG,AG并延长分别交AB,BC于点E,F,连接EF,若AB=4.4,AC=3.4,BC=3.6,则EF的长度为()A.1.7B.1.8C.2.2D.2.411.如图,在矩形ABCD中,点E在DC上,将矩形沿AE折叠,使点D落在BC边上的点F处.若AB=3,BC=5,则tan∠DAE的值为()A.B.C.D.12.如图,正比例函数y1=mx,一次函数y2=ax+b和反比例函数y3=的图象在同一直角坐标系中,若y3>y1>y2,则自变量x的取值范围是()A.x<﹣1B.﹣0.5<x<0或x>1C.0<x<1D.x<﹣1或0<x<1二、填空题(本大题共6个小题,每小题3分,满分18分)13.5G是第五代移动通信技术,其网络下载速度可以达到每秒1300000KB以上,正常下载一部高清电影约需1秒.将1300000用科学记数法表示为.14.已知正多边形的一个外角等于40°,则这个正多边形的内角和的度数为.15.关于x的一元二次方程(m﹣1)x2+2x﹣1=0有两个不相等的实数根,则m的取值范围是.16.按如图所示的程序计算函数y的值,若输入的x值为﹣3,则输出y的结果为.17.如图,已知点A(2,0),B(0,4),C(2,4),D(6,6),连接AB,CD,将线段AB绕着某一点旋转一定角度,使其与线段CD重合(点A与点C重合,点B与点D重合),则这个旋转中心的坐标为.18.二次函数y=ax2+bx+c的图象如图所示,下列结论:①ab>0;②a+b﹣1=0;③a>1;④关于x的一元二次方程ax2+bx+c=0的一个根为1,另一个根为﹣.其中正确结论的序号是.三、解答题(本大题共7个小题,满分66分)19.先化简,再求值:(﹣)÷,其中x=+1,y=﹣1.20.奥体中心为满足暑期学生对运动的需求,欲开设球类课程,该中心随机抽取部分学生进行问卷调查,被调查学生须从“羽毛球”、“篮球”、“足球”、“排球”、“乒乓球”中选择自己最喜欢的一项.根据调查结果绘制了不完整的条形统计图和扇形统计图,请根据图中信息,解答下列问题:(1)此次共调查了多少名学生?(2)将条形统计图补充完整;(3)我们把“羽毛球”“篮球”,“足球”、“排球”、“乒乓球”分别用A,B,C,D,E 表示.小明和小亮分别从这些项目中任选一项进行训练,利用树状图或表格求出他俩选择不同项目的概率.21.新冠疫情期间,口罩成为了人们出行必备的防护工具.某药店三月份共销售A,B两种型号的口罩9000只,共获利润5000元,其中A,B两种型号口罩所获利润之比为2:3.已知每只B型口罩的销售利润是A型口罩的1.2倍.(1)求每只A型口罩和B型口罩的销售利润;(2)该药店四月份计划一次性购进两种型号的口罩共10000只,其中B型口罩的进货量不超过A型口罩的1.5倍,设购进A型口罩m只,这1000只口罩的销售总利润为W元.该药店如何进货,才能使销售总利润最大?22.如图,在▱ABCD中,∠D=60°,对角线AC⊥BC,⊙O经过点A,B,与AC交于点M,连接AO并延长与⊙O交于点F,与CB的延长线交于点E,AB=EB.(1)求证:EC是⊙O的切线;(2)若AD=2,求的长(结果保留π).23.今年疫情期间,针对各种入口处人工测量体温存在的感染风险高、效率低等问题,清华大学牵头研制一款“测温机器人”,如图1,机器人工作时,行人抬手在测温头处测量手腕温度,体温合格则机器人抬起臂杆行人可通行,不合格时机器人不抬臂杆并报警,从而有效阻隔病原体.(1)为了设计“测温机器人”的高度,科研团队采集了大量数据.下表是抽样采集某一地区居民的身高数据:测量对象男性(18~60岁)女性(18~55岁)抽样人数(人)20005000200002000500020000平均身高(厘米)173175176164165164根据你所学的知识,若要更准确的表示这一地区男、女的平均身高,男性应采用176厘米,女性应采用厘米;(2)如图2,一般的,人抬手的高度与身高之比为黄金比时给人的感觉最舒适,由此利用(1)中的数据得出测温头点P距地面105厘米.指示牌挂在两臂杆AB,AC的连接点A处,A点距地面110厘米.臂杆落下时两端点B,C在同一水平线上,BC=100厘米,点C在点P的正下方5厘米处.若两臂杆长度相等,求两臂杆的夹角.(参考数据表)#DLQZ计算器按键顺序计算结果(近计算器按键顺序计算结果(近似值)似值)0.178.70.284.31.7 5.73.511.3 24.如图,在等边三角形ABC中,点E是边AC上一定点,点D是直线BC上一动点,以DE为一边作等边三角形DEF,连接CF.【问题解决】如图1,若点D在边BC上,求证:CE+CF=CD;【类比探究】如图2,若点D在边BC的延长线上,请探究线段CE,CF与CD之间存在怎样的数量关系?并说明理由.25.如图,抛物线y=ax2+bx+2与x轴交于A,B两点,且OA=2OB,与y轴交于点C,连接BC,抛物线对称轴为直线x =,D为第一象限内抛物线上一动点,过点D作DE⊥OA 于点E,与AC交于点F,设点D的横坐标为m.(1)求抛物线的表达式;(2)当线段DF的长度最大时,求D点的坐标;(3)抛物线上是否存在点D,使得以点O,D,E为顶点的三角形与△BOC相似?若存在,求出m的值;若不存在,请说明理由.2020年山东省烟台市中考数学试卷参考答案与试题解析一.选择题(共12小题)1.4的平方根是()A.2B.﹣2C.±2D.【分析】根据平方根的定义,求数4的平方根即可.【解答】解:4的平方根是±2.故选:C.2.下列关于数字变换的图案中,是中心对称图形但不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解即可.【解答】解:A、是中心对称图形,不是轴对称图形,故此选项符合题意;B、不是中心对称图形,是轴对称图形,故此选项不符合题意;C、不是中心对称图形,也不是轴对称图形,故此选项不符合题意;D、是轴对称图形,也是中心对称图形,故此选项不符合题意.故选:A.3.实数a,b,c在数轴上的对应点的位置如图所示,那么这三个数中绝对值最大的是()A.a B.b C.c D.无法确定【分析】根据有理数大小比较方法,越靠近原点其绝对值越小,进而分析得出答案.【解答】解:有理数a,b,c在数轴上的对应点的位置如图所示,这三个数中,实数a离原点最远,所以绝对值最大的是:a.故选:A.4.如图,是一个几何体的三视图,则这个几何体是()A.B.C.D.【分析】结合三视图确定各图形的位置后即可确定正确的选项.【解答】解:结合三个视图发现,这个几何体是长方体和圆锥的组合图形.故选:B.5.如果将一组数据中的每个数都减去5,那么所得的一组新数据()A.众数改变,方差改变B.众数不变,平均数改变C.中位数改变,方差不变D.中位数不变,平均数不变【分析】由每个数都减去5,那么所得的一组新数据的众数、中位数、平均数都减少5,方差不变,据此可得答案.【解答】解:如果将一组数据中的每个数都减去5,那么所得的一组新数据的众数、中位数、平均数都减少5,方差不变,故选:C.6.利用如图所示的计算器进行计算,按键操作不正确的是()A.按键即可进入统计计算状态B.计算的值,按键顺序为:C.计算结果以“度”为单位,按键可显示以“度”“分”“秒”为单位的结果D.计算器显示结果为时,若按键,则结果切换为小数格式0.333333333【分析】根据计算器的按键写出计算的式子.然后求值.【解答】解:A、按键即可进入统计计算状态是正确的,故选项A不符合题意;B、计算的值,按键顺序为:,故选项B符合题意;C、计算结果以“度”为单位,按键可显示以“度”“分”“秒”为单位的结果是正确的,故选项C不符合题意;D、计算器显示结果为时,若按键,则结果切换为小数格式0.333333333是正确的,故选项D不符合题意;故选:B.7.如图,△OA1A2为等腰直角三角形,OA1=1,以斜边OA2为直角边作等腰直角三角形OA2A3,再以OA3为直角边作等腰直角三角形OA3A4,…,按此规律作下去,则OA n的长度为()A.()n B.()n﹣1C.()n D.()n﹣1【分析】利用等腰直角三角形的性质以及勾股定理分别求出各边长,依据规律即可得出答案.【解答】解:∵△OA1A2为等腰直角三角形,OA1=1,∴OA2=;∵△OA2A3为等腰直角三角形,∴OA3=2=;∵△OA3A4为等腰直角三角形,∴OA4=2=.∵△OA4A5为等腰直角三角形,∴OA5=4=,……∴OA n的长度为()n﹣1.故选:B.8.量角器测角度时摆放的位置如图所示,在△AOB中,射线OC交边AB于点D,则∠ADC 的度数为()A.60°B.70°C.80°D.85°【分析】根据等腰三角形的性质,三角形的外角的性质即可得到结论.【解答】解:∵OA=OB,∠AOB=140°,∴∠A=∠B=(180°﹣140°)=20°,∵∠AOC=60°,∴∠ADC=∠A+∠AOC=20°+60°=80°,故选:C.9.七巧板是我们祖先的一项创造,被誉为“东方魔板”.在一次数学活动课上,小明用边长为4cm的正方形纸片制作了如图所示的七巧板,并设计了下列四幅作品﹣﹣“奔跑者”,其中阴影部分的面积为5cm2的是()A.B.C.D.【分析】先求出最小的等腰直角三角形的面积=××42=1cm2,可得平行四边形面积为2cm2,中等的等腰直角三角形的面积为2cm2,最大的等腰直角三角形的面积为4cm2,再根据阴影部分的组成求出相应的面积即可求解.【解答】解:最小的等腰直角三角形的面积=××42=1(cm2),平行四边形面积为2cm2,中等的等腰直角三角形的面积为2cm2,最大的等腰直角三角形的面积为4cm2,则A、阴影部分的面积为2+2=4(cm2),不符合题意;B、阴影部分的面积为1+2=3(cm2),不符合题意;C、阴影部分的面积为4+2=6(cm2),不符合题意;D、阴影部分的面积为4+1=5(cm2),符合题意.故选:D.10.如图,点G为△ABC的重心,连接CG,AG并延长分别交AB,BC于点E,F,连接EF,若AB=4.4,AC=3.4,BC=3.6,则EF的长度为()A.1.7B.1.8C.2.2D.2.4【分析】由已知条件得EF是三角形的中位线,进而根据三角形中位线定理求得EF的长度.【解答】解:∵点G为△ABC的重心,∴AE=BE,BF=CF,∴EF==1.7,故选:A.11.如图,在矩形ABCD中,点E在DC上,将矩形沿AE折叠,使点D落在BC边上的点F处.若AB=3,BC=5,则tan∠DAE的值为()A.B.C.D.【分析】先根据矩形的性质得AD=BC=5,AB=CD=3,再根据折叠的性质得AF=AD =5,EF=DE,在Rt△ABF中,利用勾股定理计算出BF=4,则CF=BC﹣BF=1,设CE=x,则DE=EF=3﹣x,然后在Rt△ECF中根据勾股定理得到x2+12=(3﹣x)2,解方程即可得到x,进一步得到EF的长,再根据余弦函数的定义即可求解.【解答】解:∵四边形ABCD为矩形,∴AD=BC=5,AB=CD=3,∵矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上的F处,∴AF=AD=5,EF=DE,在Rt△ABF中,BF===4,∴CF=BC﹣BF=5﹣4=1,设CE=x,则DE=EF=3﹣x在Rt△ECF中,∵CE2+FC2=EF2,∴x2+12=(3﹣x)2,解得x=,∴DE=EF=3﹣x=,∴tan∠DAE===,故选:D.12.如图,正比例函数y1=mx,一次函数y2=ax+b和反比例函数y3=的图象在同一直角坐标系中,若y3>y1>y2,则自变量x的取值范围是()A.x<﹣1B.﹣0.5<x<0或x>1C.0<x<1D.x<﹣1或0<x<1【分析】根据图象,找出双曲线y3落在直线y1上方,且直线y1落在直线y2上方的部分对应的自变量x的取值范围即可.【解答】解:由图象可知,当x<﹣1或0<x<1时,双曲线y3落在直线y1上方,且直线y1落在直线y2上方,即y3>y1>y2,所以若y3>y1>y2,则自变量x的取值范围是x<﹣1或0<x<1.故选:D.二.填空题13.5G是第五代移动通信技术,其网络下载速度可以达到每秒1300000KB以上,正常下载一部高清电影约需1秒.将1300000用科学记数法表示为 1.3×106.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【解答】解:将数据1300000用科学记数法可表示为:1.3×106.故答案为:1.3×106.14.已知正多边形的一个外角等于40°,则这个正多边形的内角和的度数为1260°.【分析】利用任意多边形的外角和均为360°,正多边形的每个外角相等即可求出它的边数,再根据多边形的内角和公式计算即可.【解答】解:正n边形的每个外角相等,且其和为360°,据此可得=40°,解得n=9.(9﹣2)×180°=1260°,即这个正多边形的内角和为1260°.故答案为:1260°.15.关于x的一元二次方程(m﹣1)x2+2x﹣1=0有两个不相等的实数根,则m的取值范围是m>0且m≠1.【分析】根据一元二次方程的定义和判别式的意义得到m﹣1≠0且△=22﹣4(m﹣1)×(﹣1)>0,然后求出两个不等式的公共部分即可.【解答】解:根据题意得m﹣1≠0且△=22﹣4(m﹣1)×(﹣1)>0,解得m>0且m≠1.故答案为:m>0且m≠1.16.按如图所示的程序计算函数y的值,若输入的x值为﹣3,则输出y的结果为18.【分析】根据﹣3<﹣1确定出应代入y=2x2中计算出y的值.【解答】解:∵﹣3<﹣1,∴x=﹣3代入y=2x2,得y=2×9=18,故答案为:18.17.如图,已知点A(2,0),B(0,4),C(2,4),D(6,6),连接AB,CD,将线段AB绕着某一点旋转一定角度,使其与线段CD重合(点A与点C重合,点B与点D重合),则这个旋转中心的坐标为(4,2).【分析】画出平面直角坐标系,作出新的AC,BD的垂直平分线的交点P,点P即为旋转中心.【解答】解:平面直角坐标系如图所示,旋转中心是P点,P(4,2).故答案为(4,2).18.二次函数y=ax2+bx+c的图象如图所示,下列结论:①ab>0;②a+b﹣1=0;③a>1;④关于x的一元二次方程ax2+bx+c=0的一个根为1,另一个根为﹣.其中正确结论的序号是.【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点得出c的值,然后根据抛物线与x轴交点的个数及x=1时二次函数的值的情况进行推理,进而对所得结论进行判断.【解答】解:①由二次函数的图象开口向上可得a>0,对称轴在y轴的右侧,b<0,∴ab<0,故①错误;②由图象可知抛物线与x轴的交点为(1,0),与y轴的交点为(0,﹣1),∴c=﹣1,∴a+b﹣1=0,故②正确;③∵a+b﹣1=0,∴a﹣1=﹣b,∵b<0,∴a﹣1>0,∴a>1,故③正确;④∵抛物线与与y轴的交点为(0,﹣1),∴抛物线为y=ax2+bx﹣1,∵抛物线与x轴的交点为(1,0),∴ax2+bx﹣1=0的一个根为1,根据根与系数的关系,另一个根为﹣,故④正确;故答案为②③④.三.解答题19.先化简,再求值:(﹣)÷,其中x=+1,y=﹣1.【分析】根据分式四则运算的顺序和法则进行计算,最后代入求值即可.【解答】解:(﹣)÷,=[﹣]÷,=×,=,当x=+1,y=﹣1时,原式==2﹣.20.奥体中心为满足暑期学生对运动的需求,欲开设球类课程,该中心随机抽取部分学生进行问卷调查,被调查学生须从“羽毛球”、“篮球”、“足球”、“排球”、“乒乓球”中选择自己最喜欢的一项.根据调查结果绘制了不完整的条形统计图和扇形统计图,请根据图中信息,解答下列问题:(1)此次共调查了多少名学生?(2)将条形统计图补充完整;(3)我们把“羽毛球”“篮球”,“足球”、“排球”、“乒乓球”分别用A,B,C,D,E 表示.小明和小亮分别从这些项目中任选一项进行训练,利用树状图或表格求出他俩选择不同项目的概率.【分析】(1)用羽毛球的人数除以所占的百分比即可得出答案;(2)用总人数减去其他项目的人数求出足球的人数,从而补全统计图;(3)根据题意画出树状图得出所有等可能的情况数和他俩选择不同项目的情况数,然后根据概率公式即可得出答案.【解答】解:(1)此次共调查的学生有:40÷=200(名);(2)足球的人数有:200﹣40﹣60﹣20﹣30=50(人),补全统计图如下:(3)根据题意画树状图如下:共用25种等可能的情况数,其中他俩选择不同项目的有20种,则他俩选择不同项目的概率是=.21.新冠疫情期间,口罩成为了人们出行必备的防护工具.某药店三月份共销售A,B两种型号的口罩9000只,共获利润5000元,其中A,B两种型号口罩所获利润之比为2:3.已知每只B型口罩的销售利润是A型口罩的1.2倍.(1)求每只A型口罩和B型口罩的销售利润;(2)该药店四月份计划一次性购进两种型号的口罩共10000只,其中B型口罩的进货量不超过A型口罩的1.5倍,设购进A型口罩m只,这1000只口罩的销售总利润为W元.该药店如何进货,才能使销售总利润最大?【分析】(1)设销售A型口罩x只,销售B型口罩y只,根据“药店三月份共销售A,B 两种型号的口罩9000只,共获利润5000元,其中A,B两种型号口罩所获利润之比为2:3”列方程组解答即可;(2)根据题意即可得出W关于m的函数关系式;根据题意列不等式得出m的取值范围,再结合根据一次函数的性质解答即可.【解答】解:设销售A型口罩x只,销售B型口罩y只,根据题意得:,解答,经检验,x=4000,y=5000是原方程组的解,∴每只A型口罩的销售利润为:(元),每只B型口罩的销售利润为:0.5×1.2=0.6(元).答:每只A型口罩和B型口罩的销售利润分别为0.5元,0.6元.(2)根据题意得,W=0.5m+0.6(10000﹣m)=﹣0.1m+6000,10000﹣m≤1.5m,解得m≥4000,∵0.1<0,∴W随m的增大而减小,∵m为正整数,∴当m=4000时,W取最大值,则﹣0.1×4000+6000=5600,即药店购进A型口罩4000只、B型口罩6000只,才能使销售总利润最大,增大利润为5600元.22.如图,在▱ABCD中,∠D=60°,对角线AC⊥BC,⊙O经过点A,B,与AC交于点M,连接AO并延长与⊙O交于点F,与CB的延长线交于点E,AB=EB.(1)求证:EC是⊙O的切线;(2)若AD=2,求的长(结果保留π).【分析】(1)证明:连接OB,根据平行四边形的性质得到∠ABC=∠D=60°,求得∠BAC=30°,根据等腰三角形的性质和三角形的外角的性质得到∠ABO=∠OAB=30°,于是得到结论;(2)根据平行四边形的性质得到BC=AD=2,过O作OH⊥AM于H,则四边形OBCH 是矩形,解直角三角形即可得到结论.【解答】(1)证明:连接OB,∵四边形ABCD是平行四边形,∴∠ABC=∠D=60°,∵AC⊥BC,∴∠ACB=90°,∴∠BAC=30°,∵BE=AB,∴∠E=∠BAE,∵∠ABC=∠E+∠BAE=60°,∴∠E=∠BAE=30°,∵OA=OB,∴∠ABO=∠OAB=30°,∴∠OBC=30°+60°=90°,∴OB⊥CE,∴EC是⊙O的切线;(2)∵四边形ABCD是平行四边形,∴BC=AD=2,过O作OH⊥AM于H,则四边形OBCH是矩形,∴OH=BC=2,∴OA==4,∠AOM=2∠AOH=60°,∴的长度==.23.今年疫情期间,针对各种入口处人工测量体温存在的感染风险高、效率低等问题,清华大学牵头研制一款“测温机器人”,如图1,机器人工作时,行人抬手在测温头处测量手腕温度,体温合格则机器人抬起臂杆行人可通行,不合格时机器人不抬臂杆并报警,从而有效阻隔病原体.(1)为了设计“测温机器人”的高度,科研团队采集了大量数据.下表是抽样采集某一地区居民的身高数据:测量对象男性(18~60岁)女性(18~55岁)抽样人数(人)20005000200002000500020000平均身高(厘米)173175176164165164根据你所学的知识,若要更准确的表示这一地区男、女的平均身高,男性应采用176厘米,女性应采用164厘米;(2)如图2,一般的,人抬手的高度与身高之比为黄金比时给人的感觉最舒适,由此利用(1)中的数据得出测温头点P距地面105厘米.指示牌挂在两臂杆AB,AC的连接点A处,A点距地面110厘米.臂杆落下时两端点B,C在同一水平线上,BC=100厘米,点C在点P的正下方5厘米处.若两臂杆长度相等,求两臂杆的夹角.(参考数据表)#DLQZ计算器按键顺序计算结果计算器按键顺序计算结果(近似值)(近似值)0.178.70.284.31.7 5.73.511.3【分析】(1)根据样本平均数即可解决问题.(2)利用等腰三角形的性质求出∠BAC即可.【解答】解:(1)用表格可知,男性应采用176厘米,女性应采用164厘米.故答案为176,164.(2)如图2中,∵AB=AC,AF⊥BC,∴BF=FC=50cm,∠F AC=∠F AB,由题意FC=10cm,∴tan∠F AC ===5,∴∠F AC=78.7°,∴∠BAC=2∠F AC=157.4°,答:两臂杆的夹角为157.4°24.如图,在等边三角形ABC中,点E是边AC上一定点,点D是直线BC上一动点,以DE为一边作等边三角形DEF,连接CF.【问题解决】如图1,若点D在边BC上,求证:CE+CF=CD;【类比探究】如图2,若点D在边BC的延长线上,请探究线段CE,CF与CD之间存在怎样的数量关系?并说明理由.【分析】【问题解决】在CD上截取CH=CE,易证△CEH是等边三角形,得出EH=EC =CH,证明△DEH≌△FEC(SAS),得出DH=CF,即可得出结论;【类比探究】过D作DG∥AB,交AC的延长线于点G,由平行线的性质易证∠GDC=∠DGC=60°,得出△GCD为等边三角形,则DG=CD=CG,证明△EGD≌△FCD (SAS),得出EG=FC,即可得出FC=CD+CE.【解答】【问题解决】证明:在CD上截取CH=CE,如图1所示:∵△ABC是等边三角形,∴∠ECH=60°,∴△CEH是等边三角形,∴EH=EC=CH,∠CEH=60°,∵△DEF是等边三角形,∴DE=FE,∠DEF=60°,∴∠DEH+∠HEF=∠FEC+∠HEF=60°,∴∠DEH=∠FEC,在△DEH和△FEC中,,∴△DEH≌△FEC(SAS),∴DH=CF,∴CD=CH+DH=CE+CF,∴CE+CF=CD;【类比探究】解:线段CE,CF与CD之间的等量关系是FC=CD+CE;理由如下:∵△ABC是等边三角形,∴∠A=∠B=60°,过D作DG∥AB,交AC的延长线于点G,如图2所示:∵GD∥AB,∴∠GDC=∠B=60°,∠DGC=∠A=60°,∴∠GDC=∠DGC=60°,∴△GCD为等边三角形,∴DG=CD=CG,∠GDC=60°,∵△EDF为等边三角形,∴ED=DF,∠EDF=∠GDC=60°,∴∠EDG=∠FDC,在△EGD和△FCD中,,∴△EGD≌△FCD(SAS),∴EG=FC,∴FC=EG=CG+CE=CD+CE.25.如图,抛物线y=ax2+bx+2与x轴交于A,B两点,且OA=2OB,与y轴交于点C,连接BC,抛物线对称轴为直线x=,D为第一象限内抛物线上一动点,过点D作DE⊥OA 于点E,与AC交于点F,设点D的横坐标为m.(1)求抛物线的表达式;(2)当线段DF的长度最大时,求D点的坐标;(3)抛物线上是否存在点D,使得以点O,D,E为顶点的三角形与△BOC相似?若存在,求出m的值;若不存在,请说明理由.【分析】(1)点A、B的坐标分别为(2t,0)、(﹣t,0),则x==(2t﹣t),即可求解;(2)点D(m,﹣m2+m+2),则点F(m,﹣m+2),则DF=﹣m2+m+2﹣(﹣m+2)=﹣m2+2m,即可求解;(3)以点O,D,E为顶点的三角形与△BOC相似,则,即=2或,即可求解.【解答】解:(1)设OB=t,则OA=2t,则点A、B的坐标分别为(2t,0)、(﹣t,0),则x==(2t﹣t),解得:t=1,故点A、B的坐标分别为(2,0)、(﹣1,0),则抛物线的表达式为:y=a(x﹣2)(x+1)=ax2+bx+2,解得:a=﹣1,故抛物线的表达式为:y=﹣x2+x+2;(2)对于y=﹣x2+x+2,令x=0,则y=2,故点C(0,2),由点A、C的坐标得,直线AC的表达式为:y=﹣x+2,设点D的横坐标为m,则点D(m,﹣m2+m+2),则点F(m,﹣m+2),则DF=﹣m2+m+2﹣(﹣m+2)=﹣m2+2m,∵﹣1<0,故DF有最大值,此时m=1,点D(1,2);(3)存在,理由:点D(m,﹣m2+m+2)(m>0),则OD=m,DE=﹣m2+m+2,以点O,D,E为顶点的三角形与△BOC相似,则,即=2或,即=2或,解得:m=1或﹣2(舍去)或或(舍去),故m=1或.。

2019-2020学年山东省潍坊市高一(上)期中数学试卷试题及答案(解析版)

2019-2020学年山东省潍坊市高一(上)期中数学试卷试题及答案(解析版)

2019-2020学年山东省潍坊市高一(上)期中数学试卷一、选择题:本题共11小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{1U =-,0,1,2},{1A =-,1},则集合(U A =ð ) A .{0,2}B .{1-,0}C .{0,1}D .{1,2}2.命题“(0,)x ∃∈+∞,13x x +…”的否定是( )A .(0,)x ∃∈+∞,13x x+…B .(0,)x ∃∈+∞,13x x+<C .(0,)x ∀∈+∞,13x x +< D .(0,)x ∀∈+∞,13x x+…3.设x R ∈,则“|3|1x -<”是“2x >”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件4.已知()f x 是定义在R 上的偶函数,且在(0,)+∞是增函数,设(3)a f =-,()b f π=,(1)c f =-,则a ,b ,c 的大小关系是( )A .a c b <<B .c b a <<C .b a c <<D .c a b <<5.我国的烟花名目繁多,其中“菊花”烟花是最壮观的烟花之一.制造时一般是期望在它达到最高点时爆裂.如果烟花距地面的高度h (单位:)m 与时间t (单位:)s 之间的关系为2() 4.914.717h t t t =-++,那么烟花冲出后在爆裂的最佳时刻距地面高度约为( )A .26米B .28米C .30米D .32米6.对x R ∀∈,不等式221(4)(2)02m x m x m -+-+>+恒成立,则实数m 的取值范围是( )A .[2,6]B .[2,6){2}-C .(,2)[2-∞-,6)D .[2,6)7.读书能陶冶我们的情操,给我们知识和智慧.我国古代数学名著《算法统宗》中有以下问题:毛诗春秋周易书,九十四册共无余,毛诗一册三人读,春秋一册四人呼,周易五人读一本,要分每样几多书,就见学生多少数,请君布算莫踌躇.由此可推算,学生人数为( )A .120B .130C .150D .1808.已知a ,b 为正实数,则下列判断中正确的个数是( )①若11a b <>;②若1a b +=,则14a b+的最小值是10; ③11()()4a b a b ++…;④函数11y a a =++的最小值为1. A .1 B .2 C .3 D .49.定义在R 上的奇函数()f x 在[0,)+∞是减函数,且(2)1f -=,则满足1(1)1f x --剟的x 的取值范围是( ) A .[2-,2]B .[2-,1]C .[1-,3]D .[0,2]10.关于x 的方程225(9)20x a x a a -++--=的两根分别在区间(0,1)和(1,2)内,则实数a 的取值范围是( )A .(3,1)--B .(11)(3,17)-+C .(2-,1)(2-⋃,3)D .(2,6)11.已知函数()f x 满足(2)(2)6f x f x -++=,31()2x g x x -=-,且()f x 与()g x 的图象交点为1(x ,1)y ,2(x ,2)y ,⋯,8(x ,8)y ,则128128x x x y y y ++⋯++++⋯+的值为( )A .20B .24C .36D .40二、填空题:本题共4小题,每小题5分,共20分.12.函数1()1f x x =+-的定义域为 . 13.已知函数()f x 是定义域为R 的奇函数,当0x …时,()(1)f x x x =-,则(2)f -= . 14.已知不等式20ax bx c ++>的解集为{|26}x x <<,则不等式20cx bx a ++<的解集为 .15.在平面直角坐标系xOy 中,对于点(,)A a b ,若函数()y f x =满足:[1x a ∀∈-,1]a +,都有[1y b ∈-,1]b +,则称这个函数是点A 的“界函数”.已知点(,)B m n 在函数212y x =-的图象上,若函数212y x =-是点B 的“界函数”,则m 的取值范围是 .三、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 16.已知集合{|26}A x x =-剟,{|35}B x x =-剟. (1)求AB ,AB ;(2)若{|121}C x m x m =+-剟,()C A B ⊆,求实数m 的取值范围.17.已知函数2()(0)1x af x a x -=>+,若不等式()1f x -…的解集为(,1)[0-∞-,)+∞.(1)求实数a 的值;(2)证明函数()f x 在[0,)+∞上是增函数.18.已知函数223,(02)()43,(2)x x f x x x x -+<⎧=⎨-+⎩……,()(||)F x f x =.(1)判断()F x 的奇偶性,在给定的平面直角坐标系中,画出函数()F x 的大致图象;并写出该函数的单调区间;(2)若函数()()H x F x t =-有两个零点,求t 的取值范围.19.已知函数2()(1)()f x x a x a a R =+--∈. (1)解关于x 的不等式()0f x <;(2)若[1a ∀∈-,1],()0f x …恒成立,求实数x 的取值范围.20.第二届中国国际进口博览会于2019年11月5日至10日在上海国家会展中心举行,来自151个国家和地区的3617家企业参展,规模和品质均超过首届.更多新产品、新技术、新服务“全球首发,中国首展”,专(业)精(品)尖(端)特(色)产品精华荟萃.某跨国公司带来了高端空调模型参展,通过展会调研,中国甲企业计划在2020年与该跨国公司合资生产此款空调.生产此款空调预计全年需投入固定成本260万元,每生产x 千台空调,需另投入资金()R x 万元,且2210,040()901945010000,40x ax x R x x x x x ⎧+<<⎪=⎨-+⎪⎩….经测算生产10千台空调需另投入的资金为4000万元.由调研知,每台空调售价为0.9万元时,当年内生产的空调当年能全部销售完.(1)求2020年的企业年利润()W x (万元)关于年产量x (千台)的函数关系式; (2)2020年产量为多少(千台)时,企业所获年利润最大?最大年利润是多少? 注:利润=销售额-成本21.已知二次函数()y f x =满足:①x R ∀∈,有(1)(1)f x f x --=-+;②(0)3f =-;③()y f x =的图象与x 轴两交点间距离为4.(1)求()y f x =的解析式;(2)记()()5g x f x kx =++,[1x ∈-,2]. (Ⅰ)若()g x 为单调函数,求k 的取值范围;(Ⅱ)记()g x 的最小值为()h k ,讨论2(4)h t λ-=的零点个数.2019-2020学年山东省潍坊市高一(上)期中数学试卷参考答案与试题解析一、选择题:本题共11小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{1U =-,0,1,2},{1A =-,1},则集合(U A =ð ) A .{0,2}B .{1-,0}C .{0,1}D .{1,2}【解答】解:因为全集{1U =-,0,1,2},{1A =-,1}, 所以:{0U A =ð,2}, 故选:A .2.命题“(0,)x ∃∈+∞,13x x +…”的否定是( )A .(0,)x ∃∈+∞,13x x+…B .(0,)x ∃∈+∞,13x x+<C .(0,)x ∀∈+∞,13x x +< D .(0,)x ∀∈+∞,13x x+…【解答】解:命题“(0,)x ∃∈+∞,13x x+…”的否定是:否定限定量词和结论,故为:(0,)x ∀∈+∞,13x x+<, 故选:C .3.设x R ∈,则“|3|1x -<”是“2x >”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件【解答】解:由|3|1x -<,131x ∴-<-<,解得24x <<. 则由“24x <<” ⇒ “2x >”, 由“2x >”推不出“24x <<”,则“|3|1x -<”是“2x >”的充分不必要条件; 故选:A .4.已知()f x 是定义在R 上的偶函数,且在(0,)+∞是增函数,设(3)a f =-,()b f π=,(1)c f =-,则a ,b ,c 的大小关系是( )A .a c b <<B .c b a <<C .b a c <<D .c a b <<【解答】解:()f x 是定义在R 上的偶函数,且在(0,)+∞是增函数,()f x ∴在(,0)-∞上单调递减,距对称轴越远,函数值越大, (1)(3)()f f f π-<-<,则c a b <<, 故选:D .5.我国的烟花名目繁多,其中“菊花”烟花是最壮观的烟花之一.制造时一般是期望在它达到最高点时爆裂.如果烟花距地面的高度h (单位:)m 与时间t (单位:)s 之间的关系为2() 4.914.717h t t t =-++,那么烟花冲出后在爆裂的最佳时刻距地面高度约为( )A .26米B .28米C .30米D .32米【解答】解:2() 4.914.717h t t t =-++, ∴烟花冲出后在爆裂的最佳时刻为14.71.52( 4.9)t =-=⨯-,此时2(1.5) 4.9 1.514.7 1.51728h =-⨯+⨯+≈, 故选:B .6.对x R ∀∈,不等式221(4)(2)02m x m x m -+-+>+恒成立,则实数m 的取值范围是( )A .[2,6]B .[2,6){2}-C .(,2)[2-∞-,6)D .[2,6)【解答】解:对x R ∀∈,不等式221(4)(2)02m x m x m -+-+>+恒成立, ①当240m -=且20m +≠,即2m =时,104>对x R ∈恒成立, 2m ∴=满足题意;②当2m ≠且2m ≠-时,则有2240(2)4(2)0m m m ⎧->⎨=---<⎩,解得26m <<. 综合①②,可得26m <…,故实数m 的取值范围为[2,6), 故选:D .7.读书能陶冶我们的情操,给我们知识和智慧.我国古代数学名著《算法统宗》中有以下问题:毛诗春秋周易书,九十四册共无余,毛诗一册三人读,春秋一册四人呼,周易五人读一本,要分每样几多书,就见学生多少数,请君布算莫踌躇.由此可推算,学生人数为( )A .120B .130C .150D .180【解答】解:本题的大意为:《毛诗》、《春秋》和《周易》共94本,3个人读《毛诗》一册,4个人读《春秋一册》,5个人读《周易》一册,问由多少个学生? 11194()345÷++479460=÷120=(人)故选:A .8.已知a ,b 为正实数,则下列判断中正确的个数是( )①若11a b <>;②若1a b +=,则14a b+的最小值是10; ③11()()4a b a b ++…;④函数11y a a =++的最小值为1. A .1 B .2 C .3 D .4【解答】解:已知a ,b 为正实数,①11a b a b<⇒>⇒>①正确; ②1414414()()14529b b a a b a b a b a a a b+=++=++++=…,所以②不正确; ③1122a a a a +=…,同理12b b +…,11()()4a b a b∴++…,所以③正确;④11111)11111y a a a a a =+=++--=+++…,当且仅当111a a +=+,即0a =时取等号,而0a >,所以1y >,不能取等号,所以 ④不正确. 故选:B .9.定义在R 上的奇函数()f x 在[0,)+∞是减函数,且(2)1f -=,则满足1(1)1f x --剟的x 的取值范围是( ) A .[2-,2]B .[2-,1]C .[1-,3]D .[0,2]【解答】解:由奇函数()f x 在[0,)+∞是减函数,可知()f x 在(,0)-∞是减函数,从而可得,()f x 在R 上单调递减, 由(2)1f -=,可知f (2)1=-, f (2)1(1)1(2)f x f =--=-剟,212x ∴--剟,解可得,13x -剟,即解集为[1-,3] 故选:C .10.关于x 的方程225(9)20x a x a a -++--=的两根分别在区间(0,1)和(1,2)内,则实数a 的取值范围是( ) A .(3,1)--B.(11)(3,17)-+C .(2-,1)(2-⋃,3)D .(2,6)【解答】解:设函数22()5(9)2f x x a x a a =-++--,方程225(9)20x a x a a -++--=的两根分别在区间(0,1)和(1,2)内, ∴函数22()5(9)2f x x a x a a =-++--的两个零点分别在区间(0,1)和(1,2)内,∴(0)0(1)0(2)0f f f >⎧⎪<⎨⎪>⎩,即2222026030a a a a a a ⎧-->⎪--<⎨⎪->⎩,解得:11a -<<-或31x <<+, 故选:B .11.已知函数()f x 满足(2)(2)6f x f x -++=,31()2x g x x -=-,且()f x 与()g x 的图象交点为1(x ,1)y ,2(x ,2)y ,⋯,8(x ,8)y ,则128128x x x y y y ++⋯++++⋯+的值为( )A .20B .24C .36D .40【解答】解:函数()f x 满足(2)(2)6f x f x -++=的对称中心为(2,3), 函数315()322x g x x x -==+--也关于(2,3)中心对称, 则若交点为1(x ,1)y 时,1(4x -,16)y -也为交点,若交点为2(x ,2)y 时,2(4x -,26)y -也为交点,⋯,所以128128112288()()()x x x y y y x y x y x y ++⋯++++⋯+=++++⋯++1111222288881[()(46)()(46)()(46)]402x y x y x y x y x y x y =++-+-+++-+-+⋯+++-+-=.故选:D .二、填空题:本题共4小题,每小题5分,共20分. 12.函数1()1f x x =+-的定义域为 [2-,1)(1⋃,)+∞ . 【解答】解:由题意得: 2010x x +⎧⎨-≠⎩…, 解得:2x -…且1x ≠,故函数的定义域是[2-,1)(1⋃,)+∞, 故答案为:[2-,1)(1⋃,)+∞.13.已知函数()f x 是定义域为R 的奇函数,当0x …时,()(1)f x x x =-,则(2)f -= 2 . 【解答】解:因为()f x 是定义在R 上的奇函数,且当0x …时,2()f x x x =-, 所以(2)f f -=-(2)(24)2=--=, 故答案为:2.14.已知不等式20ax bx c ++>的解集为{|26}x x <<,则不等式20cx bx a ++<的解集为 {|6x x <或1}2x > . 【解答】解:不等式20ax bx c ++>的解集为{|26}x x <<, 所以方程20ax bx c ++=的解为2和6,且0a <; 由根与系数的关系得, 26260b a c a a ⎧+=-⎪⎪⎪⨯=⎨⎪<⎪⎪⎩, 解得8b a =-,12c a =,且0a <;所以不等式20cx bx a ++<化为212810x x -+>, 解得16x <或12x >,所以所求不等式的解集为1{|6x x <或1}2x >. 故选:1{|6x x <或1}2x >. 15.在平面直角坐标系xOy 中,对于点(,)A a b ,若函数()y f x =满足:[1x a ∀∈-,1]a +,都有[1y b ∈-,1]b +,则称这个函数是点A 的“界函数”.已知点(,)B m n 在函数212y x =-的图象上,若函数212y x =-是点B 的“界函数”,则m 的取值范围是 11[,]22- .【解答】解:(,)B m n 在函数212y x =-的图象上,∴212n m =-,[1x m ∴∀∈-,1]m +,都有2211[1,1]22y m m ∈---+,①10m +…,即1m -…时,212y x =-在[1m -,1]m +上单调递增,∴2211[(1),(1)]22y m m ∈---+,∴22221111[(1),(1)][1,1]2222m m m m ---+⊆---+,∴222211(1)12211(1)122m m m m ⎧----⎪⎪⎨⎪-+-+⎪⎩……,解得12m -…,又1m -…,∴这种情况不合题意; ②1010m m +>⎧⎨-<⎩,即11m -<<时,由[1x m ∈-,1]m +可得21[(1),0]2y m ∈--或21[(1),0]2y m ∈-+,∴222111[(1),0][1,1]222m m m --⊆---+且222111[(1),0][1,1]222m m m -+⊆---+,∴2222211(1)12211(1)1221102m m m m m ⎧----⎪⎪⎪-+--⎨⎪⎪-+⎪⎩………,解得1122m-剟, ③10m -…,即1m …时,212y x =-在[1m -,1]m +上单调递减,∴2211[(1),(1)]22y m m ∈-+--,∴22221111[(1),(1)][1,1]2222m m m m -+--⊆---+,∴222211(1)12211(1)122m m m m ⎧-+--⎪⎪⎨⎪---+⎪⎩……,解得12m …,又1m …,∴这种情况不合题意,综上得,m 的取值范围是11[,]22-.故答案为:11[,]22-.三、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 16.已知集合{|26}A x x =-剟,{|35}B x x =-剟. (1)求AB ,AB ;(2)若{|121}C x m x m =+-剟,()C A B ⊆,求实数m 的取值范围.【解答】解:(1)由已知可得{|25}AB x x =-剟,{|36}AB x x =-剟.(2)①若C =∅,则121m m +>-,2m ∴<; ②若C ≠∅,则12112215m m m m +-⎧⎪+-⎨⎪-⎩………,解得23m 剟, 综上可得3m …. 17.已知函数2()(0)1x af x a x -=>+,若不等式()1f x -…的解集为(,1)[0-∞-,)+∞.(1)求实数a 的值;(2)证明函数()f x 在[0,)+∞上是增函数. 【解答】解:(1)由题意211x ax --+…, 变形2311011x a x a x x --++=++…, 这等价于(31)(1)0x a x -++…且10x +≠, 解得1x <-或13a x -…,所以103a -=,解得1a =. (2)由(1)得21()1x f x x -=+, 任取1x ,2[0x ∈,)+∞,且12x x <,则210x x ->, 那么212121*********()()()11(1)(1)x x x x f x f x x x x x ----=-=++++, 210x x ->,12(1)(1)0x x ++>, 21()()0f x f x ∴->,∴函数()f x 在[0,)+∞上是增函数.18.已知函数223,(02)()43,(2)x x f x x x x -+<⎧=⎨-+⎩……,()(||)F x f x =.(1)判断()F x 的奇偶性,在给定的平面直角坐标系中,画出函数()F x 的大致图象;并写出该函数的单调区间;(2)若函数()()H x F x t =-有两个零点,求t 的取值范围.【解答】解:(1)由题意知()F x 定义域为R ,关于原点对称, 又()(||)(||)()F x f x f x F x -=-==, ()F x ∴在R 上是偶函数.函数()F x 的大致图象如下图:观察图象可得:函数()F x 的单调递增区间为:(2,0)-,(2,)+∞,单调递减区间为:(,2)-∞-,(0,2).(2)当()()H x F x t =-有两个零点时, 即()F x 的图象与直线y t =图象有两个交点, 观察函数图象可得3t >或1t =-.19.已知函数2()(1)()f x x a x a a R =+--∈. (1)解关于x 的不等式()0f x <;(2)若[1a ∀∈-,1],()0f x …恒成立,求实数x 的取值范围. 【解答】解:(1)不等式2(1)0x a x a +--<等价于()(1)0x a x -+<,当1a <-时,不等式的解集为(,1)a -; 当1a =-时,不等式的解集为∅; 当1a >-时,不等式的解集为(1,)a -. (2)22(1)(1)x a x a a x x x +--=-+++, 设g (a )2(1)a x x x =-+++,[1a ∈-,1],要使g (a )0…在[1a ∈-,1]上恒成立, 只需(1)0(1)0g g -⎧⎨⎩……,即22210,10,x x x ⎧++⎨-⎩……解得1x …或1x -…, 所以x 的取值范围为{|1x x -…或1}x ….20.第二届中国国际进口博览会于2019年11月5日至10日在上海国家会展中心举行,来自151个国家和地区的3617家企业参展,规模和品质均超过首届.更多新产品、新技术、新服务“全球首发,中国首展”,专(业)精(品)尖(端)特(色)产品精华荟萃.某跨国公司带来了高端空调模型参展,通过展会调研,中国甲企业计划在2020年与该跨国公司合资生产此款空调.生产此款空调预计全年需投入固定成本260万元,每生产x 千台空调,需另投入资金()R x 万元,且2210,040()901945010000,40x ax x R x x x x x ⎧+<<⎪=⎨-+⎪⎩….经测算生产10千台空调需另投入的资金为4000万元.由调研知,每台空调售价为0.9万元时,当年内生产的空调当年能全部销售完.(1)求2020年的企业年利润()W x (万元)关于年产量x (千台)的函数关系式; (2)2020年产量为多少(千台)时,企业所获年利润最大?最大年利润是多少? 注:利润=销售额-成本【解答】解:(1)由题意2(10)1010104000R a =⨯+=,所以300a =, 当040x <<时,22()900(10300)26010600260W x x x x x x =-+-=-+-;当40x …时,22901945010000919010000()900260x x x x W x x x x-+-+-=--=,所以2210600260,040()919010000,40x x x W x x x x x ⎧-+-<<⎪=⎨-+-⎪⎩….(2)当040x <<,2()10(30)8740W x x =--+ 当30x =时,()8740max W x =⋯当40x …,29190100001000010000()9190()9190x x W x x x x x x -+-==--+=-++, 因为0x >,所以10000200x x +=…,当且仅当10000x x=时,即100x =时等号成立, 此时()20091908990W x -+=…, 所以()8990max W x =万元, 因为87408990<,所以2020年产量为100(千台)时,企业所获利润最大,最大利润是8990万元. 21.已知二次函数()y f x =满足:①x R ∀∈,有(1)(1)f x f x --=-+;②(0)3f =-;③()y f x =的图象与x 轴两交点间距离为4.(1)求()y f x =的解析式;(2)记()()5g x f x kx =++,[1x ∈-,2]. (Ⅰ)若()g x 为单调函数,求k 的取值范围;(Ⅱ)记()g x 的最小值为()h k ,讨论2(4)h t λ-=的零点个数. 【解答】解:(1)设2()(0)f x ax bx c a =++≠,由题意知对称轴12bx a=-=-①;(0)3f c ==-②; 设()0f x =的两个根为1x ,2x ,则12b x x a+=-,12c x x a=,12||4x x -===;③由①②③解得1a =,2b =,3c =-,2()23f x x x ∴=+-.(2)2()()(2)2I g x x k x =+++,其对称轴22k x +=-.由题意知:212k +--…或222k +-…, 0k ∴…或6k -….()II ①当0k …时,对称轴212k x +=--…,()g x 在[1-,2]上单调递增,()(1)1h k g k =-=-+, ②当60k -<<时,对称轴2(1,2)2k x +=-∈-,2244()()24k k k h k g +--+=-=, ③当6k -…时,对称轴222k x +=-…,()g x 在[1-,2]单调递减,()h k g =(2)210k =+,∴21,0,44(),604210,6k k k k h k k k k -+⎧⎪--+⎪=-<<⎨⎪+-⎪⎩……, 令244m t =--…,即()(4)h m m λ=-…,画出()h m 简图,)i 当1λ=时,()1h m =,4m =-或0,244t ∴-=-时,解得0t =,240t -=时,解得2t =±,有3个零点.)ii 当1λ<时,()h m λ=有唯一解10m >,2140t m -=>,t =有2个零点. )iii 当12λ<<时,()h m λ=有两个不同的零点2m ,3m ,且2m ,3(4m ∈-,2)(2--⋃,0),240m +>,340m +>,224t m ∴-=时,解得t =,234t m -=时,解得t =有4个不同的零点.)iv 当2λ=时,()2h m =,224m t =-=-,∴t =2个零点.)v 当2λ>时,()h m λ=无解.综上所得:2λ>时无零点;12λ<<时,有4个零点;1λ=时,有3个零点;2λ=或1λ<时,有2个零点.。

2019-2020学年山东省实验中学高一上学期期中数学试题(解析版)

2019-2020学年山东省实验中学高一上学期期中数学试题(解析版)

2019-2020学年山东省实验中学高一上学期期中数学试题一、单选题1.设全集{}0,1,2,3,4U =,{}0,3,4A =,{}1,3B =,则()U A B =I ð( ) A .{}0,4 B .{}0,2,3,4C .{}4D .{}0,1,3,4【答案】A【解析】利用补集和交集的定义可计算出集合()U A B ∩ð. 【详解】Q 全集{}0,1,2,3,4U =,{}1,3B =,{}0,2,4U B ∴=ð,又{}0,3,4A =Q ,因此,(){}0,4U A B ⋂=ð. 故选:A. 【点睛】本题考查补集和交集的混合运算,考查计算能力,属于基础题. 2.函数()f x =的定义域为( ) A .()1,-+∞ B .(),1-∞-C .()1,1-D .∅【答案】A【解析】根据偶次根式被开方数非负、分母不为零得出关于x 的不等式,即可得出函数()y f x =的定义域.【详解】由题意可得10x +>,解得1x >-,因此,函数()f x =的定义域为()1,-+∞.故选:A. 【点睛】本题考查具体函数定义域的求解,解题时要结合一些常见的求函数定义域的基本原则列不等式(组)求解,考查运算求解能力,属于基础题. 3.下列函数中,与函数1y x =+是同一个函数的是 ( )A .2y = B .1y =C .21x y x=+D .1y =【答案】B【解析】根据定义域、解析式是否与所给函数是否相同判断即可.1y x =+的定义域为R ,()21y x =≥-与()210x y x x=+≠定义域不是R ,A 、C 不合题意;11y x ==+,解析式与1y x =+不相同,D 不合题意,选项B 中函数定义域、解析式都与所给函数相同, 故选B. 【点睛】本题主要考查函数的基本定义,考查了函数的定义域,属于基础题. 4.函数323y x x=-的奇偶性是( ) A .偶函数 B .奇函数C .既奇又偶D .非奇非偶【答案】B【解析】根据函数奇偶性的定义判断即可. 【详解】 设()323f x x x=-,该函数的定义域为{}0x x ≠,关于原点对称, ()()()333222333f x x x x f x x x x ⎛⎫-=⨯--=-+=--=- ⎪-⎝⎭Q , 又()11f =,()11f -=-,则()()11f f ≠-. 因此,函数323y x x=-为奇函数. 故选:B. 【点睛】本题考查函数奇偶性的判断,熟悉函数奇偶性的定义是判断的关键,考查推理能力,属于基础题.5.下列四个函数中,在()0,∞+上为增函数的是( )A .()13xf x ⎛⎫= ⎪⎝⎭B .()23f x x x =- C .()f x x=-D .()11f x x =-+ 【答案】D【解析】逐一判断各选项中函数在区间()0,∞+上的单调性,进而可得出合适的选项.对于A 选项,函数()13xf x ⎛⎫= ⎪⎝⎭在区间()0,∞+上为减函数; 对于B 选项,二次函数()23f x x x =-的图象开口向上,对称轴为直线32x =, 则函数()23f x x x =-在区间30,2⎛⎫ ⎪⎝⎭上为减函数,在区间3,2⎛⎫+∞ ⎪⎝⎭上为增函数,该函数在区间()0,∞+上不单调;对于C 选项,当0x >时,()f x x x =-=-,则函数()f x x =-在区间()0,∞+上为减函数;对于D 选项,函数()11f x x =-+在区间()0,∞+上为增函数. 故选:D. 【点睛】本题考查函数在区间上单调性的判断,熟悉一些基本初等函数的单调性是判断的关键,属于基础题.6.已知函数21,0()2,0x x f x x x ⎧+≤=⎨->⎩,若()f x =5,则x 的值是( )A .-2B .2或-52C .2或-2D .2或-2或-52【答案】A【解析】根据分段函数的对应法则,分类讨论解方程即可. 【详解】当0x ≤时,215x +=,解得2x =- ; 当0x >时,25x -=,无解, ∴x 的值是2-, 故选:A 【点睛】本题考查分段函数的对应法则的应用,考查分类讨论思想,属于基础题.7.已知 5.10.9m =,2log 5.1n =, 5.10.8p =,则m 、n 、p 的大小关系为( ) A .p n m << B .m p n <<C .m n p <<D .p m n <<【答案】D【解析】利用对数函数、幂函数比较三个数与1的大小关系,并利用幂函数的单调性得出m 与p 的大小,从而可得出m 、n 、p 的大小关系. 【详解】对数函数2log y x =在区间()0,∞+上为增函数,则22log 5.1log 21n =>=; 幂函数 5.1y x =在区间()0,∞+上为增函数,则 5.1 5.1 5.10.80.911<<=,即1p m <<.因此,p m n <<. 故选:D. 【点睛】本题考查指数式与对数式的大小比较,一般利用指数、对数和幂函数的单调性结合中间值来比较,在比较指数幂的大小关系时,可根据指数幂的结构选择指数函数与幂函数的单调性来比较,考查推理能力,属于中等题.8.函数()2log 34f x x x =+-的零点所在的一个区间是( ) A .()2,1-- B .()1,0-C .()0,1D .()1,2【答案】D【解析】判断函数()y f x =的单调性,利用零点存在定理即可得出结论. 【详解】Q 函数12log y x =在区间()0,∞+上为增函数,函数234y x =-为增函数,所以,函数()2log 34f x x x =+-在区间()0,∞+上为增函数,则该函数最多有一个零点,又()110f =-<,()230f =>,因此,函数()2log 34f x x x =+-的零点所在的一个区间是()1,2. 故选:D. 【点睛】本题考查利用零点存在定理判断函数零点所在的区间,考查计算能力,属于基础题. 9.设函数()22f x x =-,用二分法求()0f x =的一个近似解时,第1步确定了一个区间为31,2⎛⎫⎪⎝⎭,到第3步时,求得的近似解所在的区间应该是( )A .1,32⎛⎫ ⎪⎝⎭B .54,32⎛⎫⎪⎝⎭C .118,32⎛⎫⎪⎝⎭D .1123816,⎛⎫⎪⎝⎭【答案】C【解析】利用二分法可得出结果. 【详解】()110f =-<Q ,31024f ⎛⎫=> ⎪⎝⎭,570416f ⎛⎫=-< ⎪⎝⎭,第2步所得零点所在区间为53,42⎛⎫⎪⎝⎭; 取区间53,42⎛⎫ ⎪⎝⎭的中点35112428x +==,1170864f ⎛⎫=-< ⎪⎝⎭Q , 因此,第3步求得的近似解所在的区间应该是113,82⎛⎫⎪⎝⎭.故选:C. 【点睛】本题考查利用二分法求方程近似解所在区间,解题的关键就是要熟悉二分法求解函数零点所在区间的基本步骤,考查计算能力,属于基础题. 10.函数()()112122x xf x ⎡⎤=+--⎣⎦的图象大致为 ( ) A . B . C .D .【答案】A【解析】【详解】试题分析:根据题意,由于函数()()2,1202,01121221,1201,0x x x x xx x f x x ⎧⎧-≥≤⎡⎤=+--==⎨⎨⎣⎦-<>⎩⎩根据解析式,结合分段函数的图像可知, 在y 轴右侧是常函数, 所以排除B,D,而在y 轴的左侧,是递增的指数函数,故排除C ,因此选A. 【考点】本试题考查而来函数图像。

2023-2024学年湖南省株洲市世纪星高级中学高一(上)期中数学试卷【答案版】

2023-2024学年湖南省株洲市世纪星高级中学高一(上)期中数学试卷【答案版】

2023-2024学年湖南省株洲市世纪星高级中学高一(上)期中数学试卷一、选择题:(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设集合U={0,1,2,3,4,5,6},集合A={2,3,4,5,6},则∁U A=()A.{0,2,3,4,5,6}B.{2,3,4,5,6}C.{0,1}D.∅2.下列函数中是偶函数的是()A.y=x2+2x+1B.y=|x|C.y=2xD.y=3x﹣13.命题“∀x∈R,x2+1>0”的否定是()A.∀x∈R,x2+1<0B.∀x∈R,x2+1≤0C.∃x∈R,x2+1≤0D.∃x∈R,x2+1<04.已知x>0,y>0,且8x +2y=1,则x+y的最小值是()A.10B.15C.18D.235.已知x∈R,则“x<9”是“x2<81”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.函数f(x)=√x+3+11−x的定义域为()A.[﹣3,+∞)B.(﹣3,1)∪(1,+∞)C.(﹣3,+∞)D.[﹣3,1)∪(1,+∞)7.已知函数f(x)=ax+bx−2,若f(2019)=10,则f(﹣2019)=()A.﹣14B.﹣10C.10D.无法确定8.已知定义域为R的奇函数f(x)在(0,+∞)上单调递减,且f(﹣5)=0,则满足(x﹣3)f(x)>0的x的取值范围是()A.(﹣5,0)∪(3,5)B.(﹣5,0)∪(0,5)C.(﹣∞,﹣5)∪(0,5)D.(﹣5,﹣3)∪(3,5)二、选择题:(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.)9.下列不等式的解集为R的是()A.x2+6x+10>0B.x2+2√5x+5>0C .﹣x 2+x ﹣2<0D .2x 2﹣3x ﹣3<010.托马斯说:“函数是近代数学思想之花”,根据函数的概念判断:下列关系属于集合A ={﹣1,0,1}到集合B ={0,1}的函数关系的是( ) A .y =2xB .y =|x |C .y =1xD .y =x 211.已知命题p :关于x 的不等式2x−1≥0,命题q :a <x <a +1,若p 是q 的必要非充分条件,则实数a的取值可以为( ) A .a ≥0B .a ≥1C .a ≥2D .a ≥312.如果a <b <0,那么下列不等式正确的是( ) A .1a<1bB .ac 2<bc 2C .a +1b <b +1aD .a 2>ab >b 2三、填空题:(本题共4小题,每小题5分,共20分)13.若f (x )是R 上的奇函数,且当x ≥0时,f (x )=6x 2﹣2x ,则当x <0,f (x )= . 14.已知3∈{a ,a 2﹣1,2},则a 的所有可能取值为 . 15.函数f (x )=x +8x(x ∈[2,8])的值域为 .16.设f(x)={−x 2−2x ,x ≤m x −4,x >m,若f (x )在R 上单调,则m 的取值范围为 .四、解答题:(本题共6小题,共70分.第17题10分,其余题目每题各12分。

2022-2023学年山东省烟台市高三上学期期中学业水平测试数学试卷及答案

2022-2023学年山东省烟台市高三上学期期中学业水平测试数学试卷及答案

A
4x2
y2
112 9
1
即 4x2 y2 2xy 112 ,②……………4 分
4xy
2,
9
联立①②得, x 4 , y 4 ,即 c 4, b 8 .
3
3

……………6
(2)由题意得, S
ABE
S
ACE
S

ABC
∴ 1 4 AE sin 30 1 8 AE sin 30 1 4 8 sin 60 ,
2
2
3
设 b 2x, c y ,
…………………1 分 …………………2 分 …………………3 分
…………………4 …………………6 分 …………………1 分
…………………2 分
在△ABD 中, cos
A
x2
y2
112 9
1
,即 x2
y2
xy
112
,①
……………3 分
2xy
2
9

ABC 中, cos
a (a0, 4) 时, m(a) 0 , m(a) 单调递减,
高三数学试题答案 第 6 页(共 7 页)
则 m(a)max
m(a0 )
(1 a0 ) ln a0
a0
2
(1 a0 )
1 a0
a0
2
a0
1 a0
3 ………11


y
a0
1 a0
3 在 a0
(1, 2) 上显然单调递增,
∴ a0


x2
112 16 9
8 7x
8
x2 7x
0
,所以
x

2019年山东省烟台市中考数学试题及解析

2019年山东省烟台市中考数学试题及解析

2019年山东省烟台市中考数学试卷题目一二三四五六分数一、选择题(本题共12小题,每小题3分,满分36分)每小题都给出标号为A 、B、C、D四个备选答案,其中并且只有一个是正确的1.(3分)(2019•烟台)﹣的相反数是()A.﹣B.C.﹣D.2.(3分)(2019•烟台)剪纸是我国最古老民间艺术之一,被列入第四批《人类非物质文化遗产代表作名录》,下列剪纸作品中,是中心对称图形但不是轴对称图形的是()A.B.C.D.3.(3分)(2019•烟台)如图,将一个圆柱体放置在长方体上,其中圆柱体的底面直径与长方体的宽相平,则该几何体的左视图是()A.B.C.D.4.(3分)(2019•烟台)下列等式不一定成立的是()A.=(b≠0)B.a3•a﹣5=(a≠0)C.a2﹣4b2=(a+2b)(a﹣2b)D.(﹣2a3)2=4a65.(3分)(2019•烟台)丽华根据演讲比赛中九位评委所给的分数作了如下表格平均数中位数众数方差8.5 8.3 8.1 0.15如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是()A.平均数B.众数C.方差D.中位数6.(3分)(2019•烟台)如果x2﹣x﹣1=(x+1)0,那么x的值为()A.2或﹣1 B.0或1 C.2D.﹣17.(3分)(2019•烟台)如图,BD是菱形ABCD的对角线,CE⊥AB交于点E,交BD于点F,且点E是AB中点,则tan∠BFE的值是()A.B.2C.D.8.(3分)(2019•烟台)如图,正方形ABCD的边长为2,其面积标记为S1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,…按照此规律继续下去,则S2019的值为()A.()2012B.()2013C.()2012D.()20139.(3分)(2019•烟台)等腰直角三角形边长分别为a,b,2,且a,b是关于x的一元二次方程x2﹣6x+n﹣1=0的两根,则n的值为()A.9B.10 C.9或10 D.8或1010.(3分)(2019•烟台)A、B两地相距20千米,甲、乙两人都从A地去B地,图中l1和l2分别表示甲、乙两人所走路程s(千米)与时间t(小时)之间的关系,下列说法:①乙晚出发1小时;②乙出发3小时后追上甲;③甲的速度是4千米/小时;④乙先到达B 地.其中正确的个数是()A.1B.2C.3D.411.(3分)(2019•烟台)如图,已知顶点为(﹣3,﹣6)的抛物线y=ax2+bx+c经过点(﹣1,﹣4),则下列结论中错误的是()A.b2>4abB.a x2+bx+c≥﹣6C.若点(﹣2,m),(﹣5,n)在抛物线上,则m>nD.关于x的一元二次方程ax2+bx+c=﹣4的两根为﹣5和﹣112.(3分)(2019•烟台)如图,Rt△ABC中∠C=90°,∠BAC=30°,AB=8,以2为边长的正方形DEFG的一边CD在直线AB上,且点D与点A重合,现将正方形DEFG沿A﹣B的方向以每秒1个单位的速度匀速运动,当点D与点B重合时停止,则在这个运动过程中,正方形DEFG与△ABC的重合部分的面积S与运动时间t之间的函数关系图象大致是()A.B.C.D.二、填空题(本大题共6个小题,每小题3分,满分18分)13.(3分)(2019•烟台)如图,数轴上点A、B所表示的两个数的和的绝对值是.14.(3分)(2019•烟台)正多边形的一个外角是72°,则这个多边形的内角和的度数是.15.(3分)(2019•烟台)如图,有四张不透明的卡片除正面的函数关系式不同外,其余相同,将它们背面朝上洗匀后,从中抽取一张卡片,则抽到函数图象不经过第四象限的卡片的概率为.16.(3分)(2019•烟台)如图,将弧长为6π,圆心角为120°的圆形纸片AOB围成圆锥形纸帽,使扇形的两条半径OA与OB重合(粘连部分忽略不计)则圆锥形纸帽的高是.17.(3分)(2019•烟台)如图,矩形OABC的顶点A、C的坐标分别是(4,0)和(0,2),反比例函数y=(x>0)的图象过对角线的交点P并且与AB,BC分别交于D,E两点,连接OD,OE,DE,则△ODE的面积为.18.(3分)(2019•烟台)如图,直线l:y=﹣x+1与坐标轴交于A,B两点,点M(m,0)是x轴上一动点,以点M为圆心,2个单位长度为半径作⊙M,当⊙M与直线l相切时,则m的值为.三、解答题(本大题共7小题,满分66分)19.(6分)(2019•烟台)先化简:÷(﹣),再从﹣2<x<3的范围内选取一个你最喜欢的值代入,求值.20.(8分)(2019•烟台)”切实减轻学生课业负担”是我市作业改革的一项重要举措.某中学为了解本校学生平均每天的课外作业时间,随机抽取部分学生进行问卷调查,并将调查结果分为A、B、C、D四个等级,A:1小时以内;B:1小时﹣﹣1.5小时;C:1.5小时﹣﹣2小时;D:2小时以上.根据调查结果绘制了如图所示的两种不完整的统计图,请根据图中信息解答下列问题:(1)该校共调查了学生;(2)请将条形统计图补充完整;(3)表示等级A的扇形圆心角α的度数是;(4)在此次调查问卷中,甲、乙两班各有2人平均每天课外作业量都是2小时以上,从这4人中人选2人去参加座谈,用列表表或画树状图的方法求选出的2人来自不同班级的概率.21.(8分)(2019•烟台)2014年12月28日“青烟威荣”城际铁路正式开通,从烟台到北京的高铁里程比普快里程缩短了81千米,运行时间减少了9小时,已知烟台到北京的普快列车里程约为1026千米,高铁平均时速为普快平均时速的2.5倍.(1)求高铁列车的平均时速;(2)某日王老师要去距离烟台大约630千米的某市参加14:00召开的会议,如果他买到当日8:40从烟台至城市的高铁票,而且从该市火车站到会议地点最多需要1.5小时,试问在高铁列车准点到达的情况下他能在开会之前到达吗?22.(9分)(2019•烟台)如图1,滨海广场装有风能、太阳能发电的风光互补环保路灯,灯杆顶端装有风力发电机,中间装有太阳能板,下端装有路灯.该系统工作过程中某一时刻的截面图如图2,已知太阳能板的支架BC垂直于灯杆OF,路灯顶端E距离地面6米,DE=1.8米,∠CDE=60°.且根据我市的地理位置设定太阳能板AB的倾斜角为43°.AB=1.5米,CD=1米,为保证长为1米的风力发电机叶片无障碍安全旋转,对叶片与太阳能板顶端A的最近距离不得少于0.5米,求灯杆OF至少要多高?(利用科学计算器可求得sin43°≈0.6820,cos43°≈0.7314,tan43°≈0.9325,结果保留两位小数)23.(9分)(2019•烟台)如图,以△ABC的一边AB为直径的半圆与其它两边AC,BC的交点分别为D、E,且=.(1)试判断△ABC的形状,并说明理由.(2)已知半圆的半径为5,BC=12,求sin∠ABD的值.24.(12分)(2019•烟台)如图,在平面直角坐标系中,抛物线y=ax2+bx+c与⊙M相交于A、B、C、D四点,其中A、B两点的坐标分别为(﹣1,0),(0,﹣2),点D在x轴上且AD为⊙M的直径.点E是⊙M与y轴的另一个交点,过劣弧上的点F作FH⊥AD于点H,且FH=1.5(1)求点D的坐标及该抛物线的表达式;(2)若点P是x轴上的一个动点,试求出△PEF的周长最小时点P的坐标;(3)在抛物线的对称轴上是否存在点Q,使△QCM是等腰三角形?如果存在,请直接写出点Q的坐标;如果不存在,请说明理由.25.(14分)(2019•烟台)【问题提出】如图①,已知△ABC是等腰三角形,点E在线段AB上,点D在直线BC上,且ED=EC,将△BCE绕点C顺时针旋转60°至△ACF连接EF试证明:AB=DB+AF【类比探究】(1)如图②,如果点E在线段AB的延长线上,其他条件不变,线段AB,DB,AF之间又有怎样的数量关系?请说明理由(2)如果点E在线段BA的延长线上,其他条件不变,请在图③的基础上将图形补充完整,并写出AB,DB,AF之间的数量关系,不必说明理由.2019年山东省烟台市中考数学试卷参考答案与试题解析一、选择题(本题共12小题,每小题3分,满分36分)每小题都给出标号为A 、B、C、D四个备选答案,其中并且只有一个是正确的1.(3分)(2019•烟台)﹣的相反数是()A.﹣B.C.﹣D.考点:相反数.分析:根据只有符号不同的两个数叫做互为相反数解答.解答:解:﹣的相反数是.故选B.点评:本题考查了相反数的定义,是基础题,熟记概念是解题的关键.2.(3分)(2019•烟台)剪纸是我国最古老民间艺术之一,被列入第四批《人类非物质文化遗产代表作名录》,下列剪纸作品中,是中心对称图形但不是轴对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称图形的概念求解.解答:解:A、是轴对称图形,不是中心对称图形.故错误;B、是轴对称图形,也是中心对称图形.故错误;C 、不是轴对称图形,也不是中心对称图形.故错误;D、不是轴对称图形,是中心对称图形.故正确.故选D.点评:本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.(3分)(2019•烟台)如图,将一个圆柱体放置在长方体上,其中圆柱体的底面直径与长方体的宽相平,则该几何体的左视图是()A.B.C.D.考点:简单组合体的三视图.分析:找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.解答:解:从左面看易得左视图为:.故选A.点评:本题考查了三视图的知识,左视图是从物体的左面看得到的视图.4.(3分)(2019•烟台)下列等式不一定成立的是()B.a3•a﹣5=(a≠0)A.=(b≠0)C.a2﹣4b2=(a+2b)(a﹣2b)D.(﹣2a3)2=4a6考点:二次根式的乘除法;幂的乘方与积的乘方;因式分解-运用公式法;负整数指数幂.分析:分别利用二次根式的性质以及负整数指数幂的性质和平方差公式以及积的乘方运算法则化简求出即可.解答:解:A、=(a≥0,b>0),故此选项错误,符合题意;B、a3•a﹣5=(a≠0),正确,不合题意;C、a2﹣4b2=(a+2b)(a﹣2b),正确,不合题意;D、(﹣2a3)2=4a6,正确,不合题意.故选:A.点评:此题主要考查了二次根式的性质以及负整数指数幂的性质和平方差公式以及积的乘方运算法则等知识,正确掌握运算法则是解题关键.5.(3分)(2019•烟台)丽华根据演讲比赛中九位评委所给的分数作了如下表格平均数中位数众数方差8.5 8.3 8.1 0.15如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是()A.平均数B.众数C.方差D.中位数考点:统计量的选择.分析:根据中位数的定义:位于中间位置或中间两数的平均数可以得到去掉一个最高分和一个最低分不影响中位数.解答:解:去掉一个最高分和一个最低分对中位数没有影响,故选D.点评:本题考查了统计量的选择,解题的关键是了解中位数的定义,难度不大.6.(3分)(2019•烟台)如果x2﹣x﹣1=(x+1)0,那么x的值为()A.2或﹣1 B.0或1 C.2D.﹣1考点:解一元二次方程-因式分解法;零指数幂.分析:首先利用零指数幂的性质整理一元二次方程,进而利用因式分解法解方程得出即可.解答:解:∵x2﹣x﹣1=(x+1)0,∴x2﹣x﹣1=1,即(x﹣2)(x+1)=0,解得:x1=2,x2=﹣1,当x=﹣1时,x+1=0,故x≠﹣1,故选:C.点评:此题主要考查了因式分解法解一元二次方程以及零指数幂的性质,注意x+1≠0是解题关键.7.(3分)(2019•烟台)如图,BD是菱形ABCD的对角线,CE⊥AB交于点E,交BD于点F,且点E是AB中点,则tan∠BFE的值是()A.B.2C.D.考点:菱形的性质;解直角三角形.分析:首先利用菱形的性质得出AB=BC,即可得出∠ABC=60°,再利用三角函数得出答案.解答:解:∵四边形ABCD是菱形,∴AB=BC,∵CE⊥AB,点E是AB中点,∴∠ABC=60°,∴∠EBF=30°,∴∠BFE=60°,∴tan∠BFE的值为.故选D.点评:此题考查菱形的性质,关键是根据含30°的直角三角形的性质和三角函数解答.8.(3分)(2019•烟台)如图,正方形ABCD的边长为2,其面积标记为S1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,…按照此规律继续下去,则S2019的值为()A.()2012B.()2013C.()2012D.()2013考点:等腰直角三角形;正方形的性质.专题:规律型.分析:根据题意可知第2个正方形的边长是,则第3个正方形的边长是,…,进而可找出规律,第n个正方形的边长是,那么易求S2019的值.解答:解:根据题意:第一个正方形的边长为2;第二个正方形的边长为:;第三个正方形的边长为:,…第n个正方形的边长是,所以S2019的值是()2012,故选C点评:本题考查了正方形的性质、等腰直角三角形的性质、勾股定理.解题的关键是找出第n个正方形的边长.9.(3分)(2019•烟台)等腰直角三角形边长分别为a,b,2,且a,b是关于x的一元二次方程x2﹣6x+n﹣1=0的两根,则n的值为()A.9B.10 C.9或10 D.8或10考点:根的判别式;一元二次方程的解;等腰直角三角形.分析:由三角形是等腰直角三角形,得到①a=2,或b=2,②a=b①当a=2,或b=2时,得到方程的根x=2,把x=2代入x2﹣6x+n﹣1=0即可得到结果;②当a=b时,方程x2﹣6x+n﹣1=0有两个相等的实数根,由△=(﹣6)2﹣4(n﹣1)=0可的结果.解答:解:∵三角形是等腰直角三角形,∴①a=2,或b=2,②a=b两种情况,①当a=2,或b=2时,∵a,b是关于x的一元二次方程x2﹣6x+n﹣1=0的两根,∴x=2,把x=2代入x2﹣6x+n﹣1=0得,22﹣6×2+n﹣1=0,解得:n=9,当n=9,方程的两根是2和4,而2,4,2不能组成三角形,故n=9不合题意,②当a=b时,方程x2﹣6x+n﹣1=0有两个相等的实数根,∴△=(﹣6)2﹣4(n﹣1)=0解得:n=10,故选B.点评:本题考查了等腰直角三角形的性质,一元二次方程的根,一元二次方程根的判别式,注意分类讨论思想的应用.10.(3分)(2019•烟台)A、B两地相距20千米,甲、乙两人都从A地去B地,图中l1和l2分别表示甲、乙两人所走路程s(千米)与时间t(小时)之间的关系,下列说法:①乙晚出发1小时;②乙出发3小时后追上甲;③甲的速度是4千米/小时;④乙先到达B 地.其中正确的个数是()A.1B.2C.3D.4考点:一次函数的应用.分析:观察函数图象,从图象中获取信息,根据速度,路程,时间三者之间的关系求得结果.解答:解:由函数图象可知,乙比甲晚出发1小时,故①正确;乙出发3﹣1=2小时后追上甲,故②错误;甲的速度为:12÷3=4(千米/小时),故③正确;乙的速度为:12÷(3﹣1)=6(千米/小时),则甲到达B地用的时间为:20÷4=5(小时),乙到达B地用的时间为:20÷6=(小时),1+3,∴乙先到达B地,故④正确;正确的有3个.故选:C.点评:本题考查了一次函数的应用,解决本题的关键是读懂函数图象,获取相关信息.11.(3分)(2019•烟台)如图,已知顶点为(﹣3,﹣6)的抛物线y=ax2+bx+c经过点(﹣1,﹣4),则下列结论中错误的是()A.b2>4abB.a x2+bx+c≥﹣6C.若点(﹣2,m),(﹣5,n)在抛物线上,则m>nD.关于x的一元二次方程ax2+bx+c=﹣4的两根为﹣5和﹣1考点:二次函数图象与系数的关系;二次函数图象上点的坐标特征;抛物线与x轴的交点;二次函数与不等式(组).分析:由抛物线与x轴有两个交点则可对A进行判断;由于抛物线开口向上,有最小值则可对B进行判断;根据抛物线上的点离对称轴的远近,则可对C进行判断;根据二次函数的对称性可对D进行判断.解答:解:A、图象与x轴有两个交点,方程ax2+bx+c=0有两个不相等的实数根,b2﹣4ab >0所以b2>4ab,故A选项正确;B、抛物线的开口向上,函数有最小值,因为抛物线的最小值为﹣6,所以ax2+bx+c≥﹣6,故B选项正确;C、抛物线的对称轴为直线x=﹣3,因为﹣5离对称轴的距离大于﹣2离对称轴的距离,所以m<n,故C选项错误;D、根据抛物线的对称性可知,(﹣1,﹣4)关于对称轴的对称点为(﹣5,﹣4),所以关于x的一元二次方程ax2+bx+c=﹣4的两根为﹣5和﹣1,故D选项正确.故选C.点评:本题考查了二次函数图象与系数的关系,二次函数图象上点的坐标特征,抛物线与x 轴的交点远近二次函数与不等式的关系.12.(3分)(2019•烟台)如图,Rt△ABC中∠C=90°,∠BAC=30°,AB=8,以2为边长的正方形DEFG的一边CD在直线AB上,且点D与点A重合,现将正方形DEFG沿A﹣B的方向以每秒1个单位的速度匀速运动,当点D与点B重合时停止,则在这个运动过程中,正方形DEFG与△ABC的重合部分的面积S与运动时间t之间的函数关系图象大致是()A.B.C.D.考点:动点问题的函数图象.分析:首先根据Rt△ABC中∠C=90°,∠BAC=30°,AB=8,分别求出AC、BC,以及AB 边上的高各是多少;然后根据图示,分三种情况:(1)当0≤t≤2时;(2)当2时;(3)当6<t≤8时;分别求出正方形DEFG与△ABC的重合部分的面积S的表达式,进而判断出正方形DEFG与△ABC的重合部分的面积S与运动时间t之间的函数关系图象大致是哪个即可.解答:解:如图1,CH是AB边上的高,与AB相交于点H,,∵∠C=90°,∠BAC=30°,AB=8,∴AC=AB×cos30°=8×=4,BC=AB×sin30°=8×=4,∴CH=AC×,AH=,(1)当0≤t≤2时,S==t2;(2)当2时,S=﹣=t2[t2﹣4t+12]=2t﹣2(3)当6<t≤8时,S=[(t﹣2)•tan30°]×[6﹣(t﹣2)]×[(8﹣t)•tan60°]×(t ﹣6)=[]×[﹣t+2+6]×[﹣t]×(t﹣6)=﹣t2﹣t2﹣30=﹣t2﹣6﹣24综上,可得S=∴正方形DEFG与△ABC的重合部分的面积S与运动时间t之间的函数关系图象大致是A图象.故选:A.点评:(1)此题主要考查了动点问题的函数图象,解答此类问题的关键是通过看图获取信息,并能解决生活中的实际问题,用图象解决问题时,要理清图象的含义即学会识图.(2)此题还考查了直角三角形的性质和应用,以及三角形、梯形的面积的求法,要熟练掌握.二、填空题(本大题共6个小题,每小题3分,满分18分)13.(3分)(2019•烟台)如图,数轴上点A、B所表示的两个数的和的绝对值是1.考点:数轴;绝对值;有理数的加法.分析:首先根据数轴得到表示点A、B的实数,然后求其和绝对值即可.解答:解:解:从数轴上可知:表示点A的数为﹣3,表示点B的数是2,则﹣3+2=﹣1,|﹣1|=1,故答案为:1.点评:本题考查了数轴和绝对值,解题的关键是从数轴上得到点A、点B表示的数,然后求其和的绝对值.14.(3分)(2019•烟台)正多边形的一个外角是72°,则这个多边形的内角和的度数是540°.考点:多边形内角与外角.分析:根据任何多边形的外角和都是360°,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.n边形的内角和是(n﹣2)•180°,把多边形的边数代入公式,就得到多边形的内角和.解答:解:多边形的边数:360°÷72°=5,正多边形的内角和的度数是:(5﹣2)•180°=540°.故答案为:540°.点评:考查了多边形内角与外角,根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.15.(3分)(2019•烟台)如图,有四张不透明的卡片除正面的函数关系式不同外,其余相同,将它们背面朝上洗匀后,从中抽取一张卡片,则抽到函数图象不经过第四象限的卡片的概率为.考点:概率公式;一次函数的性质;正比例函数的性质;反比例函数的性质;二次函数的图象.分析:用不经过第四象限的个数除以总个数即可确定答案.解答:解:∵4张卡片中只有第2个精光第四象限,∴取一张卡片,则抽到函数图象不经过第四象限的卡片的概率为,故答案为:.点评:本题考查的是概率的求法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.16.(3分)(2019•烟台)如图,将弧长为6π,圆心角为120°的圆形纸片AOB围成圆锥形纸帽,使扇形的两条半径OA与OB重合(粘连部分忽略不计)则圆锥形纸帽的高是6.考点:圆锥的计算.分析:根据弧长求得圆锥的底面半径和扇形的半径,利用勾股定理求得圆锥的高即可.解答:解:∵弧长为6π,∴底面半径为6π÷2π=3,∵圆心角为120°,∴=6π,解得:R=9,∴圆锥的高为=6,故答案为:6.点评:本题考查了圆锥的计算,解题的关键是能够利用圆锥的底面周长等于侧面展开扇形的弧长求得圆锥的底面半径,难度一般.17.(3分)(2019•烟台)如图,矩形OABC的顶点A、C的坐标分别是(4,0)和(0,2),反比例函数y=(x>0)的图象过对角线的交点P并且与AB,BC分别交于D,E两点,连接OD,OE,DE,则△ODE的面积为.考点:反比例函数系数k的几何意义.分析:由A、C的坐标分别是(4,0)和(0,2),得到P(2,1),求得k=2,得到反比例函数的解析式为:y=,求出D(4,),E(1,2)于是问题可解.解答:解:∵四边形OABC是矩形,∴AB=OC,BC=OA,∵A、C的坐标分别是(4,0)和(0,2),∴OA=4,OB=2,∵P是矩形对角线的交点,∴P(2,1),∵反比例函数y=(x>0)的图象过对角线的交点P,∴k=2,∴反比例函数的解析式为:y=,∵D,E两点在反比例函数y=(x>0)的图象的图象上,∴D(4,),E(1,2)∴S阴影=S矩形﹣S△AOD﹣S△COF﹣S△BDE=4×2﹣×2﹣×2﹣××3=.故答案为:.点评:本题考查了反比例函数系数k的几何意义,待定系数法求函数的解析式,矩形的性质三角形的面积的求法,掌握反比例函数系数k的几何意义是解题的关键.18.(3分)(2019•烟台)如图,直线l:y=﹣x+1与坐标轴交于A,B两点,点M(m,0)是x轴上一动点,以点M为圆心,2个单位长度为半径作⊙M,当⊙M与直线l相切时,则m的值为2﹣2或2+2..考点:直线与圆的位置关系;一次函数的性质.分析:根据直线ly=﹣x+1由x轴的交点坐标A(0,1),B(2,0),得到OA=1,OB=2,求出AB=;设⊙M与AB相切与C,连接MC,则MC=2,MC⊥AB,通过△BMO~△ABO,即可得到结果.解答:解:在y=﹣x+1中,令x=0,则y=1,令y=0,则x=2,∴A(0,1),B(2,0),∴AB=;如图,设⊙M与AB相切与C,连接MC,则MC=2,MC⊥AB,∵∠MCB=∠AOB=90°,∠B=∠B,∴△BMO~△ABO,∴,即∴BM=2,∴OM=2﹣2,或OM=2+2.∴m=2﹣2或m=2+2.故答案为:2﹣2,2+2.点评:本题考查了直线与圆的位置关系,一次函数的性质,相似三角形的判定和性质,注意分类讨论是解题的关键.三、解答题(本大题共7小题,满分66分)19.(6分)(2019•烟台)先化简:÷(﹣),再从﹣2<x<3的范围内选取一个你最喜欢的值代入,求值.考点:分式的化简求值.专题:计算题.分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.解答:解:原式=÷=•=,当x=2时,原式=4.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.20.(8分)(2019•烟台)”切实减轻学生课业负担”是我市作业改革的一项重要举措.某中学为了解本校学生平均每天的课外作业时间,随机抽取部分学生进行问卷调查,并将调查结果分为A、B、C、D四个等级,A:1小时以内;B:1小时﹣﹣1.5小时;C:1.5小时﹣﹣2小时;D:2小时以上.根据调查结果绘制了如图所示的两种不完整的统计图,请根据图中信息解答下列问题:(1)该校共调查了200学生;(2)请将条形统计图补充完整;(3)表示等级A的扇形圆心角α的度数是108°;(4)在此次调查问卷中,甲、乙两班各有2人平均每天课外作业量都是2小时以上,从这4人中人选2人去参加座谈,用列表表或画树状图的方法求选出的2人来自不同班级的概率.考点:列表法与树状图法;扇形统计图;条形统计图.分析:(1)根据B类的人数和所占的百分比即可求出总数;(2)求出C的人数从而补全统计图;(3)用A的人数除以总人数再乘以360°,即可得到圆心角α的度数;(4)先设甲班学生为A1,A2,乙班学生为B1,B2,根据题意画出树形图,再根据概率公式列式计算即可.解答:解:(1)共调查的中学生数是:80÷40%=200(人),故答案为:200;(2)C类的人数是:200﹣60﹣80﹣20=40(人),补图如下:(3)根据题意得:α=×360°=108°,故答案为:108°;(4)设甲班学生为A1,A2,乙班学生为B1,B2,一共有12种等可能结果,其中2人来自不同班级共有8种,∴P(2人来自不同班级)==.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.(8分)(2019•烟台)2014年12月28日“青烟威荣”城际铁路正式开通,从烟台到北京的高铁里程比普快里程缩短了81千米,运行时间减少了9小时,已知烟台到北京的普快列车里程约为1026千米,高铁平均时速为普快平均时速的2.5倍.(1)求高铁列车的平均时速;(2)某日王老师要去距离烟台大约630千米的某市参加14:00召开的会议,如果他买到当日8:40从烟台至城市的高铁票,而且从该市火车站到会议地点最多需要1.5小时,试问在高铁列车准点到达的情况下他能在开会之前到达吗?考点:分式方程的应用;一元一次不等式的应用.分析:(1)设普快的平均时速为x千米/小时,高铁列车的平均时速为2.5千米/小时,根据题意可得,高铁走(1026﹣81)千米比普快走1026千米时间减少了9小时,据此列方程求解;(2)求出王老师所用的时间,然后进行判断.解答:解:(1)设普快的平均时速为x千米/小时,高铁列车的平均时速为2.5x千米/小时,由题意得,﹣=9,解得:x=72,经检验,x=72是原分式方程的解,且符合题意,则2.5x=180,答:高铁列车的平均时速为180千米/小时;(2)630÷180=3.5,则坐车共需要3.5+1.5=5(小时),王老师到达会议地点的时间为1点40.故他能在开会之前到达.点评:本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.22.(9分)(2019•烟台)如图1,滨海广场装有风能、太阳能发电的风光互补环保路灯,灯杆顶端装有风力发电机,中间装有太阳能板,下端装有路灯.该系统工作过程中某一时刻的截面图如图2,已知太阳能板的支架BC垂直于灯杆OF,路灯顶端E距离地面6米,DE=1.8米,∠CDE=60°.且根据我市的地理位置设定太阳能板AB的倾斜角为43°.AB=1.5米,CD=1米,为保证长为1米的风力发电机叶片无障碍安全旋转,对叶片与太阳能板顶端A的最近距离不得少于0.5米,求灯杆OF至少要多高?(利用科学计算器可求得sin43°≈0.6820,cos43°≈0.7314,tan43°≈0.9325,结果保留两位小数)考点:解直角三角形的应用.分析:过E作EG⊥地面于G,过D作DH⊥EG于H,在R t△ABC中,求得AC=AB•cos∠CAB=1.5×0.7314≈1.1,由∠CDE=60°,得到EH=DE=0.9,得出DF=GH=EG﹣EH=6﹣0.9=5.1,于是OF=1+0.5+1.10+1+5.1=8.70m.解答:解:过E作EG⊥地面于G,过D作DH⊥EG于H,∴DF=HG,在R t△ABC中,AC=AB•cos∠CAB=1.5×0.7314≈1.10,∵∠CDE=60°,∴∠EDH=30°,∴EH=DE=0.9,∴DF=GH=EG﹣EH=6﹣0.9=5.1,∴OF=1+0.5+1.10+1+5.1=8.70m.答:灯杆OF至少要8.70m.点评:本题考查了解直角三角形,作辅助线构造直角三角形是解题的关键.23.(9分)(2019•烟台)如图,以△ABC的一边AB为直径的半圆与其它两边AC,BC的交点分别为D、E,且=.。

山东省烟台市2019年中考数学试卷

山东省烟台市2019年中考数学试卷

山东省烟台市2019年中考数学试卷(共12题;共24分)1.(2分)−8的立方根是()A.2B.−2C.±2D.−2√22.(2分)下列智能手机的功能图标中,既是轴对称图形又是中心对称图形的是() A.B.C.D.3.(2分)如图是由7个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体()A.主视图不变,左视图不变B.左视图改变,俯视图改变C.主视图改变,俯视图改变D.俯视图不变,左视图改变4.(2分)将一枚飞镖任意投掷到如图所示的正六边形镖盘上,飞镖落在白色区域的概率为()A.25B.12C.35D.无法确定5.(2分)某种计算机完成一次基本运算的时间约为1纳秒(ns),已知1纳秒=0.000000001秒,该计算机完成15次基本运算,所用时间用科学记数法表示为()A.1.5×10−9秒B.15×10−3秒C.1.5×10−8秒D.15×10−8秒6.(2分)一元二次方程x 2 +3=2x的根的情况为()A.没有实数根B.有两个相等的实数根C.有一个实数根D.有两个不相等的实数根7.(2分)如图能反映小亮同学参加1000米跑体能测试中,脉搏和耗氧量变化的曲线是()A.a和c B.a和d C.b和c D.b和d8.(2分)要作∠A′O′B′等于已知角∠AOB,应先作一条射线O′B′,再以点O为圆心,以任意长为半径画弧,交OA于点C,交OB于点D.然后()A.以点O′为圆心,任意长为半径画弧B.以点O′为圆心,OB长为半径画弧C.以点O′为圆心,CD长为半径画弧D.以点O′为圆心,OD长为半径画弧9.(2分)南宋数学家杨辉在其著作《详解九章算法》中揭示了(a+b)n( n为非负整数)展开式的项数及各项系数的有关规律如下,后人也将右表称为“杨辉三角”.(a+b)0=1(a+b)1=a+b(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b2(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5⋅⋅⋅则(a+b)9展开式中所有项的系数和是()A.128B.256C.512D.102410.(2分)如图,平行四边形AOBC中,对角线交于点E,双曲线y= k x(k>0)经过A、E两点,若平行四边形AOBC的面积为24,则k的值是()A.8B.7.5C.6D.911.(2分)已知抛物线y=-x2+1,下列结论:①抛物线开口向上;②抛物线与x轴交于点(-1,0)和点(1,0);③抛物线的对称轴是y 轴;④抛物线的顶点坐标是(0,1);⑤抛物线y=-x2+1是由抛物线y=-x2向上平移1个单位得到的.其中正确的个数有()A.5个B.4个C.3个D.2个12.(2分)如图,O的直径AB=2,点D在AB的延长线上,DC与O相切于点C,连接AC.若∠A=30°,则CD长为()A.13B.√33C.2√33D.√3(共6题;共6分) 13.(1分)|−6|×2−1−√2cos45°=.14.(1分)若关于x的分式方程3xx−2−1=m+3x−2有增根,则m的值为.15.(1分)如图,在边长为1的小正方形组成的网格中,建立平面直角坐标系,△ABO与△A′B′O′是以点P为位似中心的位似图形,它们的顶点均在格点(网格线的交点)上,则点P的坐标为16.(1分)如图,直线l1:y=x+1与直线l2:y=mx+n相交于点P(a,2),则关于x的不等式x+1≤mx+n的解集为.17.(1分)小明将一张正方形纸片按如图所示顺序折叠成纸飞机,当机翼展开在同一平面时(机翼间无缝隙),∠AOB的度数是.18.(1分)如图,分别以等边三角形的每个顶点以圆心、以边长为半径,在另两个顶点间作一段圆弧,三段圆弧围成的曲边三角形称为勒洛三角形.若等边三角形的边长为a,则勒洛三角形的周长为.(共7题;共71分)19.(5分)先化简(x+3−7x−3)÷2x2−8xx−3,再从0≤x≤4中选一个适合的整数代入求值.20.(11分)十八大以来,某校已举办五届校园艺术节.为了弘扬中华优秀传统文化,每届艺术节上都有一些班级表演“经典诵读”、“民乐演奏”、“歌曲联唱”、“民族舞蹈”等节目.小颖对每届艺术节表演这些节目的班级数进行统计,并绘制了如图所示不完整的折线统计图和扇形统计图.(1)(1分)五届艺术节共有个班级表演这些节日,班数的中位数为,在扇形统计图中,第四届班级数的扇形圆心角的度数为;(2)(5分)补全折线统计图;(3)(5分)第六届艺术节,某班决定从这四项艺术形式中任选两项表演(“经典诵读”、“民乐演奏”、“歌曲联唱”、“民族舞蹈”分别用A,B,C,D表示).利用树状图或表格求出该班选择A 和D两项的概率.21.(10分)亚洲文明对话大会召开期间,大批的大学生志愿者参与服务工作.某大学计划组织本校全体志愿者统一乘车去会场,若单独调配36座新能源客车若干辆,则有2人没有座位;若只调配22座新能源客车,则用车数量将增加4辆,并空出2个座位.(1)(5分)计划调配36座新能源客车多少辆?该大学共有多少名志愿者?(2)(5分)若同时调配36座和22座两种车型,既保证每人有座,又保证每车不空座,则两种车型各需多少辆?22.(10分)如图,在矩形ABCD中,CD=2,AD=4,点P在BC上,将ΔABP沿AP 折叠,点B恰好落在对角线AC上的E点. O为AC上一点,⊙O经过点A,P.(1)(5分)求证:BC是⊙O的切线;(2)(5分)在边CB上截取CF=CE,点F是线段BC的黄金分割点吗?请说明理由. 23.(10分)如图所示,一种适用于笔记本电脑的铝合金支架,边OA,OB可绕点O开合,在OB边上有一固定点P,支柱PQ可绕点P转动,边OA上有六个卡孔,其中离点O最近的卡孔为M,离点O最远的卡孔为N.当支柱端点Q放入不同卡孔内,支架的倾斜角发生变化.将电脑放在支架上,电脑台面的角度可达到六档调节,这样更有利于工作和身体健康.现测得OP的长为12cm,OM为10cm,支柱PQ为8cm.(1)(5分)当支柱的端点Q放在卡孔M处时,求∠AOB的度数;(2)(5分)当支柱的端点Q放在卡孔N处时,∠AOB=20.5°,若相邻两个卡孔的距离相同,求此间距.(结果精确到十分位)24.(15分)如图(1)(5分)问题发现如图1,∠ACB和∠DCE均为等腰直角三角形,∠ACB=90°,B,C,D在一条直线上.填空:线段AD,BE之间的关系为.(2)(5分)拓展探究如图2,∠ACB和∠DCE均为等腰直角三角形,∠ACB=∠DCE=90°,请判断AD,BE的关系,并说明理由.(3)(5分)解决问题如图3,线段PA=3,点B是线段PA外一点,PB=5,连接AB,将AB绕点A逆时针旋转90°得到线段AC,随着点B的位置的变化,直接写出PC的范围.25.(10分)如图,顶点为M的抛物线y=ax2+bx+3与x轴交于A(−1,0),B两点,与y 轴交于点C,过点C作CD⊥y轴交抛物线于另一点D,作DE⊥x轴,垂足为点E.双曲线y=6x(x>0)经过点D,连接MD,BD.(1)(5分)求抛物线的表达式;(2)(5分)点N,F分别是x轴,y轴上的两点,当以M,D,N,F为顶点的四边形周长最小时,求出点N,F的坐标;答案解析部分1.【答案】B【解析】【解答】因为(−2)3=−8所以-8 的立方根是-2故答案为:B【分析】立方根:如果一个数的立方等于a,那么这个数叫a的立方根。

2023—2024学年山东省烟台市高三上学期期中数学试卷

2023—2024学年山东省烟台市高三上学期期中数学试卷

2023—2024学年山东省烟台市高三上学期期中数学试卷一、单选题1. 已知集合,则()A.B.C.D.2. 若无穷等差数列的公差为,则“”是“,”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3. 已知函数,则的值为()A.B.0C.D.14. 在平行四边形ABCD中,,则()A.2B.C.D.45. 某数学兴趣小组欲测量一下校内旗杆顶部M和教学楼M₁顶部N之间的距离,已知旗杆AM高15m,教学楼BN高21m,在与A, B同一水平面C处测得的旗杆顶部M的仰角为,教学楼顶部N的仰角为,,则M, N之间的距离为()A.B.C.D.6. 已知则a,b,c的大小关系为()A.B.C.D.7. 斐波那契数列以如下递归的方法定义:,若斐波那契数列对任意,存在常数,使得成等差数列,则的值为()A.1B.3C.D.8. 定义在R上的函数f( x)的导函数为,满足,且当时,,则不等式的解集为()A.B.C.D.二、多选题9. 已知函数的部分图象如图所示,则()A.B.函数f(x)的图象关于对称C.函数f(x)的图象关于对称D.函数f(x)在上单调递增10. 已知,则下列不等式一定成立的有()A.B.C.D.11. 已知函数的定义域为,满足,且时,,则()A.时,函数的最大值为B.函数在区间上单调递减C.方程有两个实根D.若,则的最大值为12. 已知数列:,其中第一项是,接下来的两项是,,再接下来的三项是,,,以此类推.记数列的前n项和为,则()A.B.C.若则的最小值为D.若且存在,使得,则的最小值为三、填空题13. 设向量,若,则的值为 __________ .14. 若,,,则的最小值为 ___________ .15. 已知函数,则的最小值为________ .16. 若过点有三条直线与函数的图象相切,则实数m的取值范围为 ___________ .四、解答题17. 已知函数,其中,,函数图象上相邻的两条对称轴之间的距离为.(1)求的解析式和单调递增区间;(2)若将函数图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再向右平移个单位长度,得到函数的图象,求函数在上的最大值.18. 已知数列的前n项和为,且(1)求证: 是等差数列;(2)记,求数列的前2 n项和.19. 牧草再生力强,一年可收割多次,富含各种微量元素和维生素,因此成为饲养家畜的首选.某牧草种植公司为提高牧草的产量和质量,决定在本年度(第一年)投入80万元用于牧草的养护管理,以后每年投入金额比上一年减少,本年度牧草销售收入估计为60万元,由于养护管理更加精细,预计今后的牧草销售收入每年会比上一年增加.(1)设n年内总投入金额为万元,牧草销售总收入为万元,求的表达式;(2)至少经过几年,牧草销售总收入才能超过总投入? ( )20. 在①,②,这三个条件中任选一个,补充在下面问题中,并解答问题. 注:如果选择多个条件解答,按第一个解答计分.在中,角所对的边分别为,为的面积,且满足__________.(1)求的值;(2)若为锐角三角形,求的取值范围.21. 已知函数(1)讨论的单调性;(2)当时,若方程总有三个不相等的实根,求实数的取值范围.22. 已知函数且函数有两个极值点.(1)求的范围;(2)若函数的两个极值点为且,求的最大值.。

2019-2020学年市第六中学高一上学期期中数学试题(解析版)

2019-2020学年市第六中学高一上学期期中数学试题(解析版)

2019-2020学年市第六中学高一上学期期中数学试题(解析版)2019-2020学年市第六中学高一上学期期中数学试题一、单选题1.设集合M=[1,2],N={x∈Z|-1A.[1,2]B.(-1,3)C.{1}D.{1,2}【答案】D【解析】集合N为整数集,所以先用列举法求出集合N,然后根据交集的定义求出即可.【详解】解:,.故选:D.【点睛】本题考查交集的概念和运算,解题的关键是先分析出集合中的代表元素是整数,属于基础题.2.已知集合A={x|x>2},B=,则B∩∁RA等于()A.{x|2≤x≤5}B.{x|-1≤x≤5}C.{x|-1≤x≤2}D.{x|x≤-1}【答案】C【解析】已知集合A,B,则根据条件先求出,然后根据交集的定义求出即可.【详解】解:集合A={x|x>2},所以,又集合,则.故选:C.【点睛】本题考查交集和补集的概念和计算,属于基础题.3.函数f(x)=+lg(3x+1)的定义域是()A.(-∞,1)B.C.【答案】B【解析】函数f(x)的定义域即:即被开方数大于等于0,分母不为0,且对数函数的真数有意义,根据条件列出方程组,解出的范围即为所求.【详解】解:函数f(x)=+lg(3x+1)的定义域是,解得:,所以函数f(x)的定义域是.故选:B.【点睛】本题考查求复合函数的定义域,解题的关键是保证每部分都有意义,属于基础题.4.已知f()=x-x2,则函数f(x)的解析式为()A.f(x)=x2-x4B.f(x)=x-x2C.f(x)=x2-x4(x≥0)D.f(x)=-x(x≥0)【答案】C【解析】令(),解出,利用换元法将代入解析式即可得出答案.【详解】解:令(),则,所以(),所以f(x)=x2-x4().故选:C.【点睛】本题考查利用换元法求函数解析式,解题的关键是注意换元之后的定义域,属于基础题.5.与函数相同的函数是()A.B.C.D.【答案】D【解析】试题分析:A中对应关系不同;B中定义域不同;C中定义域不同;D中对应关系,定义域均相同,是同一函数【考点】函数是同一函数的标准6.下列函数中,既是偶函数又在区间上单调递减的是()A.C.D.【答案】C【解析】试题分析:因为函数是奇函数,所以选项A不正确;因为函为函数既不是奇函数,也不是偶函数,所以选项B不正确;函数的图象抛物线开口向下,对称轴是轴,所以此函数是偶函数,且在区间上单调递减,所以,选项C正确;函数虽然是偶函数,但是此函数在区间上是增函数,所以选项D不正确;故选C。

2019-2020学年山东省潍坊市高一下学期期中考试数学试题Word版含答案

2019-2020学年山东省潍坊市高一下学期期中考试数学试题Word版含答案

2019-2020学年山东省潍坊市高一下学期期中考试数学试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.试卷共4页,满分150分,考试时间120分钟. 注意事项:1.答题前,考生在答题卡上务必将自己的姓名、准考证号涂写清楚.2.第Ⅰ卷,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的,将正确选项的代码填入答题卡上.) 1. 化简sin600°的值是A.12B.12-3 D. 32. 角α的终边过点P (-1,2),则sin α=A.55 B.255 C .525 3. α是第二象限角,则2α是 A.第一象限角 B.第二象限角C.第一象限角或第三象限角D.第一象限角或第二象限角 4.已知扇形的弧长是4cm ,面积是22cm ,则扇形的圆心角的弧度数是A.1B.2C.4D.1或45.甲、乙两位同学在5次考试中的数学成绩用茎叶图表示如图,中间一列的数字表示数学成绩的十位数字,两边的数字表示数学成绩的个位数字.若甲、乙两人的平均成绩分别是x 甲、x 乙,则下列说法正确的是A . x x <甲乙,甲比乙成绩稳定B . x x <甲乙,乙比甲成绩稳定C . x x >甲乙,甲比乙成绩稳定D . x x >甲乙,乙比甲成绩稳定 6.如图,给出的是计算11111246822+++++L 的一个程序 框图,其中判断框内应填入的条件是A. 11i <B. 11i >C. 22i <D. 22i >7. 已知圆221:23460C x y x y +--+=和圆222:60C x y y +-=,则两圆的位置关系为A. 相离B. 外切C. 相交D. 内切8. 某数据由大到小为10, 5, x ,2, 2, 1,其中x 不是5,该组数据的众数是中位数的23,该组数据的标准差为A. 3B.4C. 5D. 69.若某公司从5位大学毕业生甲、乙、丙、丁、戌中录用3人,这5人被录用的机会均等,则甲、乙同时被录用的概率为 A .23 B .25 C .35 D .31010.若a 是从区间0,3[]中任取的一个实数,则12a <<的概率是A .23 B .56 C .13 D .1611.现采用随机模拟的方法估计某运动员射击4次,至少击中3次的概率:先由计算机给出0到9之间取整数值的随机数,指定0,1表示没有击中目标,2,3,4,5,6,7,8,9表示击中目标,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了20组随机数:7527 0293 7140 9857 0347 4373 8636 6947 1417 4698 0371 6233 2616 8045 6011 3661 9597 7424 7610 4281 根据以上数据估计该射击运动员射击4次至少击中3次的概率为A .0.852 B. 0.8192 C. 0.8 D. 0.7512.已知圆C :22240x y x y +-+=关于直线3110x ay --=对称,则圆C 中以44a a(,-)为中点的弦长为( )A .4B .3C .2D .1第Ⅱ卷 (非选择题 共90分)二、填空题:(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上.)13. 某单位有500位职工,其中35岁以下的有125人,35~49岁的有280人,50岁以上的有95人,为了了解职工的健康状态,采用分层抽样的方法抽取一个容量为100的样本,需抽取50岁以上职工人数为 . 14.若32)sin(-=-απ, 且)0,2(πα-∈, 则αtan 的值是___________.15. 在[]4,3-上随机取一个实数m ,能使函数在R 上有零点的概率为 .16.已知直线l : (0)y kx k =>,圆221:(1)1C x y -+=与222:(3)1C x y -+=,若直线l 被圆C 1,C 2所截得两弦的长度之比是3,则实数k = .三、解答题:本大题共6小题,共70分. 17题10分,其余均为12分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)(Ⅰ)求值:()tan150cos 210sin 60sin(30)cos120︒-︒-︒o o; (Ⅱ)化简:sin()cos()tan(2)cos(2)sin()tan()απαπαπαπαα-+++--.18. (本小题满分12分)某公司为了解下属某部门对企业职工的服务情况,随机访问50名职工.根据这50名职工对该部门的评分,得到的频率分布表如下:(Ⅰ)求出频率分布表中m 、n 位置的相应数据,并画出频率分布直方图; (Ⅱ)同一组中的数据用区间的中点值作代表,求这50名职工对该部门的评分的平均分. 19. (本小题满分12分) 设甲、乙、丙三个乒乓球协会的运动员人数分别为27,9,18,先采用分层抽样的方法从这三个协会中抽取6名运动员参加比赛. (I )求应从这三个协会中分别抽取的运动员人数;(II )将抽取的6名运动员进行编号,编号分别为123456,,,,,A A A A A A ,从这6名运动员中随机抽取2名参加双打比赛.(i )用所给编号列出所有可能的结果;(ii )设A 为事件“编号为56,A A 的两名运动员至少有一人被抽到”,求事件A 发生的概率.20.(本小题满分12分)为了解某地区某种农产品的年产量x (单位:吨)对价格y (单位:千元/吨)和利润z 的影响,对近五年该农产品的年产量和价格统计如下表:(Ⅰ)求y 关于x 的线性回归方程;(Ⅱ)若每吨该农产品的成本为2千元,假设该农产品可全部卖出,预测当年产量为多少时,年利润z 取到最大值?(结果保留两位小数)参考公式:1221ˆ=ni i i nii x ynx y bxnx ==-⋅-∑∑, ˆˆa y bx=-. 参考数据:5162.7i i i x y ==∑,52155i i x ==∑.21.(本小题满分12分)已知02x π-<<,1sin cos 5x x +=. (Ⅰ)求sin cos x x -的值; (Ⅱ)求24sin cos cos x x x -的值. 22.(本小题满分12分)已知圆C 过点M (0,-2),N (3,1),且圆心C 在直线x +2y +1=0上. (Ⅰ)求圆C 的方程;(Ⅱ)过点(6,3)作圆C 的切线,求切线方程;(Ⅲ)设直线:l y x m =+,且直线l 被圆C 所截得的弦为AB ,以AB 为直径的圆C 1过原点,求直线l 的方程.2019-2020学年山东省潍坊市下学期期中考试高一数学试题参考答案一、选择题:DBCCB BDADC DA二、填空题13. 19 14.255- 15.3716.13三、解答题17.解:(Ⅰ)原式=00000tan30cos30) sin30(cos60)---(-)(-sin60tan60 3.=-=-…………………………………………5分(Ⅱ)原式sin(cos)tan sin cos tan=1cos sin(tan)cos sin tanαααααααααααα--==---.………………………………10分18.解:(Ⅰ)频率分布表如下:50(515128)10m=-+++=,…………………………………………3分150.350n==,………………………………………6分频率分布直方图如图所示:…………………………………………9分(Ⅱ)x =550.1650.2750.3850.24950.16⨯+⨯+⨯+⨯+⨯76.6=. …………………………………………12分19.解:(I )应从甲、乙、丙这三个协会中分别抽取的运动员人数分别为3,1,2.……4分 (II )(i )从这6名运动员中随机抽取2名参加双打比赛,所有可能的结果为{}12,A A ,{}13,A A ,{}14,A A ,{}15,A A ,{}16,A A ,{}23,A A ,{}24,A A ,{}25,A A ,{}26,A A ,{}34,A A ,{}35,A A ,{}36,A A ,{}45,A A ,{}46,A A ,{}56,A A ,共15种. ………………………8分(ii )编号为56,A A 的两名运动员至少有一人被抽到的结果为{}15,A A ,{}16,A A , {}25,A A ,{}26,A A ,{}35,A A ,{}36,A A ,{}45,A A ,{}46,A A ,{}56,A A ,共9种,所以事件A 发生的概率()93.155P A == …………………………………………12分 20.解:(Ⅰ) 11+2+3+4+5=35x =(), 17+6.5+5.5 3.8 2.2)55y =++=(,………………2分5162.7i ii x y==∑,52155i i x ==∑.所以51522162.7535ˆ 1.235559i ii ii x y nx ybxnx ==-⋅-⨯⨯===--⨯-∑∑,ˆˆ=5( 1.23)38.69ay bx =---⨯=,………………4分 所以所求的回归直线方程为ˆ 1.238.69yx =-+.…………………………………………6分 (Ⅱ)年利润……………………9分所以 2.72x ≈时,年利润z 最大. …………………………………………12分 21.解:(Ⅰ)因为1sin cos 5x x +=,所以112sin cos 25x x +=, 242sin cos 25x x =-,…………………………………………3分 因为02x π-<<,所以sin 0, cos 0x x <>,所以sin cos 0x x -<,249(sin cos )12sin cos 25x x x x -=-=, 所以7sin cos 5x x -=-.…………………………………………6分 (Ⅱ)由(Ⅰ)知,1sin cos 57sin cos 5x x x x ⎧+=⎪⎪⎨⎪-=-⎪⎩,解得3sin 5x =-,4cos 5x =, 3tan 4x =-. …………………………………………9分24sin cos cos x x x -2224sin cos cos sin cos x x xx x-=+ 24tan 1tan 1x x -=+6425=-.…………………………………………12分22.解:(Ⅰ)设圆C 的方程为x 2+y 2+Dx +Ey +F =0,则⎩⎪⎨⎪⎧-D2-E +1=0,4-2E +F =0,10+3D +E +F =0,解得D =-6,E =4,F =4,所以圆C 的方程为x 2+y 2-6x +4y +4=0. ……………………………………4分 (Ⅱ)圆C 的方程为22(3)(2)9x y -++=, 当斜率存在时,设切线方程为3(6)y k x -=-,则3=,解得815k =, 所以切线方程为83(6)15y x -=-,即81530x y --=. ………………7分 当斜率不存在时,6x =.所以所求的切线方程为81530x y --=或6x =. ……………………8分 (Ⅲ)直线l 的方程为y =x +m .设A (x 1,y 1),B (x 2,y 2),则联立⎩⎪⎨⎪⎧x 2+y 2-6x +4y +4=0,y =x +m ,消去y 得2x 2+2(m -1)x +m 2+4m +4=0,(*)………………………………………9分∴⎩⎪⎨⎪⎧x 1+x 2=1-m ,x 1·x 2=m 2+4m +42,∴y 1y 2=(x 1+m )(x 2+m )=x 1x 2+m (x 1+x 2)+m 2.∵AB 为直径,∴∠AOB =90°,∴|OA |2+|OB |2=|AB |2, ∴x 21+y 21+x 22+y 22=(x 1-x 2)2+(y 1-y 2)2,得x 1x 2+y 1y 2=0,∴2x 1x 2+m (x 1+x 2)+m 2=0,……………………………11分 即m 2+4m +4+m (1-m )+m 2=0,解得m =-1或m =-4. 容易验证m =-1或m =-4时方程(*)有实根.所以直线l 的方程是y =x -1或y =x -4.………………12分。

高一上学期期中数学试卷(新题型:19题)(提高篇)(原卷版)

高一上学期期中数学试卷(新题型:19题)(提高篇)(原卷版)

2024-2025学年高一上学期期中数学试卷(提高篇)【人教A版(2019)】(考试时间:120分钟试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上;2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效;3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效;4.测试范围:必修第一册第一章、第二章、第三章;5.考试结束后,将本试卷和答题卡一并交回.第I卷(选择题)一、单项选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合要求的。

1.(5分)(23-24高一上·江苏徐州·期中)设全集UU=R,集合AA={xx|4<xx−2<8},BB={xx|2+aa<xx< 1+2aa},若AA∪BB=AA,则aa的取值范围是()A.(−∞,1]B.�−∞,92�C.�4,92�D.(−∞,1]∪�4,92�2.(5分)(23-24高一上·重庆·期中)下面命题正确的是()A.已知xx∈R,则“xx>1”是“1xx<1”的充要条件B.命题“若∃xx0≥1,使得xx02<2”的否定是“∀xx<1,xx2≥2”C.已知xx,yy∈R,则“|xx|+|yy|>0”是“xx>0”的既不充分也不必要条件D.已知aa,bb∈R,则“aa−3bb=0”是“aa bb=3”的必要不充分条件3.(5分)(23-24高一上·吉林四平·期中)已知2≤2xx+3yy≤6,−3≤5xx−6yy≤9,则zz=11xx+3yy的取值范围是()A.�zz|53≤zz≤893�B.�zz|53≤zz≤27�C.�zz|3≤zz≤893�D.{zz|3≤zz≤27}4.(5分)(23-24高一上·浙江温州·期中)若幂函数ff(xx)的图象经过点�√2,12�,则下列判断正确的是()A.ff(xx)在(0,+∞)上为增函数B.方程ff(xx)=4的实根为±2C.ff(xx)的值域为(0,1)D.ff(xx)为偶函数5.(5分)(23-24高二下·浙江·期中)关于xx的不等式(aa−1)xx2−aaxx+aa+1≥0的解集为RR,则实数aa的取值范围是()A.aa>1B.aa≥2√33C.−2√33≤aa≤2√33D.aa≤−2√33或aa≥2√336.(5分)(23-24高一上·江苏苏州·期中)给定函数ff(xx)=xx2−2,gg(xx)=−12xx+1,用MM(xx)表示函数ff(xx),gg(xx)中的较大者,即MM(xx)=max{ff(xx),gg(xx)},则MM(xx)的最小值为()A.0 B.7−√178C.14D.27.(5分)(23-24高一上·河北邯郸·期中)若aa>bb,且aabb=2,则(aa−1)2+(bb+1)2aa−bb的最小值为()A.2√5−2B.2√6−4C.2√5−4D.2√6−28.(5分)(23-24高一上·云南昆明·期中)已知函数ff(xx)的定义域为R,对任意实数xx,yy满足ff(xx+yy)= ff(xx)+ff(yy)+12,且ff(12)=0,当xx>12时,ff(xx)>0.给出以下结论:①ff(0)=−12;②ff(−1)=32;③ff(xx)为R上的减函数;④ff(xx)+12为奇函数. 其中正确结论的序号是()A.①②④B.①②C.①③D.①④二、多项选择题:本题共3小题,每小题6分,共18分,在每小题给出的四个选项中,有多项符合题目的要求,全部选对的得6分,部分选对的得部分分,有选错的得0分。

山东省烟台市高一下学期期中数学试卷

山东省烟台市高一下学期期中数学试卷

山东省烟台市高一下学期期中数学试卷姓名:________班级:________成绩:________一、 填空题 (共 14 题;共 16 分)1. (1 分) (2019 高三上·上海期中) 函数 的最小正周期是________.2. (1 分) (2018 高一上·海安月考) 已知向量,,为________.3. (1 分) (2019·新宁模拟) 圆 x2+y-4x+8y=0 的圆心坐标为________.,则的值4. (1 分) (2016 高一下·邢台期中) 如果 cosα= ,且 α 是第四象限的角,那么5. (1 分) (2018·天津模拟) 已知圆 C 的圆心在 x 轴的正半轴上,且 y 轴和直线 相切,则圆 C 的方程为________.=________. 均与圆 C6. (1 分) (2019 高二下·瑞安期中) 已知 7. (1 分) (2017 高二上·汕头月考) 已知圆 的圆心位于直线,则圆 的标准方程为________.,则________上,且圆 过两点8. (1 分) (2018·凯里模拟) 已知,________.,,若,则9. (3 分) (2017 高一下·西安期中) 要得到函数的图象,只需将函数的图象上所有的点的横坐标伸长为原来的________倍(纵坐标不变),再向________平行移动________个单位长度得到.10. (1 分) 圆 C1:x2+y2+2x+2y﹣2=0 与圆 C2:x2+y2﹣6x+2y+6=0 的公切线有且只有________ 条.11. (1 分) 若=________.12. (1 分) (2018·天津) 已知圆的圆心为 C , 直线第 1 页 共 13 页( 为参数)与该圆相交于 A , B 两点,则的面积为________.13. (1 分) (2017 高二下·溧水期末) 已知△ABC 是等边三角形,有一点 D 满足 + |= ,那么 • =________.= ,且|14. (1 分) (2020 高一下·上海期末) 已知函数 最大值是________.,、,则的二、 解答题 (共 6 题;共 60 分)15. (10 分) (2016 高一下·攀枝花期中) 已知向量向量与垂直,且 a1=1=(an , 2n),=(2n+1 , ﹣an+1),n∈N* ,(1) 求数列{an}的通项公式;(2) 若数列{bn}满足 bn=log2an+1,求数列{an•bn}的前 n 项和 Sn .16. (10 分) 已知 sinα﹣cosα= (1) 求 sinαcosα 的值;,α∈(π,2π),(2) 求 sinα+cosα 的值.17. (10 分) (2019·云南模拟) 已知 是坐标原点,抛物线 :的焦点为 ,过 且斜率为1 的直线 交抛物线 于 、 两点, 为抛物线 的准线上一点,且.(1) 求 点的坐标;(2) 设与直线 垂直的直线与抛物线 ,设直线 与 交于点 ,若交于 、 ,求两点,过点 、 分别作抛物线 外接圆的标准方程.的切线 、18. (10 分) (2019 高三上·洛阳期中) 已知椭圆 在椭圆 上.的右焦点为,点(1) 求椭圆 的方程;(2) 圆的切线 与椭圆 相交于 、 两点,证明:为钝角.第 2 页 共 13 页19.(10 分)(2019 高一下·南宁期末) 已知向量,(1) 求函数的单调增区间,函数(2) 将函数的图象向左平移 个单位,得到函数20. (10 分) (2018 高二上·霍邱期中) 已知,圆 :(1) 当 为何值时,直线 与圆 相切;的图象,求在,直线 :上的值域. .(2) 当直线 与圆 相交于 、 两点,且时,求直线 的方程.第 3 页 共 13 页一、 填空题 (共 14 题;共 16 分)答案:1-1、 考点:参考答案解析: 答案:2-1、 考点:解析: 答案:3-1、 考点:解析: 答案:4-1、 考点:第 4 页 共 13 页解析: 答案:5-1、 考点: 解析:答案:6-1、 考点:解析: 答案:7-1、第 5 页 共 13 页考点: 解析:答案:8-1、 考点:解析: 答案:9-1、 考点:解析:第 6 页 共 13 页答案:10-1、 考点:解析: 答案:11-1、 考点:解析: 答案:12-1、 考点:第 7 页 共 13 页解析: 答案:13-1、 考点:解析: 答案:14-1、 考点:第 8 页 共 13 页解析:二、 解答题 (共 6 题;共 60 分)答案:15-1、答案:15-2、 考点: 解析:第 9 页 共 13 页答案:16-1、答案:16-2、 考点: 解析:答案:17-1、第 10 页 共 13 页答案:17-2、考点:解析:答案:18-1、答案:18-2、考点:解析:答案:19-1、答案:19-2、考点:解析:答案:20-1、答案:20-2、考点:解析:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解得 = , = ,
因此 = .
= = , .
对称轴为 = ,分情况讨论:
当 时, 在 上为增函数, = = = ,
解得 = ,符合题意;
当 时, 在 上为减函数, 在 上为增函数, ,
解得 = ,其中 = 舍去;
当 时, 在 上为减函数, = = = ,
解得 ,不符合题意.
综上可得, = 或 = .
(2)该月第几天的销售收入最高?最高为多少?
为打赢打好脱贫攻坚战,实现建档立卡贫困人员稳定增收,某地区把特色养殖确定为脱贫特色主导产业,助力乡村振兴.现计划建造一个室内面积为 平方米的矩形温室大棚,并在温室大棚内建两个大小、形状完全相同的矩形养殖池,其中沿温室大棚前、后、左、右内墙各保留 米宽的通道,两养殖池之间保留 米宽的通道.设温室的一边长度为 米,如图所示.
(1)将两个养殖池的总面积 表示为 的函数,并写出定义域;
(2)当温室的边长 取何值时,总面积 最大?最大值是多少?
已知二次函数 = 的图象过点 ,且不等式 的解集为 .
(1)求 的解析式;
(2)若 = 在区间 上有最小值 ,求实数 的值;
(3)设 = ,若当 时,函数 = 的图象恒在 = 图象的上方,求实数 的取值范围.
经过函数性质的学习,我们知道:“函数 = 的图象关于 轴成轴对称图形”的充要条件是“ = 为偶函数”.
(1)若 为偶函数,且当 时, = ,求 的解析式,并求不等式 的解集;
(2)某数学学习小组针对上述结论进行探究,得到一个真命题:“函数 = 的图象关于直线 = 成轴对称图形”的充要条件是“ = 为偶函数”.若函数 的图象关于直线 = 对称,且当 时, = .
:显然 = = ,所以满足条件
ABD
二、填空题:本大题共有4个小题,每小题4分,共16分.
【答案】
【答案】
【答案】
= , = ,
【答案】
三、解答题:本大题共有6个小题,共82分.解答应写出文字说明、证明过程或演算步骤.
【答案】
∵ = , = ,
∴ = ;
若 = ,则需 ,解得 ,
故实数 的取值范围为 .
9.某容器如图所示,现从容器顶部将水匀速注入其中,注满为止.记容器内水面的高度 随时间 变化的函数为 = ,则 = 的图象可能是()
A. B. C. D.
10.已知函数 是定义在 上的单调函数, , 是其图象上的两点,则不等式 的解集为()
A. B.
C. D.
11.下列结论正确的有()
A.函数 的定义域为
求 的解析式;
求不等式 的解集.
参考答案与试题解析
2019-2020学年山东省烟台市高一(上)期中数学试卷
一、选择题:本大题共13小题,每小题4分,共52分.在每小题给出的四个选项中,第1~10题只有一项符合题目要求;第11~13题有多项符合题目要求,全部选对的得4分,选对但不全的得2分,有选错的得0分.
1.
【答案】
B
2.
【答案】
A
3.
【答案】
A
4.
【答案】
D
5.
【答案】
C
6.
【答案】
B
7.
【答案】
C
8.
【答案】
B
9.
【答案】
D
10.
【答案】
D
11.
【答案】
B,C,D
12.
【答案】
B,C
13.
【答案】
,如果 、 ,则 = , = = ,∴ ;
如果 、 ,设 、 ,则 = , = = ,所以 ,故 错误;
已知函数 .
(1)求函数 的解析式;
(2)根据函数单调性的定义证明 在 上单调递减.
某种商品的销售价格会因诸多因素而上下浮动,经过调研得知: 年 月份第 天的单件销售价格(单位:元) 第 天的销售量(单位:件) = ( 为常数),且第 天该商品的销售收入为 元(销售收入=销售价格 销售量).
(1)求 的值;
B.函数 = , 的图象与 轴有且只有一个交点
C.“ ”是“函数 = 为增函数”的充要条件
D.若奇函数 = 在 = 处有定义,则 =
12.十六世纪中叶,英国数学家雷科德在《砺智石》一书中首先把“=”作为等号使用,后来英国数学家哈利奥特首次使用“ ”和“ ”符号,并逐渐被数学界接受,不等号的引入对不等式的发展影响深远.若 , , ,则下列命题正确的是()
所以不等式的解集是 .
因为 的图象关于直线 = 对称,所以 = 为偶函数,
所以 = ,即 = 对任意 恒成立.
又当 时, ,
所以 .
所以
任取 , ,且 ,则 ,
因为 ,所以 ,又 , ,
所以 ,即 .
所以函数 = 在 上是增函数,
又因为函数 的图象关于直线 = 对称,
所以 等价于 ,
即 ,解得 .
所以不等式的解集为 .
由题意,当 时, 恒成立.
即 , .
设 , ,则 .
令 = ,于是上述函数转化为 ,
因为 ,所以 ,
又 在 上单调递减,所以当 = 时, = ,
于是实数 的取值范围是 .
【答案】
设 ,则 ,则 = = ,
又 为偶函数,所以 = = .
所以
因为 为偶函数,且 在 上是减函数,
所以 等价于 ,
即 ,解得 或 .
因为 ,故当第 天时,该商品销售收入最高为 元.
【答案】
依题意得温室的另一边长为 米.
因此养殖池的总面积 ,
因为 , ,所以 .
所以定义域为 .
= = ,
当且仅当 ,即 = 时上式等号成立,
当温室的边长 为 米时,总面积 取最大值为 平方米.
【答案】
由 = ,得 = ,
又 和 是方程 = 的两根,
所以 , .
A. = B. = C. = D. =
5.设 ,则 的最大值为()
A. B. C. D.
6.下面各组函数中表示同一个函数的是()
A. = , = B. = ,
C. , = D. ,
7.已知 若 = ,则实数 的值为()
A. B. C. D.
8.若不等式 对一切实数 都成立,则实数 的取值范围为()
A. B. C. D.
A. B. C. D.
2.命题“ , ”的否定是()
A. , B. , C. , D. ,
3.设 ,则“ ”是“ ”的()
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件
4.我们把含有限个元素的集合 叫做有限集,用 表示有限集合 中元素的个数.例如, = ,则 = .若非空集合 , 满足 = ,且 ,则下列说法错误的是()
定义 其中 表示 , 中较大的数.对 ,设 = , = ,函数 = ,则
(1) =________;
(2)若 ,则实数 的取值范围是________.
三、解答题:本大题共有6个小题,共82分.解答应写出文字说明、证明过程或演算步骤.
已知合 = , = , = .
(1)求 ;
(2)若 = ,求实数 的取值范围.
A.若 且 ,则 B.若 ,则
C.若 ,则 D.若 且 ,则
13.我们把定义域为 且同时满足以下两个条件的函数 称为“ 函数”:
(1)对任意的 ,总有 ;
(2)若 , ,则有 成立,下列判断正确的是()
A.若 为“ 函数”,则 =
B.若 为“ 函数”,则 在 上为增函数
C.函数 在 上是“ 函数”
D.函数 = 在 上是“ 函数”
二、填空题:本大题共有4个小题,每小题4分,共16分.
若函数 = 是定义在 上的奇函数,则 =________.
设 , ,若 是 的必要不充分条件,则实数 的取值范围是________.
已知函数 与 的定义域相同,值域也相同,但不是同一个函数,则满足上述条件的一组 与 的解析式可以为________.
【答案】
∵ ,
∴ ;
证明: , ,且 ,则:

∵ , ,∴ , ,
又由 ,得 ,
于是 ,
即 ,∴ ,
∴函数 在 上单调递减.
【答案】
第 天的销售量(单位:件) = ( 为常数),
当 = 时,由 = = ,
解得 = .
当 时, =
= ,
故当 = 时, = ,
当 时, = = = ,
故当 = 时, = ,
2019-2020学年山东省烟台市高一(上)期中数学试卷
一、选择题:本大题共13小题,每小题4分,共52分.在每小题给出的四个选项中,第1~10题只有一项符合题目要求;第11~13题有多项符合题目要求,全部选对的得4分,选对但不全的得2分,有选错的得0分.
1.已知集合 = , = , = ,则 =()
相关文档
最新文档