拉曼光谱讲稿3-分子的对称性与对称点群44页PPT
拉曼光谱原理和特点 ppt课件
• 散射光中的1010光子之一是非弹性散射(拉曼)
• 前…
后…
入射光
分子
• 光损失能量,使分子振动
Slide 4
PPT课件
分子振动
散射光
emission
excitation excit.-vib.
拉曼光谱的优点和特点
对样品无接触,无损伤; 样品无需制备; 快速分析,鉴别各种材料的特性与结构; 能适合黑色和含水样品; 高、低温及高压条件下测量; 光谱成像快速、简便,分辨率高; 仪器稳固,体积适中, 维护成本低,使用简单。
2500
N2
2000
1500
1000
500
1500
2000
2500
3000
3500
CO2
CH4
6000
4000
quartz
3000
H2O
2000 1087
1000
1164 1387 1280
1640
2331
1500
2000
2500
3000
3500
1087 1164
1287 1390
2328 2609 2914 3399 3639
Characteristic vibrational spectrum: 指纹性振动谱
Slide 6
PPT课件
Information obtained from Raman spectroscopy 拉曼光谱的信息
Slide 7
PPT课件
characteristic Raman
frequencies
拉曼频率的确认
changes in frequency of Raman peak
第三章 分子的对称性
逆元素
I--- I C3+---C3– v1--- v1 v2---v2 v3 ---v3
封闭性
结合律 v1(v2 v3) = v1 C3+ = v2
(v1v2)v3 = C3+ v3 = v2
3.5 群的表示
矩阵乘法 矩阵 方阵 对角元素
分子的所有对称操作----点群
如果每一种对称操作可以用一个矩阵(方阵)表示, 矩 阵集合满足群的要求,矩阵乘法表与对称操作乘法表
相似, 矩阵集合---群的一个表示
恒等操作I
矩阵
C2v: I C2 v v
特征标: 对角元素和 9
特征标3
特征标 1
特征标 -1
单位矩阵
I 矩阵, C2 矩阵, v 矩阵, v 矩阵 满足群的要求, 是C2v 点群的一个表示
集合G 构成群
1 –1, 乘法
1X1=1, 1X(-1)= -1 (-1)X1= -1, (-1)X(-1)=1 封闭性 恒等元素1 逆元素 1---1, -1--- -1,
群的乘法表 I A I A
I
I
IA
AA
I
I
A
?
A AI
A A
交叉线上元素 = 行元素 X 列元素
已知,I,A,B构成群, I 为恒等元素, 写出群的乘法表
3) 如果对称中心上无任何原子, 则同类原子是成双出现的.
例如: 苯中C, H
NH3 有无对称中心, 为什么? C2H3Cl有无对称中心, 为什么?
(b) 旋转轴Cp
绕轴旋转3600/p, 等价构型 水分子----绕轴旋转1800, 等价构型 C2轴 C3轴 360/2=180
BF3, 旋转1200, 等价构型 360/3=120
Raman拉曼光谱--ppt课件
20世纪60年代起,随着激光技术的飞速发展,引 入新型激光作为激发光源,使得拉曼光谱技术
获得迅速发展(激光拉曼光谱).
相继出现了一些新的拉曼光谱技术,如共振拉 曼光谱法,表面增强拉曼光谱法,非线性拉曼 光谱法,快速扫描拉曼光谱法等.目前拉曼光 谱技术已在化学化工,半导体电子,聚合物,生 物医学,环境科学等各领域得到广泛应用.
● C-C伸缩振动在拉曼光谱中是强谱带。
● 醇和烷烃的拉曼光谱是相似的:I. C-O键与C-C键的力常 数或键的强度没有很大差别。II. 羟基和甲基的质量仅相差 2单位。 III.与C-H谱带比较,O-H拉曼谱带较弱。
ppt课件
26
举例1:
C-H弯曲
ppt课件
27
举例2:乙炔的红外和拉曼光谱
Asymmetric C-H Stretch
ppt课件
15
第四节 拉曼光谱与红外光谱的比较
拉曼光谱与红外光谱均起源于分子的振动和转动。但产生两种 光谱的机理有本质的区别。红外光谱是分子对红外光源的吸收 所产生的光谱,拉曼光谱是分子对可见光(在FT-Raman中可 选用近红外光)的散射所产生的光谱。
同一振动模的拉曼位移和红外吸 收光谱的频率是一致的。用相对 于瑞利线的位移表示的拉曼光谱 波数与红外光谱的波数相一致。
瑞利散射: 弹性碰撞;无能量交换,仅改变方向;频率不发生改变 的辐射散射(u=u0);强度与l0的四次方成反比
拉曼散射:非弹性碰撞;方向改变且有能量交换; 频率发生改变的辐射散射(u=u0△u)
ppt课件
光的 散射
8
光的散射
λ
拉
曼
λ
增 大
减 小
λ
散 射
变
样 透过光λ不变
拉曼光谱培训讲义..
拉曼光谱(Raman spectra),是一种散射光谱。
拉曼光谱分析法是基于印度科学家C.V.拉曼(Raman)所发现的拉曼散射效应,对与入射光频率不同的散射光谱进行分析以得到分子振动、转动方面信息,并应用于分子结构研究的一种分析方法。
历史1928年C.V.拉曼实验发现,当光穿过透明介质(液体苯)被分子散射的光发生频率变化,这一现象称为拉曼散射。
在透明介质的散射光谱中,频率与入射光频率υ0相同的成分称为瑞利散射;频率对称分布在υ0两侧的谱线或谱带υ0±υ1即为拉曼光谱,其中频率较小的成分υ0-υ1又称为斯托克斯线,频率较大的成分υ0+υ1又称为反斯托克斯线。
靠近瑞利散射线两侧的谱线称为小拉曼光谱;远离瑞利线的两侧出现的谱线称为大拉曼光谱。
瑞利散射线的强度只有入射光强度的10-3,拉曼光谱强度大约只有瑞利线的10-3。
小拉曼光谱与分子的转动能级有关,大拉曼光谱与分子振动-转动能级有关。
拉曼光谱的理论解释是,入射光子与分子发生非弹性散射,分子吸收频率为υ0的光子,发射υ0-υ1的光子(即吸收的能量大于释放的能量),同时分子从低能态跃迁到高能态(斯托克斯线);分子吸收频率为υ0的光子,发射υ0+υ1的光子(即释放的能量大于吸收的能量),同时分子从高能态跃迁到低能态(反斯托克斯线)。
分子能级的跃迁仅涉及转动能级,发射的是小拉曼光谱;涉及到振动-转动能级,发射的是大拉曼光谱。
与分子红外光谱不同,极性分子和非极性分子都能产生拉曼光谱。
激光器的问世,提供了优质高强度单色光,有力推动了拉曼散射的研究及其应用。
拉曼光谱的应用范围遍及化学、物理学、生物学和医学等各个领域,对于纯定性分析、高度定量分析和测定分子结构都有很大价值。
拉曼散射光谱的特征a. 拉曼散射谱线的波数虽然随入射光的波数而不同,但对同一样品,同一拉曼谱线的位移与入射光的波长无关,只和样品的振动转动能级有关;b. 在以波数为变量的拉曼光谱图上,斯托克斯线和反斯托克斯线对称地分布在瑞利散射线两侧, 这是由于在上述两种情况下分别相应于得到或失去了一个振动量子的能量。
拉曼光谱培训讲义..
拉曼光谱(Raman spectra),是一种散射光谱。
拉曼光谱分析法是基于印度科学家C.V.拉曼(Raman)所发现的拉曼散射效应,对与入射光频率不同的散射光谱进行分析以得到分子振动、转动方面信息,并应用于分子结构研究的一种分析方法。
历史1928年C.V.拉曼实验发现,当光穿过透明介质(液体苯)被分子散射的光发生频率变化,这一现象称为拉曼散射。
在透明介质的散射光谱中,频率与入射光频率υ0相同的成分称为瑞利散射;频率对称分布在υ0两侧的谱线或谱带υ0±υ1即为拉曼光谱,其中频率较小的成分υ0-υ1又称为斯托克斯线,频率较大的成分υ0+υ1又称为反斯托克斯线。
靠近瑞利散射线两侧的谱线称为小拉曼光谱;远离瑞利线的两侧出现的谱线称为大拉曼光谱。
瑞利散射线的强度只有入射光强度的10-3,拉曼光谱强度大约只有瑞利线的10-3。
小拉曼光谱与分子的转动能级有关,大拉曼光谱与分子振动-转动能级有关。
拉曼光谱的理论解释是,入射光子与分子发生非弹性散射,分子吸收频率为υ0的光子,发射υ0-υ1的光子(即吸收的能量大于释放的能量),同时分子从低能态跃迁到高能态(斯托克斯线);分子吸收频率为υ0的光子,发射υ0+υ1的光子(即释放的能量大于吸收的能量),同时分子从高能态跃迁到低能态(反斯托克斯线)。
分子能级的跃迁仅涉及转动能级,发射的是小拉曼光谱;涉及到振动-转动能级,发射的是大拉曼光谱。
与分子红外光谱不同,极性分子和非极性分子都能产生拉曼光谱。
激光器的问世,提供了优质高强度单色光,有力推动了拉曼散射的研究及其应用。
拉曼光谱的应用范围遍及化学、物理学、生物学和医学等各个领域,对于纯定性分析、高度定量分析和测定分子结构都有很大价值。
拉曼散射光谱的特征a. 拉曼散射谱线的波数虽然随入射光的波数而不同,但对同一样品,同一拉曼谱线的位移与入射光的波长无关,只和样品的振动转动能级有关;b. 在以波数为变量的拉曼光谱图上,斯托克斯线和反斯托克斯线对称地分布在瑞利散射线两侧, 这是由于在上述两种情况下分别相应于得到或失去了一个振动量子的能量。
拉曼光谱分析全套教学课件
Detector plane
l1 Detector plane
l2 F1=300mm F2= 800mm
XPloRA
全系列光谱仪
—多种光谱分辨率仪器可选择
l1 l2
Aramis
HR 800
T64000
U1000
© 2009 HORIBA, Ltd. All rights reserved.
全系列拉曼光谱仪
Detector plane
l1 Detector plane
l2 F1=300mm
l1
—多种焦长仪器可选择
l2 F2= 800mm
XPloRA
Aramis
HR 800
T64000
U1000
© 2009 HORIBA, Ltd. All rights reserved.
LabRAM HR
Intensity (A.U.)
拉曼是物质的指纹光谱
2000200000 1500150000 1000100000
50050000
甲醇vs. 乙醇
OH Bending
CCO modes
Skeletal Bending
CH3 and CH2 Bending Modes
CH3 Stretching Modes
超大面积光栅
© 2009 HORIBA, Ltd. All rights reserved.
NASA对JY的航天用特殊光谱系统颁奖
© 2009 HORIBA, Ltd. All rights reserved.
全球最大拉曼光谱仪制造商
➢ 拉曼部门:由三个著名的拉曼生产厂家 (Jobin Yvon, Dilor, SPEX)合并而成,具 有40多年的设计和生产历史。 ➢ 在全球已有5000多台仪器安装,是全球 最大的拉曼光谱仪制造商。
拉曼光谱基本原理通用课件
CHAPTER
内标法与外标法
内标法
通过在样品中添加已知浓度的标准物质作为内标,利用内标物的峰面积或峰高与浓度之间的线性关系,对未知样 品的浓度进行定量分析。
外标法
通过比较已知浓度的标准样品的拉曼光谱与未知样品的拉曼光谱,根据标准样品的浓度和峰面积或峰高之间的关 系,对未知样品的浓度进行定量分析。
峰面积法与峰高法
要点一
峰面积法
通过测量拉曼光谱中某个峰的面积,利用峰面积与浓度之 间的线性关系,对未知样品的浓度进行定量分析。
要点二
峰高法
通过测量拉曼光谱中某个峰的高度,利用峰高与浓度之间 的线性关系,对未知样品的浓度进行定量分析。
多元光谱分析方法
• 多元光谱分析方法:利用多个拉曼光谱之间的信息,通过统计分析和数学建模,对未知样品的成分和浓度进行 定量和定性分析。例如偏最小二乘法、主成分分析法等。
拉曼散射的物理过程
当光波与介质分子相互作用时,光波吸收或释放能量,导致光波的频率发生变 化。这种变化遵循斯托克斯-拉曼散射定律。
拉曼光谱的峰位与峰强
1 2 3
峰位的确定 拉曼光谱的峰位表示散射光的频率变化,通常用 波数(cm^-1)或波长(nm)表示。
峰强的意义 峰强表示散射光的强度,反映了散射过程的概率 大小。一般来说,峰强越强,表示该频率的散射 过程越容易发生。
拉曼光谱的未来
随着技术的不断进步,拉曼光谱将在未来发挥更 加重要的作用。
拉曼光谱的基本原理及特点
拉曼光谱基本原理
拉曼光谱是一种基于光的散射效 应的技术,通过分析散射光的频 率和强度来推断样品的性质。
拉曼光谱原理和应用ppt课件
拉曼光谱和拉曼效应
• 拉曼散射
发分光子照对拉射光曼分子散子的射时一是,种分一 弹子部性对分散光散射子射。的光只一的有种频分非率子弹(和性光散 子散射间)效的和应碰入。撞射当为光用弹的一性频定碰率频撞相率,等(没。有这激 能种)量散的交射激换是
时,才会出现这种散射。该散射称为瑞利散射。还有一部分散射光的频率和激发光 的频率不等,这种散射成为拉曼散射。Raman散射的几率极小,最强的Raman散 射也仅占整个散射光的千分之几,而最弱的甚至小于万分之一。
• 散射光中,弹性 (瑞利) 散射占主导
• 前… 后… 入射光
散射光
分子
分子
• 散射光与入射光有相同的频率
.
emission
excitation
光散射 - 拉曼
• 散射光中的1010光子之一是非弹性散射(拉曼) • 前… 后…
入射光
分子
• 光损失能量,使分子振动
.
分子振动
散射光
ssion
excitation excit.-vib.
.
拉曼光谱的主要困难
• 拉曼散射信号弱(比荧光光谱平均小2-3数量级)。
• 激光激发强。
• 拉曼信号频率离激光频率很近。
• 激光瑞利散射比拉曼信号强1010-1014,对拉曼信号干扰很 大。
• 最常用的红外及拉曼光谱区域波长是2.5~25μm。(中红外区)
• 分子能级与分子光谱
分子运动包括整体的平动、转动、振动及电子的运动。分子总能量可近似看成是这些运动的 能量之和,即
式中 E t E e E v E r
E 总 = E t + E e E v E r
分别代表分子的平动能、电子运动能、振动能和转动能。除E t 外,其余三项都是量子化的,
拉曼光谱讲稿3-分子的对称性与对称点群ppt课件
2) 简正坐标
引入一组新的坐标Q1,Q2, , Q3N, 它们 与上述位移坐标q1,q2, , q3N之间的关系是:
3N
Qk Ckiqi
k 1, 2, 3N
10
i1
其中,Cki是代定的系数。
35
适当地选取Cki,可以使分子的动能和 势能在(Q1,Q2, , Q3N)坐标系中具有 如下形式:
4
2.对称元素和对称操作的类型
分子中的对称元素和对称操作,有如下四种 基本类型:
1)对称中心和反演 i 若取分子中某一点为直角坐标的原点,那么在
此坐标系中,每个原子的位置就可用坐标(x,y,z )来表示。如果把分子中所有坐标取(x,y,z )和 (-x,-y,-z)的原子相互交换后,分子处于等价构 型时,这个原点所在的点叫做对称中心,与此点 相关联的上述变换叫做反演操作,简称反演。
21
3)可逆性
在分子对称操作集合中取任何一个对 称操作,总可以在此集合中找到另一个 对称操作,它的作用正好抵消前者的效 果。
22
例如,PCl3分子中,取C3操作,就可 以找到另一个对称操作C32 ,它的作用正 好抵消C3的效果,也就是说C32 C3= E, 相当于分子没有发生转动。
我们称C32是C3的逆操作。分子对称操 作集合的这种性质叫做可逆性。
23
一般地说,若取任一对称操作R,它的逆 操作用R-1表示,那么R-1抵消R的效果,即: R-1 R=E。
24
从以上性质可看出,分子全部对称操作 满足群的定义,因而分子全部对称操作构 成一个对称群。
这就使我们不但可以用群的语言描述 分子的对称性,而且还可以用群的理论方 法研究分子的对称性。
25
十一 分子的简正振动
拉曼光谱介绍参考幻灯片
=I / IP
I∥和I⊥——分别代表与激光电矢量平行和垂直的谱线的强度。
3
4
的谱带称为偏振谱带,表示分子有较高的对称振动模式 。
3 的谱带称为退偏振谱带,表示分子对称振动模式较低。
4
25
拉曼效应相关参数
样品分子对激光的散射和去偏振度的测量
26
拉曼效应相关参数
• 拉曼散射的偏振 值越小,分子的对称性越高。在使用90°背散射几何时,无规取向
(2)收集光学系统 包括宏观散射光路和配置[前置单色器,偏振旋转器, 聚焦透镜,样品,收集散射光透镜(组),检偏器等],散射配置有0°、 90°和180°,后两者较常用。
(3)单色器和迈克尔逊干涉仪 有单光栅、双光栅或三光栅,一般使用平面 全息光栅干涉器一般与FTIR上使用的相同,为多层镀硅的CaF2或镀 Fe2O3的CaF2分束器。也有用石英分束器及扩展范围的KBr分束器。
• Stokes散射光线的频率低于激发光频率 。反Stokes 线的频率νas=ν0+ΔE/h,高于激发光源的频率。
9
拉曼光谱原理
• 拉曼位移(Raman Shift) 斯托克斯与反斯托克斯散射光的频率与激发光源 频率之差Δν统称为拉曼位移(Raman Shift)。
• 斯托克斯散射的强度通常要比反斯托克斯散射强 度强得多,在拉曼光谱分析中,通常测定斯托克 斯散射光线。
10
拉曼谱线
斯托克斯线和反斯托克斯线统称为拉曼谱线。 由于在通常情况下,分子绝大多数处于振动能 级基态,所以斯托克斯线的强度远远强于反斯 托克斯线。
CCl4
斯托克斯线
反斯托克斯线
拉曼位移 Raman ΔSν=h|ifνt0 – νs |
即散射光与激发光频率之差 Δv取决于分子振动能级的改变 因此是特征的
简述拉曼光谱在PPT资料(正式版)
一束光
相干仪
两束相同的光
( 一束滞后,光程差为d)
正相干:d=n倍波长
负相干: d=(2n+1)/2倍波长
一种理想的单色光通过相干仪,由于滞后 现象不断的有规律地变化,检测到的信号将是 一个余弦波,这些余弦的总和,就是相干图象。 相干图象实际上是光强度的函数,已知在相干 仪中可移动的镜面,是一个合适的时间范围内 的移动,所以相干图象也是一个时间的函数. 对于光强和时间函数关系所表示的频率分析 过程,是一个纯数学分析过程,也就是” 傅立 叶变换”,它将时间域中的相干图象转化为频 率域中的光谱图象(见图1)。
I
FT
共振拉曼光谱定量分析技术 拉曼光谱定量分析据为:
(a)由一个单色光产生的相干图象 胡继明 胡军(武汉大学分析测试科学系)
拉曼光谱分析技术是以拉曼效应为基础建立起来的分子结构表征技术,与红外光谱相同,其信号来源与分子的振动和转动.
I 图1 相干图象的产生
(b)由两个单色光产生的相干图象 还应注意的是任何一物质的引入都会对被测体系带来某种程度的污染,这等于引入了一些误差的可能性,会对分析的结果产生产生一 定的影响。
(四)几种重要的拉曼光谱分析技术
1.单道检测的拉曼光谱分析技术 2.以CCD为代表的多通道探测器用于拉曼光谱
的检测仪的分析技术 3.采用傅立叶变换技术的FT-Raman光谱分析
技术 4.共振拉曼光谱定量分析技术 5.表面增强拉曼效应分析技术 6.近红外激发傅立叶变换拉曼光谱技术
二.傅立叶变换拉曼光谱和近红外激发 傅立叶变换拉曼光谱新技术的简述
简述拉曼光谱在
一. 拉曼光谱分析的依据和特点
拉曼光谱分析技术是以拉曼效应为基础建 立起来的分子结构表征技术,与红外光谱相同, 其信号来源与分子的振动和转动.