板式塔的流体力学性能的测定

合集下载

板式塔流体力学性质

板式塔流体力学性质

化工基础实验报告实验名称板式塔流体力学实验班级化21 姓名张腾学号2012011864 成绩实验时间2014.5 同组成员张煜林一、实验目的1、观察塔板上气、液两相流动时的特性。

2、测量气体通过塔板的压力降与空塔气速的关系,测定雾沫夹带量、漏液量与气速的关系。

3、研究板式塔负荷性能图的影响因素,做出筛孔塔板的负荷性能图。

二、实验原理当液体流量一定,气体空塔速度从小到大变动时,可以观察到几种正常的操作状态:鼓泡态、泡沫态和喷射态。

当塔板在很低的气速下操作时,会出现漏液现象;在很高的气速下操作,又会产生过量液沫夹带;在气速和液相符合均过大时,还会产生液泛这种不正常的操作状态。

塔板的气液正常操作区通常以塔板的负荷性能图表示。

当塔板的类型、结构尺寸以及待分离的物系确定后,负荷性能图可通过实验测定。

三、实验装置与流程1、塔主体是用有机玻璃制成的,分段用法兰连接。

2、风源:罗茨鼓风机,D22 / 5型;风压:3500mm H2O;风量5m3/min。

3、气液流量测量用转子流量计:LZB-50,气体流量16~160m3/h。

LZB-25,液体体积流量100~1000 L/h4、U型管压差计:指示液为水,测量范围0~700 mm H2O实验装置图如下:1-水箱;2-泵;3-液体流量计;4-气体流量计;5-压差计;6-板式塔四、实验步骤及注意事项1、熟悉实验装置流程,了解各部分作用。

2、在启动气路前,要检查罗茨鼓风机旁路阀是否开启,转子流量计阀门是否关闭,以免损坏设备。

3、测量干板阻力降与气速关系。

4、启动水泵。

启动前要检查水泵内是否充满水,转动泵的联轴节是否灵活,关闭泵的出口阀门。

5、在一定的喷淋密度下,测定塔板的压降、漏液量和雾沫夹带与空塔速度的关系。

6、改变喷淋密度,重复5的内容。

7、实验结束,先关水,后关气。

五、实验原始数据表格1、设备参数塔内径D=2000mm;堰长l w=130mm;堰高ℎw=30mm;堰宽w d=27mm;孔径d0=8mm;孔数n=36;t=20mm;开孔率φ=12.6%2、原始数据记录表1、干板压降2、不同喷淋密度下的操作状态六、数据处理1、对原始数据表格中的数据进行换算塔半径r=0.1m,则塔截面积A = 0.0314m2;空塔气速=流量÷截面积÷3600;压降(pa)=ρgh=压降(mmH2O)×9.8×1000÷1000=压降(mmH2O)×9.8;漏液量(ml/s)=夹带量/时间;夹带量(ml/s)=夹带量/时间;换算后的数据列表如下:干板气速-压降关系2、干板及各种喷淋密度下压力降与空塔速度的关系曲线(1)空塔压降与气速的关系:对压降与气速取对数做双对数图如下:拟合出的直线斜率为1.43,与理论值2相差较大,原因暂时还不是很清楚,可能是由于塔设备相对于直管路的不理想程度比较大,也有可能是某些参数的错误,但这样大的差距必然有其内在的原因,目前还不能从根本上得出具体的结论。

板式塔流体力学性能测定 实验报告

板式塔流体力学性能测定 实验报告

化学实验教学中心实验报告化学测量与计算实验Ⅱ实验名称:板式塔流体力学性能测定实验报告学生姓名:学号:院(系):年级:级班指导教师:研究生助教:实验日期: 2017.05.25 交报告日期: 2017.06.01(3) 当气流速度略微增加时,塔板上积液层将很快上升到溢流堰的高度,塔板压力降也随之急剧增大。

当液体开始由溢流堰溢出时,为另一个转折点,如图中B 点。

这时,仍有部分液体从筛孔中泄漏下去。

自该转折点之后,随着气流速度增大,液体的泄漏量不断减少,而塔板压力降却变化不大。

(4) 当气流速度继续增大到某一数值时,液体基本上停止泄漏,则称该转折点为泄漏点,如图中C 点。

自C点以后,塔板的压力降随气速的增加而增大。

(5)当气速高达某一极限值时,塔板上方的雾沫挟带将会十分严重、或者发生液泛。

自该转折点(如图中D点)之后,塔板压降会随气速迅速增大。

塔板上形成稳定液层后,塔板上气液两相的接触和混和状态,也将随着气速的改变而发生变化。

当气速较较小时,气体以鼓泡方式通过液层。

随着气速增大,鼓泡层逐渐转化为泡沫层,并在液面上形成的雾沫层也将随之增大。

对传质效率有着重要作用的因素是充气液层的高度及其结构。

充气液层的结构通常用其平均密度大小来表示。

如果充气液层的气体质量相对于液体质量可略而不计,则h fρf= h1ρl(4)式中,h f 、h1分别为充气液层和静液层的高度,m;ρf、ρl分别为充气液层的平均密度和静液层的密度,kg· m– 3;若将充气液层的平均密度之比定义为充气液层的相对密度,即∅=ρfρl=ℎlℎf则单位体积充气液层中滞留的气体量,即持气量可按下式计算:V g=(ℎf−ℎl)/ℎf=1−∅ m3∙m−3(5)单位体积充气液层中滞留的液体量,即持液量可按下式计算:V l=ℎl/ℎf=∅ m3∙m−3(6)气体在塔板上的液层的平均停留时间为:t g=[ℎf S(1−∅ )]V s =ℎfu0(1−∅) s (7)液体在塔板上的平均停留时间为图1 筛孔塔板干板压头降Δh d 与筛孔速度u a 之间的关系图2 板式塔的Δh 与空塔速度的关系曲线t l =ℎf ∙S∙∅L s=ℎf ∅Ws (8)式中,S 为空塔横截面积,m 2;V s 为气体体积流率,m 3∙s −1;L s 为液体体积流率,m 3∙s −1;W 为液体喷淋密度,m 3∙m −2∙s −1;u 0 为气体的空塔速度,m ∙s −1。

板式塔的流体力学性能介绍

板式塔的流体力学性能介绍

板式塔的流体力学性能介绍★评价塔设备性能的主要指标生产能力塔板效率操作弹性塔板压强降★板式塔的流体力学性能塔板压强液泛雾沫夹带漏液液面落差一、塔板压降也就是气体通过塔板时的阻力损失。

包括:干板阻力:由板上各部件所造成的局部阻力板上充气液层的静压强板上液体的表面张力(摩擦阻力)∙塔板压降对板式塔操作特性的影响∙影响塔底操作压强:塔板压降↑若为吸收操作,则要求送气压强↑ ;若为精馏操作,则要求釜底压强↑ ;若为真空精馏操作,则同样要求釜底压强↑ →导致实际操作不能在真空下进行。

∙影响板效率:∙干板压降↑ → 气体流动不畅↑ 气液接触时间↑ → 板效率↑∙板上充气液层静压↑(即板上液层厚度↑)→ 气液传质时间↑→板效率↑总而言之,要综合考虑,原则:在保证较高板效率的前提下,力求减小塔板压强,以降低能耗,改善塔的操作性能。

二、液泛正常操作时,降液管中有一足够的液体高度,以克服两板间由气体压差造成的压降使液体能够自上而下流动。

∙但若气相的流量↑→塔板压降↑→降液管内液体流动不畅→管内液体积累;∙若液相的流量↑→降液管内截面不能满足该液体顺利流过→管内液体积累;从而必然使降液管内液体不断增高→最终使整个板间充满液体→塔操作被严重破坏。

这种现象即为液泛(淹塔)。

一般,气速↑→有利于形成湍动的泡沫层→传质速率↑。

但显然不能超过液泛时的气速。

因此,液泛时的气速应为塔操作的极限速度。

此外,板间距↑→可提高液泛速度。

三、雾沫夹带∙当气速↑,使塔板处于泡沫状态或喷射状态时→液体被吹塔板,该现象称为雾沫夹带。

∙雾沫夹带造成的影响:液相在塔板间返混→塔板效率↓∙因此,应限制雾沫夹带。

eV<0.1kg(液)/kg(气)∙影响雾沫夹带量的因素:空塔气速↑塔板间距↓雾沫夹带量↑四、漏液∙在正常操作的塔板上,液体横向流过塔板,然后通过降液管流下。

∙但若气体通过塔板的速度↓ → 上升气体通过孔道的动压不足以克服板上液体的重力→液体从塔板上的开孔处往下漏,称漏液。

板式塔流体力学实验

板式塔流体力学实验

6.再进一步关小气阀 再进一步关小气阀 当气速大大小于设计气速时,泡沫层明显减少, 当气速大大小于设计气速时,泡沫层明显减少, 因为鼓泡少, 液两相接触面积大大减少, 因为鼓泡少,气、液两相接触面积大大减少, 显然,这是各类型塔不正常运行状态。 显然,这是各类型塔不正常运行状态。 7.再慢慢关小气阀 再慢慢关小气阀 可以看见塔板上既不鼓泡、 可以看见塔板上既不鼓泡、液体也不下漏的现 若再关小气阀, 象。若再关小气阀,则可看见液体从塔板上漏 这就是塔板的漏液点。 出,这就是塔板的漏液点。
够大时,塔板上的液体会有一部分从筛孔漏下, 够大时,塔板上的液体会有一部分从筛孔漏下, 这样就会降低塔板的传质效率。 这样就会降低塔板的传质效率。因此一般要求 塔板应在不漏液的情况下操作。所谓“漏液点” 塔板应在不漏液的情况下操作。所谓“漏液点” 是指刚使液体不从塔板上泄漏时的气速。 是指刚使液体不从塔板上泄漏时的气速。 液泛点 当气速大到一定程度, 当气速大到一定程度,液体就不再从 降液管下流,而是从下塔板上升, 降液管下流,而是从下塔板上升,这就是板式 塔的液泛。液泛速度也就是达到液泛时的气速。 塔的液泛。液泛速度也就是达到液泛时的气速。
实验九
板式塔流体力学实验
教师: 教师:张晓艳
一、实验目的
1.观察板式塔各类型塔板的结构, 1.观察板式塔各类型塔板的结构,比较各塔板 观察板式塔各类型塔板的结构 上的气液接触状况。 上的气液接触状况。 2.实验研究板式塔的极限操作状态, 2.实验研究板式塔的极限操作状态,确定各塔 实验研究板式塔的极限操作状态 板的漏液点和液泛点。 板的漏液点和液泛点。
三、实验装置
4
5 6 7 8 3 2 1
图 9-4 塔板流体力学演示实验 1-增压水泵,2-调节阀,3-转子流量计,4-有降液管筛孔板,5- 浮阀塔板,6-泡罩塔板,7-无降液管筛孔板,8-风机。

北京化工大学实验报告——板式塔的流体力学性能的测定

北京化工大学实验报告——板式塔的流体力学性能的测定

实验五板式塔的流体力学性能的测定一、实验名称:板式塔的流体力学性能的测定二、实验目的:1、对板式塔的结构、普通筛板、导向筛板有一个初步认识;2、对塔板上流体流动状态有初步认识;3、测定塔板的流体力学性能,包括塔的干板压降、湿板压降、漏液点、雾沫夹带点等。

4、观察流体在塔板上的流动状态。

三、实验原理与流程:实验流程见图1,来自储槽的水经过转子流量计自塔顶送入塔顶,由鼓风机送来的气体,经孔板流量计送入塔的底部。

塔内共装有三层塔板,从下至上分别是气体分布板、实验塔板、雾沫补集板。

实验塔板采用U型压差计测定其压降,漏液和夹带量采用质量测量法。

通过风机闸阀和玻璃转子流量计调节气体流量和液体流量,测定不同状态下塔板的流体力学参数,观察塔板上液体流动状况。

图1 实验装置流程图四、实验步骤:1、测定干板压降将液封管内冲满水,启动风机,根据孔板流量计连接的压差计调节气体流量大小,测定塔的干板压降,气体流量由小至大调节。

孔板流量计计算公式:0v q C A =由《化工原理》查询孔流系数,并计算气体流量。

测定的压降值与筛板塔干板压降计算公式进行验证,并计算误差。

干板压降经验式:()220'00.051()1vd Lw h C ρϕρ=- ϕ-----开孔率;v ρ-----气相密度;L ρ-----液相密度;d h -----干板压降,米液柱;'0C -----筛孔孔流系数;0w -----筛孔气速;(单位如不说明均为国际单位制)2、测定湿板压降和夹带、漏液调节气体流量为一定值,打开转子流量计。

固定液体流量,将气体流量由小至大调节,每次增加200Pa ,至到2000Pa 。

每个测量点稳定30秒,读取压降,由质量法测量一定时间的漏液量和夹带量。

计算每个点的漏液率和夹带率,寻找漏液点和夹带点,并计算出对应的孔气速,确定正常操作范围。

3.观察塔板上气液接触状态随着气速的增大,塔板之上的气液接触状态由鼓泡状态,变为泡沫状态,最终达到喷射状态。

板式塔流体力学实验报告

板式塔流体力学实验报告

板式塔流体力学实验报告引言本实验旨在研究板式塔的流体力学特性。

板式塔是一种常用于化工领域的设备,用于分离液体混合物中的组分。

通过实验观察和数据分析,我们可以了解板式塔的流体流动行为,从而优化塔的设计和操作参数,提高分离效率。

实验装置和方法实验中使用的板式塔装置由一根垂直立管和多层水平放置的板组成。

我们通过向塔底注入液体混合物,控制流量和温度,观察在不同操作条件下的塔内流体流动情况。

实验结果与分析根据实验数据,我们可以得出以下结论:1. 流体流动模式在不同操作条件下,板式塔内流体的流动模式会发生变化。

当流速较低时,流体呈现层流状态,流线整齐有序;而当流速增加时,流体会变为湍流状态,流线杂乱无序。

这对于塔内物质传递和分离过程有着重要影响。

2. 流体分布在塔内的不同位置,流体的浓度和温度分布不均匀。

通常情况下,塔底的浓度较高,而塔顶的浓度较低。

这是由于塔内的物质传递和分离过程导致的。

3. 塔板效率塔板效率是评价板式塔分离效果的重要指标。

通过实验观察和数据分析,我们可以计算出塔板效率,并比较不同操作条件下的效率差异。

从实验结果可以看出,塔板效率随着流速的增加而提高,但也存在一个最佳操作点,超过此点后效率会下降。

结论本实验通过观察和数据分析,深入了解了板式塔的流体力学特性。

我们发现流体流动模式、流体分布和塔板效率对于塔的设计和操作至关重要。

在实际应用中,我们可以根据不同的分离要求和操作条件,优化塔的结构和操作参数,以提高分离效率。

通过本实验,我对板式塔的流体力学特性有了更深入的了解。

我将继续深入研究和探索,在化工领域的实际应用中发挥作用,为工业生产提供技术支持和解决方案。

板式塔流体力学性能测定-实验报告

板式塔流体力学性能测定-实验报告

化学实验教学中心
实验报告
化学测量与计算实验Ⅱ实验名称:板式塔流体力学性能测定实验报告
学生姓名:学号:
院(系):年级:级班
指导教师:研究生助教:
实验日期: 2017.05.25 交报告日期: 2017.06.01
图1 筛孔塔板干板压头降Δh d 与筛孔速度u a 之间的关系图2 板式塔的Δh 与空塔速度的关系曲线
四、实验方法
实验前,先检查空气调节阀和进水阀是否关严,放空阀是否全部开启。

然后将高位水槽充满水,并保持适当的溢流量。

实验时,可按如下步骤进行操作:(1)启动空气源。

空气流量由空气调节阀和旁路放空阀联合调节。

通过不断改变气体流量,测定干板压降与气速的变化关系。

对于筛板塔,一般测取(2)当进行塔板流动特性试验时,应先缓慢打开水调节阀,调定水的喷淋密度(一般喷淋密度在 范围内为宜,相对于水流量为图3 筛板塔
1.塔体;
2.筛孔塔板;
3.漏液排放口;
4.温度计;
5.溢流装置
图4 板式塔流动特性实验装置流程
空气源;2.放空阀;3.消声器;4.孔板流量计;5.U 型水柱压差计;6. U 型汞柱压差计;
7.板式塔;转子流量计;9. U 型水柱塔压差计;10.高位槽;11.排水管。

化工基础实验报告

化工基础实验报告

化工基础实验报告实验名称 板式塔流体力学特性的测定 班级 姓名 学号 成绩 实验时间 同组成员一、实验目的1、观察塔板上气液两相流动状况,测量气体通过塔板的压力降与空塔气速的关系;测定雾沫夹带量、漏液量与气速的关系;2、研究板式塔负荷性能图的影响因素,作出筛孔塔板或斜孔塔板的负荷性能图;比较筛孔塔板与斜孔塔板的性能; 二、实验原理板式塔流体力学特性测定 塔靠自下而上的气体和自上而下的液体逆流流动时相互接触达到传质目的,因此,塔板传质性能的好坏很大程度上取决于塔板上的流体力学状态。

当液体流量一定,气体空塔速度从小到大变动时,可以观察到几种正常的操作状态:鼓泡态、泡沫态和喷射态。

当塔板在很低的气速下操作时,会出现漏液现象;在很高的气速下操作,又会产生过量液沫夹带;在气速和液相负荷均过大时还会产生液泛等几种不正常的操作状态。

塔板的气液正常操作区通常以塔板的负荷性能图表示。

负荷性能图以气体体积流量(m 3/s )为纵坐标,液体体积流量(m 3/s )为横坐标标绘而成,它由漏液线、液沫夹带线、液相负荷下限线、液相负荷上限线和液泛线五条线组成。

当塔板的类型、结构尺寸以及待分离的物系确定后,负荷性能图可通过实验确定。

传质效率高、处理量大、压力降低、操作弹性大以及结构简单、加工维修方便是评价塔板性能的主要指标。

为了适应不同的要求,开发了多种新型塔板。

本实验装置安装的塔板可以更换,有筛板、浮阀、斜孔塔板可供实验时选用,也可将自行构思设计的塔板安装在塔上进行研究。

筛板的流体力学模型如下: 1) 压降l c p p p ∆+∆=∆式中,Δp —塔板总压降,Δp c —干板压降,Δp l —板上液层高度压降, 其中20)(051.0c u g p v c ρ=∆式中 ρv —气相密度,kg/m 3;g —重力加速度,m/s 2,u 0—筛孔气速,m/s ,c 0—筛孔流量系数,筛板上因液层高度产生的压降Δp l 即液层有效阻力h l :l l l gh p ρ=∆式中ρl —液相密度,kg/m 3,g —重力加速度,m/s 2,h l —液层有效阻力,m 液柱。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

板式塔的流体力学性能的测定
一、实验名称:板式塔的流体力学性能的测定
二、实验目的:
1、对板式塔的结构、立体传质塔板有一个初步认识;
2、对塔板上流体流动状态有初步认识;
3、测定塔板的流体力学性能,包括塔的干板压降、湿板压降、漏液点、雾沫夹带点等。

4、观察流体在塔板上的流动状态。

三、实验原理与流程:
实验流程见图1,来自储槽的水经过转子流量计自塔顶送入板式塔,由鼓风机送来的气体,经过孔板流量计送入塔的底部。

塔内共装有三层塔板,从下至上分别是气体分布板、实验塔板、雾沫补集板。

实验塔板采用U型压差计测定其压降,漏液和夹带量采用质量测量法。

通过风机闸阀和玻璃转子流量计调节气体流量和液体流量,测定不同状态下塔板的流体力学参数,观察塔板上液体流动状态。

四、实验步骤:
1、测定干板压降
将液封管内充满水,启动风机,根据孔板流量计连接的压差计调节气流流量大小,测定塔的干板压降,气体流量由小至大调节。

由《化工原理》查询孔流系数,并计算气体流量。

测定的压降值与干板压降计算公式进行验证,并计算误差。

干板压降经验式:ℎd=0.051(w0
C0)

v
γL
(1−φ2)
φ-----开孔率(开孔面积/开孔区域,此处取0.2);γv-----气相密度;γL-----液相密度;
ℎd-----干板压降,米液柱;C0-----孔流系数;w0-----空气速;(单位如不说明均为国际单位制)(假设矩形孔和导向孔气速一致)
2、测定湿板压降和夹带、漏液
调节气体流量为一定值,打开转子流量计。

固定液体流量,将气体流量由小至大调节,每次增加200Pa,直到1600Pa。

每个测量点稳定30秒,读取压降,由质量法测量一定时间的漏液量和夹带量。

计算每个点的漏液率和夹带率,寻找漏液点和夹带点,并计算出对应的孔气速,确定正常的操作范围。

3、观察塔板上气液接触状态
随着气速的增大,塔板之上的气液接触状态由鼓泡状态,改为泡沫状态,最终达到喷射状态。

塔板之上的清液层逐渐减小,泡沫层逐渐升高,甚至达到液泛状态。

如不及时打开回流泵,由于塔釜容量有限,将出现降液管液泛,并波及塔内正常操作。

观察漏液过程中周期性漏液。

观察泡沫层上升和夹带量的关系。

四、数据处理
计算所需参数:孔板流量计计算公式:q v=C0A0√2∆P
ρ
,气体管径
d1=200mm;孔板孔径d2=125mm;孔板流量系数C0查询《化工原理》;孔流系数C0=0.76;
立体喷射式塔板:气体为连续相,液体为分散相;矩形帽罩结构,喷射区有圆形喷射孔,上部装有填料板波纹250Y。

开孔区域面积A=0.14㎡;矩形开孔180*60mm(3个);导向孔24*3mm(78个);底隙25mm;堰高50mm;堰长350mm;塔径476mm。

数据表格:
干板压降表格
液体流量L=4m³/h
流体力学记录表格
漏液点:
漏液量
液体流量
=10%夹带点:漏液体量/Kg
气体量/Kg
=10%
数据处理和讨论:
1、计算漏液点和夹带点对应的空气速。

2、讨论压降、漏液、夹带随气速的变化趋势。

3、其他结果、结论。

五、思考题
1、影响塔板漏液的因素有哪些?如何避免板式塔操作中的严重漏液?
2、影响塔板雾沫夹带的因素有哪些?如何避免?
3、如何确定塔板的操作范围?如何提高板式塔的操作弹性?。

相关文档
最新文档