三角函数教案
三角函数的概念教学设计一等奖4篇
第1篇三角函数的概念教学设计一等奖三角函数一. 教学内容:三角函数【结构】二、要求(一)理解任意角的概念、弧度的意义、正确进行弧度与角度的换算;掌握任意角三角函数的定义、会利用单位圆中的三角函数线表示正弦、余弦、正切。
(二)掌握三角函数公式的运用(即同角三角函数基本关系、诱导公式、和差及倍角公式)(三)能正确运用三角公式进行简单三角函数式的化简、求值和恒等式证明。
(四)会用单位圆中的三角函数线画出正弦函数、正切函数的图线、并在此基础上由诱导公式画出余弦函数的图象、会用“五点法”画出正弦函数、余弦函数及Y=Asin(ωx φ)的简图、理解A、ω、< 1271864542"> 的意义。
三、热点分析1. 近几年高考对三角变换的考查要求有所降低,而对本章的内容的考查有逐步加强的趋势,主要表现在对三角函数的图象与性质的考查上有所加强.2. 对本章内容一般以选择、填空题形式进行考查,且难度不大,从1993年至2002年考查的内容看,大致可分为四类问题(1)与三角函数单调性有关的问题;(2)与三角函数图象有关的问题;(3)应用同角变换和诱导公式,求三角函数值及化简和等式证明的问题;(4)与周期有关的问题3. 基本的解题规律为:观察差异(或角,或函数,或运算),寻找联系(借助于熟知的公式、或技巧),分析综合(由因导果或执果索因),实现转化.解题规律:在三角函数求值问题中的解题思路,一般是运用基本公式,将未知角变换为已知角求解;在最值问题和周期问题中,解题思路是合理运用基本公式将表达式转化为由一个三角函数表达的形式求解.4. 立足课本、抓好基础.从前面叙述可知,我们已经看到近几年高考已逐步抛弃了对复杂三角变换和特殊技巧的考查,而重点转移到对三角函数的图象与性质的考查,对基础知识和基本技能的考查上来,所以在中首先要打好基础.在考查利用三角公式进行恒等变形的同时,也直接考查了三角函数的性质及图象的变换,可见高考在降低对三角函数恒等变形的要求下,加强了对三角函数性质和图象的考查力度.四、复习建议本章内容由于公式多,且习题变换灵活等特点,建议同学们复习本章时应注意以下几点:(1)首先对现有公式自己推导一遍,通过公式推导了解它们的内在联系从而培养逻辑推理。
三角函数的图像与性质教案
三角函数的图像与性质优秀教案一、教学目标:1. 理解三角函数的定义,掌握正弦函数、余弦函数、正切函数的图像与性质。
2. 能够运用三角函数的图像与性质解决实际问题。
3. 提高学生的数学思维能力,培养学生的数学审美观念。
二、教学内容:1. 三角函数的定义与基本性质2. 正弦函数的图像与性质3. 余弦函数的图像与性质4. 正切函数的图像与性质5. 三角函数图像与性质的综合应用三、教学重点与难点:1. 重点:三角函数的定义,正弦函数、余弦函数、正切函数的图像与性质。
2. 难点:三角函数图像与性质的综合应用。
四、教学方法:1. 采用问题驱动法,引导学生探索三角函数的图像与性质。
2. 利用多媒体课件,展示三角函数的图像,增强学生的直观感受。
3. 结合实际例子,让学生学会运用三角函数的图像与性质解决实际问题。
4. 开展小组讨论,培养学生的合作与交流能力。
五、教学过程:1. 导入:通过复习初中阶段学习的三角函数知识,引导学生进入本节课的学习。
2. 三角函数的定义与基本性质:讲解三角函数的定义,引导学生掌握三角函数的基本性质。
3. 正弦函数的图像与性质:利用多媒体课件展示正弦函数的图像,讲解正弦函数的性质。
4. 余弦函数的图像与性质:利用多媒体课件展示余弦函数的图像,讲解余弦函数的性质。
5. 正切函数的图像与性质:利用多媒体课件展示正切函数的图像,讲解正切函数的性质。
6. 三角函数图像与性质的综合应用:结合实际例子,讲解如何运用三角函数的图像与性质解决实际问题。
7. 课堂小结:对本节课的内容进行总结,强调重点知识点。
8. 课后作业:布置相关练习题,巩固所学知识。
9. 课后反思:教师对本节课的教学进行反思,总结经验教训。
10. 教学评价:对学生的学习情况进行评价,了解学生对三角函数图像与性质的掌握程度。
六、教学策略与资源:1. 教学策略:采用问题引导式教学,鼓励学生主动发现问题、解决问题。
利用数学软件或在线工具,让学生亲自动手绘制三角函数图像,加深对函数性质的理解。
三角函数单元备课教案及反思
三角函数单元备课教案及反思教案标题:三角函数单元备课教案及反思教案目标:1. 理解三角函数的定义和性质。
2. 掌握三角函数的基本公式和图像。
3. 能够运用三角函数解决实际问题。
4. 培养学生的数学思维和解决问题的能力。
教案步骤:一、导入(5分钟)1. 引入三角函数的概念,提问学生对三角函数的了解程度。
2. 通过展示一些实际生活中的三角形图像,引发学生对三角函数的兴趣和思考。
二、概念讲解(15分钟)1. 介绍三角函数的定义和性质,包括正弦、余弦和正切函数。
2. 解释三角函数的周期性和对称性,展示三角函数的图像。
3. 引导学生探索三角函数的基本公式,如正弦定理和余弦定理。
三、练习与实践(25分钟)1. 分发练习题,让学生通过计算和分析来巩固所学的概念和公式。
2. 引导学生运用三角函数解决实际问题,如测量高楼的高度、计算船只的航向等。
四、总结与拓展(10分钟)1. 总结本节课所学的内容,强调三角函数的重要性和应用。
2. 提出一些拓展问题,激发学生的思考和求解能力。
五、反思(5分钟)1. 分析本节课的教学效果,包括学生的参与度、理解程度和解题能力。
2. 总结教学中存在的问题和不足,并提出改进措施。
教案反思:本节课的教学效果较好,学生对三角函数的定义和性质有了初步的了解。
通过展示实际生活中的三角形图像,激发了学生的兴趣和思考。
在概念讲解环节,学生能够积极参与讨论,并能够理解三角函数的周期性和对称性。
练习与实践环节,学生通过计算和分析练习题,巩固了所学的概念和公式,并能够运用三角函数解决实际问题。
然而,在教学中还存在一些问题。
首先,有部分学生对三角函数的定义和性质理解不够深入,需要更多的示例和练习来加深理解。
其次,部分学生在解题过程中存在一些计算错误,需要加强对基本公式的掌握和运用能力。
最后,教学时间安排上可能有些紧凑,有些学生在练习环节中没有足够的时间来巩固所学的知识。
为了改进教学效果,我会在下节课中加入更多的实例和练习,以加深学生对三角函数的理解。
三角函数及转换关系教案
三角函数及转换关系教案一、教学目标。
1. 知识与技能,掌握三角函数的基本概念和性质,了解三角函数的图像及其变换关系。
2. 过程与方法,通过理论讲解和实例演练,培养学生的数学分析能力和解题技巧。
3. 情感态度与价值观,激发学生对数学的兴趣,培养学生的数学思维和创新能力。
二、教学重点与难点。
1. 重点,三角函数的定义、性质和图像。
2. 难点,三角函数的变换关系及其应用。
三、教学过程。
1. 导入新课。
教师首先通过引入一个实际问题,如角度的测量和计算等,引起学生的兴趣,然后引出三角函数的概念和定义,让学生了解三角函数的基本概念。
2. 讲解三角函数的定义和性质。
教师通过讲解三角函数的定义和性质,引导学生了解正弦函数、余弦函数和正切函数的定义及其性质,包括定义域、值域、周期、奇偶性等。
3. 分析三角函数的图像。
教师通过绘制正弦函数、余弦函数和正切函数的图像,让学生了解三角函数的图像特点,包括波形、周期、振幅等,并引导学生分析图像的变化规律。
4. 探讨三角函数的变换关系。
教师引导学生讨论三角函数的变换关系,包括平移、伸缩和翻转等变换,让学生了解不同参数对函数图像的影响,并掌握变换关系的具体表达式。
5. 练习与巩固。
教师通过实例演练,让学生巩固所学知识,培养学生的解题能力和分析能力,包括求解三角函数的性质、图像和变换关系等问题。
6. 总结与拓展。
教师对本节课所学内容进行总结,并引导学生拓展相关知识,包括三角函数的应用、三角函数方程的求解等问题,激发学生的思维,培养学生的创新能力。
四、教学方法。
1. 示范法,通过示范绘制函数图像和变换关系,让学生直观了解三角函数的特点。
2. 讨论法,引导学生讨论三角函数的性质和变换关系,培养学生的分析能力和解决问题的能力。
3. 练习法,通过实例演练,巩固所学知识,培养学生的解题技巧和数学思维。
4. 拓展法,引导学生拓展相关知识,激发学生的思维,培养学生的创新能力。
五、教学工具。
1. 黑板、彩色粉笔,用于讲解和绘制函数图像。
三角函数的定义及应用教学教案(优秀4篇)
三角函数的定义及应用教学教案(优秀4篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、策划方案、合同协议、条据文书、竞聘演讲、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, planning plans, contract agreements, documentary evidence, competitive speeches, insights, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!三角函数的定义及应用教学教案(优秀4篇)EXcel中经常需要使用到三角函数进行计算,三角函数具体该如何使用呢?读书破万卷下笔如有神,以下内容是本店铺为您带来的4篇《三角函数的定义及应用教学教案》,希望朋友们参阅后能够文思泉涌。
三角函数的图象与性质教案
三角函数的图象与性质教案一、教学目标1. 理解三角函数的定义和基本性质。
2. 学会绘制和分析三角函数的图象。
3. 掌握三角函数的周期性、奇偶性、单调性等性质。
4. 能够应用三角函数的性质解决问题。
二、教学内容1. 三角函数的定义和基本性质。
2. 三角函数的图象绘制方法。
3. 三角函数的周期性性质。
4. 三角函数的奇偶性性质。
5. 三角函数的单调性性质。
三、教学重点与难点1. 三角函数的定义和基本性质的理解。
2. 三角函数图象的绘制和分析。
3. 三角函数周期性、奇偶性、单调性的理解和应用。
四、教学方法1. 采用多媒体教学,展示三角函数的图象和性质。
2. 利用数学软件或图形计算器进行图象绘制和分析。
3. 引导学生通过观察、分析和归纳三角函数的性质。
4. 利用例题和练习题巩固所学知识。
五、教学安排1. 第一课时:三角函数的定义和基本性质。
2. 第二课时:三角函数的图象绘制方法。
3. 第三课时:三角函数的周期性性质。
4. 第四课时:三角函数的奇偶性性质。
5. 第五课时:三角函数的单调性性质。
六、教学目标1. 理解正弦函数、余弦函数的周期性。
2. 学会应用周期性解决实际问题。
3. 掌握正弦函数、余弦函数的相位变换。
七、教学内容1. 正弦函数、余弦函数的周期性。
2. 周期性在实际问题中的应用。
3. 正弦函数、余弦函数的相位变换。
八、教学重点与难点1. 周期性的理解和应用。
2. 相位变换的理解和应用。
九、教学方法1. 通过实例讲解周期性在实际问题中的应用。
2. 利用数学软件或图形计算器进行相位变换的演示。
3. 引导学生通过观察、分析和归纳正弦函数、余弦函数的周期性和相位变换。
十、教学安排1. 第六课时:正弦函数、余弦函数的周期性。
2. 第七课时:周期性在实际问题中的应用。
3. 第八课时:正弦函数、余弦函数的相位变换。
十一、教学目标1. 理解正切函数的图象和性质。
2. 学会应用正切函数解决实际问题。
3. 掌握正切函数的周期性和奇偶性。
三角函数的定义教案
三角函数的定义教案使学生理解并掌握三角函数线的作法,能利用三角函数线解决一些简单问题. 2.培养学生分析、探索、归纳和类比的能力,以及形象思维能力。
下面是我给大家整理的三角函数的定义教案5篇,希望大家能有所收获!三角函数的定义教案1教学准备教学目标1、知识与技能(1)了解周期现象在现实中广泛存在;(2)感受周期现象对实际工作的意义;(3)理解周期函数的概念;(4)能熟练地判断简单的实际问题的周期;(5)能利用周期函数定义进行简单运用。
2、过程与方法通过创设情境:单摆运动、时钟的圆周运动、潮汐、波浪、四季变化等,让学生感知周期现象;从数学的角度分析这种现象,就可以得到周期函数的定义;根据周期性的定义,再在实践中加以应用。
3、情感态度与价值观通过本节的学习,使同学们对周期现象有一个初步的认识,感受生活中处处有数学,从而激发学生的学习积极性,培养学生学好数学的信心,学会运用联系的观点认识事物。
教学重难点重点:感受周期现象的存在,会判断是否为周期现象。
难点:周期函数概念的理解,以及简单的应用。
教学工具投影仪教学过程【创设情境,揭示课题】同学们:我们生活在海南岛非常幸福,可以经常看到大海,陶冶我们的情操。
众所周知,海水会发生潮汐现象,大约在每一昼夜的时间里,潮水会涨落两次,这种现象就是我们今天要学到的周期现象。
再比如,[取出一个钟表,实际操作]我们发现钟表上的时针、分针和秒针每经过一周就会重复,这也是一种周期现象。
所以,我们这节课要研究的主要内容就是周期现象与周期函数。
(板书课题)【探究新知】1.我们已经知道,潮汐、钟表都是一种周期现象,请同学们观察钱塘江潮的图片(投影图片),注意波浪是怎样变化的?可见,波浪每隔一段时间会重复出现,这也是一种周期现象。
请你举出生活中存在周期现象的例子。
(单摆运动、四季变化等)(板书:一、我们生活中的周期现象)2.那么我们怎样从数学的角度研究周期现象呢?教师引导学生自主学习课本P3——P4的相关内容,并思考回答下列问题:①如何理解“散点图”?②图1-1中横坐标和纵坐标分别表示什么?③如何理解图1-1中的“H/m”和“t/h”?④对于周期函数的定义,你的理解是怎样?以上问题都由学生来回答,教师加以点拨并总结:周期函数定义的理解要掌握三个条件,即存在不为0的常数T;x 必须是定义域内的任意值;f(x+T)=f(x)。
三角函数教案优秀3篇
三角函数教案优秀3篇角函数教学设计篇一教材分析:本章包括锐角三角函数的概念(主要是正弦、余弦和正切的概念),以及利用锐角三角函数解直角三角形等内容。
锐角三角函数为解直角三角形提供了有效的工具,解直角三角形在实际当中有着广泛的应用,这也为锐角三角函数提供了与实际联系的机会。
研究锐角三角函数的直接基础是相似三角形的一些结论,解直角三角形主要依赖锐角三角函数和勾股定理等内容,因此相似三角形和勾股定理等是学习本章的直接基础。
本章内容与已学#39;相似三角形#39;#39;勾股定理#39;等内容联系紧密,并为高中数学中三角函数等知识的学习作好准备。
学情分析:锐角三角函数的概念既是本章的难点,也是学习本章的关键。
难点在于,锐角三角函数的概念反映了角度与数值之间对应的函数关系,这种角与数之间的对应关系,以及用含有几个字母的符号sinA、cosA、tanA表示函数等,学生过去没有接触过,因此对学生来讲有一定的难度。
至于关键,因为只有正确掌握了锐角三角函数的概念,才能真正理解直角三角形中边、角之间的关系,从而才能利用这些关系解直角三角形。
第一课时教学目标:知识与技能:1、通过探究使学生知道当直角三角形的锐角固定时,它的对边与斜边的比值都固定(即正弦值不变)这一事实。
2、能根据正弦概念正确进行计算3、经历当直角三角形的锐角固定时,它的对边与斜边的比值是固定值这一事实,发展学生的形象思维,培养学生由特殊到一般的演绎推理能力。
过程与方法:通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想,逐步培养学生会观察、比较、分析、概括等逻辑思维能力。
情感态度与价值观:引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯。
重难点:1.重点:理解认识正弦(sinA)概念,通过探究使学生知道当锐角固定时,它的对边与斜边的比值是固定值这一事实。
2.难点与关键:引导学生比较、分析并得出:对任意锐角,它的对边与斜边的比值是固定值的事实。
新人教版九年级数学三角函数教案5篇最新
新人教版九年级数学三角函数教案5篇最新三角形中的恒等式是我们经常在考试中遇到的题型,教师需要好的教案范围去教导学生,今天小编在这里整理了一些新人教版九年级数学三角函数教案5篇最新,我们一起来看看吧!新人教版九年级数学三角函数教案1教学目的1,使学生了解本章所要解决的新问题是:已知直角三角形的一条边和另一个元素(一边或一锐角),求这个直角三角形的其他元素。
2,使学生了解“在直角三角形中,当锐角A取固定值时,它的对边与斜边的比值也是一个固定值。
重点、难点、关键1,重点:正弦的概念。
2,难点:正弦的概念。
3,关键:相似三角形对应边成比例的性质。
教学过程一、复习提问1、什么叫直角三角形?2,如果直角三角形ABC中∠C为直角,它的直角边是什么?斜边是什么?这个直角三角形可用什么记号来表示?二、新授1,让学生阅读教科书第一页上的插图和引例,然后回答问题:(1)这个有关测量的实际问题有什么特点?(有一个重要的测量点不可能到达)(2)把这个实际问题转化为数学模型后,其图形是什么图形?(直角三角形)(3)显然本例不能用勾股定理求解,那么能不能根据已知条件,在地面上或纸上画出另一个与它全等的直角三角形,并在这个全等图形上进行测量?(不一定能,因为斜边即水管的长度是一个较大的数值,这样做就需要较大面积的平地或纸张,再说画图也不方便。
)(4)这个实际问题可归结为怎样的数学问题?(在Rt△ABC中,已知锐角A和斜边求∠A的对边BC。
)但由于∠A不一定是特殊角,难以运用学过的定理来证明BC的长度,因此考虑能否通过式子变形和计算来求得BC的值。
2,在RT△ABC中,∠C=900,∠A=300,不管三角尺大小如何,∠A的对边与斜边的比值都等于1/2,根据这个比值,已知斜边AB的长,就能算出∠A的对边BC的长。
类似地,在所有等腰的那块三角尺中,由勾股定理可得∠A的对边/斜边=BC/AB=BC/=1/=/2 这就是说,当∠A=450时,∠A的对边与斜边的比值等于/2,根据这个比值,已知斜边AB的长,就能算出∠A 的对边BC的长。
三角函数教案(共10课时)
第一课时:任意角与弧度制教学目标知识目标:理解任意角的概念(包括正角、负角、零角) 与区间角的概念,会用终边相同的角的形式表示某些位置的角;了解弧度的意义,并能正确的进行弧度与角度的换算;能用弧长公式解决相关的实际问题。
能力目标:会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合的书写.德育目标:1.提高学生的推理能力; 2.培养学生应用意识. 教学重点:任意角概念的理解;区间角的集合的书写.教学难点:终边相同角的集合的表示;区间角的集合的书写. 教学方法:讲授,练习,探究启发 课 时:1课时 教学过程 【课前预习】1.与α角终边相同的角的集合,连同α角在内(而且只有这样的角),可以记为 ; 1弧度=( )0,1°= 弧度;弧长公式: ,扇形面积公式: ;2.下列说法正确的是 ( ) A .第二象限的角是钝角 B .第三象限的角必大于第二象限的角 C .-8500是第二象限的角 D .00095,264,984-是终边相同的角3.(世纪金榜P52 第一题)若01125与α(00360α≤≤)终边相同,则α为( ) A .045 B .0135 C .0315- D .04054.在直角坐标系中,若角α与β终边互为反向延长线,α与β之间的关系是 ( )A .αβ=B .2()k k R απβ=+∈C .απβ=+D .(21)()k k R απβ=++∈ 5. (世纪金榜P52 基础知识)终边在x 轴上的角的集合为 , 终边在y 轴上的角的集合为 , 终边在坐标轴上的角的集合为 , 第三象限的角的集合是 。
6.(世纪金榜P53 例1)若α是第二象限的角,则2α是第 象限的角。
7.(世纪金榜P53 例2)一个扇形ABC 的圆心角060α=,10r =,则它的弧长是 ,该段弧所在的弓形面积 。
【典型例题】例1:若θ角的终边与85π角的终边相同,则在[]0,2π上终边与4π的角终边相同的角为 。
三角函数图像与性质总复习教案
三角函数图像与性质总复习教案一、教学目标1. 回顾和巩固三角函数的图像与性质,包括正弦函数、余弦函数、正切函数等。
2. 提高学生对三角函数图像与性质的理解和应用能力。
3. 培养学生的数学思维能力和解决问题的能力。
二、教学内容1. 复习正弦函数的图像与性质。
2. 复习余弦函数的图像与性质。
3. 复习正切函数的图像与性质。
4. 复习三角函数的周期性。
5. 复习三角函数的奇偶性。
三、教学方法1. 采用讲解法,通过教师的讲解,引导学生回忆和巩固三角函数的图像与性质。
2. 采用案例分析法,通过具体的例子,让学生理解和掌握三角函数的图像与性质。
3. 采用互动教学法,引导学生积极参与讨论和提问,提高学生的思维能力和解决问题的能力。
四、教学步骤1. 复习正弦函数的图像与性质。
a. 引导学生回忆正弦函数的定义和图像。
b. 讲解正弦函数的周期性和奇偶性。
c. 通过例子,让学生应用正弦函数的性质解决实际问题。
2. 复习余弦函数的图像与性质。
a. 引导学生回忆余弦函数的定义和图像。
b. 讲解余弦函数的周期性和奇偶性。
c. 通过例子,让学生应用余弦函数的性质解决实际问题。
3. 复习正切函数的图像与性质。
a. 引导学生回忆正切函数的定义和图像。
b. 讲解正切函数的周期性和奇偶性。
c. 通过例子,让学生应用正切函数的性质解决实际问题。
4. 复习三角函数的周期性。
a. 引导学生回忆三角函数的周期性定义。
b. 讲解三角函数的周期性性质。
c. 通过例子,让学生应用三角函数的周期性解决实际问题。
5. 复习三角函数的奇偶性。
a. 引导学生回忆三角函数的奇偶性定义。
b. 讲解三角函数的奇偶性性质。
c. 通过例子,让学生应用三角函数的奇偶性解决实际问题。
五、教学评价1. 课堂练习:布置相关的练习题,检查学生对三角函数图像与性质的理解和应用能力。
2. 课后作业:布置相关的作业题,巩固学生对三角函数图像与性质的记忆和理解。
3. 小组讨论:组织学生进行小组讨论,鼓励学生积极参与,提高学生的思维能力和解决问题的能力。
高三数学三角函数复习教案
高三数学三角函数复习教案函数的知识是高中里面比较重要的知识,教师需要好的教案来教诲学生,今天作者在这里整理了一些高三数学三角函数复习教案,我们一起来看看吧!高三数学三角函数复习教案1“函数的单调性”教案【教学目标】【知识目标】:使学生从形与数两方面知道函数单调性的概念,学会利用函数图像知道和研究函数的性质,初步掌控利用函数图象和单调性定义判定、证明函数单调性的方法.【能力目标】通过对函数单调性定义的探究,渗透数形结合数学思想方法,培养学生视察、归纳、抽象的能力和语言表达能力;通过对函数单调性的证明,提高学生的推理论证能力.【德育目标】通过知识的探究进程培养学生仔细视察、认真分析、严谨论证的良好思维习惯,让学生经历从具体到抽象,从特别到一样,从感性到理性的认知进程.【教学重点】函数单调性的概念、判定及证明. 函数的单调性是学生第一次接触用严格的逻辑语言证明函数的性质,并在今后解决初等函数的性质、求函数的值域、不等式及比较两个数的大小等方面有广泛的实际运用,【教学难点】归纳抽象函数单调性的定义以及根据定义证明函数的单调性. 由于判定或证明函数的单调性,常常要综合运用一些知识(如不等式、因式分解、配方及数形结合的思想方法等)所以判定或证明函数的单调性是本节课的难点.【教材分析】函数的单调性是函数的重要性质之一,它把自变量的变化方向和函数值的变化方向定性的联系在一起,所以本节课在教材中的作用以下(1)函数的单调性起着承前启后的作用。
一方面,初中数学的许多内容在解决函数的某些问题中得到了充分运用,函数的单调性与前一节内容函数的概念和图像知识的延续有密切的联系;函数的单调性一节中的知识是它和后面的函数奇偶性,合称为函数的简单性质,是今后研究指数函数、对数函数、幂函数及其他函数单调性的理论基础。
(2)函数的单调性是培养学生数学能力的良好题材,这节课通过对具体函数图像的归纳和抽象,概括出函数在某个区间上是增函数或减函数的准肯定义,明确指出函数的增减性是相对于某个区间来说的。
三角函数的图像与性质教案
三角函数的图像与性质优秀教案一、教学目标1. 知识与技能:(1)了解正弦函数、余弦函数、正切函数的图像和性质;(2)学会分析三角函数图像的变化规律;(3)能够运用三角函数的性质解决实际问题。
2. 过程与方法:(1)通过观察、分析、归纳三角函数图像的特性;(2)利用数形结合的方法,研究三角函数的性质;(3)培养学生的逻辑思维能力和解决问题的能力。
3. 情感态度与价值观:(1)激发学生对三角函数的兴趣,培养学习的积极性;(2)引导学生感受数学的美丽和实用性,提高学生的数学素养;(3)培养学生合作、探究的精神。
二、教学重点与难点1. 教学重点:(1)掌握正弦函数、余弦函数、正切函数的图像和性质;(2)能够运用三角函数的性质解决实际问题。
2. 教学难点:(1)三角函数图像的变换规律;(2)三角函数性质的深入理解。
三、教学方法与手段1. 教学方法:(1)采用问题驱动法,引导学生探究三角函数的图像与性质;(2)运用数形结合的方法,帮助学生直观地理解三角函数的性质;(3)采用小组合作、讨论的方式,培养学生的团队合作能力。
2. 教学手段:(1)利用多媒体课件,展示三角函数的图像和性质;(2)利用数学软件,进行函数图像的动态演示;(3)提供充足的练习题,巩固所学知识。
四、教学内容与步骤1. 导入新课:(1)复习已知三角函数的图像和性质;(2)引出本节课要学习的内容:三角函数的图像与性质。
2. 探究正弦函数的图像与性质:(1)展示正弦函数的图像;(2)引导学生观察、分析正弦函数的性质;3. 探究余弦函数的图像与性质:(1)展示余弦函数的图像;(2)引导学生观察、分析余弦函数的性质;4. 探究正切函数的图像与性质:(1)展示正切函数的图像;(2)引导学生观察、分析正切函数的性质;五、课堂练习与拓展1. 课堂练习:(1)根据给定的函数式,绘制函数图像;(2)根据函数图像,分析函数的性质;(3)解决实际问题,运用三角函数的性质。
人教版九年级数学28.1三角函数(正弦)(教案)
本节课的重点是让学生掌握正弦函数的定义及计算方法,并能够熟练运用特殊角的正弦值解决实际问题。难点在于让学生理解正弦函数在实际情境中的应用,提高学生的数学思维能力。
二、核心素养目标
1.让学生通过探索锐角三角函数的概念,培养其数学抽象和逻辑推理的核心素养,提高对数学概念的理解和应用能力。
关于学生小组讨论的部分,我觉得效果还是不错的。学生们能够围绕主题展开讨论,并提出自己的观点。但在引导和启发学生思考方面,我觉得还有待提高。今后,我需要提前准备更多开放性和启发性的问题,引导学生深入思考,提高他们的分析和解决问题的能力。
在总结回顾环节,学生对正弦函数的知识点掌握程度较好。但我也注意到,仍有部分学生对某些知识点存在疑问。为了确保每个学生都能跟上教学进度,我需要及时关注学生的反馈,对于他们提出的问题,要给予耐心解答,确保他们真正理解并掌握所学知识。
-正弦函数的计算方法:教师应详细讲解如何使用量角器测量角度,以及如何根据测量结果计算出正弦值。
举例:在讲解正弦函数定义时,可通过具体图形(如30°-60°-90°的直角三角形)来演示正弦值的计算过程,强调对边与斜边的比值关系。
2.教学难点
-正弦函数的理解:学生对锐角三角函数的概念理解可能存在困难,尤其是正弦函数的物理意义和实际应用场景。
1.寻找更多贴近生活的实例,提高学生的兴趣和参与度。
2.更加耐心地讲解和演示,确保学生掌握基本概念。
3.提高学生的分组讨论和实验操作参与度,鼓励每个学生积极参与。
4.准备更多开放性和启发性的问题,引导学生深入思考。
5.关注学生反馈,及时解答他们的疑问,确保教学效果。
五、教学反思
在今天的课程中,我们探讨了三角函数中的正弦函数。回顾整个教学过程,我觉得有几个地方值得反思和总结。
三角函数教案
三角函数教案三角函数教案(精选4篇)三角函数教案篇11、锐角三角形中,任意两个内角的和都属于区间,且满意不等式:即:一角的正弦大于另一个角的余弦。
2、若,则,3、的图象的对称中心为( ),对称轴方程为。
4、的图象的对称中心为( ),对称轴方程为。
5、及的图象的对称中心为( )。
6、常用三角公式:有理公式: ;降次公式: , ;万能公式: , , (其中)。
7、帮助角公式: ,其中。
帮助角的位置由坐标打算,即角的终边过点。
8、时, 。
9、。
其中为内切圆半径, 为外接圆半径。
特殊地:直角中,设c为斜边,则内切圆半径,外接圆半径。
10、的图象的图象( 时,向左平移个单位, 时,向右平移个单位)。
11、解题时,条件中若有消失,则可设,则。
12、等腰三角形中,若且,则。
13、若等边三角形的边长为,则其中线长为,面积为。
14、;三角函数教案篇2二、复习要求1、三角函数的概念及象限角、弧度制等概念;2、三角公式,包括诱导公式,同角三角函数关系式和差倍半公式等;3、三角函数的图象及性质。
三、学习指导1、角的概念的推广。
从运动的角度,在旋转方向及旋转圈数上引进负角及大于3600的角。
这样一来,在直角坐标系中,当角的终边确定时,其大小不肯定(通常把角的始边放在x轴正半轴上,角的顶点与原点重合,下同)。
为了把握这些角之间的联系,引进终边相同的角的概念,凡是与终边α相同的角,都可以表示成k·3600 α的形式,特例,终边在x 轴上的角集合{α|α=k·1800,k∈z},终边在y轴上的角集合{α|α=k·1800 900,k∈z},终边在坐标轴上的角的集合{α|α=k·900,k∈z}。
在已知三角函数值的大小求角的大小时,通常先确定角的终边位置,然后再确定大小。
弧度制是角的度量的重要表示法,能正确地进行弧度与角度的换算,熟记特别角的弧度制。
在弧度制下,扇形弧长公式l=|α|r,扇形面积公式,其中α为弧所对圆心角的弧度数。
三角函数的概念教案(一)
三角函数的概念教案(一)三角函数的概念教学教案教学目标通过本次课程的学习,学生将会掌握以下知识:1.了解三角函数的概念和定义2.掌握三角函数的基本性质和特点3.能够在不同三角函数之间进行转化和变形4.能够应用三角函数解决简单的实际问题教学重点•理解三角函数的三角形定义•理解正弦、余弦、正切、余切的定义•了解三角函数的图像及其周期性教学难点•通过三角函数图像,探究其性质和特点•能够理解三角函数在不同象限的变化教学过程导入-启发式问题•教师提问:“环球旅行家徐霞客曾在他的游记中提到:’在线段AC上取B点,将∠CAB顶点落在直线PQ上,则BC/AB与PQ呈怎样的关系呢?”•学生思考,回答问题。
教师引导学生,让学生通过作图和讨论来推导出正弦函数的定义。
基本概念的介绍•介绍三角函数的定义和基本性质•介绍正弦、余弦、正切、余切的定义•介绍三角函数的图像及其周期性三角函数的图像及性质•将正弦、余弦、正切、余切的图像展示给学生•引导学生通过观察图像,得出三角函数的一些特点,如周期、最大值、最小值等•让学生通过绘制函数曲线,尝试构造更多的三角函数图像,并探究其性质和特点•让学生通过比较三角函数的图像,了解另外三个基本三角函数的定义三角函数的性质和变换•引导学生探究三角函数在不同象限的变化•教师讲解三角函数的一些常用变换,如平移、伸缩、反转等,让学生通过绘图来理解其作用和效果•给学生一些简单的练习题,让他们尝试将不同的函数变形成指定的函数三角函数的应用•通过练习,让学生熟悉如何使用三角函数解决实际问题,如测量远距离的高度、计算三角形的边角等•引导学生通过思考,定制问题,将三角函数的使用延伸至其他领域总结•教师对本节课中涉及的概念、知识点以及解题方法进行总结,巩固学生的学习成果•对本节课学生表现出色的同学进行表扬,激励其学习积极性•指出学生在学习中存在的问题,为下节课的教学提出相应的建议课后作业•请学生完成课后作业,巩固本节课所学知识,拓展思维,达到应用的目的。
三角函数的图像与性质教案
三角函数的图像与性质优秀教案一、教学目标:1. 知识与技能:使学生掌握三角函数的图像与性质,能够运用三角函数解决实际问题。
2. 过程与方法:通过观察、分析、归纳等方法,引导学生探索三角函数的图像与性质。
3. 情感态度价值观:激发学生对数学的兴趣,培养学生的创新意识和团队协作能力。
二、教学内容:1. 三角函数的定义与图像2. 三角函数的周期性3. 三角函数的奇偶性4. 三角函数的单调性5. 三角函数的极值三、教学重点与难点:1. 教学重点:三角函数的图像与性质的掌握。
2. 教学难点:三角函数的周期性、奇偶性、单调性和极值的判断。
四、教学方法:1. 采用问题驱动法,引导学生主动探究三角函数的图像与性质。
2. 利用多媒体手段,展示三角函数的图像,增强学生的直观感受。
3. 组织小组讨论,培养学生的团队协作能力。
五、教学过程:1. 导入新课:通过复习初中阶段学习的三角函数知识,引导学生进入高中阶段的学习。
2. 探究三角函数的图像与性质:引导学生观察三角函数的图像,分析其特点,归纳出性质。
3. 讲解与示范:教师讲解三角函数的周期性、奇偶性、单调性和极值的判断方法,并进行示范。
4. 练习与反馈:学生进行课堂练习,教师及时给予反馈,巩固所学知识。
5. 总结与拓展:对本节课的内容进行总结,提出拓展问题,激发学生的学习兴趣。
6. 课后作业:布置相关作业,巩固所学知识,提高学生的实际应用能力。
教案编写完毕,仅供参考。
如有需要,请根据实际情况进行调整。
六、教学评价:1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答情况,以及小组讨论的表现,评价学生的学习态度和团队协作能力。
2. 作业评价:对学生的课后作业进行批改,评价学生对课堂所学知识的掌握程度。
3. 单元测试评价:在单元结束后进行测试,评价学生对三角函数图像与性质的掌握情况。
七、教学策略:1. 针对不同学生的学习基础,采取分层教学,使所有学生都能跟上教学进度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
个性化辅导教案学生姓名任课老师郑本禄上课时间学科数学年级高一教材版本课题名称三角函数课时计划教学目标1.理解角的概念2.理解任意角的三角函数定义并掌握三角函数值在各象限的符号3.掌握同角三角函数的关系式与诱导公式4.掌握三角函数图像和性质教学重难点1.三角函数的关系式与诱导公式2.三角函数图像和性质教学过程一:角的概念:角的定义,角的三要素,角的分类(正角、负角、零角和象限角),正确理解角,与角终边相同的角的集合}{|2,k k zββπα=+∈,弧度制,弧度与角度的换算,弧长l rα=、扇形面积21122s lr rα==,二:任意角的三角函数定义:任意角α的终边上任意取一点p的坐标是(x,y),它与原点的距离是22r x y=+(r>0),那么角α的正弦rya=sin、余弦rxa=cos、正切xya=tan,它们都是以角为自变量,以比值为函数值的函数。
三角函数值在各象限的符号三:同角三角函数的关系式与诱导公式:1.平方关系:22sin cos1αα+=2. 商数关系:sintancosααα=3.诱导公式——口诀:奇变偶不变,符号看象限。
正弦余弦正切4. 两角和与差公式:()()sin sin cos cos sincos cos cos sin sintan tanαβαβαβαβαβαβαβ⎧⎪±=±⎪⎪±=⎨⎪±5.二倍角公式:22222sin 22sin cos cos 2cos sin 2cos 112sin 2tan tan 21tan ααααααααααα⎧⎪=⎪=-=-=-⎨⎪⎪=-⎩余弦二倍角公式变形: 222cos 1cos2,2sin 1cos2αααα=+=-四:三角函数图像和性质1-1y=sinx-3π2-5π2-7π27π25π23π2π2-π2-4π-3π-2π4π3π2ππ-πoy x1-1y=cosx-3π2-5π2-7π27π25π23π2π2-π2-4π-3π-2π4π3π2ππ-πoyxy=tanx3π2ππ2-3π2-π-π2oyx解析式 y=sinxy=cosxtan y x =定义域值域和最值y ∈ 当x = ,1y 取最小值-当x = ,1y 取最大值y ∈ 当x = ,1y 取最小值-当x = ,1y 取最大值y ∈无最值周期性π2=Tπ2=Tπ=T奇偶性 奇函数偶函数奇函数 单调性在[]2222ππππ+-k k ,k Z ∈ 上是增函数在[]23222ππππ++k k ,k Z ∈在[]πππk k 22,-k Z ∈上是增函数在 []πππ+k k 22,k Z ∈上是减在⎪⎭⎫⎝⎛+-2,2ππππk k k Z ∈上为增函数对称性对称中心(,0) k k Z π∈对称轴方程2x k ππ=+,k Z ∈对称中心2(,0)k ππ+ k Z ∈对称轴方程x k π= , k Z ∈对称中心(,0) k k Z π∈ 或者 对称中心2(,0)k ππ+k Z ∈2、熟练求函数sin()y A x ωϕ=+的值域,最值,周期,单调区间,对称轴、对称中心等 ,会用五点法作sin()y A x ωϕ=+简图:五点分别为:、 、 、 、 。
3、图象的基本变换:相位变换:sin sin()y x y x ϕ=⇒=+ 周期变换:sin()sin()y x y x ϕωϕ=+⇒=+ 振幅变换:sin()sin()y x y A x ωϕωϕ=+⇒=+ 4、求函数sin()y A x ωϕ=+的解析式:即求A 由最值确定,ω有周期确定,φ有特殊点确定。
5、三角函数最值类型:(1)y =a sin x +b cos x 型函数最值的求法:常转化为y =22a b +sin(x +ϕ) (2)y =a sin 2x +b sin x +c 型:常通过换元法(令sinx=t ,[]1,1t ∈-)转化为y =at 2+bt +c 型: (3)同一问题中出现sin cos ,sin cos ,sin cos x x x x x x +-•,求它们的范围时,一般是令sin cos x x t +=或21sin cos sin cos 2t x x t x x --=⇒•=或21sin cos 2t x x -•=-,转化为关于t 的二次函数来解决五:三角形知识:(1)AB C ∆中,c b a ,,分别为C B A ,,的对边,C B A c b a C B A sin sin sin >>⇔>>⇔>>。
(2)在AB C ∆中,A+B+C=180°。
课堂练习基础练习:1、tan(600)-= . sin 225︒= 。
2、α的终边与6π的终边关于直线x y =对称,则α=_____。
3、已知扇形AOB 的周长是6cm ,该圆心角是1弧度,则扇形的面积= cm 2.4、设a <0,角α的终边经过点P (-3a ,4a ),那么sin α+2cos α的值等于y 6、.化简1150-︒2sin 的结果是 。
7、已知)2,23(,1312cos ππαα∈=,则=+)4(cos πα 。
8、若均βα,为锐角,==+=ββααcos ,53)(sin ,552sin 则 。
9、化简=+-)12sin 12(cos )12sin12(cosππππ10、 根据sin sin 2sin cos 22αβαβαβ+-+=及cos cos 2sin sin22αβαβαβ+--=-, 若3sin sin (cos cos ),(0,),(0,)3θϕϕθθπϕπ+=-∈∈且,计算 ____.θϕ-=11、集合{2ππ4ππ|+≤≤+k k αα,∈k Z}中的角所表示的范围(阴影部分)是( )(A ) (B ) (C ) (D )12、函数x y 2sin 3=的图象可以看成是将函数)3x 2sin(3y π-=的图象-------------( )(A )向左平移个6π单位 (B )向右平移个6π单位(C )向左平移个3π单位 (D )向右平移个3π单位13、已知0tan ,0sin ><θθ,那么θ是 。
14.已知点P (tan α,cos α)在第三象限,则角α的终边在15.若cos 0,tan 0αα<>,化简211cos α-= 。
16.已知α是第二象限角,那么2α是 ( ) A .第一象限角 B. 第二象限角 C. 第二或第四象限角 D .第一或第三象限角 17.已知542cos ,532sin-=θ=θ,则角θ终边所在象限是--------------------------------( ) (A ) 第三象限 (B )第四象限 (C )第三或第四象限 (D )以上都不对18.已知α是锐角,则下列各式成立的是------------------------------------------------------( )(A )21cos sin =α+α(B )1cos sin =α+α(C )34cos sin =α+α(D )35cos sin =α+α 19.右图是函数)2|)(|x sin(2y π<φφ+ω=的图象,那么-------------------( ),10π=φ=ω,10π-=φ=ωo yx o y x o y x o y x(C )6,2π=φ=ω (D )6,2π-=φ=ω20、已知)(x f 是奇函数,且0<x 时,x x x f 2sin cos )(+=,则当0>x 时,)(x f 的表达式是------------------------------------------------------------------------------------------------------( )(A )x 2sin x cos +(B )x 2sin x cos +-(C )x 2sin x cos -(D )x 2sin x cos -- 21、已知x 2sin )x (tan f =,则)1(-f 的值是 。
22.已知x x f 3cos )(cos =,则)(sin x f 等于( )(A )x 3sin (B )x 3cos (C )x 3sin - (D )x 3cos -23、已知31)4tan(,21)tan(-=-=+παβα,则)4tan(πβ+的值为24、下列函数中,最小正周期为π,且图象关于直线3π=x 对称的是( )A .sin(2)3π=-y x B.sin(2)6π=-y x C.sin(2)6π=+y x D.sin()23π=+x y25、函数sin cos y x x =-的最大值为 26、函数x x y cos sin 3+=,]2,2[ππ-∈x 的最大值为27、下列函数中,周期为π的偶函数是( )A.cos y x =B.sin 2y x =C. tan y x =D. sin(2)2y x π=+28、 已知函数x x x f sin )(=,则)(x f ( )A .是奇函数但不是偶函数B .是偶函数但不是奇函数C .是奇函数也是偶函数D .既不是奇函数也不是偶函数 29、函数212sin ()4y x π=--是( )A .最小正周期为π的偶函数 B. 最小正周期为π的奇函数C. 最小正周期为2π的偶函数 D. 最小正周期为2π的奇函数30、函数y=cos 2x –3cosx+2的最小值是 。
31、、若方程1cos sin 322cos +=-k x x x 有解,则k 的取值范围是 解答题解答题应写出文字说明、演算步骤或证明过程.第一类型:1、已知角α终边上一点P (-4,3),求)29sin()211cos()sin()2cos(απαπαπαπ+---+的值2、求证:αββααβαsin sin )cos(2sin )2sin(=+-+3、已知1sin ,cos 3θθθθ=⋅是第二象限角,求tan 的值。
4、已知044513<<-⎛⎝ ⎫⎭⎪=x x ππ,sin ,求cos cos 24xx π+⎛⎝ ⎫⎭⎪的值.5、已知2,βββ=-tan 求sin +cos 的值。
6、已知tan()24πα+=.22sin cos 1sin cos ββββββ+-求和的值。
sin -cos7、已知βαtan tan 、是方程04332=++x x 的两根,且)2,2(ππβα-∈、,求βα+的值8、已知βα,为锐角,且cos α=101,cos β=51,求βα+的值.9、△ABC 中,已知的值求sinC ,135sinB ,53cosA ==第二类型: 1. 已知函数()2cos sin()2f x x x π=-.(Ⅰ)求()f x 的最小正周期;(Ⅱ)求()f x 在区间2[,]63ππ上的最大值和最小值.2. 已知函数2()2cos 2sin cos 1f x x x x =+-.(Ⅰ)求函数)(x f 的最小正周期;(Ⅱ)求函数)(x f 在]2,0[π上的最大值与最小值.3、设函数2()3sin cos cos f x x x x =-.(Ⅰ)求()f x 的最小正周期;(Ⅱ)当[0,]2x π∈时,求函数()f x 的最大值和最小值.4. 已知函数22()cos sin 2sin cos f x x x x x =-+.(Ⅰ)求函数()f x 的最小正周期;(Ⅱ)当,44x ππ⎡⎤∈-⎢⎥⎣⎦时,求函数()f x 的最大值,并写出x 相应的取值.5、已知函数).(2cos 2sin 2cos 2sin2)(22R ∈-+=a xx x x a x f (I )当a=1时,求函数)(x f 的最小正周期及图象的对称轴方程式; (II )当a=2时,在0)(=x f 的条件下,求xx2sin 12cos +的值.第三类型:1、如下图为函数)0,0,0()sin(>>>++=ϕωϕωA c x A y 图像的一部分 (1)求此函数的周期及最大值和最小值(2)求与这个函数图像关于直线2=x 对称的函数解析式2、已知函数()()sin ,f x A x x R ωϕ=+∈(其中0,0,22A ππωϕ>>-<<),其部分图象如图所示.(I)求()f x 的解析式;(II)求函数)4()4()(ππ-⋅+=x f x f x g 在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值及相应的x 值.第四类型:1. 已知向量(cos ,1)α=a ,(2,sin )α=-b ,3(,)2παπ∈,且⊥a b . (Ⅰ)求sin α的值;(Ⅱ)求tan()4πα+的值.2 已知向量(sin , cos )x x =a ,(cos ,sin 2cos )x x x =-b ,02x π<<.(Ⅰ)若a b ∥,求x ; (Ⅱ)设()f x =⋅a b ,(1)求()f x 的单调增区间;(2)函数()f x 经过怎样的平移才能使所得的图象对应的函数成为奇函数?课后作业 练习册课后记本节课教学计划完成情况:照常完成□ 提前完成□ 延后完成□ _____________________________ 学生的接受程度:完全能接受□ 部分能接受□ 不能接受□ ________________________________ 学生的课堂表现:很积极□ 比较积极□ 一般□ 不积极□ ________________________________ 学生上次作业完成情况:数量____% 完成质量____分 存在问题 ______________________________提交时间教研组长 审 批家长签名。