冷却塔的一个新的热力计算方法-用一维方法作二维计算
冷却塔的热力计算
冷却塔的热力计算冷却塔的任务是将一定水量Q ,从水温t 1冷却到t 2,或者冷却△t =t 1-t 2。
因此,要设计出规格合适的冷却塔,或核算已有冷却塔的冷却能力,我们必须做冷却塔的热力计算。
为了便于计算,我们对冷却塔中的热力过程作如下简化假设:(1)散热系数α,散质系数v β,以及湿空气的比热c ,在整个冷却过程被看作是常量,不随空气温度及水温变化。
(2) 在冷却塔内由于水蒸气的分压力很小,对塔内压力变化影响也很小,所以计算中压力取平均大气压力值。
(3)认为水膜或水滴的表面温度与内部温度一致,也就是不考虑水侧的热阻。
(4) 在热平衡计算中,由于蒸发水量不大,也可以将蒸发水量忽略不计。
(5) 在水温变化不大的范围内,可将饱和水蒸汽分压力及饱和空气与水温的关系假定为线性关系。
冷却塔的热力计算方法有焓差法、湿差法和压差法等,其中最常用的是麦克尔提出的焓差法,以下简要介绍冷却塔的焓差法热力计算。
麦克尔提出的焓差法把过去由温度差和浓度差为动力的传热公式,统一为一个以焓差为动力的传热公式。
在方程式中,麦克尔引进入刘易斯关系式,导出了以焓差为动力的散热方程式。
()dV h h dH t xv q 0"-=β (1)式中:q dH —— 水散出热量;xv β —— 以含湿差为基准的容积散质系数()[]kg kg s m kg //3⋅⋅ ;"t h —— 温度为水温t 时饱和空气比焓 (kg kJ /); 0h —— 空气比焓 (kg kJ /)。
将式(1)代入冷却塔内热平衡方程:n w w q tdQ c Qdt c dH += (2)式中:q dH —— 水散出热量;w c —— 水的比热()[]C /J o ⋅kg k ;Q —— 冷却水量 (s /g k ); u Q —— 蒸发水量 (s /g k ) t —— 水温度 (℃)并引入系数K :m w u m u w r tc Q r t Q c K 2211-=-=式中 m r ——塔内平均汽化热(kg kJ /)经整理,并积分后,可得冷却塔热力计算的基本方程式:⎰-=120"t t t wxv h h dt c Q vK β (3) 上式的左端表示在一定淋水填料及格型下冷却塔所具有的冷却能力,它与淋水填料的特性、构造、几何尺寸、冷却水量有关,称冷却塔的特性数,以符号愿'Ω表示,即:Q VK xv β=Ω'(3)式的右端表示冷却任务的大小,与气象条件有关,而与冷却塔的构造无关,称为冷却数(或交换数),以符号'Ω表示,也即:⎰-=Ω120"t t t w h h dt c由于水温不是空气焓的直接函数,直接积分有困难,所以,在求解冷却数的时候,一般均采用近似积分方法。
冷却塔的热力计算
冷却塔的热力计算冷却塔的任务是将一定水量Q ,从水温t 1冷却到t 2,或者冷却△t =t 1-t 2。
因此,要设计出规格合适的冷却塔,或核算已有冷却塔的冷却能力,我们必须做冷却塔的热力计算。
为了便于计算,我们对冷却塔中的热力过程作如下简化假设:(1)散热系数α,散质系数v β,以及湿空气的比热c ,在整个冷却过程被看作是常量,不随空气温度及水温变化。
(2) 在冷却塔内由于水蒸气的分压力很小,对塔内压力变化影响也很小,所以计算中压力取平均大气压力值。
(3)认为水膜或水滴的表面温度与内部温度一致,也就是不考虑水侧的热阻。
(4) 在热平衡计算中,由于蒸发水量不大,也可以将蒸发水量忽略不计。
(5) 在水温变化不大的范围内,可将饱和水蒸汽分压力及饱和空气与水温的关系假定为线性关系。
冷却塔的热力计算方法有焓差法、湿差法和压差法等,其中最常用的是麦克尔提出的焓差法,以下简要介绍冷却塔的焓差法热力计算。
麦克尔提出的焓差法把过去由温度差和浓度差为动力的传热公式,统一为一个以焓差为动力的传热公式。
在方程式中,麦克尔引进入刘易斯关系式,导出了以焓差为动力的散热方程式。
()dV h h dH t xv q 0"-=β (1) 式中:q dH —— 水散出热量;xv β —— 以含湿差为基准的容积散质系数()[]kg kg s m kg //3⋅⋅ ;"t h —— 温度为水温t 时饱和空气比焓 (kg kJ /); 0h —— 空气比焓 (kg kJ /)。
将式(1)代入冷却塔内热平衡方程:n w w q tdQ c Qdt c dH += (2)式中:q dH —— 水散出热量;w c —— 水的比热()[]C /J o ⋅kg k ;Q —— 冷却水量 (s /g k );u Q —— 蒸发水量 (s /g k )t —— 水温度 (℃) 并引入系数K :式中 m r ——塔内平均汽化热(kg kJ /)经整理,并积分后,可得冷却塔热力计算的基本方程式:⎰-=120"t t t w xv h h dt c Q v K β (3) 上式的左端表示在一定淋水填料及格型下冷却塔所具有的冷却能力,它与淋水填料的特性、构造、几何尺寸、冷却水量有关,称冷却塔的特性数,以符号愿'Ω表示,即:(3)式的右端表示冷却任务的大小,与气象条件有关,而与冷却塔的构造无关,称为冷却数(或交换数),以符号'Ω表示,也即:由于水温不是空气焓的直接函数,直接积分有困难,所以,在求解冷却数的时候,一般均采用近似积分方法。
冷却塔的计算
m
du w du dx du =m w = mu w w = −mg + f x dt dx dt dx du du dr du m r =m r = mu r r = f x dt dx dt dx
(12) (13)
式中:m 为雨滴的质量(kg) ;uw 为雨滴速度(m/s);t 为时间(s) ;x、r、g 同前;fx、 fr 为空气对雨滴的作用力,根据文献[5]可按下式计算。
DC 为湿空气的分子扩散系数(m2/h)按下式计算: DC = 0.0805 T 1.8 ( ) × 9.8 × 10 4 Pa 273
式中: Pa 为大气压力(Pa) ;T 为空气的绝对温度(K) 。 雨滴的散质系数为:
Ka = K
6q ρ w uw d h
(20)
式中: d h 为雨区热交换的雨滴当量直径(m) 。其值与雨区高度、淋水密度及风速等因 素有关,确定其值时,先假定一个当量直径,按式(20)在雨区积分与式(11)进行对比, 当二者相等时即为当量直径值。 1.5 边界条件 (1) 冷却塔进风口 进风口给定 p 、 u 、 v 、 k 、 ε 、 ia 值,其中 p 为当地大气压力; u 取值为 0; ia 为进 [7] 给定,k = 0.05v 、ε = k 塔空气焓 (J/kg) ;v 、k 、ε 参照文献
逆流式自然通风冷却塔二维数值模拟优化设计
赵顺安 (中国水利水电科学研究院 北京 100044) 摘要:冷却塔是火力发电厂循环冷却水系统的主要设备,其效率直接影响电厂运行成本。塔内气流运动在 无风时为二维轴对称运动,而目前国内的冷却塔设计计算为一维计算方法,无法对冷却塔进行优化设计。 因此,建立二维冷却塔设计计算方法具有一定的意义。本文对气流运行采用雷诺时均方程,雷诺应力用 kε双方程模型进行封闭,雨区的热交换的雨滴当量直径采用已有的冷却塔雨区热力特性研究成果,建立起 二维自然通风逆流式冷却塔设计计算模型。通过与原型观测资料对比,本文所提出的二维计算方法出塔水 温的计算结果与原型相差小于 0.1℃。结合某电厂工程设计实例,通过二维数值模拟计算,对塔内填料和 配水进行优化布置,冷却塔出塔水温可降低 0.52℃。 关键词:逆流塔、数值模拟、优化设计、热力计算
冷却塔热力计算书1
YNZT 型玻璃钢双曲线自然通风冷却塔三、计算方热力计算书冷却为图表求一、已知条件1、试差法1、气象参数:干 球 温 度(θ1 ℃湿 球 温 度(大 气 压 力(P0)最大相对湿度(Φ2、工况条件: 试差法计循 环 水 量(Q) m³/h进 水 温 度(t1)出 水 温 度(t2)工况水温降(Δt ℃3、所用冷却塔的基本参数:1淋水面积(F1)m22出风口处有效面积(F T)m23进 风 口 高 度 (H1)m4有 效 高 度 (H0)5进风口 平均直径 (Dz)6淋水密度(q)3/m2h74、所用淋水填料的特性参数:8该冷却塔采用PVC淋水填料,波形为Z形波,淋水填料的有效高度 1米。
9a、淋水填料的特征数 N’N’=1.76λ0.5810b、淋水填料的阻力特性 ΔP△P/ρ= A V m1112二、设计计算采用试差法1、热力计算的目的:通过热力计算求证 实际出水温度 t2≤32℃2、初始参数: 2、图表法a、干球温度θ时的进塔空气密度 ρ1 kg/ m³b、进 塔 空 气 焓 h1KJ/kgc、进水温度 t1 时的饱和空气焓 h1〃KJ/kg3、所用计算公式:a、冷却塔热力计算基本公式:N =∫Cdt/h″-hN值的计算采用幸普逊两段积分法,公式如下:N =[(Δt/k6)C m[1/(h2〃-h1)+4/(h m〃-h m)+1/h1〃-h2)]h1 — 为进塔空气焓KJ/kgh2 — 为进塔空气焓KJ/kg第 1 页h m — 为平均空气焓KJ/kg四、结t m — 平均进水温度t m=(t1+t2)/2 ℃h1〃 — 进塔水温t1时的饱和空气焓KJ/kgh2〃 — 进塔水温t2时的饱和空气焓KJ/kgh m〃 — 进塔水温t m时的饱和空气焓KJ/kgb、所需参数的计算公式: ⑴、进塔空气相对湿度的计算公式:Φ=[(Pτ〃-AP0(θ1-τ)]/Pθ1〃 ⑵、进塔干空气密度:ρ1=[(P0-ΦPθ1〃)×1000]/[287.14(273+θ1)] ⑶、饱和空气的水蒸汽分压在0~100℃时的计算公式:lg Pt〃=2.0057173-3.142305(1000/T-1000/373.16)+8.2lg(373.16/T)-0.0024804(373.16-T) ⑷、气水比的计算公式:λ=3600ρ1V m/1000q ⑸、进塔空气焓的计算公式:h1=1.006θ1+(2500+1.858θ1)×[ΦPθ1〃/(P0-ΦPθ1〃)] ⑹、温度为 t 时的饱和空气焓计算公式:h t〃=1.006t+(2500+1.858t)×[P t〃/(P0-P t〃)] ⑺、出塔空气焓的计算公式:h2=h1+(CΔt/kλ) ⑻、塔内空气的平均焓计算公式:h m=(h2+h1)/2 ⑼、出塔空气干球温度的计算公式:θ2=θ1+(t m-θ1)×(h2-h1)/(h m-h1) ⑽、出塔干空气密度的计算公式: (设Φ=1)ρ2=[(P0-Pθ2〃)×1000]/[287.14(273+θ2)] ⑾、平均空气密度的计算公式:ρm=(ρ2+ρ1)/2 c、冷却塔抽力的计算公式:Z=H0g(ρ1-ρ2)d、冷却塔阻力的计算公式:ΔP=ξρm V m2 /2 公式中:k=1-t2/[586-0.56(t2-20)]C — 水的比热,C=4.187KJ/Kg℃第 2 页⑴、假定风速,求t2~V m关系曲线假定风速为:0.8、1.0、1.2、1.4 m/s附图风 速 V m(m/s)出水温度t2(℃)⑵、假定风速,求Z~V m关系曲线冷却塔抽力计算的结果如下:风 速 V m(m/s)抽力Z (KPa)⑶、假定风速,求ΔP~V m关系曲线风 速 V m(m/s)阻力ΔP(KPa)⑷、用求出的 t2~V m Z~V m ΔP~V m三条关系曲线作图,见附图。
10章—4冷却塔热力计算基本方程
Qz≈Q
↑ 略去二阶微量 dHs CwQdt CwtdQu kJ h
2、空气在塔内是增焓(增温、增湿)过 程,增焓为di在dz后吸收的总热量dHK, 为: dHk Gdi G——空气流量,(㎏/h) 由能量平衡: 水温下降散热量=空气吸收热量 dHk dHs 即: Gdi CwQdt CwtdQu (1)
(3)求其所围面积: Cw A N K
dt A t 2 i i
t1
(五)Simpson(辛普逊)积分法:(近似解法) i″,i不是水温 t 的直接函数,所以不能直接 求积分值。 Simpson法是将冷却数N的积分式分项计算, 求近似解。
Simpson法复习:高数称辛卜生法,即: 抛物线近似法: 将积分区分成n(偶数)格,每两格计算 一次,每两格曲线内视为一个抛物线的 一段。 其近似解:
( t t ) 1 2 即: i2 i1 Cw (kJ / kg ) K
i2—塔顶出口空气焓。
3 、图解步骤: (1) 绘出i″-t曲线, (2)由所知的水温t1 和要求水温达到的 t2作两垂线,交 i″—t曲线于B1′;A 1, ′ ;过B1 ′、 A 1 ′ 作横线,由纵坐标 可求i1″;i2″(相应 t1;t2的饱和空气焓, i1″;i2″)
Cw (四)冷却数 N K
dt t2 i i 的求解:
t1
1、实质:焓差(i″- i)的倒数对水温 t 的积分, 其上、下限为进出水的水温t1;t2。
对应t1(进水水温)水面饱和层的焓 i1″;空气的焓 i2 ; 对应t2(出水水温)水面饱和层的焓 i2″;空气的焓 i1
2、图解: (1)将 t1——t2 分若干格; (2)量出各分格点的焓差值 △i = i″- i,并以 其倒数为纵标,以t为横坐标,绘图如:(2)
冷却塔的一个新的热力计算方法——用一维方法作二维计算
赵振国。 ,石金玲。 ,周常虹 ,滕新军
( .中国水利术 电科学 研究 院水力学 所 ,北 京 10 4 ) 1 00 4
籀
要 :本 文 在 对 冷 却 塔 雨 区 热 力 特 性 研 究 的 基 础 上 ,进 行 了 逆 流 式 自然 通 风 冷 却 塔 的 轴 对 称 二 维 热 力 计 算 ,
关量词 :逆流式 ;冷却塔 ;热力计算 ;新方j 戋.
中 瞳 分 粪 号 :T 9 14 U9 . 2 文t 标识 码 : A
在 文献[ ] 1 中我们给出 了在均匀布水情况下 ,逆流 式圆形冷却塔 雨区 的热 力计算公式 ,利 用这些
公 式 即 可 计 算 冷 却 塔 雨 区 的 冷 却 水 温 .在 求 得 这 些 公 式 的同 时 ,我 们 也 得 到 了 不 同 冷 却 塔 雨 区 工 况 下
给二维的热力特性公式 ,和喷 头及填料 的一维模拟塔 试验培 果一 起,仍用现在 的一维方法进行冷却塔 的水温计算 ,计算结果和用 二维 的 k 方法进行计算所得水 温几乎完全 一样 .所 以我们可 以利用 这 —e
种一维计算代替二维计算 .
收精 日期 2 O -O 1 00I. O
作者简 介 :赵振国 ( 9 2 ,男 、陕 西人 ,中国水 利水电 科学研 究院教授 .博导 1 3 一)
5 m.文 献 [ ] 中 , 以华 北 某 电厂 的 逆 流 式 自然 通 风 冷 却 塔 为 例 ,对 淋 水 均 匀 的 情 况 进 行 了 二 维 的 m 7 热力 计 算 , 所 用 计 算方 程 和 文 献 [ ]同 ,湍 流 有 效 牯 性 系 数 也 取 常 数 ,但 和 文 献 [ ]取 值 不 同 .文 3 3 中未 给 出水 滴 当量 直 径 值 ,但 在作 者 的 另 一 篇报 告 中 ,水 滴 当 量 直 径 取 d=6 m,并 认 为 淋 水 密 度 小 m
冷却塔的热力计算知识讲解
冷却塔的热力计算冷却塔的热力计算冷却塔的任务是将一定水量Q ,从水温t 1冷却到t 2,或者冷却△t =t 1-t 2。
因此,要设计出规格合适的冷却塔,或核算已有冷却塔的冷却能力,我们必须做冷却塔的热力计算。
为了便于计算,我们对冷却塔中的热力过程作如下简化假设:(1)散热系数α,散质系数v β,以及湿空气的比热c ,在整个冷却过程被看作是常量,不随空气温度及水温变化。
(2) 在冷却塔内由于水蒸气的分压力很小,对塔内压力变化影响也很小,所以计算中压力取平均大气压力值。
(3)认为水膜或水滴的表面温度与内部温度一致,也就是不考虑水侧的热阻。
(4) 在热平衡计算中,由于蒸发水量不大,也可以将蒸发水量忽略不计。
(5) 在水温变化不大的范围内,可将饱和水蒸汽分压力及饱和空气与水温的关系假定为线性关系。
冷却塔的热力计算方法有焓差法、湿差法和压差法等,其中最常用的是麦克尔提出的焓差法,以下简要介绍冷却塔的焓差法热力计算。
麦克尔提出的焓差法把过去由温度差和浓度差为动力的传热公式,统一为一个以焓差为动力的传热公式。
在方程式中,麦克尔引进入刘易斯关系式,导出了以焓差为动力的散热方程式。
()dV h h dH t xv q 0"-=β (1) 式中:q dH —— 水散出热量;xv β —— 以含湿差为基准的容积散质系数()[]kg kg s m kg //3⋅⋅ ;"t h —— 温度为水温t 时饱和空气比焓 (kg kJ /); 0h —— 空气比焓 (kg kJ /)。
将式(1)代入冷却塔内热平衡方程:n w w q tdQ c Qdt c dH += (2)式中:q dH —— 水散出热量;w c —— 水的比热()[]C /J o ⋅kg k ;Q —— 冷却水量 (s /g k ); u Q —— 蒸发水量 (s /g k ) t —— 水温度 (℃)并引入系数K :mw u m u w r tc Q r t Q c K 2211-=-=式中 m r ——塔内平均汽化热(kg kJ /)经整理,并积分后,可得冷却塔热力计算的基本方程式:⎰-=120"t t t w xv h h dt c Q vK β (3) 上式的左端表示在一定淋水填料及格型下冷却塔所具有的冷却能力,它与淋水填料的特性、构造、几何尺寸、冷却水量有关,称冷却塔的特性数,以符号愿'Ω表示,即:Q VK xv β=Ω'(3)式的右端表示冷却任务的大小,与气象条件有关,而与冷却塔的构造无关,称为冷却数(或交换数),以符号'Ω表示,也即:⎰-=Ω120"t t t w h h dt c由于水温不是空气焓的直接函数,直接积分有困难,所以,在求解冷却数的时候,一般均采用近似积分方法。
冷却塔冷却能力计算
冷却塔冷却能力计算冷却塔是一种用于工业生产过程中的热量转移设备,通过将水与空气进行热交换,将热量从水中带走,从而降低水的温度。
冷却塔的冷却能力是衡量其性能的重要指标,本文将介绍冷却塔冷却能力的计算方法。
冷却塔的冷却能力主要取决于其设计参数和运行条件。
设计参数包括冷却塔的高度、填料种类、填料高度、风机功率等。
运行条件包括进水温度、出水温度、空气温度、湿球温度等。
冷却塔的冷却能力可以通过以下公式计算:冷却能力 = 冷却水量× (进水温度 - 出水温度)其中,冷却水量是指冷却塔每小时能处理的水量,单位为立方米/小时。
冷却水量的计算可以通过以下公式得到:冷却水量 = 冷却塔的有效面积× 水流量其中,冷却塔的有效面积是指填料层面积减去风道和其他无效部分的面积。
填料层面积可以根据冷却塔的设计参数计算得到。
水流量是指冷却塔进水和出水之间的流量差,单位为立方米/小时。
进水温度、出水温度、空气温度和湿球温度可以通过实际测量获得。
在计算中,需要注意确保温度单位的一致性,以及湿球温度的湿度比。
冷却塔的冷却能力与填料种类、填料高度、风机功率等参数有关。
不同的填料种类具有不同的热传导性能,填料高度的增加可以增加冷却塔的热交换效果,风机功率的增加可以增加空气对水的冷却效果。
冷却塔的冷却能力还受到环境因素的影响。
例如,环境温度的变化会影响冷却塔的冷却效果,高温环境会降低冷却能力。
此外,冷却塔的污染程度也会影响其冷却效果,定期清洗和维护冷却塔是确保其正常运行和提高冷却能力的重要措施。
冷却塔的冷却能力计算对于工业生产过程中的能耗控制和设备运行效率的提高具有重要意义。
通过合理设计和运行冷却塔,可以实现能源的节约和环境的保护。
冷却塔的冷却能力是衡量其性能的重要指标,可以通过计算冷却水量和温度差来得到。
冷却塔的冷却能力与设计参数、运行条件和环境因素密切相关,需要综合考虑各个因素的影响。
通过合理设计和运行冷却塔,可以提高其冷却能力,实现能耗的控制和设备运行效率的提高。
冷却塔的热力计算
冷却塔的热力计算冷却塔的任务是将一定水量Q ,从水温t 1冷却到t 2,或者冷却△t =t 1-t 2。
因此,要设计出规格合适的冷却塔,或核算已有冷却塔的冷却能力,我们必须做冷却塔的热力计算。
为了便于计算,我们对冷却塔中的热力过程作如下简化假设:(1)散热系数α,散质系数v β,以及湿空气的比热c ,在整个冷却过程被看作是常量,不随空气温度及水温变化。
(2) 在冷却塔内由于水蒸气的分压力很小,对塔内压力变化影响也很小,所以计算中压力取平均大气压力值。
(3)认为水膜或水滴的表面温度与内部温度一致,也就是不考虑水侧的热阻。
(4) 在热平衡计算中,由于蒸发水量不大,也可以将蒸发水量忽略不计。
(5) 在水温变化不大的范围内,可将饱和水蒸汽分压力及饱和空气与水温的关系假定为线性关系。
冷却塔的热力计算方法有焓差法、湿差法和压差法等,其中最常用的是麦克尔提出的焓差法,以下简要介绍冷却塔的焓差法热力计算。
麦克尔提出的焓差法把过去由温度差和浓度差为动力的传热公式,统一为一个以焓差为动力的传热公式。
在方程式中,麦克尔引进入刘易斯关系式,导出了以焓差为动力的散热方程式。
()dV h h dH t xv q 0"-=β (1)式中:q dH —— 水散出热量;xv β —— 以含湿差为基准的容积散质系数()[]kg kg s m kg //3⋅⋅ ;"t h —— 温度为水温t 时饱和空气比焓 (kg kJ /);0h —— 空气比焓 (kg kJ /)。
将式(1)代入冷却塔内热平衡方程:n w w q tdQ c Qdt c dH += (2)式中:q dH —— 水散出热量;w c —— 水的比热()[]C /J o ⋅kg k ;Q —— 冷却水量 (s /g k ); u Q —— 蒸发水量 (s /g k ) t —— 水温度 (℃)并引入系数K :mw u m u w r tc Q r t Q c K 2211-=-=式中 m r ——塔内平均汽化热(kg kJ /)经整理,并积分后,可得冷却塔热力计算的基本方程式:⎰-=120"t t t w xv h h dt c Q vK β (3) 上式的左端表示在一定淋水填料及格型下冷却塔所具有的冷却能力,它与淋水填料的特性、构造、几何尺寸、冷却水量有关,称冷却塔的特性数,以符号愿'Ω表示,即:Q VK xv β=Ω'(3)式的右端表示冷却任务的大小,与气象条件有关,而与冷却塔的构造无关,称为冷却数(或交换数),以符号'Ω表示,也即:⎰-=Ω120"t t t w h h dt c由于水温不是空气焓的直接函数,直接积分有困难,所以,在求解冷却数的时候,一般均采用近似积分方法。
冷却塔的冷却能力计算
冷却塔的冷却能力计算
冷却塔的冷却能力可以通过以下步骤计算:
1. 确定需要冷却的物质的热量流量(Q)。
2. 确定冷却塔的进口水温(Tw-in)和出口水温(Tw-out)。
3. 使用以下公式计算冷却能力(C):
C = Q / (Tw-in - Tw-out)
其中,冷却能力以单位时间内的热量流量(通常以千瓦或英热单位)表示。
需要注意的是,冷却塔的冷却能力还受到其他因素的影响,例如空气温度、湿度、水泵的性能等。
因此,在实际应用中,可能需要在计算中考虑这些因素,使用更为精确的公式或模型来计算冷却能力。
冷却塔热力性能计算书及计算方法
工艺设计计算书1. 热力性能计算 1.1 热力性能计算方法工艺设计采用CTI 颁布的权威软件“CTIToolkit ”进行设计,并按GB7190.2 ―1997《大型玻璃纤维增强塑料冷却塔》进行校核,用焓差法计算,积分计算采用辛普逊20段近似积分计算公式。
计算公式逆流冷却塔热力计算基本方程式:⎰-''=12t t w ii dtC N (1) 式中:t 1、t 2―进、出塔水温 ℃i ―冷却塔淋水装置中对应于某点温度的空气比焓 kJ/kg i ″ ―与i 对应的饱和空气焓 kJ/kg K ―蒸发水量带走的热量系数 )20(56.0585122---=t t K (2)20段近似积分计算公式:⎥⎦⎤⎢⎣⎡∆++∆+∆+∆++∆+∆+∆+∆⋅∆⋅=)111(2)111(4116018421931200i i i i i i i i t C N w(3) 式中:C w ―水的比热 4.1868 kJ/(kg ·℃) Δt ―进出水温差 ℃ Δt= t 1- t 2Δi 0,Δi 1,Δi 2,······Δi 19,Δi 20 ―分别表示对应于t 2,t 2+Δt/20,t 2+2Δt/20······t 2+19Δt/20,t 1时的焓差,即i ″- i kJ/kg 空气的焓按下式计算:““θθθθP P P C r C i q g ⋅Φ-⋅Φ++=00)(622.0 (4)式中:C g ―干空气的比热 1.005 kJ/kgC q ―水蒸气的比热 1.842 kJ/kgr 0 ―温度为0度时水的汽化热 2500.8kJ/kg θ ―空气干球温度 ℃ Φ ―相对湿度P 0 ―进塔空气大气压 kPaP “θ―空气温度为t 时的饱和水蒸气分压力 kPa 如取Φ=1,可将(4)改写为温度t 时的饱和湿空气焓计算式:““ttq g tP P P t C r t C i -++=00")(622.0 (5) 饱和水蒸气分压力及相对湿度按下式计算:)16.373(0024804.0)16.373lg(2.8)16.37311(305.31420141966.0T TT E -⋅-⋅+-⋅-=E t P 100665.98"⨯= (6) 式中:T ―绝对温度 K T=273.16+t"0")(000662.0θττθP P P --=Φ (7)式中:τ ―空气湿球温度,由机械通风干湿表测得 ℃ P “τ―空气温度为τ时的饱和水蒸气分压力 kPa将进塔空气干球温度θ1、湿球温度τ1及大气压P 0代入以上各式,即可求得进塔空气的相对湿度Φ和焓值i 1。
冷却塔计算公式范文
冷却塔计算公式范文冷却塔是一种用于将热量从流体中转移给空气的设备。
其主要目的是通过水蒸发来散热,从而降低流体的温度。
冷却塔的计算公式可以分为两个方面:空气侧和水侧。
空气侧计算公式:1.空气质量流率计算:空气质量流率(G)是冷却塔中空气的质量流动率,可以通过以下公式计算:G=ρxV其中,G为空气质量流率,ρ为空气密度,V为空气体积流率。
2.空气湿度计算:空气湿度(W)是空气中水分的含量,可以通过以下公式计算:W=(Wa/(Wa+Ws))x100其中,W为空气湿度,Wa为空气中气态水的质量含量,Ws为空气中水蒸气的质量含量。
3.空气温度计算:冷却塔的效果主要通过降低空气温度来实现,可以通过以下公式计算:T=Tǿ-(W/C)其中,T为冷却塔出口空气温度,Tǿ为冷却塔入口空气温度,W为空气内的水分含量,C为空气的比热容。
水侧计算公式:1.冷却塔效能计算:冷却塔效能指的是冷却塔总热量交换与冷却塔进口冷水端热量交换的比值,可以通过以下公式计算:E = (Tin - Tout) / (Tin - Tǿ)其中,E为冷却塔效能,Tin为进口水温,Tout为出口水温,Tǿ为冷却塔入口空气温度。
2.冷却塔冷却水量计算:冷却塔冷却水量(Q)是冷却塔冷却水的质量流动率,可以通过以下公式计算:Q=mxCpxΔT其中,Q为冷却塔冷却水量,m为冷却水质量流率,Cp为冷却水的比热容,ΔT为冷却水的温度差。
这些公式可以帮助工程师和设计师计算冷却塔的性能和参数,从而优化设备的设计和运行。
需要注意的是,上述公式只是一般性的计算公式,实际应用中可能还需要考虑一些其他因素,如湿球温度、各个传热过程的换热系数等。
因此,在具体应用中还需要根据实际情况进行调整和修正。
(扩展版)冷却塔热量和面积的测算方法
(扩展版)冷却塔热量和面积的测算方法1. 概述冷却塔是热交换设备的重要组成部分,其性能直接影响到整个热交换系统的效率和稳定性。
本文档旨在提供一种详细的测算方法,用于评估冷却塔的热量和占地面积。
通过对冷却塔的热量和面积进行准确测算,可以帮助我们更好地了解冷却塔的性能,从而为冷却塔的设计、选型和运行管理提供科学依据。
2. 热量测算方法2.1 理论计算法理论计算法是根据冷却塔的热交换原理和热力学参数进行热量测算的方法。
主要包括以下几个步骤:1. 确定冷却塔的热负荷,包括冷却水入口温度、冷却水出口温度、环境温度、相对湿度等参数;2. 计算冷却塔的热交换能力,包括冷却塔的散热面积、风量、散热系数等参数;3. 根据热负荷和热交换能力,计算冷却塔的热量。
2.2 实验测定法实验测定法是通过在冷却塔运行过程中进行热量测试,从而获取冷却塔的热量数据。
主要包括以下几个步骤:1. 准备热量测试设备,如温度传感器、流量计、风速计等;2. 在冷却塔运行状态下,测量冷却水入口温度、冷却水出口温度、环境温度、相对湿度等参数;3. 计算冷却塔的热负荷;4. 通过实验数据,计算冷却塔的热量。
3. 面积测算方法3.1 冷却塔体积法冷却塔体积法是根据冷却塔的体积和尺寸进行面积测算的方法。
主要包括以下几个步骤:1. 测量冷却塔的直径、高度、进风口和出风口的尺寸等参数;2. 计算冷却塔的体积;3. 根据冷却塔的体积和尺寸,计算冷却塔的占地面积。
3.2 冷却塔风量法冷却塔风量法是根据冷却塔的风量和风速进行面积测算的方法。
主要包括以下几个步骤:1. 测量冷却塔的风量和风速;2. 计算冷却塔的风量系数;3. 根据冷却塔的风量和风量系数,计算冷却塔的占地面积。
4. 总结本文档提供了一种详细的测算方法,用于评估冷却塔的热量和占地面积。
通过理论计算法、实验测定法、冷却塔体积法和冷却塔风量法,我们可以准确地获取冷却塔的热量和面积数据。
这些数据对于冷却塔的设计、选型和运行管理具有重要意义。
冷却塔设计计算举例
冷却塔设计计算举例冷却塔是一种常用的热交换设备,主要用于将热水冷却至一定温度。
其设计计算是为了保证冷却效果和安全性能。
下面以一个简单的冷却塔设计计算举例进行说明。
一、设计参数确定1.冷却介质:假设为水,需要冷却至25℃。
2.进口温度:假设为70℃。
4.气象条件:温度为35℃,湿度为80%,周围空气压力为101.325千帕。
二、冷却介质流量计算根据热负荷和进出口温差可以计算出冷却介质的流量,常用的公式为:Q = m * Cp * (Tout - Tin)其中,Q为热负荷,m为流量,Cp为冷却介质的比热容,Tout为出口温度,Tin为进口温度。
假设冷却介质的比热容为4.18千焦/千克.摄氏度,则可以得到:解得冷却介质的流量m为641.76千克/小时。
三、冷却风量计算冷却塔利用气流将冷却介质中的热量带走,所以需要计算冷却风量。
冷却风量的计算公式为:Q = ρ * Qa * (h - 1) / (ρa * Cp * (Tout - Tin))其中,Q为热负荷,ρ为冷却介质的密度,Qa为冷却介质的流量,h 为感温系数,ρa为空气密度,Cp为冷却介质的比热容,Tout为出口温度,Tin为进口温度。
假设冷却介质的密度为1000千克/立方米,空气的密度为1.225千克/立方米,则可以得到:解得感温系数h为0.743四、塔高计算根据冷却风量的计算结果和冷却介质的温度变化,可以通过查表或者利用经验公式计算出塔高。
假设根据经验公式计算得到塔高为20米。
五、填料选择填料可以增加冷却面积,提高冷却效果。
根据冷却塔的设计参数,可以选择适合的填料。
假设选择波纹板填料。
六、风机功率计算风机功率的计算公式为:P = Qa * h * ρ * (Pout - Pin)其中,P为风机功率,Qa为冷却介质的流量,h为感温系数,ρ为冷却介质的密度,Pout为塔顶的绝对压力,Pin为塔底的绝对压力。
假设塔顶的绝对压力为101.325千帕,塔底的绝对压力为101.425千帕,则可以得到:P=641.76*0.743*1000*(101.325-101.425)解得风机功率P为739.32千瓦。
冷却塔计算公式与单位
经某一过程温度变化为△T,它吸收(或放出)的热量.Q=cm·△T.其中C是与这个过程相关的比热(容).热量的单位与功、能量的单位相同.在国际单位制中热量的单位为焦耳(简称焦,缩写为J).历史上曾定义热量单位为卡路里(简称卡,缩写为cal),目前只作为能量的辅助单位,1卡=4.184焦.注意:1千卡=1大卡=1000卡路里=4184焦耳=4.184千焦在国际单位制中,比热的单位是焦耳/(千克·摄氏度)读作焦每千克摄氏度。
比热容是单位质量的某种物质温度升高1℃吸收的热量(或降低1℃释放的热量),比热容本质是吸收的热量,不管固体液体的,单位都是一样的。
单位质量的某种物质温度升高1℃吸收的热量叫做这种物质的比热容,简称比热。
比热是通过比较单位质量的某种物质温升1℃时吸收的热量,来表示各种物质的不同性质。
水的比热最大。
这就意味着,在同样受热或冷却的情况下,水的温度变化要小些。
水的这个特征对气候的影响很大。
在受太阳照射条件相同时,白天沿海地区比内陆地区温升慢,夜晚沿海地区温度降低也少。
所以一天之中,沿海地区温度变化小,内陆地区温度变化大。
在一年之中,夏季内陆比沿海炎热,冬季内陆比沿海寒冷。
水比热大的特点,在生产、生活中也经常利用。
如汽车发动机、发电机等机器,在工作时要发热,通常要用循环流动的水来冷却。
冬季也常用热水取暖水的比热容是4.2*103焦/千克·摄氏度,蒸气的比热容是2.1*103焦/千克·摄氏度汽化热是一个物质的物理性质。
其定义为:在标准大气压(101.325 kPa)下,使一摩尔物质在其沸点蒸发所需要的热量。
常用单位为千焦/摩尔(或称千焦耳/摩尔),千焦/千克亦有使用。
其他仍在使用的单位包括 Btu/lb(英制单位,Btu为British Thermal Unit,lb为磅)。
水的汽化热为40.8千焦/摩尔,相当于2260千焦/千克。
一般地:使水在其沸点蒸发所需要的热量五倍于把等量水从一摄氏度加热到一百摄氏度所需要的热量。
闭式冷却塔热力和阻力计算
盘管外壁水膜换热分为两部分换热,一部分为在冷却盘管外时水膜和空气间接 触的对流换热,一部分为在PVC热交换层上时水膜和空气间接触的对流换热。 冷却水膜和流动空气之间的换热是兼有热质交换的热力过程。 (1)、显热交换系数:αа=0.88c.λf/doRefn.Prf0.36
计算时,定性温度采用进出口处空气平均温度tf,计算速度用管簇中最窄截面处 的流速。式中的系数C和指数n和空气的流动状态和管子的排列方式查取。 Ref为空气的雷诺准数、Prf为空气的普朗特数、λf为空气的导热系数 Ref=Wmax.do/vf Vf为空气的运动粘性系数 Wmax为最窄截面处流速 (2)、水膜和空气间的传质系数 σ=αа/Cp (kg/㎡.h)
闭式冷却塔热力和阻力计算 一、冷却塔热力计算 根据换热学公式:Q1=CN△T Q2=KA△T 式中:Q1内除盐水热负荷 C比热4.18KJ/(kg.℃) N=L*K1=流量*流量系数 进出水温差△T=T1-T2 Q2外部冷媒水热负荷 K换热系数(按湿球温度25℃计算) A产品盘管组的换热表面积 △T =△T1-△T2/ln(△T1/△T2) △T1=Hin(热除盐水进口温度)-Cin(冷媒水经过盘管温度) △T2=Hout(热除盐水出口温度)-Cout(冷媒水喷淋管盘温度) 换热器工作原理说明: 换热设备的换热过程是管内被冷却的流体将热量通过管内壁传给管外壁的水膜 ,再由水膜传给冷却盘管间流动的空气和PVC热交换层的空气。 A、 1、 从管内被冷却流体到外部冷媒水排出热负荷Q21=KA△T 管内流体通过管内壁传给管外壁的水膜
K换热系数确定 根据此种闭式冷却塔产品的特点,包括风扇机电的功率,湿球温度25摄氏度等因 素,这是个组合K值包含管内热流体和管内壁传热系数,管内壁和管外壁传热系 数,管外水膜和管外壁传热系数等。 K=1/[1/αi+ri]×do/di+δ/λ×(do/dm)+ro+l/αo] 其中:αi为管内热流体与管内壁之间的传热系数 ri为管内的垢热阻 do为管外径;di为管内径;δ为管壁厚;λ为热导系数
冷却塔热力计算书
计算依据:GB/T50392-2006机械通风冷却塔工艺设计规范计算程序:EXCEL冷却塔型号:OT-Ⅱ(RC)-2100数据输入:汪益中设计参数大气压P 100.4Kpa 干球温度θ33℃湿球温度τ29℃处理水量Q 2100m 3/h 进水温度t 139℃出水温度t 232℃风机直径D7m 风机数量1台轮毂直径d 1.3m 填料高度1.5m淋水面积F 144m 2进风口高度4.5m热力计算302.16K饱和水蒸汽压的计算公式:lgP"=2.0057173-3142.305/T+3142.305/373.16-0.0024804*373.16+0.0024804*T+8.2lg(373.16/T)0.60253湿球时饱和水蒸汽压P"τ=Kpa 306.16K 0.70149干球时饱和水蒸汽压P"θ=Kpa空气相对湿度φ=[P"τ-0.000662P(θ-τ)]/P"θ=0.743373进塔干空气密度ρ1=(P-φP"θ)*103/[287.14(273+θ)]=kg/m 3选用气水比λ0.650.70.750.80.85风量G 12407781336223143166715271111622556m 3/h进塔湿空气比焓:h 1=1.005θ+0.622(2500.8+1.846θ)*φ*P"θ/(P-φ*P"θ)=94.79蒸发带走热量系数:K=1-t 2/[586-0.56(t 2-20)]=0.944759不同气水比出塔湿空气比焓:h 2=h 1+4.1868(t 1-t 2)/(K λ)=142.5157139.107136.1524133.567131.2863KJ/kg(DA)进水绝对温度:T (t1)=273.16+t 1=312.16K 0.84453进水时饱和水蒸汽压P"t1=6.99083Kpa出塔饱和空气比焓:h"2=158.961KJ/kg(DA)温差分段数:n=8温差等分值:δt=0.875℃δh=(h 2-h 1)/n= 5.965624 5.53951 5.170207 4.84707 4.561948t 1-δt=38.125℃t 1-2δt=37.25℃t 1-3δt=36.375℃t 1-4δt=35.5℃t 1-5δt=34.625℃t 1-6δt=33.75℃逆流冷却塔热力阻力计算书1.100116165湿球绝对温度:T τ=273.16+τ=湿球温度时的饱和水蒸汽压对数:lgP"τ=4.004328366干球绝对温度:T θ=273.06+θ=进水温度时的饱和水蒸汽压对数:lgP"t1=干球温度时的饱和水蒸汽压对数:lgP"θ=5.029061652t 1-7δt=32.875℃T 1=273.16+t 1-δt=311.285℃T 2=273.16+t 1-2δt=310.41℃T 3=273.16+t 1-3δt=309.535℃T 4=273.16+t 1-4δt=308.66℃T 5=273.16+t 1-5δt=307.785℃T 6=273.16+t 1-6δt=306.91℃T 7=273.16+t 1-7δt=306.035℃T (t2)=273.16+t 2=305.16℃0.824196.67098Kpa 152.141KJ/kg(DA)0.803596.36192Kpa 145.563KJ/kg(DA)0.782856.06533Kpa 139.254KJ/kg(DA)0.761995.78079Kpa 133.201KJ/kg(DA)0.740985.50788Kpa 127.392KJ/kg(DA)0.719855.24621Kpa 121.816KJ/kg(DA)0.698574.99539Kpa 116.462KJ/kg(DA)0.677154.75504Kpa 111.319KJ/kg(DA)理论冷却数:N=4.1868(t 1-t 2)/(3n)*[1/(h"1-h 2)+4/(h"T1-(h 2-δh))+2/(h"T2-(h 2-2δh)) +4/(h"T3-(h 2-3δh))+2/(h"T4-(h 2-4δh))+4/(h"T5-(h 2-5δh)) +2/(h"T6-(h 2-6δh))+4/(h"T7-(h 2-7δh))+1/(h"2-h 1)]不同气水比时N 1.762859 1.58052 1.452747 1.35688 1.281282折波填料高1.5米,填料特性数Ω=1.89λ0.67填料特性数Ω 1.416165 1.48826 1.558665 1.62754 1.695011T 7温度时的饱和水蒸汽压:P"7=T 7温度时饱和空气焓:h"T7=T 6温度时的饱和水蒸汽压对数:lgP"6=T 6温度时的饱和水蒸汽压:P"6=T 6温度时饱和空气焓:h"T6=T 7温度时的饱和水蒸汽压对数:lgP"7=T 4温度时饱和空气焓:h"T4=T 5温度时的饱和水蒸汽压对数:lgP"5=T 5温度时的饱和水蒸汽压:P"5=T 2温度时饱和空气焓:h"T2=T 3温度时的饱和水蒸汽压对数:lgP"3=T 5温度时饱和空气焓:h"T5=T 3温度时的饱和水蒸汽压:P"3=T 3温度时饱和空气焓:h"T3=T 4温度时的饱和水蒸汽压对数:lgP"4=T 4温度时的饱和水蒸汽压:P"4=T 1温度时的饱和水蒸汽压对数:lgP"1=T 1温度时的饱和水蒸汽压:P"1=T 2温度时的饱和水蒸汽压对数:lgP"2=T 2温度时的饱和水蒸汽压:P"2=T 1温度时饱和空气焓:h"T1=T (t2)温度时的饱和水蒸汽压对数:lgP"(t2)=T (t2)温度时的饱和水蒸汽压:P"(t2)=T (t2)温度时饱和空气焓:h"1=由上图曲线可知,当气水比λ=0.75时,Ω>N满足设计容积散质系数βxv=NQ/(KV)=15494.76kg/m3.h填料容积散质系数β"xv=4188g0.65q0.33其中空气重量风速g=G*γ/3600/F= 3.038194kg/m2.s淋水密度q=Q/F=14.5833m3/m2.h填料容积散质系数β"xv=20882.4kg/m3.h填料容积散质系数β"xv>设计容积散质系数βxv满足 结论:该逆流冷却塔的热力性能完全达到设计要求。
冷却塔的热力计算
热却塔的热力估计之阳早格格创做热却塔的任务是将一定火量Q,从火温t1热却到t2,大概者热却△t=t1-t2.果此,要安排出规格符合的热却塔,大概核算已有热却塔的热却本领,咱们必须搞热却塔的热力估计.为了便于估计,咱们对于热却塔中的热力历程做如下简化假设:(1)集热系数α,集量系数vβ,以及干气氛的比热c,正在所有热却历程被瞅做是常量,没有随气氛温度及火温变更.(2) 正在热却塔内由于火蒸气的分压力很小,对于塔内压力变更做用也很小,所以估计中压力与仄稳大气压力值.(3)认为火膜大概火滴的表面温度与里里温度普遍,也便是没有思量火侧的热阻.(4) 正在热仄稳估计中,由于挥收火量没有大,也不妨将挥收火量忽略没有计.(5) 正在火温变更没有大的范畴内,可将鼓战火蒸汽分压力及鼓战睦氛与火温的闭系假定为线性闭系.热却塔的热力估计要领有焓好法、干好法战压好法等,其中最时常使用的是麦克我提出的焓好法,以下简要介绍热却塔的焓好法热力估计.麦克我提出的焓好法把往日由温度好战浓度好为能源的传热公式,统一为一个以焓好为能源的传热公式.正在圆程式中,麦克我引加进刘易斯闭系式,导出了以焓好为能源的集热圆程式.()dV h h dH t xv q 0"-=β (1) 式中:q dH ——火集出热量;xv β——以含干好为基准的容积集量系数()[]kg kg s m kg //3⋅⋅ ; "t h —— 温度为火温t 时鼓战睦氛比焓 (kg kJ /);0h ——气氛比焓 (kg kJ /).将式(1)代进热却塔内热仄稳圆程:n w w q tdQ c Qdt c dH += (2)式中:q dH ——火集出热量;w c ——火的比热()[]C/J o ⋅kg k ;Q —— 热却火量 (s /g k ); u Q —— 挥收火量 (s /g k )t —— 火温度 (℃)并引进系数K :式中m r ——塔内仄稳汽化热(kg kJ /)经整治,并积分后,可得热却塔热力估计的基原圆程式:⎰-=120"t t t w xv h h dt c Q v K β (3) 上式的左端表示正在一定淋火挖料及格型下热却塔所具备的热却本领,它与淋火挖料的个性、构制、几许尺寸、热却火量有闭,称热却塔的个性数,以标记愿'Ω表示,即:(3)式的左端表示热却任务的大小,与局里条件有闭,而与热却塔的构制无闭,称为热却数(大概接换数),以标记'Ω表示,也即:由于火温没有是气氛焓的间接函数,间接积分有艰易,所以,正在供解热却数的时间,普遍均采与近似积分要领.积分的要领很多,有辛普逊积分法、仄稳推能源法、切比雪妇积分法、对于数及算术仄稳焓好法,以及很多的体味直线与图表,那里只介绍好国热却塔协会(CTI)所推荐的切比雪妇积分法.切比雪妇积分法为好国热却塔协会(CTI)所推荐,正在好国及日原均被采与.那种积分要领是将积分式⎰baydx,正在x轴上a到b之间供出几个预约的y值,某y值的总战乘恒定值b-a,便为所供的积分值.其分面为b-a的0.102673倍、0.406204倍、0.593796倍及0.897327倍.供其4个分面相映的y值.为估计简化,小数面后与一位,则为b-a的0.1倍,0.4倍,0.6倍及0.9倍.其估计公式为:如果温好较小时,其分面也不妨没有按上述倍数区分,可将火温好t四仄分,供各份中面的焓好,而后代进公式估计.如果按倍数区分时,各分面相映的焓好如下表所示.上述即为一个完备的热却塔热力估计历程,它既可用于热却塔的安排估计,也可用于现有热却塔的核算.正在核算已有热却塔时,已知塔的尺寸及里里部件,火量Q,进火温度t1,大气压力p a,搞球温度θ1,干球温度τ1.则央供估计:出火温度t2,通气量G,出塔气氛搞球温度θ2,出塔气氛干球温度τ2.热却塔的安排是一个试算历程,即根据给定条件,选定塔的尺寸及里里部件,而后估计火温t2,使其谦脚安排央供.果此热却塔的热力估计即为估计出塔火温t2,共时也估计通气量及排气温度.热却塔的透气阻力估计正在安排新的热却塔时,最先要选定热却塔的型式,根据给定的处事条件决断热却塔的基原尺寸战结构,其中包罗淋火拆置的横截里里积战挖料下度、热却塔的进风心、导风拆置、支火器、配火器等,并选定风机的型号微风量、风压,那样便需要对于热却塔内气流利风阻力做比较准确的估计.1.热却塔的透气阻力形成热却塔的透气阻力,即气氛震动正在热却塔内的压力益坏,为沿程摩阻战局部阻力之战.常常把热却塔的局部透气阻力从热却塔的进心到风机出心分为10个部分举止估计,如图所示: 1p ∆——进风心的阻力;2p ∆——导风拆置的阻力;3p ∆——气氛流转直的阻力;4p ∆——淋火拆置进心处突然中断的阻力;5p ∆——气氛流过淋火拆置的阻力(摩揩阻力战局部阻力); 6p ∆——淋火拆置出心处突然伸展的阻力;7p ∆——配火拆置的阻力;8p ∆——支火器的阻力;9p ∆——风机进心的阻力;10p ∆——风机风筒出心的阻力.热却塔的透气总阻力 :∑∆P =∆i z p (1)2.热却塔的局部透气阻力估计 如前所述,热却塔总的局部阻力包罗进风心、导流办法、淋火拆置、配火系统、支火器以及风筒阻力(包罗风机出进心)、气流的中断、夸大、转直等部分.各局部阻力可按下述公式去估计:g v P i i i 22i ⋅=∆γξ(毫米火柱) (2) 式中:i ξ——各局部阻力系数;i v ——相映部位的气氛流速(米/秒);i γ——相映部位的气氛比沉(公斤/米3);g ——沉力加速度. 而热却塔的总局部阻力可写成:g v P h i i i 22i ⋅∑=∑∆=γξ(毫米火柱) 由于气流稀度正在热却塔内变更很小,所以正在球供解时,各处的稀度值均与热却塔进、出心的几许仄稳值.气流利过热却塔百般部件处的速度,可先根据风机个性直线及热力估计时决定的气火比采用风量G(公斤/时)后,由下式决定:热却塔各部件处局部阻力系数 3,2,1ξ值的决定:(1)进风心55.01=ξ(2)导风拆置式中:()L q 25.01.02+=ξq ——淋火稀度(米3/米2·小时);L ——导风拆置少度(米).(3)加进淋火拆置处气流转直:5.03=ξ(4)淋火拆置进心处突然中断:⎪⎪⎭⎫ ⎝⎛-=ξcp F F 0415.0 cp F ——淋火拆置的截里(m 2).(5)淋火拆置()Z Kq e +ξ=ξ15式中:e ξ——单位下度淋火拆置的阻力系数;K ——系数;Z ——淋火拆置下度(m ).淋火拆置的阻力亦不妨从考查资料间接查得,若需改变形火拆置的尺度时,其阻力落的近似值估计可参阅资料.(6)淋火拆置出心突然伸展2061⎪⎪⎭⎫ ⎝⎛-=ξcp F F(7)配火拆置⎪⎪⎭⎫⎝⎛⋅⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫⎝⎛-+=ξ323713.15.0F F F F cp cp式中:3F ——配火拆置中气流利过的灵验截里积(米2)cp F ——塔壁内的横截里积(米2).(8)支火器式中:22228125.0⎪⎪⎭⎫ ⎝⎛⋅⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-+=ξF FF F cp cp式中:2F ——支火器中气流利过的灵验截里积(米2);cp F ——塔壁内的横截里积(米2).(9)风机进心9ξ可根据下式决定:ξξξ+⎪⎪⎭⎫⎝⎛-=cp F F 40910ξ——根据0D l 查表与值;4F ——中断后的截里积(㎡);cp F ——中断前的截里积(㎡);式中:λ—摩揩系数;可采与.(10)风机凤筒出心(扩集筒) ()p ξδ+=ξ110式中:δ—-风筒速度分集没有匀称而做用建正系数,根据0/l D ;ξ——根据0D l查表与值.p由上述估计,咱们得到热却塔的总透气阻力,而后再确认它是可与风机的额定风量下所能提供的风压相符合.如果相符合且又能谦脚热力本能央供,则该热却塔的安排估计完毕.若没有符合便要采用其余的风机大概改变热却塔部件的结构尺寸,沉新估计气氛的震动阻力,通过多次反复直到既谦脚风机的风压央供又谦脚热力本能时为止.热却塔本能的评介通过热却塔查支考查大概本能考查整治出截止,应付于该热却塔的本能做出评介.评介的指标,决断于所采与的评介要领,有以热却出火温度2t,大概以热却本领η (真测经建正后的气火比与安排时气火比的比值)动做评介指标,也有用其余的评介指标.底下介绍几种暂时海内中时常使用的热却塔本能评介要领.根据热却数圆程式表示的热力个性战阻力个性,不妨概括估计得到安排大概其余条件下的热却火温2t.根据安排条件及真测的热力、阻力个性,估计出热却火温2t,与安排的2t举止比较,如前者的2t值等于大概矮于后者的2t值,则该热却塔的热却效验达到大概劣于安排值.2.按真测热却火温评介通过查支考查,测得一组工况条件下的出塔热却火温2t,由于考查条件与安排条件的好别,需通过换算圆可比较,其比较的要领是:将真测的工况条件代进安排时提供的()t q f t ∆ϕϑ=,,,112本能直线大概安排采与的估计要领战公式,估计出热却火温2t ,如果比真测的2t 下,则证明新建大概改建的热却塔本量热却效验要比安排的佳,反之则证明热却塔效验好.那种用真测热却火温的评介要领,估计烦琐,评介截止直感,考查时没有需丈量进塔风量,易包管尝试截止的粗度,但是需安排单位提供一套()t q f t ∆ϕϑ=,,,112本能直线(支配直线)大概估计公式.本能评介应用公式式中η——真测热却本领;c Q ——建正到安排条件下的热却火量(h kg /);d Q ——安排热却火量(h kg /);t G ——考查条件下的真测风量(h kg /);c λ——建正到安排工况条件下的气火比,由于考查条件与安排条件存留好别,故需将考查条件下所测之数据,建正到安排条件下举止评介.正在做安排时,根据选定的塔型及淋火挖料,可赢得该热却塔的热力个性m A λ=Ω,正在单对于数坐标纸上即可赢得一条()λ=Ωf 的安排个性直线,如下图中直线1.根据给定的热却任务(2111,,,,,t t Q p τϑ)假设分歧的气火比,可赢得分歧的Ω,将其描画正在图上,即可得热却塔的处事个性直线,如上图中直线2,直线1战直线2的接面.即为谦脚安排央供的工况面.热却塔举止查支考查大概本能考查时,由于真测进塔气氛量G ,战安排气氛量没有成能真足相共,所以赢得的直线战上图中的直线1没有成能真足相共,而是其余一条战直线1仄止的直线3.直线3战直线2的接面c 则表示建正到安排条件下的处事面,C 面对于应的气火比即为建正到安排工况条件下的气火比c λ.c 面的赢得,可由考查得到的热却数Ω战睦火比λ面画到热却塔安排个性直线图上,得考查面b ,过b 面做直线3仄止于直线1,进而可得到直线3战直线2接面c.根据考查真测的气氛量t G 及建正后c 面的气火比c λ,即可得到建正后的热却火量c Q ,即: c t c G Q λ=/将上式代进c t d d c G Q Q Q λ==η1即可供得真测热却本领η.如η大于90%大概95%,应视为达到安排央供;η大于100%,应视为超出安排央供.TI 板滞透气热却塔个性直线评介法此评介要领与上述的热却塔本能评介要领基本相共,亦是以真测热却本领η表示的,即: c t d d c G Q Q Q λ==η'1 所分歧的是上式中进塔风量t G '没有是间接测定的,而是测定板滞透气热却塔的风机功率,根据风机功率再估计进塔风量.估计公式为:31'⎪⎪⎭⎫⎝⎛=d td t NN G G (kg/h )式中 t G '——通过真测风机功率换算的风量(h kg /);d G ——安排风量h kg /); t N ——真测风机功率(kw ); d N ——安排风机功率(kw ).风量t G '供得后,其余估计要领均与前所述相共.(1) 原法是由考查数据利用支配直线评介板滞透气热却塔本能的要领,估计截止是以热却本领η表示.(2) 安排单位应提供相称于安排热却火量的90%、100%、110%三组直线组成的支配直线图.每组直线以干球温度1τ为横坐标,出塔火温2t 为纵坐标,热却幅宽火力参变数的列线图,如图(系列)所示.热却幅宽直线的变量起码要包罗安排值,80%安排值战120%安排值三条热却幅宽直线.安排面应正在直线图上表示.(3) 热却塔本领的决定.将安排单位提供的本能直线转移画制成正在考查条件下决定热却塔本领的列线图.其步调最先以考查干球温度1τ为前提,画制一组以热却幅宽t∆为横坐标,出塔火温2t 为纵坐标,热却火量Q 为参变数的直线(下图).而后,由此组直线,根据考查热却幅宽t 画制一条出塔火温t2战热却火量Q闭系直线(下图),那样正在考查出塔火温下便可查得预计包管的热却火量p Q,将考查的热却火量再举止风机功率的建正.建正后的火流量与预计的火流量之比即可决定热却塔热却本领,亦即利用下列公式估计:热却塔的安排战采用中,不妨参照下表。