人教A版高中数学必修五3. 二元一次不等式与平面区域 课件
人教版高中数学必修5第三章不等式-3
在可行域内打出网格线,
y
B(3,9)
x y0
M(18 , 39) 55
C(4,8)
x
O
2x+y=15 x+2y=18 x+3y=27
直线 x y=12 经过整点B(3,9)和C(4,8),
它们是最优解.
z最小值 =12.
答:要截得所需三种规格的钢板,且使所截两种钢板 张数最小的方法有两种,第一种截法是第一种钢板3 张,第二种钢板9张;第二种截法是截第一种钢板4 张,第二种钢板8张;这两种截法都至少要两种钢板 12张.
或最后经过的点为最优解; (4)求出最优解并代入目标函数,从而求出目标函数的
最值.
简单线性规划问题的图解方法
例1 设 z=2x+y,式中变量x、 y满足下列条件:
x 4 y 3,
3x 5 y 25, 求z的最大值和最小值.
x 1,
分析:作可行域,画平行线,解方程组,求最值.
y x1
第2课时 简单线性规划的应用
1.体会线性规划的基本思想,并能借助几何直观解决 一些简单的实际问题; 2.利用线性规划解决具有限制条件的不等式; 3.培养学生搜集、整理和分析信息的能力,提高数学 建模和解决实际问题的能力.
在实际问题中常遇到两类问题: 一是在人力、物力、资金等资源一定的条件下,
如何使用它们来完成最多的任务;
获利3万元,每生产一件乙产品获利2万元,
又当如何安排生产才能获得最大利润?
(2)由上述过程,你能得出最优解与可行域之间的关 系吗?
设生产甲产品x件乙产品y件时,工厂获得的利润为
z,则z=3x+2y.
把z 3x 2 y变形为y 3 x z ,这是斜率为 3 ,
高中数学必修5课件:第3章3-3-1二元一次不等式(组)与平面区域
数学 必修5
第三章 不等式
(3)若直线 l:Ax+By+C=0,记 f(x,y)=Ax+By+C,M(x1, y1),N(x2,y2),则
点M,N在l的同侧 ⇔ fx1,y1·fx2,y2>0 点M,N在l的异侧 ⇔ fx1,y1·fx2,y2<0
数学 必修5
第三章 不等式
1.不等式x-2y≥0表示的平面区域是( )
() A.32 4 C.3
B.23 D.34
数学 必修5
第三章 不等式
解析: 如图所示为不等式表示的平 面区域,平面区域为一三角形,三个顶点 坐标分别为(4,0),43,0,(1,1),所以三角 形的面积为 S=12×4-43×1=43.
答案: C
数学 必修5
第三章 不等式
用二元一次不等式(组)表示实际问题
数学 必修5
第三章 不等式
答案:
4x+3y≤480, 2x+5y≤500, x≥0, y≥0, x,y∈N*
数学 必修5
第三章 不等式
4.画出不等式组x0-≤yx≤+1y0≤,20, 0≤y≤15,
表示的平面区域.
解析: 根据题意画出不等式组表示的平面区域,如图所
示.
数学 必修5
第三章 不等式
数学 必修5
第三章 不等式
3.一工厂生产甲、乙两种产品,生产每种1 t产品的资源 需求如下表:
品种 电力/kW·h 煤/t 工人/人
甲
2
3
5
乙ቤተ መጻሕፍቲ ባይዱ
8
5
2
该厂有工人200人,每天只能保证160 kW·h的用电额度, 每天用煤不得超过150 t,请在直角坐标系中画出每天甲、乙两 种产品允许的产量的范围.
2014年人教A版必修五课件 3.3 二元一次不等式(组)与简单的线性规划问题
在 A 点的上方取 B(x0, y), 则 y>x06. 在 A 点的下方取 C(x0, y), 则 y<x06.
于是得结论:
o
6 y<x06
B · x 6 A · C ·
0
xy=6
x
对于不等式 y>f(x) 表示的区域在直线 y=f(x) 的上方; y<f(x) 表示的区域在直线 y=f(x) 的下方.
二元一次方程 AxByC=0 (A、B不同时为0) 在坐 标平面上表示一条直线. 二元一次不等式 AxByC > 0 (或<0) (A、B不同 时为 0 ) 在坐标平面上表示的是一个区域. 是直线 AxByC=0 一旁的区域.
操作题: 在坐标平面上画出直线 xy=6. (1) 对于方程 xy=6, 任意取 3 组解, 在坐标平面 上标出这 3 组解所表示的点, 看在什么位置? (2) 对于不等式 xy>6, 任意取 3 组解, 在坐标平 面上标出这 3 组解所表示的点, 看在什么位置? (3) 对于不等式 xy<6, 任意取 3 组解, 在坐标平 面上标出这 3 组解所表示的点, 看在什么位置? y (1) (0, 6), (1, 5), (2, 4). 在直线 xy=6上. (2) (0, 7), (2, 6), (6, 4). 在直线 xy=6 的右下边. (3) (3, 2), (0, 1), (6, 1). 在直线 xy=6 的左上边.
练习: (课本86页) 第 1、 2 题 .
(补充). 分别画出下列不等式表示的平面区域: (1) xy1<0; (2) 2xy2≤0; (3) x3y; (4) y>0.
练习: (课本86页) 1. 不等式 x2y6>0 表示的区域在直线 x2y6=0 的( B ) (A) 右上方. (B) 右下方. (C) 左上方. (D) 左下方. 解: 取原点(0, 0)检验, 得 x2y6=0206 =6>0, 满足不等式. ∴不等式 x2y6>0 表示的
高中数学第三章不等式3.3.1二元一次不等式组与平面区域课件新人教A版必修5
则有
该不等式组表示的平面区域如图阴影部分所示
≥ 0,
≥ 0.
(含边界).
-19-
二元一次不等式(组)与
平面区域
探究一
探究二
课前篇自主预习
探究三
思维辨析
课堂篇探究学习
课堂篇探究学习
当堂检测
反思感悟用二元一次不等式组表示实际问题的步骤
1.先根据问题的需要选取起关键作用且关联较多的两个量,并用字
(1)定义:我们把含有两个未知数,并且未知数的最高次数是1的不等
式称为二元一次不等式;把由几个二元一次不等式组成的不等式组
称为二元一次不等式组.
(2)解集:满足二元一次不等式(组)的x和y的取值构成有序数对(x,y),
所有这样的有序数对(x,y)构成的集合称为二元一次不等式(组)的
解集.有序数对可以看成直角坐标平面内点的坐标.于是,二元一次
课堂篇探究学习
当堂检测
用二元一次不等式(组)表示实际问题
例3投资生产A产品时,每生产100 吨需要资金200 万元,需场地200
平方米;投资生产B产品时,每生产100 吨需要资金300 万元,需场地
100 平方米.现某单位可使用资金1 400 万元,场地900 平方米,用数
学关系式和图形表示上述要求.
(1,0)作为测试点.
-6-
二元一次不等式(组)与
平面区域
课前篇自主预习
课堂篇探究学习
3.做一做:
(1)判断正误.
①不等式Ax+By+C>0是二元一次不等式.(
)
②点(1,3)在不等式2x-y-2<0所表示的平面区域内. (
)
人教版高中数学必修5第三章不等式《3.3.2 简单的线性规划问题》教学PPT
思考5:作可行域,使目标函数取最小
值的最优解是什么?目标函数的最小值
为多少? 28x+21y=0
7x+14y=6
y
A最最优小解值1(671.,
4 7
),
7x 7 x
7y 5 14 y 6
14x 7 y 6
x 0, y 0
x=4
思考3:图中阴影区域内任意一点的坐
标都代表一种生产安排吗?
y
x 2y 8
0 x 4 0 y 3 x N , y N O
y=3 x
x+2y=8 x=4
阴影区域内的整点(坐标为整数的点) 代表所有可能的日生产安排.
思考4:若生产一件甲产品获利2万元, 生产一件乙产品获利3万元,设生产甲、 乙两种产品的总利润为z元,那么z与x、 y的关系是什么?
3.3.2 简单的线性规划问题
第一课时
问题提出
1.“直线定界,特殊点定域”是画二元 一次不等式表示的平面区域的操作要点, 怎样画二元一次不等式组表示的平面区 域?
2.在现实生产、生活中,经常会遇到资 源利用、人力调配、生产安排等问题, 如何利用数学知识、方法解决这些问题, 是我们需要研究的课题.
探究(一):线性规划的实例分析 t
5730
【背景材料】某工厂用A、B两种配件 生产甲、乙两种产品,每生产一件甲 产品使用4个A配件耗时1h;每生产一 件乙产品使用4个B配件耗时2h.该厂每 天最多可从配件厂获得16个A配件和12 个B配件,每天工作时间按8h计算.
思考1:设每天分别生产甲、乙两种产 品x、y件,则该厂所有可能的日生产 安排应满足的基本条件是什么?
2x y 15
【数学】3.3《二元一次不等式(组)与平面区域》教案(新人教A版必修5)(5课时)
课题:§3.3.1二元一次不等式(组)与平面区域第1课时授课类型:新授课 【教学目标】1.知识与技能:了解二元一次不等式的几何意义,会用二元一次不等式组表示平面区域; 2.过程与方法:经历从实际情境中抽象出二元一次不等式组的过程,提高数学建模的能力; 3.情态与价值:通过本节课的学习,体会数学来源与生活,提高数学学习兴趣 【教学重点】用二元一次不等式(组)表示平面区域; 【教学难点】【教学过程】1.课题导入1.从实际问题中抽象出二元一次不等式(组)的数学模型 课本第91页的“银行信贷资金分配问题”教师引导学生思考、探究,让学生经历建立线性规划模型的过程。
在获得探究体验的基础上,通过交流形成共识:2.讲授新课1.建立二元一次不等式模型 把实际问题 转化 数学问题:设用于企业贷款的资金为x 元,用于个人贷款的资金为y 元。
(把文字语言 转化 符号语言)(资金总数为25 000 000元)⇒25000000x y +≤ (1) (预计企业贷款创收12%,个人贷款创收10%,共创收30 000元以上)⇒(12%)x +(10%)y 3≥ 即12103000000x y +≥ (2)(用于企业和个人贷款的资金数额都不能是负值)⇒0,0x y ≥≥ (3) 将(1)(2)(3)合在一起,得到分配资金应满足的条件:25000000121030000000,0x y x y x y +≤⎧⎪+≥⎨⎪≥≥⎩2.二元一次不等式和二元一次不等式组的定义(1)二元一次不等式:含有两个未知数,并且未知数的最高次数是1的不等式叫做二元一次不等式。
(2)二元一次不等式组:有几个二元一次不等式组成的不等式组称为二元一次不等式组。
(3)二元一次不等式(组)的解集:满足二元一次不等式(组)的x 和y 的取值构成有序实数对(x,y ),所有这样的有序实数对(x,y )构成的集合称为二元一次不等式(组)的解集。
(4)二元一次不等式(组)的解集与平面直角坐标系内的点之间的关系:二元一次不等式(组)的解集是有序实数对,而点的坐标也是有序实数对,因此,有序实数对就可以看成是平面内点的坐标,进而,二元一次不等式(组)的解集就可以看成是直角坐标系内的点构成的集合。
人教a版必修五课件:二元一次不等式(组)与平面区域(62页)
2.点(x0,y0)在直线Ax+By+C=0的右上方,则一定 有Ax0+By0+C>0吗?
提示:不一定.与系数B的符号有关.
3.若A(x1,y1),B(x2,y2)两点在直线Ax+By+C=0的 同侧或两侧应满足什么条件?
提示:同侧(Ax1+By1+C)(Ax2+By2+C)>0.异侧(Ax1+ By1+C)(Ax2+By2+C)<0.
新知初探
1.二元一次不等式及其解集的意义 (1)二元一次不等式 含有两 个未知数,并且含未知数的项的最高次数是 1 的不等式称为二元一次不等式. 二元一次不等式的一般形式是Ax+By+C>0,Ax+By +C<0,Ax+By+C≥0,Ax+By+C≤0,其中A,B不同 时为零.
(2)二元一次不等式组 由几个 二元一次不等式 组成的不等式组称为二元一次 不等式组. (3)二元一次不等式(组)的解集 满足二元一次不等式(组)的x和y的取值构成有序数对 (x,y),所以这样的有序数对(x,y)构成的集合称为二元一 次不等式(组)的解集.一个二元一次不等式,它的解是一些 数对(x,y),因此,它的解集不能用数轴上一个区间表示, 而应是平面上的一个区域.
By+C=0划分平面成两个半平面的区域,分别由不等式Ax +By+C>0与Ax+By+C<0决定.因此,如同前面所学平面 内的直线可以视为二元一次方程的几何表示一样,半平面 就是二元一次不等式的几何表示.
思考感悟
1.每一个二元一次不等式(组)都能表示平面上的一个 区域吗? 提示:不一定.当不等式组的解集为空集时,不等式 组不表示任何图形.
7 答案:4
类型三 [例3]
点与平面区域的关系 已知点P(1,-2)及其关于原点的对称点中有
2020版人教A数学必修5 课件:3.3.1 二元一次不等式(组)与平面区域
即时训练3-1:某家具厂制造甲、乙两种型号的桌子,每张桌子需木工和 漆工两道工序完成.已知木工做一张甲、乙型号的桌子分别需要1 h和 2 h,漆工油漆一张甲、乙型号的桌子分别需要3 h和1 h.又木工、漆工 每天工作分别不得超过8 h和9 h.请列出满足生产条件的数学关系式,并 画出相应的平面区域.
3.3 二元一次不等式(组)与简单的线性规划 问题
3.3.1 二元一次不等式(组)与平面区域
[目标导航]
1.知道什么是二元一次不等式及二元一次不等式组. 2.了解二元一次不等式的几何意义,并会画其表示的平面 课标要求 区域. 3.能从实际情境中抽象出二元一次不等式组,并能用平面 区域表示二元一次不等式组的解.
x y 2 1 0,
x ky k 0
(2)将图中阴影部分表示的平面区域,用不等式表示出来.
(2)解:由图(1)可知,其边界所在的直线在 x 轴和 y 轴上的截距均为 1,故边界所在的直线 方程为 x+y-1=0, 将原点(0,0)代入直线方程 x+y-1=0 的左边,得 0+0-1<0, 故所求的不等式为 x+y-1≤0;
思考1:不等式2x-3y>0是二元一次不等式吗? 答案:是,符合二元一次不等式的两个特征. 2.二元一次不等式表示的平面区域
表示直线 Ax+By+C=0
某一侧
二元一次不等式Ax+By+C>0 所有点组成的平面区域,我们把直线画 成 虚线 ,以表示区域 不包括 边界
表示直线 Ax+By+C=0
某一侧
y
1)
0,
表示的平面区
域的面积等于( )
2014-2015学年 高中数学 人教A版必修五 第三章 3.3.1二元一次不等式(组)与平面区域
解 先画直线 x-y+6=0(画成实线), 不等式 x-y+6≥0 表 示直线 x-y+6=0 上及右下方的点的集合.画直线 x+y= 0(画成实线),不等式 x+y≥0 表示直线 x+y=0 上及右上方 的点的集合. 画直线 x=3(画成实线), 不等式 x≤3 表示直线 x=3 上及左方的点的集合.
研一研·问题探究、课堂更高效
3.3.1
小结
本 讲 栏 目 开 关
不等式组表示的平面区域是各个不等式所表示的平面
点集的交集,因而是各个不等式所表示的平面区域的公共部 分,但要注意是否包含边界.
研一研·问题探究、课堂更高效
3.3.1
x<3, 2y≥x, 跟踪训练 1 画出不等式组 表示的平面区域. 3x+2y≥6, 3y<x+9
本 讲 栏 目 开 关
3.3.1
3.3.1
【学习目标】
二元一次不等式(组)与平面区域
1.了解二元一次不等式表示的平面区域.
本 讲 栏 目 开 关
2.会画出二元一次不等式(组)表示的平面区域. 【学法指导】 1.要善于从特例入手,探究二元一次不等式与对应平面区 域的关系.归纳总结出一般结论: “同侧同号,同号同 侧,异侧异号,异号异侧”. 2.准确、规范、熟练地画出二元一次不等式(组)所表示的平 面区域是学好本单元的关键所在.熟练掌握 “直线定边 界,特殊点定区域”的要领.
本 讲 栏 目 开 关
所有点组成的平面区域. 2.在画二元一次不等式表示的平面区域时,应用“直线定边 界、特殊点定区域”的方法来画区域.取点时,若直线不 过原点,一般用“原点定区域”;若直线过原点,则取点 (1,0)即可.总之,尽量减少运算量. 3.画平面区域时,注意边界线的虚实问题.
必修5课件3.3.1二元一次不等式(组)与平面区域
二、新知探究:
(2)探究
特殊:二元一次不等式 x – y < 6 的解集所表示的图形。
作出x – y = 6的图像——一条直线,
直线把平面内所有点分成三类:
a)在直线x – y = 6上的点 b)在直线x – y = 6左上方区域内 c)在直线x – y = 6右下方区域内
y
6
O
左上方区域
-6
x
x–y=6
右下方区域
二、新知探究:
2、探究二元一次不等式(组)的解集表示的图形
(2)探究
验证:设点P(x,y 1)是直线x – y =
y
x–y=6 x
6上的点,选取点A(x,y 2),使它
的坐标满足不等式x – y < 6,请完成 下面的表格,
O
横坐标 x
–3
–2 -8
–1 -73 -3
3.3.1 二元一次不等 式(组)与平面区域
一、引入:
一家银行的信贷部计划年初投入25 000 000
元用于企业和个人贷款,希望这笔资金至少可带来
30000元的收益,其中从企业贷款中获益12%,从个
人贷款中获益10%.那么,信贷部应刻如何分配资
金呢?
问题:应该用什么不等式模型来刻画呢?
二、新知探究:
4 x x+4y―4=0
课堂练习1:
(1)画出不等式 4x―3y≤12 表示的平面区域
y
4x―3y-12=0 x x
(2)画出不等式x≥1 表示的平面区域
y
x=1
三、例题示范:
例2、用平面区域表示不等式组 y < -3x+12 的解集。 x<2y
y
0 x-2y=0
人教a版必修5学案:3.3二元一次不等式(组)与简单的线性规划问题(含答案)
3.3 二元一次不等式(组)与简单的线性规划问题材拓展1.二元一次不等式(组)表示平面区域(1)直角坐标平面内的一条直线Ax +By +C =0把整个坐标平面分成三部分,即直线两侧的点集和直线上的点集.(2)若点P 1(x 1,y 1)与P 2(x 2,y 2)在直线l :Ax +By +C =0的同侧(或异侧),则Ax 1+By 1+C 与Ax 2+By 2+C 同号(或异号).(3)二元一次不等式组表示的平面区域是各个不等式所表示的平面点集的交集,因而是各个不等式所表示的平面区域的公共部分.2.画二元一次不等式表示的平面区域常 采用“直线定界,特殊点定域”的方法(1)直线定界,即若不等式不含等号,应把直线画成虚线;含有等号,把直线画成实线. (2)特殊点定域,即在直线Ax +By +C =0的某一侧取一个特殊点(x 0,y 0)作为测试点代入不等式检验,若满足不等式,则表示的区域就是包括这个点的这一侧,否则就表示直线的另一侧.特别地,当C ≠0时,常把原点作为测试点.当C =0时,常把点(1,0)或点(0,1)作为测试点.3.补充判定二元一次不等式表示的区域 的一种方法先证一个结论已知点P (x 1,y 1)不在直线l :Ax +By +C =0 (B ≠0)上,证明: (1)P 在l 上方的充要条件是B (Ax 1+By 1+C )>0; (2)P 在l 下方的充要条件是B (Ax 1+By 1+C )<0. 证明 (1)∵B ≠0,∴直线方程化为y =-A B x -CB,∵P (x 1,y 1)在直线上方,∴对同一个横坐标x 1,直线上点的纵坐标小于y 1,即y 1>-A B x 1-CB.(*)∵B 2>0,∴两端乘以B 2,(*)等价于B 2y 1>(-Ax 1-C )B , 即B (Ax 1+By 1+C )>0.(2)同理,由点P 在l 下方,可得y 1<-A B x 1-CB,从而得B 2y 1<(-Ax 1-C )B ,移项整理为B (Ax 1+By 1+C )<0. ∵上述解答过程可逆,∴P 在l 上方⇔B (Ax 1+By 1+C )>0, P 在l 下方⇔B (Ax 1+By 1+C )<0. 从而得出下列结论:(1)B >0时,二元一次不等式Ax +By +C >0表示直线Ax +By +C =0上方的平面区域(不包括直线),而Ax +By +C <0表示直线Ax +By +C =0下方的平面区域(不包括直线).(2)B <0时,二元一次不等式Ax +By +C >0表示直线Ax +By +C =0下方的区域(不包括直线),而二元一次不等式Ax +By +C <0表示直线Ax +By +C =0上方的平面区域(不包括直线).(3)B =0且A >0时,Ax +C >0表示直线Ax +C =0右方的平面区域(不包括直线),Ax +C <0表示直线Ax +C =0左方的平面区域(不包括直线).(4)B =0且A <0时,Ax +C >0表示直线Ax +C =0左方的平面区域(不包括直线),Ax +C <0表示直线Ax +C =0右方的平面区域(不包括直线).法突破一、二元一次不等式组表示的平面区域方法链接:只要准确找出每个不等式所表示的平面区域,然后取出它们的重叠部分,就可以得到二元一次不等式组所表示的平面区域.例1 在平面直角坐标系xOy 中,已知平面区域A ={(x ,y )|x +y ≤1,且x ≥0,y ≥0},则平面区域B ={(x +y ,x -y )|(x ,y )∈A }的面积为( )A .2B .1 C.12 D.14 解析答案 B二、平面区域所表示的二元一次不等式(组)方法链接:由平面区域确定不等式时,我们可以选用特殊点进行判断,把特殊点代入直线方程Ax +By +C =0,根据代数式Ax +By +C 的符号写出对应的不等式,根据是否包含边界来调整符号.例2 如图所示,四条直线x +y -2=0,x -y -1=0,x +2y +2=0,3x -y +3=0围成一个四边形,则这个四边形的内部区域(不包括边界)可用不等式组____________表示.解析 (0,0)点在平面区域内,(0,0)点和平面区域在直线x +y -2=0的同侧,把(0,0)代入到x +y -2,得0+0-2<0,所以直线x +y -2=0对应的不等式为x +y -2<0,同理可得到其他三个相应的不等式为x +2y +2>0,3x -y +3>0,x -y -1<0, 则可得所求不等式组为三、和平面区域有关的非线性问题方法链接:若目标函数为线性时,目标函数的几何意义与直线的截距有关.若目标函数为形如z =y -bx -a,可考虑(a ,b )与(x ,y )两点连线的斜率.若目标函数为形如z =(x -a )2+(y -b )2,可考虑(x ,y )与(a ,b )两点距离的平方. 例3 (2009·山东济宁模拟)已知点P (x ,y )满足点Q (x ,y )在圆(x +2)2+(y +2)2=1上,则|PQ |的最大值与最小值为( )A .6,3B .6,2C .5,3D .5,2解析可行域如图阴影部分,设|PQ |=d ,则由图中圆心C (-2,-2)到直线4x +3y -1=0的距离最小,则到点A 距离最大.由得(-2,3). ∴d max =|CA |+1=5+1=6,d min =|-8-6-1|5-1=2.答案 B四、简单的线性规划问题方法链接:线性规划问题最后都能转化为求二元一次函数z =ax +by (ab ≠0)的最值,将函数z =ax +by 转化为直线的斜截式:y =-a b x +z b ,通过求直线的截距zb的最值间接求出z的最值.例4 某家具公司制作木质的书桌和椅子两种家具,需要木工和漆工两道工序,已知木工平均四个小时做一把椅子,八个小时做一张书桌,该公司每星期木工最多有8 000个工作时;漆工平均两小时漆一把椅子,一个小时漆一张书桌,该公司每星期漆工最多有1 300个工作时,又已知制作一把椅子和一张书桌的利润分别是15元和20元,根据以上条件,怎样安排生产能获得最大利润?解 依题意设每星期生产x 把椅子,y 张书桌, 那么利润p =15x +20y .其中x ,y 满足限制条件{ 4x +8y ≤x +y ≤x ≥0,x ∈N *y ≥0,y ∈N *. 即点(x ,y )的允许区域为图中阴影部分,它们的边界分别为4x +8y =8 000(即AB ),2x +y =1 300(即BC ),x =0(即OA )和y =0(即OC ).对于某一个确定的p =p 0满足p 0=15x +20y ,且点(x ,y )属于阴影部分的解x ,y 就是一个能获得p 0元利润的生产方案.对于不同的p ,p =15x +20y 表示一组斜率为-34的平行线,且p 越大,相应的直线位置越高;p 越小,相应的直线位置越低.按题意,要求p 的最大值,需把直线p =15x +20y 尽量地往上平移,又考虑到x ,y 的允许范围,当直线通过B 点时,处在这组平行线的最高位置,此时p 取最大值.由{ 4x +8y =8 00x +y =1 300,得B (200,900), 当x =200,y =900时,p 取最大值, 即p max =15×200+20×900=21 000,即生产200把椅子、900张书桌可获得最大利润21 000元.区突破1.忽略截距与目标函数值的关系而致错 例1 设E 为平面上以A (4,1),B (-1,-6),C (-3,2)为顶点的三角形区域(包括边界),求z =4x -3y 的最大值与最小值.[错解]把目标函数z =4x -3y 化为y =43x -13z .根据条件画出图形如图所示,当动直线y =43x -13z 通过点C 时,z 取最大值;当动直线y =43x -13z 通过点B 时,z 取最小值.∴z min =4×(-1)-3×(-6)=14; z max =4×(-3)-3×2=-18.[点拨] 直线y =43x -13z 的截距是-13z ,当截距-13z 最大即过点C 时,目标函数值z 最小;而当截距-13z 最小即过点B 时,目标函数值z 最大.此处容易出错.[正解] 把目标函数z =4x -3y 化为y =43x -13z .当动直线y =43x -13z 通过点B 时,z 取最大值;当动直线y =43x -13z 通过点C 时,z 取最小值.∴z max =4×(-1)-3×(-6)=14; z min =4×(-3)-3×2=-18.2.最优整数解判断不准而致错 例2 设变量x ,y 满足条件求S =5x +4y 的最大值.[错解] 依约束条件画出可行域如图所示,如先不考虑x 、y 为整数的条件,则当直线5x +4y =S 过点A ⎝⎛⎭⎫95,2310时,S =5x +4y 取最大值,S max =18 15.因为x 、y 为整数,所以当直线5x +4y =t 平行移动时,从点A 起通过的可行域中的整点是C (1,2),此时S max =13.[点拨] 上述错误是把C (1,2)作为可行域内唯一整点,其实还有一个整点B (2,1),此时S =14才是最大值.[正解] 依据已知条件作出图形如图所示,因为B (2,1)也是可行域内的整点,由此得S B =2×5+1×4=14,由于14>13,故S max =14.温馨点评 求最优整数解时,要结合可行域,对所有可能的整数解逐一检验,不要漏掉解.题多解例 某电脑用户计划使用不超过500元的资金购买单价分别为60元、70元的单片软件和盒装磁盘.根据需要,软件至少买3片,磁盘至少买2盒,则不同的选购方式共有() A.5种B.6种C.7种D.8种解析方法一由题意知,按买磁盘盒数多少可分三类:买4盒磁盘时,只有1种选购方式;买3盒磁盘时,有买3片或4片软件两种选购方式;买2盒磁盘时,可买3片、4片、5片或6片软件,有4种选购方式,故共有1+2+4=7(种)不同的选购方式.方法二先买软件3片,磁盘2盒,共需320元,还有180元可用,按不再买磁盘,再买1盒磁盘、再买两盒磁盘三类,仿方法一可知选C.方法三设购买软件x片,磁盘y盒.则,画出线性约束条件表示的平面区域,如图所示.落在阴影部分(含边界)区域的整点有(3,2),(3,3),(3,4),(4,2),(4,3),(5,2),(6,2)共7个整点.答案 C题赏析1.(2011·浙江)设实数x,y满足不等式组{x+2y-5>0,x+y-7>0,x≥0,y≥0,且x,y为整数,则3x+4y的最小值是()A.14 B.16C.17 D.19解析作出可行域,如图中阴影部分所示,点(3,1)不在可行域内,利用网格易得点(4,1)符合条件,故3x+4y的最小值是3×4+4×1=16.答案 B2.(2009·烟台调研)若x,y满足约束条件{x+y≥x-y≥-x-y≤2,目标函数z =ax+2y仅在点(1,0)处取得最小值,则a的取值范围是()A.(-1,2) B.(-4,2) C.(-4,0] D.(-2,4)解析作出可行域如图所示,直线ax +2y =z 仅在点(1,0)处取得最小值,由图象可知-1<-a2<2,即-4<a <2. 答案 B赏析 本题考查线性规划的基本知识,要利用好数形结合.。
人教版高中数学必修五基本不等式课件PPT
1.两个不等式
不等式
内容
等号成立条件
重要不等式
a2 b2 2ab(a, b R)“a=b”时取“=”
基本不等式
ab
a b (a>0,b>0) 2
“a=b”时取“=”
第三章 不等式
第三章 不等式
在艰苦奋斗的环境中锻炼出来的文人,总比生 长在温暖逸乐的环境中的人要坚强伟大。
——郁达夫
1.你能在这个图案中找出一些相等关系
第三章 不等式
D
提示: 设AE=a,BE=b,
GF HE A
则正方形ABCD的面积 C 是__a_2_+_b_2__,
这4个直角三角形的面 积之和是___2_a_b____,
B
S> 正方形ABCD
4S直角三角形,
即a2 b2 2ab.
第三章 不等式
【提升总结】 基本不等式: 注意:(1)a,b均为正数; (2)当且仅当a=b时取等号.
第三章 不等式
D
如图,AB是圆的直径,C
是AB上任一点,
AC=a,CB=b,过点C作垂
A
C
B
直于AB的弦DE,连接
AD,BD,
E
则CD=__,
半径为__.
第三章 不等式
CD小于或等于圆的半径. 用不等式表示为 上述不等式当且仅当点C与圆心重合,即当a=b 时,等号成立. 几何意义:半径不小于半弦.
∴1x+1y≥2 x1y= 2xy≥4 2则是错误的,因为此时等号取 不到:前一个不等式成立的条件是 x=2y=12,后一个不等式则 是在 x=y 时成立.
(2)也可以直接将1x+1y的分子 1 代换为 x+2y,和乘以“1” 是相同的.
高中数学人教A版必修5第三章3.3.2简单的线性规划问题(二)课件
学段 初中 高中
硬件建设 班级学生数 配备教师数 万元
45
2
26/班
40
3
54/班
教师年薪 万元
2/人 2/人
分别用数学关系式和图形表示上述限制条件。若 根据有关部门的规定,初中每人每年可收学费1600 元,高中每人每年可收学费2700元。那么开设初中 班和高中班多少个?每年收费的学费总额最多?
解:设开设初中班x个,高中班y个。因办学规模以 20~30个班为宜,所以, 20≤x+y≤30
2x+y=15 x+y=12 x+2y=18
x 27
x+3y=27
当直线经过点A时z=x+y=11.4, 但它不是最优整数解. 作直线x+y=12
B(3,9)和C(4,8)在直线上,且在可行域内, 整点是B(3,9)和C(4,8),它们是最优解. 答(略)
{2x+y≥15, x+2y≥18, x+3y≥27, x≥0, x∈N* y≥0 y∈N*
目标函数t = x+y
y 15
B(3,9)
9
C(4,8)
A(18/5,39/5)
打网格线法
x+y =0
2 1 0 12 78
x
18
27
作出直线 x+y=0,
2x+y=15
x+2y=18 x+3y=27
当直线经过点A时t=x+y=11.4,但它不是最优整数解,
在可行域内打出网格线, 将直线x+y=11.4继续向上平移,
7 x 7 y 5
14x 7 y 6
x
1 7
得M点的坐标为:
人教新课标版数学高二必修5课件3.3.1二元一次不等式(组)与平面区域
(2)在直角坐标平面内,把直线 l:ax+by+c=0 画成 实线 ,表示平面区域包 括这一边界直线;画成 虚线 表示平面区域不包括这一边界直线.
(3)①对于直线 ax+by+c=0 同一侧的所有点,把它的坐标(x,y)代入 ax+by +c 所得的符号都 相同 .
②在直线 ax+by+c=0 的一侧取某个特殊点(x0,y0),由 ax0+by0+c 的符 号可以断定 ax+by+c>0 表示的是直线 ax+by+c=0 哪一侧的平面区域.
探究点5 不等式组表示平面区域在生活中的应用
命题角度1,每张钢板可 同时截得三种规格的小钢板的块数如下表所示:
钢板类型
规格类型 A规格 B规格 C规格
第一种钢板
2
1
1
第二种钢板
1
2
3
今需要A、B、C三种规格的成品分别为15、18、27块,用数学关系式
即(3×3-2×1+a)[3×(-4)-2×6+a]<0, (a+7)(a-24)<0,解得-7<a<24.
名师点评
对于直线l:Ax+By+C=0两侧的点(x1,y1),(x2,y2),若Ax1+By1+C >0,则Ax2+By2+C<0,即同侧同号,异侧异号.
探究点2 二元一次不等式表示的平面区域 例2 画出不等式x+4y<4表示的平面区域. 解答
含两个未知数的不等式的一个解,即满足不等式的一组x,y 的取值,例如xy= =00, ,也可写成(0,0).
问题2 一元一次不等式(组)的解集可以表示为数轴上的区间,例如 xx+ -34><00,的解集为数轴上的一个区间(如图).
那么,在直角坐标系内,二元一次不等式x-y<6的解集表示 什么图形呢? 答案
人教A版高中数学必修五课件3.3.2简单的线性规划问题2.pptx
5.已知线性目标函数 z=3x+2y,在线性约束条件
x+y-3≥0 2x-y≤0 y≤a
下取得最大值时的最优解只有一个,则实数 a
的取值范围是________.
x+y-3≥0
解析: 作出线性约束条件2x-y≤0
y≤a
表示的平面
区域,
如图中阴影部分所示.
• 因为取得最大值时的最优解只有一个,所以目 标函数对应的直线与平面区域的边界线不平行, 根据图形及直线的斜率,可得实数a的取值范 围是[2,+∞).
元.该企业在一个生产周期内消耗A原料不超过 13吨、B原料不超过18吨,那么该企业可获得最 大利润是( )
• A.12万元
B.20万元
• C.25万元D.27万元
解析: 设该企业在一个生产周期内各生产甲、乙产品
x、y 吨,获得利润 z 万元,根据题意,得
3x+y≤13
2x+3y≤18 x≥0
• (3)求:解方程组求最优解,进而求出目标函数的 最大值和最小值.
• [注意] 画可行域时,要特别注意可行域各边 的斜率与目标函数直线的斜率的大小关系,以 便准确判断最优解.
• 2.最优解的确定
• 最优解的确定可有两种方法:
• (1)将目标函数的直线平行移动,最先通过或 最后通过的顶点便是最优解.
交点 A(4,5)时,目标函数 z=200x+300y 取到最小值为 2 300
元,故所需租赁费最少为 2 300 元.
• 答案: 2300
• 2.某企业生产甲、乙两种产品,已知生产每吨 甲产品要用A原料3吨、B原料2吨;生产每吨乙产
品要用A原料1吨、B原料3吨.销售每吨甲产品可 获得利润5万元、每吨乙产品可获得利润3万
规格类型 钢板类型
人教A版高中数学必修5精品课件3-3-2简单的线性规划问题
第30页
第三章 3.3 3.3.2 第一课时
高考调研
新课标A版 ·数学 ·必修5
【解析】 由-4≤f(1)≤-1,得-4≤a-c≤-1.
A.-7 C.-5
B.-6 D.-3
第18页
第三章 3.3 3.3.2 第一课时
高考调研
【解析】
新课标A版 ·数学 ·必修5
第19页
第三章 3.3 3.3.2 第一课时
高考调研
新课标A版 ·数学 ·必修5
如图所示,约束条件所表示的区域为图中的阴影部分,而
目标函数可化为y=
2 3
x-
z 3
,先画出l0:y=
高考调研
新课标A版 ·数学 ·必修5
课后巩固
第35页
第三章 3.3 3.3.2 第一课时
高考调研
新课标A版 ·数学 ·必修5
x+2y≥2,
1.已知x、y满足3x≥x+0y,≥1, 则z=2x+y(
)
y≥0,
A.有最大值1
B.有最小值1
C.有最大值4
D.有最小值4
答案 B
第36页
第三章 3.3 3.3.2 第一课时
高考调研
Байду номын сангаас
新课标A版 ·数学 ·必修5
第三章 不等式
第1页
第三章 不等式
高考调研
新课标A版 ·数学 ·必修5
3.3 二元一次不等式(组)与简单的线性规划问题
第2页
第三章 不等式
人教a版必修五课件:简单线性规划的应用(74页)
作直线l: 3 000x+2 000y=0,即3x+2y=0. 平移直线l,从图中可知,当直线l过M点时,目标函数 取得最大值.
x+y=300 联立 5x+2y=900,
解得x=100,y=200.
∴点M的坐标为(100,200).
∴zmax=3 000x+2 000y=700 000(元). 该公司在甲电视台做100分钟广告,在乙电视台做200 分钟广告,公司的收益最大,最大收益是70万元.
典例导悟
类型一 [例1] 求最大值的实际应用题 某公司计划在甲、乙两个电视台做总时间不超
过300分钟的广告,广告总费用不超过9万元,甲、乙电视 台的广告收费标准分别为500元/分钟和200元/分钟,假定 甲、乙两个电视台为该公司所做的每分钟广告,能给公司
带来的收益分别为0.3万元和0.2万元.问该公司如何分配在 甲、乙两个电视台的广告时间,才能使公司的收益最大, 最大收益是多少万元? [分析] 根据题意列出约束条件,写出目标函数.转
[点评]
解答线性规划应用题应注意以下几点:
(1)在线性规划问题的应用中,常常是题中的条件较 多,因此认真审题非常重要; (2)线性约束条件中有无等号要依据条件加以判断; (3)结合实际问题,分析未知数x,y等是否有限制,如 x,y为正整数、非负数等;
(4)分清线性约束条件和线性目标函数,线性约束条件 一般是不等式,而线性目标函数却是一个等式; (5)图对解决线性规划问题至关重要,关键步骤基本上 都是在图上完成的,所以作图应尽可能地准确,图上操作 尽可能规范.但作图中必然会有误差,假如图上的最优点 不容易看出时,需将几个有可能是最优点的坐标都求出 来,然后逐一检查,以确定最优解.
类型二 [例2]
求最小值的实际应用题 某人承揽一项业务,需做文字标牌4个,绘画
高中数学 必修5 25.二元一次不等式组表示的平面区域
25.二元一次不等式组表示的平面区域教学目标 班级______ 姓名__________1.能熟练应用二元一次不等式的性质解决问题.2.能熟练的画出二元一次不等式组表示的平面区域.3.掌握二元一次不等式组表示的平面区域相关的面积计算.教学过程一、二元一次不等式的性质.1.两点同侧:直线同侧的点坐标满足同一不等式.对于直线0=++C By Ax 同侧的任意两点,把它们的坐标代入多项式C By Ax ++,所得的值符号相同;即在直线0=++C By Ax 同侧任取两点),(11y x 、),(22y x ,则有0))((2211>++++C By Ax C By Ax .2.两点异侧:异侧的点满足不同的不等式.对于直线0=++C By Ax 异侧的任意两点,把它们的坐标代入多项式C By Ax ++,所得的值符号相反.即在直线0=++C By Ax 两侧各任取一点),(11y x 、),(22y x ,则有0))((2211<++++C By Ax C By Ax .二、二元一次不等式组表示的平面区域.1.画二元一次不等式所表示的平面区域:(1)特殊点法;(2)标准式法.2.注意事项:(1)画二元一次不等式所表示的平面区域要注意:①是否取等;②取左取右.(2)二元一次不等式组要求各不等式同时成立,作图时取各不等式区域的公共部分.(3)作图要精确,画直线时,尽可能找特殊点(如直线与坐标轴的交点).三、与二元一次不等式组表示的平面区域相关的面积计算.1.要求面积的区域一般是封闭的区域,面积可求.2.规则图形可直接用面积公式求解:高底三角形⨯⨯=21S ,高下底)(上底梯形⨯+=21S . 3.若平面区域为不规则图形,可将区域分解成几个规则的图形,然后求解.四、例题分析.1.利用二元一次不等式的性质求参数的值.例1:已知点)1,3(A 和)6,4(-B 在直线023=+-a y x 的异侧,求a 的取值范围.练1:已知点)2,1(-P 以及它关于原点对称的点Q 均在不等式012>++by x 表示的平面区域内,求b 的取值范围.2.画二元一次不等式组表示的平面区域.例2:画出不等式组 10≤≤x ,表示的平面区域.10≤≤y ,1≤+y x ,3.面积计算问题.例3:画出不等式组 012≥-+y x ,表示的平面区域,并计算该区域的面积. 052≤-+y x ,2+≤x y ,作业:画出不等式组 05≥+-y x ,表示的平面区域.01>++y x ,3≤x ,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
•感谢观看,欢迎指导!
x y0
x 3
6
X-y+5=0
解:不等式x-y+5≥0表示直线x-y+5=0 上及右下方的点的集合,
4
-4 o
x
x+y≥0表示直线x+y=0上及
右上方的点的集合,
x≤3表示直线x=3上及左方 的点的集合.
X+y=0 X=3
不等式组表示平面区域即 为图示的三角形区域
•思考2:
•画出不等式 (x+2y+4)(x-y+4) <0表示
2、不等式3x + 2y – 6 ≤0表示的平面区域是( D)
3、已知点A(0,0), B(1,1), C(2,1), D(0,2),
其中在不等式2x+y>4所表示的平面区域内的
是—C
x 3y 6 0 4、不等式组x y 2 0
表示的平面区域是( B )
思考1:画出不等式组
x y 5 0 表示的平面区域。 y
直线定界,特殊点定域。
•练习:画出下列不等式所表示的平面区域:
•1. x-y+5≥0
•Y
•2. x+y≥0
•Y
•O
•X
•O
•X
例2: 画出
x y 5 0
x y0
•分析:不等式组表示的平面区域
表示的平面区域
•Y
•x-y+5=0
•
是各不等式所表示的平面
•
点集的交集,因而的各个
•
不等式所表示的平面区域
二元一次不等式 (组)与平面区域
复习回忆:一次函数的解析式?图像?
y=kx+b(k 0)
•y
•y
•O
•x
•O
•x
k 0
b
0
k 0
b
0
•y
•y
•O
•x
•O
•x
k 0
b
0
k 0
b
0
画出函数y=x-6的图像: x- y -6=0
y y =x-6
••
O
6
x
6
二元一次方程
x-y-6=0
表示的是什么图形?
•y
•边界 •x-y-6=0
••
•左上方区
•O
•x
域x-y-6<0
•右下方区 域x-y-6>0
•小结 AxByC0 AxByC0
(1)二元一次不等式 AxByC0表示直线 AxByC0某一侧所有点组成的平面 区域。
(2)把直线画成虚线表示区域不包括边界; 把直线画成实线表示区域包括边界;
1
O
4x
x+4y-4=0
二元一次不等式表示哪个平面区域的判断方法:
直线Ax+By+C=0同一侧的所有点 (x,y)代入Ax+By+C所得实数的符号都相 同,只需在直线的某一侧任取一点(x0,y0), 根据Ax0+By0+C的正负即可判断 Ax+By+C>0表示直线的哪一侧区域, C≠0时,常把原点作为特殊点
•
的公-y+5≥0表示
• 直线x-y+5=0上及右 • 下方的点的集合,
•x+y=0
•x+y≥0表示直线x+y=0上及
•
右上方的点的集合,
课堂练习:
1、不等式x – 2y + 6 > 0表示的区域在直线
x – 2y + 6 = 0的( B )
(A)右上方 (B)右下方 (C)左上方 (D)左下方
的平面区域。
•x-y+4=0
•x+2y+4=0
•y
•4
•-4
•o
•x
•-2
谢谢
❖
1.情节是叙事性文学作品内容构成的 要素之 一,是叙 事作品 中表现 人物之 间相互 关系的 一系列 生活事 件的发 展过程 。
❖
2.它由一系列展示人物性格,反映人物 与人物 、人物 与环境 之间相 互关系 的具体 事件构 成。
❖
8.少年时阅历不够丰富,洞察力、理 解力有 所欠缺 ,所以 在读书 时往往 容易只 看其中 一点或 几点, 对书中 蕴含的 丰富意 义难以 全面把 握。
❖
9.自信让我们充满激情。有了自信, 我们才 能怀着 坚定的 信心和 希望, 开始伟 大而光 荣的事 业。自 信的人 有勇气 交往与 表达, 有信心 尝试与 坚持, 能够展 现优势 与才华 ,激发 潜能与 活力, 获得更 多的实 践机会 与创造 可能。
直线同侧 点同号
y
x- y -6=0
x-y-6<0
•(7,2) •(7,1)
O
6 •(3,0)•(7,0)
•(-1,-2)
x
•(3,-3)
6 •(3,-5)
•(-1,-7)
x-y-6>0
•(-1,-8)
• 二元一次不等式x-y-6 > 0的解集
表示的是什么图形? • 二元一次不等式x-y-6<0的解集
y x- y -6=0
••
O
6
x
6
•判断以下各点在不在直线 xy60上
第一组 (-1,-7) (3,-3) (7,1) 结论
x-y-6
o
o
第二组 (-1,-2) (3,0)
o
(7,2)
在 结论
x-y-6
-5
第三组 (-1,-8)
-3
(3,-5)
-1
(7,0)
不在 结论
x-y-6
1
2
1 不在
思考:通过这几组点的位置你发现 了什么规律?
❖
5.根据场景来梳理。一般一个场景可 以梳理 为一个 情节。 小说中 的场景 就是不 同时间 人物活 动的场 所。
❖
6.根据线索来梳理。抓住线索是把握 小说故 事发展 的关键 。线索 有单线 和双线 两种。 双线一 般分明 线和暗 线。高 考考查 的小说 往往较 简单,线 索也一 般是单 线式。
❖
7.阅历之所以会对读书所得产生深浅 有别的 影响, 原因在 于阅读 并非是 对作品 的简单 再现, 而是一 个积极 主动的 再创造 过程, 人生的 经历与 生活的 经验都 会参与 进来。
x - y -6 < 0 x-y-6 > 0
二元一次不等式
x 4y4 0
y
3x
12
0
二元一次不等式组
•思考:
•1、 x -y - 6 = 0 的解集表示的什么图形 ?
•探究:
•1、 x -y -6 < 0 的解集表示的什么图形 ? •2、x-y-6 > 0 的解集表示的什么图形?
思考:如何判断某个点P(x,y) 在不在直线x-y-6=0上呢?
例题示范:
例1:画出不等式 x + 4y- 4<0 表示的平面区域
解:(1)直线定界:先画边界直线x + 4y – 4 = 0(画成虚线)
(2)特殊点定域:取原点(0,0),代入x + 4y - 4, 因为 0 + 4×0 – 4 = -4 < 0
所以,原点在x + 4y – 4 < 0表示的平面区域内, 不等式x + 4y – 4 < 0表示的区域如图所示。 y
❖
3.把握好故事情节,是欣赏小说的基础,也是整 体感知 小说的 起点。 命题者 在为小 说命题 时,也必 定以情 节为出 发点,从整体 上设置 理解小 说内容 的试题 。通常 从情节 梳理、 情节作 用两方 面设题 考查。
❖
4.根据结构来梳理。按照情节的开端 、发展 、高潮 和结局 来划分 文章层 次,进而 梳理情 节。