高中数学人教A版(课件)必修四 第一章 三角函数 1.2.1
2014年人教A版必修四课件 1.2 任意角的三角函数
r= x + y , a | MP | y sina = = , o M x | OP | r | OM | x cosa = = , | OP | r | MP | y tana = = . 于是得 | OM | x
【终边上一点的坐标定义三角函数】 点P(x, y)是角 a 终边上任一点(除原点), r 是点P y 到原点的距离, 即 r = |OP| = x 2 + y 2 , 1 P(x, y) y 正弦: sina = , r 余弦: cosa = x , -1 o x r y 正切: tana = , x 当点P(x, y)取角 a 终边与单位圆的交点时, r =1, 则a 的三角函数为: y 正弦: sina = = y, 余弦: cosa = x = x. r r
【终边在坐标轴上的角的三角函数】 终边在 x 轴非负半轴上时, (如图)
y 0 =0, sina = = r r cosa = x = r =1, r r y 0 =0. tana = = x x
终边与其它半轴重合时同理.
y
a的终边
o
P
x
练习: (课本15页) 3. 填表: 角a 角 a 的弧度数 sin a cos a 0º 0 90º 180º 270º 360º 3 2 2 2 -1 0 0 1 0
问题1. 在直角三角形中, 锐角的三角函数是怎 样定义的? 在直角坐标系中, 如果知道锐角 a 终边 上一点的坐标, 你能求出 a 的三角函数吗?
对边 sina = 斜边 邻边 cosa = 斜边
对边 tana = 邻边
作PM⊥x 轴于M, 设 |OP| = r, 则
2 2
y (x, y) P ·
本章内容
高中数学 第一章 三角函数 1.2.1 第一课时 三角函数的定义与公式一学案 新人教A版必修4-新人
第一课时三角函数的定义与公式一预习课本P11~15,思考并完成以下问题(1)任意角的三角函数的定义是什么?(2)三角函数值的大小与其终边上的点P的位置是否有关?(3)如何求三角函数的定义域?(4)如何判断三角函数值在各象限内的符号?(5)诱导公式一是什么?[新知初探]1.任意角的三角函数的定义前提如图,设α是一个任意角,它的终边与单位圆交于点P(x,y)定义正弦y叫做α的正弦,记作sin α,即sin α=y 余弦x叫做α的余弦,记作cos α,即cos α=x正切yx叫做α的正切,记作tan α,即tan α=yx(x≠0)三角函数正弦、余弦、正切都是以角为自变量,以单位圆上的点的坐标或坐标的比值为函数值的函数,将它们统称为三角函数[点睛] 三角函数也是函数,都是以角为自变量,以单位圆上点的坐标(坐标的比值)为函数值的函数;三角函数值只与角α的大小有关,即由角α的终边位置决定.2.三角函数值的符号如图所示:正弦:一二象限正,三四象限负;余弦:一四象限正,二三象限负;正切:一三象限正,二四象限负.简记口诀:一全正、二正弦、三正切、四余弦.3.诱导公式一即终边相同的角的同一三角函数值相等.[点睛] 诱导公式一的实质是:终边相同的角,其同名三角函数的值相等.因为这些角的终边都是同一条射线,根据三角函数的定义可知这些角的三角函数值相等.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)若α=β+720°,则cos α=cos β.( )(2)若sin α=sin β,则α=β.( )(3)已知α是三角形的内角,则必有sin α>0.( )答案:(1)√(2)×(3)√2.若sin α<0,tan α>0,则α在( )A.第一象限B.第二象限C.第三象限D.第四象限答案:C3.已知角α的终边与单位圆的交点P ⎝⎛⎭⎪⎫55,-255,则sin α+cos α=( )A .55B .-55C .255D .-255答案:B4.sin π3=________,cos 3π4=________.答案:32 -22三角函数的定义及应用[典例] 设a <0,角α的终边与单位圆的交点为P (-3a,4a ),那么sin α+2cos α的值等于( )A .25 B .-25C .15D .-15[解析] ∵点P 在单位圆上,则|OP |=1. 即-3a2+4a2=1,解得a =±15.∵a <0,∴a =-15.∴P 点的坐标为⎝ ⎛⎭⎪⎫35,-45.∴sin α=-45,cos α=35.∴sin α+2cos α=-45+2×35=25.[答案] A利用三角函数的定义求值的策略(1)已知角α的终边在直线上求α的三角函数值时,常用的解题方法有以下两种:法一:先利用直线与单位圆相交,求出交点坐标,然后再利用正、余弦函数的定义求出相应三角函数值.法二:在α的终边上任选一点P (x ,y ),P 到原点的距离为r (r >0).则sin α=yr,cosα=xr.已知α的终边求α的三角函数值时,用这几个公式更方便.(2)当角α的终边上点的坐标以参数形式给出时,要根据问题的实际情况对参数进行分类讨论.[活学活用]1.如果α的终边过点P (2sin 30°,-2cos 30°),那么sin α的值等于( ) A .12 B .-12C .-32D .-33解析:选C 由题意知P (1,-3), 所以r = 12+-32=2,所以sin α=-32. 2.已知角α的终边过点P (12,a ),且tan α=512,求sin α+cos α的值.解:根据三角函数的定义,tan α=a 12=512,∴a =5,∴P (12,5).这时r =13,∴sin α=513,cos α=1213,从而sin α+cos α=1713.三角函数值符号的运用[典例] (1)( ) A .第一象限 B .第二象限 C .第三象限D .第四象限(2)设α是第三象限角,且⎪⎪⎪⎪⎪⎪cos α2=-cos α2,则α2所在象限是( )A .第一象限B .第二象限C .第三象限D .第四象限[解析] (1)由sin θ<0,可知θ的终边可能位于第三或第四象限,也可能与y 轴的负半轴重合.由tan θ<0,可知θ的终边可能位于第二象限或第四象限,故θ的终边只能位于第四象限.(2)∵α是第三象限角,∴2k π+π<α<2k π+3π2,k ∈Z.∴k π+π2<α2<k π+3π4.∴α2在第二、四象限. 又∵⎪⎪⎪⎪⎪⎪cos α2=-cos α2,∴cos α2<0.∴α2在第二象限.[答案] (1)D (2)B对于已知角α,判断α的相应三角函数值的符号问题,常依据三角函数的定义,或利用口诀“一全正、二正弦、三正切、四余弦”来处理.[活学活用]1.设△ABC 的三个内角为A ,B ,C ,则下列各组数中有意义且均为正值的是( ) A .tan A 与cos B B .cos B 与sin C C .sin C 与tan AD .tan A2与sin C解析:选D ∵0<A <π,∴0<A 2<π2,∴tan A2>0;又∵0<C <π,∴sin C >0.2.若角α是第二象限角,则点P (sin α,cos α)在第________象限. 解析:∵α为第二象限角, ∴sin α>0,cos α<0.∴P (sin α,cos α)位于第四象限. 答案:四诱导公式一的应用[典例] 计算下列各式的值:(1)sin(-1 395°)cos 1 110°+cos(-1 020°)sin 750°;(2)sin ⎝ ⎛⎭⎪⎫-11π6+cos 12π5·tan 4π. [解] (1)原式=sin(-4×360°+45°)cos(3×360°+30°)+cos(-3×360°+60°)sin(2×360°+30°)=sin 45°cos 30°+cos 60°sin 30° =22×32+12×12 =64+14 =1+64. (2)原式=sin ⎝ ⎛⎭⎪⎫-2π+π6+cos ⎝⎛⎭⎪⎫2π+2π5·tan(4π+0)=sin π6+cos 2π5×0=12.利用诱导公式求解任意角的三角函数的步骤[活学活用] 求下列各式的值:(1)sin 25π3+tan ⎝ ⎛⎭⎪⎫-15π4;(2)sin 810°+cos 360°-tan 1 125°. 解:(1)sin 25π3+tan ⎝ ⎛⎭⎪⎫-15π4=sin ⎝ ⎛⎭⎪⎫8π+π3+tan ⎝ ⎛⎭⎪⎫-4π+π4=sin π3+tan π4=32+1. (2)sin 810°+cos 360°-tan 1 125°=sin(2×360°+90°)+cos(360°+0°)-tan(3×360°+45°) =sin 90°+cos 0°-tan 45° =1+1-1 =1.层级一 学业水平达标1.若α=2π3,则α的终边与单位圆的交点P 的坐标是( )A .⎝ ⎛⎭⎪⎫12,32 B .⎝ ⎛⎭⎪⎫-12,32 C .⎝ ⎛⎭⎪⎫-32,12 D .⎝ ⎛⎭⎪⎫12,-32解析:选B 设P (x ,y ),∵角α=2π3在第二象限,∴x =-12,y =1-⎝ ⎛⎭⎪⎫-122=32, ∴P ⎝ ⎛⎭⎪⎫-12,32.2.若角α的终边上一点的坐标为(1,-1),则cos α为( ) A .1 B .-1 C .22D .-22解析:选C ∵角α的终边上一点的坐标为(1,-1),它与原点的距离r =12+-12=2,∴cos α=xr=12=22. 3.若三角形的两内角α,β满足sin αcos β<0,则此三角形必为( ) A .锐角三角形 B .钝角三角形 C .直角三角形 D .以上三种情况都可能解析:选B ∵sin αcos β<0,α,β∈(0,π), ∴sin α>0,cos β<0,∴β为钝角.4.代数式sin 120°cos 210°的值为( ) A .-34B .34C .-32D .14解析:选A 利用三角函数定义易得sin 120°=32, cos 210°=-32,∴s in 120°cos 210°=32×⎝ ⎛⎭⎪⎫-32=-34,故选A. 5.若角α的终边在直线y =-2x 上,则sin α等于( ) A .±15B .±55C .±255D .±12解析:选C 在α的终边上任取一点(-1,2),则r =1+4=5,所以sin α=yr=25=25 5.或者取P (1,-2),则r =1+4=5,所以sin α=y r =-25=-25 5. 6.tan ⎝⎛⎭⎪⎫-17π3=________. 解析:tan ⎝ ⎛⎭⎪⎫-17π3=tan ⎝ ⎛⎭⎪⎫-6π+π3=tan π3= 3. 答案: 37.已知角α的终边过点P (5,a ),且tan α=-125,则sin α+cos α=________.解析:∵tan α=a 5=-125,∴a =-12.∴r = 25+a 2=13.∴sin α=-1213,cos α=513.∴sin α+cos α=-713.答案:-7138.若角α的终边落在直线x +y =0上,则sin α|cos α|+|sin α|cos α=________.解析:当α在第二象限时,sin α|cos α|+|sin α|cos α=-sin αcos α+sin αcos α=0;当α在第四象限时,sin α|cos α|+|sin α|cos α=sin αcos α-sin αcos α=0.综上,sin α|cos α|+|sin α|cos α=0.答案:09.求下列三角函数值:(1)cos(-1 050°);(2)tan 19π3;(3)sin ⎝ ⎛⎭⎪⎫-31π4.解:(1)∵-1 050°=-3×360°+30°,∴cos(-1 050°)=cos(-3×360°+30°)=cos 30°=32. (2)∵19π3=3×2π+π3,∴tan 19π3=tan ⎝ ⎛⎭⎪⎫3×2π+π3=tan π3= 3.(3)∵-31π4=-4×2π+π4,∴sin ⎝ ⎛⎭⎪⎫-31π4=sin ⎝⎛⎭⎪⎫-4×2π+π4=sin π4=22. 10.已知点M 是圆x 2+y 2=1上的点,以射线OM 为终边的角α的正弦值为-22,求cos α和tan α的值.解:设点M 的坐标为(x 1,y 1). 由题意,可知sin α=-22,即y 1=-22. ∵点M 在圆x 2+y 2=1上, ∴x 21+y 21=1,即x 21+⎝ ⎛⎭⎪⎫-222=1, 解得x 1=22或x 2=-22. ∴cos α=22或cos α=-22, ∴tan α=-1或tan α=1.层级二 应试能力达标1.已知角α的终边经过点(3a -9,a +2),且cos α≤0,sin α>0,则实数a 的取值范围是( )A .(-2,3]B .(-2,3)C .[-2,3)D .[-2,3]解析:选A 由cos α≤0,sin α>0可知,角α的终边落在第二象限内或y 轴的正半轴上,所以有⎩⎪⎨⎪⎧3a -9≤0,a +2>0,即-2<a ≤3.2.给出下列函数值:①sin(-1 000°);②cos ⎝ ⎛⎭⎪⎫-π4;③tan 2,其中符号为负的个数为( )A .0B .1C .2D .3解析:选B ∵-1 000°=-3×360°+80°, ∴-1 000°是第一象限角,则sin(-1 000°)>0; ∵-π4是第四象限角,∴cos ⎝ ⎛⎭⎪⎫-π4>0; ∵2 rad =2×57°18′=114°36′是第二象限角,∴tan 2<0.故选B. 3.若tan x <0,且sin x -cos x <0,则角x 的终边在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析:选D ∵tan x <0,∴角x 的终边在第二、四象限,又sin x -cos x <0,∴角x的终边在第四象限.4.已知角α的终边经过点P (m ,-6),且cos α=-45,则m =( ) A .8B .-8C .4D .-4 解析:选B 由题意r =|OP |=m 2+-62=m 2+36,故cos α=mm 2+36=-45,解得m =-8. 5.已知角θ的顶点为坐标原点,始边为x 轴的正半轴,若P (4,y )是角θ终边上一点,且sin θ=-255,则y =________. 解析:|OP |=42+y 2.根据任意角三角函数的定义得,y42+y 2=- 255,解得y =±8.又∵sin θ=-255<0及P (4,y )是角θ终边上一点,可知θ为第四象限角,∴y =-8. 答案:-86.tan 405°-sin 450°+cos 750°=________.解析:原式=tan(360°+45°)-sin(360°+90°)+cos(2×360°+30°)=tan 45°-sin 90°+cos 30°=1-1+32=32. 答案:327.判断下列各式的符号:(1)sin 340°cos 265°;(2)sin 4tan ⎝⎛⎭⎪⎫-23π4. 解:(1)∵340°是第四象限角,265°是第三象限角,∴sin 340°<0,cos 265°<0,∴sin 340°cos 265°>0.(2)∵π<4<3π2,∴4是第三象限角, ∵-23π4=-6π+π4,∴-23π4是第一象限角. ∴sin 4<0,tan ⎝⎛⎭⎪⎫-23π4>0, ∴sin 4tan ⎝⎛⎭⎪⎫-23π4<0.8.已知1|sin α|=-1sin α,且lg(cos α)有意义. (1)试判断角α所在的象限. (2)若角α的终边上一点是M ⎝ ⎛⎭⎪⎫35,m ,且|OM |=1(O 为坐标原点),求m 的值及sin α的值.解:(1)由1|sin α|=-1sin α,所以sin α<0, 由lg(cos α)有意义,可知cos α>0,所以α是第四象限角.(2)因为|OM |=1,所以⎝ ⎛⎭⎪⎫352+m 2=1, 得m =±45. 又α为第四象限角,故m <0,从而m =-45, sin α=y r =m |OM |=-451=-45.。
1.2.1(2)单位圆与三角函数线(高中数学人教A版必修四).ppt
π 5π (2)如图所示,在 0~2π 内作出正切值等于 1 的角:4和 4 , 则在图中所示的阴影区域内的每个角 x(不包括终边在 y 轴上的 角)均满足 tanx≤1.
π 5π π 所以所求的角 x 的集合为: {x|2kπ+2<x≤ 4 +2kπ 或-2+ π π π 2kπ<x≤4+2kπ,k∈Z}={x|kπ-2<x≤kπ+4,k∈Z}.
cos OM tan AT
O P
A(1,0)
α的终边
终边落在第四象限
y
α
sin MP
M A(1,0)
O
P
T
x
cos OM tan AT
α的终边
α的终边 y P α
M
三角函数线
y α的终边 P T x
A(1,0) T
α
O y
O
M A(1,0)
x
sin MP cos OM
3. 特殊情况: ① 当角的终边在x轴上时,点P与点M重合, 点T与点A重合,这时正弦线与正切线都变成 了一点,数量为零,而余弦线OM=1或-1。 ② 当角的终边在y轴上时,正弦线MP=1或-1 余弦线变成了一点,它表示的数量为零,正切 线不存在。
用 途
三角函数线的具体作用 :
1.比较两个三角函数值的大小
实例
剖析
3π 例1、作出 2π 的正弦线、余弦线和正切线.. 4 3
解:在直角坐标系中作单位圆如图示 2
y y
以x轴的正半轴为始边作出 的角, 3 其终边与单位圆交于P点,作PM x轴,垂足
为M,由单位圆与x轴的正半轴的交点A作 x轴的垂线, 与OP的反向延长线交于T点,
P
高中数学 必修四 课件:1-2-0-1 任意角的三角函数的定义
高中新课程 ·学习指导 ·人教A版 ·数学 ·必修4
[小结]该组公式说明:终边相同的角的同名三角函数值相 等;如果给定一个角,它的三角函数值是唯一确定的(不存在 者除外),反过来,如果给定一个三角函数值,却有无数多个 角与之对应.
第一章 1.2 第1课时
高中新课程 ·学习指导 ·人教A版 ·数学 ·必修4
第一章 1.2 第1课时
高中新课程 ·学习指导 ·人教A版 ·数学 ·必修4
[小结]正弦、余弦和正切函数在各象限的符号可用以下口 诀记忆:
“一全正,二正弦,三正切,四余弦”. 其含义是在第一象限各三角函数值全为正,在第二象限 只有正弦值为正,在第三象限只有正切值为正,在第四象限 只有余弦值为正.
第一章 1.2 第1课时
第一章 1.2 第1课时
高中新课程 ·学习指导 ·人教A版 ·数学 ·必修4
(1)判断下列各式的符号.
①sin3·cos4·tan5;
②α 是第二象限角,sinα·cosα.
(2)若 cosθ<0 且 sinθ>0,则θ2是第(
A.一
B.三
C.一或三
D.任意象限角
)象限角.
第一章 1.2 第1课时
高中新课程 ·学习指导 ·人教A版 ·数学 ·必修4
已知α是第三象限角,设sinαcosα=m,则有( )
A.m>0
B.m=0
C.m<0
D.m的符号不确定
[答案] A
第一章 1.2 第1课时
高中新课程 ·学习指导 ·人教A版 ·数学 ·必修4
3.公式一(k∈Z) sin(α+2kπ)= sinα , cos(α+2kπ)= cosα , tan(α+2kπ)= tanα .
高中数学必修四 第1章 三角函数课件 1.2.2 同角三角函数的基本关系
互动探究 探究点1 同角三角函数的基本关系式对任意角α都成立吗?
提示 同角三角函数的基本关系式成立的条件是使式子两边都
有意义.所以sin2α+cos2α=1对于任意角α∈R都成立,而
sin cos
αα=tan
α并不是对任意角α∈R都成立,这时α≠kπ+π2,k∈
Z.
探究点2 在利用平方关系求sin α或cos α时,其正负号应怎样确 定?
=tan
tan2αsin2α α-sin αtan
αsin
α=tatnanαα-sisninαα=左边,
∴原等式成立.
[规律方法] (1)证明三角恒等式的实质:清除等式两端的差异, 有目的的化简. (2)证明三角恒等式的基本原则:由繁到简. (3)常用方法:从左向右证;从右向左证;左、右同时证.
ቤተ መጻሕፍቲ ባይዱ
【活学活用2】 化简:
1-2sinα2cosα2+ 1+2sinα2cosα20<α<π2.
解 原式=
cosα2-sinα22+
cosα2+sinα22
=cosα2-sinα2+cosα2+sinα2.
∵α∈0,π2,∴α2∈0,π4.
利用tan α=csoins αα和sin2α+cos2α=1向等号左边式子进行转化;
也可利用tan
α=
sin cos
α α
将等号左、右两边式子进行切化弦,结
合sin2α+cos2α=1达到两边式子相等的目的.
证明
∵右边= tan
tan2α-sin2α α-sin αtan αsin
α
=tantaαn2-α-sintaαn2tαacnoαs2sαin α=tantαan-2αsi1n-αctaons2ααsin α
高中数学第一章三角函数1.2.1.1三角函数的定义省公开课一等奖新名师优质课获奖PPT课件
探究二
探究三
(1)解析:依题意,x2+
5
3
2
3
α=± ,tan α=
2
3
答案:
5
±3
5
±3
思维辨析
2 2
=1,解得
3
5
x=± 3 ,于是
2
sin α=3,cos
2 5
.
5
=±
2 5
5
±
(2) 解析:由已知得 x=-6,y=8,
8
10
所以 r= 2 + 2 =10,于是 sin θ=
8
-6
4
4
一
二
三
3.做一做:求值
(1)sin 780°;
25
(2)cos 4 π;
(3)tan
15
-4π
.
3
2
解:(1)sin 780°=sin(2×360°+60°)=sin 60°= .
25
π
π
2
(2)cos 4 π=cos 3 × 2π + 4 =cos4 = 2 .
15
π
π
(3)tan - 4 π =tan -2 × 2π + 4 =tan4=1.
第27页
探究一
探究二
探究三
思维辨析
忽视对参数的分类讨论致误
【典例】 角 α 的终边过点 P(-3a,4a),a≠0,则 cos
α=
.
错解因为 x=-3a,y=4a,所以 r= (-3)2 + (4)2 =5a,于是 cos
-3 3
α= 5 =-5.
错解错在什么地方?你能发现吗?怎样避免这类错误呢?
人教A版高中数学必修四课件1.2.1任意角的三角函数.ppt
cos
2
3 2
6, 4
tan
3
15 3
.
(3) 当 y 5 时,P( 3 , 5),r 2 2 ,
cos 6 ,tan 15 .
4
3
综上所述:
(1) 当 y 0 时,cP(os 3,1, 0)ta,nr 03.
(2) 当 y 5 时 ,coP(s 3 ,6 ,5 )tan,r2 125,.
sin 5 3 ,
3
2
cos 5 1 ,
32
tan 5 3.
3
例1.求下列角的正弦、余弦和正切值:
(1) 5 ; (2) ; (3) 3 .
3
2
解:(2)∵ 当 时,在直角坐标系中, y 角 的终边与单位圆的交点坐标为 P(1, 0).
sin 0, cos 1, tan 0.
y
(1)正弦:sinα=y ;
P(x,y)
α
(2)余弦:cosα=x ;
0
A(1,0) x (3)正切:tanα= (yx≠0).
x
三角函数 sinα cosα tanα
定义域
正弦、余弦、正切都是以角(弧度)为自变量,以单位圆 上的点的坐标或坐标的比值为函数值的函数,我们将它们 统称为三角函数。
三角函数的定义域、值域
|
OP0
|5
P0(-3,-4)
x cos 3
三角函数的坐标定义 :(见教材13页)
一般地,设角α终边上任意一点(异于原点)P(x,y),它到原
点(顶点)的距离为r>0,则
sinα=y ;cosα= x ;tanα= .y
r
r
x
例2.已知角α终边上经过点P0(-3,-4), 求角的正弦、余弦和正切值.
人教A版高中数学必修4《第一章 三角函数 1.2 任意角的三角函数 阅读与思考 三角学与天文学》_0
“任意角的三角函数”教学设计•数学(4)》(人教A版)。
三角函数是描述周期运动现象的重要的数学模型,有非常广泛的应用.直角三角形简单朴素的边角关系,以直角坐标系为工具进行自然地推广而得到简明的任意角的三角函数定义,紧紧扣住三角函数定义这个宝贵的源泉,自然地导出三角函数线、定义域、符号判断、同角三角函数关系、多组诱导公式、图象和性质。
三角函数定义必然是学好全章内容的关键,如果学生掌握不好,将直接影响到后续内容的学习,由三角函数定义的基础性和应用的广泛性决定了本节教材的重点就是定义本身.二、学情分析在初中学生学习过锐角三角函数。
因此本课的内容对于学生来说,有比较厚实的基础,新课的引入会比较容易和顺畅。
学生要面对的新的学习问题是,角的概念推广了,原先学生所熟悉的锐角三角函数的定义是否也可以推广到任意角呢?通过这个问题,让学生体会到新知识的发生是可能的,自然的。
三、教学方法与手段教学中注意用新课程理念处理教材,采用学生自主探索、动手实践、合作交流、阅读自学,师生互动,教师发挥组织者、引导者、合作者的作用,引导学生主体参与、揭示本质、经历过程.根据本节课内容、高一学生认知特点,本节课采用“启发探索、讲练结合”的方法组织教学.四、教学目标1.掌握任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号);2、理解任意角的三角函数不同的定义方法;掌握并能初步运用公式一;树立映射观点,正确理解三角函数是以实数为自变量的函数.3、通过单位圆和角的终边,探讨任意角的三角函数值的求法,最终得到任意角三角函数的定义.根据角终边所在位置不同,分别探讨各三角函数的定义域以及这三种函数的值在各象限的符号.借助有向线段进一步认识三角函数.4、通过任意三角函数的定义,认识锐角三角函数是任意三角函数的一种特例,加深特殊与一般关系的理解。
5、通过三角函数的几何表示,使学生进一步加深对数形结合思想的理解,拓展思维空间。
高中数学 人教A版必修4 第1章 1.2.2同角三角函数的基本关系式(二)
分析三 因为左边分母为 1-sin α,故可将右式分子、分母同 乘 1-sin α.
研一研·问题探究、课堂更高效
1+sin α1-sin α 方法三 右边= cos α1-sin α 1-sin2α cos2α cos α = = = =左边, cos α1-sin α cos α1-sin α 1-sin α
若设 sin α-cos α=t,则 sin α-cos α=
2
.
研一研·问题探究、课堂更高效
1.2.2(二)
探究点一
三角函数式的化简
三角函数式的化简是将三角函数式尽量化为最简单的形式,其
本 课 时 栏 目 开 关
基本要求:尽量减少角的种数,尽量减少三角函数的种数,尽 量化为同角且同名的三角函数等.三角函数式的化简实质上是 一种不指定答案的恒等变形,体现了由繁到简的最基本的数学 解题原则.它不仅要求熟悉和灵活运用所学的三角公式,还需 要熟悉和灵活运用这些公式的等价形式.同时,这类问题还具 有较强的综合性,对其他非三角知识的运用也具有较高的要 求,因此在平常学习时要注意经验的积累. 化简三角函数式时,在题设的要求下,应合理利用有关公式, 常见的化简方法:异次化同次、高次化低次、切化弦、特殊角 的三角函数与特殊值互化等.
研一研·问题探究、课堂更高效
1.2.2(二)
请按照上述标准化简下列三角函数式: 已知 α 是第三象限角,化简:
本 答 课 时 栏 目 = 开 关
1+sin α - 1-sin α
1-sin α . 1+sin α
原式=
1+sin α2 - 1-sin α1+sin α 1-sin α2 cos2α
必修四第一章 三角函数1.2.1第一课时
(2)若 cosθ<0 且 sinθ>0,则2θ是第
象限角.
A.一
数
学 必
C.一或三
修
④
·
人
教
A
版
B.三 D.任意象限角
( C)
返回导航
第一章 三角函数
[解析] (1)①π2<3<π,π<4<32π,32π<5<2π,
∴sin3>0,cos4<0,tan5<0,∴sin3·cos4·tan5>0.
②注意到角的终边为射线,所以应分两种情况处理,取射线上任意一点坐标
(a,b),则对应角的正弦值 sinα= a2b+b2,余弦值 cosα= a2a+b2,正切值 tanα数 学Fra bibliotek必=ab.
修 ④
(2)当角 α 的终边上点的坐标以参数形式给出时,要根据问题的实际情况对参
·
人 教
数进行分类讨论.
A
版
返回导航
数 学 必 修 ④ · 人 教 A 版
返回导航
第一章 三角函数
3.已知α是第三象限角,设sinαcosα=m,则有
A.m>0
B.m=0
C.m<0
D.m的符号不确定
(A)
4.(2018·江西高安中学期末)已知角α的终边经过P(1,2),则tanα·cosα等于 25 _____5_.
数 学 必
[解析] 由三角函数的定义,tanα=yx=2,cosα=xr= 55,∴tanα·cosα=255.
人 教
函数值的函数,我们将它们统称为三角函数(trigonometric function).
A
版
人教A版高中数学教材目录(全)
人教A版高中数学目录必修1第一章集合与函数概念1 .1 集合2 .3 变量间的相关关系阅读与思考相关关系的强与弱2.5等比数列的前n项和1 .2 函数及其表示1 .3 函数的基本性质第三章概率3 .1 随机事件的概率第三章不等式第二章基本初等函数(Ⅰ)2.1 指数函数2 .2 对数函数2 .3 幂函数阅读与思考天气变化的认识过程3 .2 古典概型3 .3 几何概型3.1不等关系与不等式3.2一元二次不等式及其解法第三章函数的应用3.1 函数与方程3 .2 函数模型及其应用必修 4第一章三角函数1 .1 任意角和弧度制1 2 .任意角的三角函数3.3二元一次不等式(组)与简单的线性规划问题3.3.1二元一次不等式(组)与平面区域1 .3 三角函数的诱导公式必修21 .4 三角函数的图象与性质1 .5 函数 y=Asin (ωx+ψ) 3.3.2 简单的线性规划问题第一章空间几何体1 .6 三角函数模型的简单应1 .1 空间几何体的结构用1 .2 空间几何体的三视图和 3.4 基本不等式直观图1 .3 空间几何体的表面积与第二章平面向量体积 2 .1 平面向量的实际背景及第二章点、直线、平面之间的位置关系2 .1 空间点、直线、平面之间的位置关系2 .2 直线、平面平行的判定基本概念2 .2 平面向量的线性运算2 .3 平面向量的基本定理及坐标表示2 4 .平面向量的数量积2 5 .平面向量应用举例选修1-1第一章常用逻辑用语1.1命题及其关系及其性质2 .3 直线、平面垂直的判定及其性质第三章三角恒等变换3 .1 两角和与差的正弦、余弦和正切公式1.2充分条件与必要条件3 .2 简单的三角恒等变换第三章直线与方程1.3简单的逻辑联结词3.1 直线的倾斜角与斜率3 .2 直线的方程必修 51.4全称量词与存在量词 3 .3 直线的交点坐标与距离公式第一章解三角形必修31.1正弦定理和余弦定理第二章圆锥曲线与第一章算法初步1 .1 算法与程序框图 1.2应用举例方程1 .2 基本算法语句1 .3 算法案例阅读与思考割圆术1.3实习作业2.1椭圆2.2双曲线第二章统计2 .1 随机抽样阅读与思考一个著名的案第二章数列2.3抛物线例阅读与思考广告中数据的可靠性2.1数列的概念与简单表示法用第三章导数及其应阅读与思考如何得到敏感性问题的诚实反应2.2等差数列2 .2 用样本估计总体阅读与思考生产过程中的2.3等差数列的前n 项和质量控制图2.4等比数列3.1变化率与导数3.2导数的计算1人教A版高中数学目录选修 2-12.6导数在研究函数中 1.3 导数在研究函数的应用中的应用第一章常用逻辑用2.7生活中的优化问题 1.4 生活中的优化问语举例题举例3.4命题及其关系3.3.2定积分的概念1.5充分条件与必要选修1-21.4微积分基本定理条件第一章统计案例 1.7 定积分的简单应1.3 简单的逻辑联结用词1.1 回归分析的基本思想及其初步应用2.4全称量词与存在量词第二章推理与证明 1.2 独立性检验的基本思想及其初步应用2.5合情推理与演绎推理第二章圆锥曲线与方程第二章推理与证明 2.2 直接证明与间接证明 2.1 曲线与方程2.1 合情推理与演绎证明 2.3 数学归纳法2.2 椭圆2.2 直接证明与间接2.3 双曲线证明3.3抛物线第三章数系的扩充与复数的引入第三章数系的扩充 3.1 数系的扩充和复与复数的引入数的概念第三章空间向量与立体几何3.1 数系的扩充和复数 3.2 复数代数形式的的概念四则运算3.1空间向量及其运算3.2 复数代数形式的四则运算3.2立体几何中的向选修2-3 量方法第一章计数原理第四章框图选修 2-21.1分类加法计数原4.1 流程图理与分步乘法计数原理第一章导数及其应4.2 结构图1.2 排列与组合用1.3二项式定理 1.1 变化率与导数1.2导数的计算2人教A版高中数学目录第二章随机变量及第二讲直线与圆的其分布位置关系选修 3-22.8离散型随机变量第三讲圆锥曲线性及其分布列质的探讨选修 3-3 2.2 二项分布及其应用选修4-2 第一讲从欧氏几何3.5离散型随机变量看球面的均值与方差第一讲线性变换与二阶矩阵第二讲球面上的距3.6正态分布离和角第二讲变换的复合第三章统计案例与二阶矩阵的乘法第三讲球面上的基本图形3.3.3回归分析的基本第三讲逆变换与逆思想及其初步应用矩阵第四讲球面三角形3.3.4独立性检验的基第五讲球面三角形第四讲变换的不变本思想及其初步应用量与矩阵的特征向量的全等第六讲球面多边形与欧拉公式选修3-1 选修4-3第七讲球面三角形的第一讲早期的算术边角关系选修4-4 与几何第八讲欧氏几何与第一讲坐标系第二讲古希腊数学非欧几何第二讲参数方程第三讲中国古代数学瑰宝选修 3-4第四讲平面解析几选修4-5 何的产生第一讲平面图形的对称群第一讲不等式和绝第五讲微积分的诞对值不等式生第二讲代数学中的对称与抽象群的概念第二讲证明不等式第六讲近代数学两的基本方法巨星第三讲对称与群的故事第三讲柯西不等式第七讲千古谜题与排序不等式第八讲对无穷的深第四讲数学归纳法入思考选修 4-1证明不等式第九讲中国现代数第一讲相似三角形学的开拓与发展的判定及有关性质3人教 A 版高中数学目录2 .4 向量的应用 选修 4-6第二章 函数 2 .1 函数第一讲 整数的整除2 .2 一次函数和二次函数 2 .3 函数的应用(Ⅰ) 第三章 三角恒等变换3.1 和角公式2 .4 函数与方程3 .2 倍角公式和半角公式 第二讲 同余与同余 3 .3 三角函数的积化和差与方程和差化积 第三章 基本初等函数 (Ⅰ) 3 .1 指数与指数函数 程第三讲 一次不定方3 .2 对数与对数函数 3 .3 幂函数 3 .4 函数的应用(Ⅱ) 必修五 第一章 解直角三角形 1.1 正弦定理和余弦定理第四讲 数伦在密码中的应用必修二第一章 立体几何初步1 .2 应用举例 第二章 数列1.1 空间几何体 2 .1 数列 1 .2 点、线、面之间的位置 2 .2 等差数列 关系 2 .3 等比数列 选修 4-7第三章 不等式 第二章 平面解析几何初步第一讲 优选法 2 .1 平面真角坐标系中的基 本公式3 .1 不等关系与不等式 3 .2 均值不等式第二讲试验设计初2 .2 直线方程 2 .3 圆的方程3 .3 一元二次不等式及其解 法 步3 .4 不等式的实际应用 2 .4 空间直角坐标系3 .5 二元一次不等式(组) 与简单线性规划问题必修三选修 4-8选修 4-9第一章 算法初步1.1 算法与程序框图1 .2 基本算法语句1 .3 中国古代数学中的算法 案例选修 1-1 第一章 常用逻辑用语 1.1 命题与量词 1 .2 基本逻辑联结词1 .3 充分条件、必要条件与命题的四种形式第一讲 风险与决策的基本概念第二章 统计 2.1 随机抽样2 .2 用样本估计总体2 .3 变量的相关性第二章 圆锥曲线与方程2.1 椭圆2 .2 双曲线2 .3 抛物线第二讲 决策树方法第三章 概率 3 1 . 随机现象第三讲 风险型决策3 2第三章 导数及其应用3 .1 导数3 .2 导数的运算 3 .3 导数的应用WORD格式.古典概型的敏感性分析33.随机数的含义与应用34.概率的应用第四讲马尔可夫型决策简介必修四选修 1-2第一章统计案例第二章推理与证明第一章基本初等函( Ⅱ)高中人教版(B)教材目录介绍必修一第一章集合1.1 集合与集合的表示方法1 .2 集合之间的关系与运算1 .1 任意角的概念与弧度制1 .2 任意角的三角函数1 .3 三角函数的图象与性质第二章平面向量2 .1 向量的线性运算2 .2 向量的分解与向量的坐标运算2 .3 平面向量的数量积第三章数系的扩充与复数的引入第四章框图选修 4-5第一章不等式的基本性质和证明的基本方法1 .1 不等式的基本性质和一元二次不等式的解法1 2 .基本不等式4WORD格式人教A版高中数学目录1 .3 绝对值不等式的解法1 .4 绝对值的三角不等式1 .5 不等式证明的基本方法第二章柯西不等式与排序不等式及其应用2.1 柯西不等式2 .2 排序不等式2 .3 平均值不等式( 选学)2 .4 最大值与最小值问题,优化的数学模型第三章数学归纳法与贝努利不等式3.1 数学归纳法原理3 .2 用数学归纳法证明不等式,贝努利不等式5。
高中数学 第一章 三角函数 1.2.三角函数的定义课件
12/12/2021
第二十页,共五十页。
(2)因为角 α 的终边过点(a,2a)(a≠0), 所以 r= 5|a|,x=a,y=2a.
当
a>0
时,sinα=yr=
2a =2 5a
5 5,cosα=xr=
a= 5a
55,tanα
=yx=2aa=2;
当
a<0
时,sinα=yr=-2a5a=-2 5
5,cosα=xr=- a
原点的距离为 r,则 sinα=
y r ,cosα=
x r ,tanα=
y x.
12/12/2021
第八页,共五十页。
[答一答] 1.三角函数值的大小与点 P 在终边上的位置是否有关?
提示:三角函数值是比值,是一个实数,这个实数的大小与 点 P(x,y)在终边上的位置无关,只与角 α 的终边位置有关,即 三角函数值的大小只与角有关.
12/12/2021
第六页,共五十页。
12/12/2021
第七页,共五十页。
知识点一 三角函数的定义
[填一填] (1)单位圆:圆心是 原点 ,半径长为
单位长度 .
(2)定义:设任意角 α 的终边与单位圆交于点 P(x,y),则 sinα
=
y ,cosα=
x ,tanα= yx(x≠0) .
(3)一般地,设角 α 终边上任意一点 P 的坐标为(x,y),它与
12/12/2021
第二十三页,共五十页。
[变式训练 1] (1)如果角 α 的终边经过点 P- 23,12,则 sinα
=
1 2
,cosα=
-
3 2
,tanα=
-
3 3