Ionization gas sensing in a microelectrode system with carbon nanotubes

合集下载

仪器分析常用英语词汇

仪器分析常用英语词汇
玻璃活塞 stopcock
容量瓶 pyknowmeter flasks
比重瓶 (one-mark)volumetric flasks
胖肚吸管 one-mark pipette
刻度吸管 graduated pipettes
实验仪器清单
1、 柜子中 四、抽屉中:
锥形瓶(conical flask) 250ml×4 药匙(medicine spoon)×1
化学定量分析
第三章 滴定分析概论
滴定分析法:titrametric analysis
滴定:titration
容量分析法:volumetric analysis
化学计量点:stoichiometric point
等当点:equivalent point
电荷平衡:charge balance
相对误差:relative error
系统误差:systematic error
可定误差:determinate error
随机误差:accidental error
不可定误差:indeterminate error
准确度:accuracy
精确度:precision
偏差:debiation,d
分析天平 two-pan/single-pan analytical balance
滴定管 burette glass bead(basic) nozzle
移液管 pipette 胖肚 elongated glass bulb
洗耳球 rubber suction bulb
玻棒 glass rod
平均偏差:average debiation

原子力显微镜-扫描电子显微镜共定位表征系统的研发与应用

原子力显微镜-扫描电子显微镜共定位表征系统的研发与应用

第 30 卷第 1 期分析测试技术与仪器Volume 30 Number 1 2024年1月ANALYSIS AND TESTING TECHNOLOGY AND INSTRUMENTS Jan. 2024大型仪器功能开发(53 ~ 57)原子力显微镜-扫描电子显微镜共定位表征系统的研发与应用蔡 蕊,万 鹏,徐 强,吕天明,孙智广(大连理工大学分析测试中心,辽宁大连 116024)摘要:微纳加工过程中,常有样品需要进行聚焦离子束(FIB)溅射、切割,扫描电子显微镜(SEM)以及原子力显微镜(AFM)表征,而这三类仪器都需要将样品固定在样品台上才可测试,固定不佳会影响表征结果. 但固定好的样品在不同仪器之间转移、拆卸、再固定的过程中极易受到破坏. 基于以上问题,设计了AFM-SEM-FIB样品共定位系统,可实现样品在此三种仪器之间的无损转移及共定位,避免珍贵样品破坏及目标丢失,以及解决AFM扫描无法控制方向、迅速调整位点等问题. 在微纳表征中有优异的表现,系统已被开发成产品并量产销售.关键词:共定位系统;原子力显微镜;扫描电子显微镜;聚焦离子束;微纳表征中图分类号:O657;TH742 文献标志码:B 文章编号:1006-3757(2024)01-0053-05DOI:10.16495/j.1006-3757.2024.01.009Development and Application of Atomic Force Microscope-Scanning Electron Microscope Co-positioning Characterization SystemCAI Rui, WAN Peng, XU Qiang, LV Tianming, SUN Zhiguang(Instrumental Analysis Center, Dalian University of Technology, Dalian 116024, Liaoning China)Abstract:In the process of micro-nano machining, samples often need to be sputtered and cut by focused ion beam (FIB), and characterized by scanning electron microscope (SEM) and atomic force microscope (AFM). Samples need to be fixed on the sample table before tested by these three instruments. However, poor fixation will affect the characterization results, but the firmly fixed samples are easy to be destroyed in the process of transfer, disassembly and re-fixation between different instruments. Based on the above problems, the AFM-SEM-FIB sample co-positioning system was designed, which could realize non-destructive transfer and co-positioning of samples between the three instruments, and avoid the precious samples destruction and loss of targets. And the problems were solved that AFM scanning cannot control the direction and quickly adjust the location. With excellent performance in micro-nano characterization, the system has been developed into products and sold in large quantities.Key words:co-positioning system;atomic force microscope;scanning electron microscope;focused ion beam;micro-nano characterization收稿日期:2023−11−15; 修订日期:2023−12−19.基金项目:大连理工大学大型设备开发改造项目(SYSWX202205)[Dalian University of Technology, Large-Scale Instrument Function Development Technology Innovation Project (SYSWX202205)]作者简介:蔡蕊(1984−),女,博士,主要从事微区表征研究工作,Email:***************.cn通信作者:徐强(1978−),女,高级工程师,主要从事分子光谱及管理工作,Email:****************.cn.原子力显微镜(atomic force microscope,AFM)[1]是亚微米、纳米级形貌[2],纳米磁学[3]、电学[4]、力学[5]、生物学[6]研究领域必要的表征手段[7-8]. 但在微纳极窄样品表征时,AFM的探针只沿固定方向扫描,无法调整所需角度. 若样品放置的方向不正,受针尖性状、力学性质等影响[9],不但无法得到高质量扫描图像,而且还为后期谱图的处理(拉平基线)制造困难. 除此以外,在纳米力学摩擦力测试中,对于各向异性样品的摩擦力测试,需要样品在特定的方向上进行[10]. 而现有的AFM,尤其是生物型AFM,在对微纳极窄型等需要以一定方向呈现的样品进行扫描时,无法迅速、可控的变换样品方向,移动远距离的扫描位点.在微纳加工时,常使用聚焦离子束(focused ion beam,FIB)对样品表面原子进行剥离,以完成微纳米级表面形貌加工,加工后需要使用AFM进行形貌表征[11],或者转移到其他扫描电子显微镜(SEM)观察,以精准测量尺寸等. 而这三类仪器在测试过程中,都需要将样品固定于样品台上,保证在测试中不会移动(均为纳米级形貌表征,微小移动也会影响溅射、成像的精准度)才可进行测试. 而样品一般比较脆弱,从导电胶上取下再向不同仪器的样品台上转移时十分容易损坏样品,导致直接碎裂或者镊子用力夹持导致碎渣崩到样品表面,影响成像效果,如图1所示.为解决以上现有技术的缺点和不足之处,本设计计划提供一种AFM、SEM和FIB的样品共定位系统,其可实现仪器间样品无损转移,并通过参照点的辅助定位找到测试位点,建立起三个重要表征仪器之间的桥梁,还可实现AFM扫描方向可控、迅速调整位点等功能.1 试验部分1.1 仪器与试剂共定位系统(自主研制);原子力显微镜Nanowizard 4XP(美国Bruker公司);超高分辨场发射扫描电子显微镜7900F(JEOL日本电子株式会社);聚焦离子束Helios G4 UX(美国赛默飞世尔科技有限公司);光刻图案化后的样品(自制);FIB溅射后的沟槽样品(自制);探针SNL-10(美国Bruker公司).崩到表面的硅片渣取下时, 样品损伤碎渣、杂物, 严重影响形貌表征导致图1 样品由于拆卸造成的损坏及对AFM形貌表征的影响Fig. 1 Damage of sample caused by disassembly and its effect on AFM morphology characterization1.2 试验方法1.2.1 共定位系统的研发装置功能:(1)在AFM检测过程中,固定、快速移动样品(扫描位点),转换样品方向. (2)FIB、SEM和AFM的样品共定位系统:AFM、FIB、SEM 样品台适配模块,具有辅助定位点(与操作系统XY 坐标关联,实现定位),样品固定在该模块上,将模块放入固定器的卡槽中,即可用于AFM扫描. 将该模块从卡槽拆卸下来,即可直接作为SEM和FIB 样品台,带着固定好的样品进行检测,避免样品在不同仪器样品台间的拆卸转移过程中受到破坏.装置构造及用途:(1)转盘A,转盘下方的圆形凸起可嵌入底盘F的圆形镂空,且紧密接触,有一定阻尼,可转动,但不易打滑. 包括:两根长方形夹棍C,每根夹棍靠两根弹簧轴B固定到转盘两侧,两根夹棍C可依靠弹簧B的推力夹紧样品或样品托盘D,防止滑动. 把手螺丝E,与底盘F保持水平位置,拧松把手螺丝E可作为转动转盘A的把手,拧紧把手螺丝E,螺丝的另一端抵住底盘F的边缘,可固定好转盘. 用于调整样品的角度. 脚柱槽H-3用于放置脚柱H-2. (2)底盘F,铁质或者铝制,可吸附在AFM的载物台上(依靠磁力或吸力),底盘F 中心有圆形镂空,可将转盘A嵌入,底盘F和转盘A的接触位置有一定阻尼,可转动,但不易打滑. 形状可根据实际调节,不限制. (3)FIB、SEM样品台适配模块H,因考虑到SEM不可用带有磁性的样54分析测试技术与仪器第 30 卷品台,因此模块H为铝制. 模块H包括类圆形样品台H-1和脚柱H-2,脚柱H-2取下时为防止丢失可置于转盘A上的脚柱槽H-3中,使用时取出. 样品固定在该模块的类圆形样品台H-1上,将该类圆形样品台H-1对准位置放入样品托盘D的凹槽D-1中,两边由夹棍C夹住,用于AFM的扫描,通过转动转盘A、沿着夹棍C方向推拉样品托盘D改变角度和位置. (4)样品托盘D,长方形. 带两种尺寸的凹槽. 凹槽D-1:尺寸与普通市售载玻片尺寸吻合.尺寸微小、比较薄的样品可以先固定在载玻片上,再将载玻片置于此凹槽内,载玻片、样品托盘D被夹棍固定住,有阻尼,但可以拖动,可沿着夹棍C的方向移动样品,迅速更换扫描位置. 凹槽D-2:尺寸与FIB、SEM样品台适配模块H中类圆形样品台H-1形状一致,可放置该类圆形样品台H-1,夹棍C 夹住后,随样品托盘D移动. 如图2所示.类圆形样品台H-1取下后可直接作为SEM样品台使用. 底部中央有螺纹孔,脚柱H-2的螺纹和尺寸与SEM内用于固定样品台的螺纹柱尺寸一致,可通用. 将该模块的类圆形样品台H-1从样品托盘D的凹槽D-1中拆卸下来,即可直接拧在SEM样品台固定位置,作为SEM样品台直接用于测试,具有辅助定位点(与操作系统XY坐标关联,实现定位). 类圆形样品台H-1拧上与之匹配的脚柱H-2,即可作为FIB样品台,用于FIB的溅射等操作. 该适配模块H的尺寸适用于大部分品牌的FIB和SEM仪器,或根据SEM、FIB所需具体的尺寸制作.脚柱H-2尺寸较小,为防止丢失,不使用时可放置于转盘A上的特定脚柱槽H-3内保存. 该适配模块H无需将固定好的样品取下来转移到另外的样品台上,可避免样品在不同仪器样品台的拆卸转移过程中受到破坏,具有保护测试样品、便捷、实用性强等优点.1.2.2 微纳表面形貌表征方法AFM形貌表征条件:将微纳图案化样品或由FIB溅射的沟槽样品置于自主研制的共定位系统上,导电胶粘牢,且保证水平. 顶置10X光镜XY坐标协助定位. 使用Quantitative Imaging(QI)模式,Setpoint为 0.3 V,Zlength为 200 nm,Zspeed为 77µm/s. SEM形貌表征测试加速电压为10 kV.底盘 F 俯视图把手螺丝 E转盘 A脚柱 H-2/脚柱槽 H-3脚柱 H-2类圆形样品台 H-1类圆形样品台 H-1弹簧 B夹棍 C样品托盘 D FIB、SEM 样品台适配模块 H图2 共定位系统整体及分解图Fig. 2 Overall and decomposition diagrams of co-positioning system2 应用案例-微纳加工材料表征中的应用效果以光刻图案化后的样品为案例,对设计的共定位系统进行应用. 极紫外光刻材料的研发一直是半导体芯片产业的瓶颈之一[12],开发新型极紫外光刻胶材料具有重大的战略意义. 光刻胶膜表面形貌和粗糙度是评价光刻胶质量的重要指标[13-16]. 图案化的光刻有机膜,需要使用AFM和SEM表征证实其在电子束光刻和极紫外光刻测试中的表现. 使用本文设计的共定位系统,可以很好实现该样品在SEM、FIB和AFM之间的转换和样品定位,并且在AFM 表征中轻松实现方向调整和样品快速移位.如图3所示,光刻图案化后的样品(自制)需要先在SEM或FIB上进行电子束光刻蚀,刻蚀完毕后,在AFM上进行粗糙度测试以及3D成像. 使用所设计的共定位系统中的适配模块H作为样品台,实现了样品在三种仪器间的自由切换,无需拆卸,避免了样品损伤,还可以使用共定位功能,锁定目标区域分别进行SEM、AFM成像,操作便捷,节省了大量时间. 除此之外,以沟槽样品(自制)作为样本,使用AFM测试其沟槽的尺寸时,调整溅射的参数第 1 期蔡蕊,等:原子力显微镜-扫描电子显微镜共定位表征系统的研发与应用55后,需要先在FIB 上完成溅射,再置于AFM 上成像和测量. 若沟槽放置倾斜,会使计算存在偏差或成像出现瑕疵. 因此需要将沟槽角度调整于合适方向.如图4所示,使用所设计的适配模块H 固定样品,先后进行了FIB 和AFM 测试,利用所设计的共定位系统使得操作简便,并且测试结果优异.图4 固定于FIB 、SEM 样品台适配模块H 的类圆形样品台H-1上的FIB 溅射后的沟槽样品,需要测试其沟槽尺寸(a )经AFM 表征,发现沟槽方向倾斜,(b )经转盘调整角度后,摆正方向Fig. 4 Groove samples after FIB sputtering fixed on disk-like sample stage H-1 of FIB and SEM sample tablesadaptation module H, tested size of groove(a) groove direction was tilted after AFM characterization,(b) groove positioned in right direction after adjusting angleof turntable3 结论与现有的技术相比,所设计的共定位系统可建立AFM 、SEM 和FIB 三大形貌表征仪器之间的桥梁,不但可以保护珍贵样品不被损坏,还可大幅提高样品测试效率以及效果. 另外,其快速移位和变换方向功能可大幅提升方向依赖形貌、磁学、摩擦力等测试的成功率和图像效果,并且提升原有载物台的样品测试范围和速度,方便快捷,实用性强.参考文献:Binnig G, Quate C F, Gerber C. Atomic force micro-scope [J ]. Physical Review Letters ,1986,56 (9):930-933.[ 1 ]Kim Y J, Son K, Choi I C, et al. Exploring nanomech-anical behavior of silicon nanowires: AFM bending versus nanoindentation [J ]. Advanced Functional Ma-terials ,2011,21 (2):279-286.[ 2 ]Meng X H, Zhang H, Song J M, et al. Publisher cor-rection: broad modulus range nanomechanical map-ping by magnetic-drive soft probes [J ]. Nature Com-munications ,2018,9 (1):1-2.[ 3 ]Wang M H, Zhao Y P, Jiang X Q, et al. Rational selec-tion of the polymeric structure for interface engineer-ing of perovskite solar cells [J ]. Joule ,2022,6 (5):1032-1048.[ 4 ]Xia F N, Wang H, Xiao D, et al. Two-dimensional ma-terial nanophotonics [J ]. Nature Photonics ,2014,8(12):899-907.[ 5 ]骆芸尔, 高珊, 伊艺, 等. 脱氧核糖核酸变性和损伤的原子力显微镜液相观察[J ]. 分析测试技术与仪器,2022,28(3):241-246. [LUO Yuner, GAO Shan, YI Yi, et al. Study on denaturation and damage of[ 6 ]SEMAFMAFM-3DSEMAFM5 μm5 μm5 μm8 nmYZ 0X 30 nmAFM-3D30 nmY ZX 20 nm45.3 nm20.5 nm0 nm0 nm1 μm图3 图案化微纳有机膜表面SEM 、AFM 表征Fig. 3 Characterization of SEM and AFM on surface of patterned micro-nano organic films56分析测试技术与仪器第 30 卷deoxyribonucleic acid in liquid phase using atomic force microscopy [J ]. Analysis and Testing Techno-logy and Instruments ,2022,28 (3):241-246.]Deng W, Zhang X J, Wang L, et al. Wafer-scale pre-cise patterning of organic single-crystal nanowire ar-rays via a photolithography-assisted spin-coating method [J ]. Advanced Materials ,2015,27 (45):7305-7312.[ 7 ]Garcia R, Knoll A W, Riedo E. Advanced scanningprobe lithography [J ]. Nature Nanotechnology ,2014,9(8):577-587.[ 8 ]Li P P, Ju P F, Ji L, et al. Toward robust macroscalesuperlubricity on engineering steel substrate [J ]. Ad-vanced Materials (Deerfield Beach, Fla),2020,32(36):e2002039.[ 9 ]Ling X, Lee Y H, Lin Y X, et al. Role of the seedingpromoter in MoS 2 growth by chemical vapor depos-ition [J ]. Nano Letters ,2014,14 (2):464-472.[ 10 ]He Y, Yan Y D, Geng Y Q, et al. Fabrication of none-ridge nanogrooves with large-radius probe on PMMA thin-film using AFM tip-based dynamic plowing litho-graphy approach [J ]. Journal of Manufacturing Pro-[ 11 ]cesses ,2017,29 :204-210.Liu J S, Guo H J, Li M, et al. Photolithography-as-sisted precise patterning of nanocracks for ultrasensit-ive strain sensors [J ]. Journal of Materials Chemistry A ,2021,9 (7):4262-4272.[ 12 ]Yogesh M, Moinuddin M G, Chauhan M, et al. Or-ganoiodine functionality bearing resists for electron-beam and helium ion beam lithography: complex and sub-16 nm patterning [J ]. ACS Applied Electronic Ma-terials ,2021,3 (5):1996-2004.[ 13 ]Cao Z, Li Y Q, Liu F. Grouping design method withreal ray tracing model for extreme ultraviolet litho-graphic objective [J ]. Optical Engineering ,2013,52 (12):125102.[ 14 ]Tan W, Ji H R, Mo Y, et al. Automatic design of anextreme ultraviolet lithography objective system based on the Seidel aberration theory [J ]. Applied Optics ,2022,61 (29):8633-8640.[ 15 ]Li Y Q, Kinoshita H, Watanabe T, et al. Illuminationsystem design for a three-aspherical-mirror projection camera for extreme-ultraviolet lithography [J ]. Ap-plied Optics ,2000,39 (19):3253-3260.[ 16 ]第 1 期蔡蕊,等:原子力显微镜-扫描电子显微镜共定位表征系统的研发与应用57。

On the negative effective mass density in acoustic metamaterials

On the negative effective mass density in acoustic metamaterials
There is no actual negative mass/mass density in real materials indeed. The negative effective mass/mass density is the result of inaccurate modeling of acoustic metamaterials. In the present study, we consider a one-dimensional lattice consisting of lattice masses each of which contains an internal mass. This simple lattice system is employed to illustrate how the
On the negative effective mass density in acoustic metamaterials
H.H. Huang a, C.T. Sun a,*,G.L. Huang b
a School of Aeronautics and Astronautics, Purdue University, W. Lafayette, IN 47907, USA b Department of Systems Engineering, University of Arkansas at Little Rock, Little Rock, AR, 72204, USA
* Corresponding author. Tel.: +1 765 494 5130; fax: +1 765 494 0307. E-mail address: sun@ (C.T. Sun).

极地航行船舶防覆冰涂层研究进展

极地航行船舶防覆冰涂层研究进展

第53卷第6期表面技术2024年3月SURFACE TECHNOLOGY·1·研究综述极地航行船舶防覆冰涂层研究进展张祎轩1,刘涛2,刘耀虎3,刘杰1*,王健君4(1.中国科学院化学研究所,北京 100190;2.上海海事大学,上海 201306;3.中国科学院 前沿科学与教育局,北京 100864;4.中国科学院理化技术研究所,北京 100190)摘要:两极地区是未来重要的能源和资源基地。

然而,极地长年低温多冰,极大限制了我国对两极地区的科学考察、商业航运和能源开发进程。

因此,发展长效稳定的防覆冰技术是推进极地发展战略的关键。

系统阐明了船舶在极地航行过程中面临的结冰困境,分析了船舶积冰的类型,总结了目前解决船舶覆冰问题的多种防除冰技术及发展现状,包括主动防除冰技术(机械除冰、超声导波除冰、加热除冰、化学熔融除冰等)和被动防覆冰涂层技术(气体润滑防覆冰涂层、液体润滑防覆冰涂层、“类液体”润滑防覆冰涂层、界面可控断裂防覆冰涂层等),同时对各技术在极地船舶防冰应用中的优缺点和可行性进行了深入分析。

展望了船舶装备对特种防冰涂层的关键需求,提出主、被动协同除冰技术是实现极地船舶防覆冰的重要策略。

关键词:极地;船舶;防冰;涂层材料;冰黏附中图分类号:TQ050.4 文献标志码:A 文章编号:1001-3660(2024)06-0001-10DOI:10.16490/ki.issn.1001-3660.2024.06.001Research Progress on Anti-icing Coatings for Polar ShipsZHANG Yixuan1, LIU Tao2, LIU Yaohu3, LIU Jie1*, WANG Jianjun4(1. Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; 2. Shanghai Maritime University,Shanghai 201306, China; 3. Bureau of Frontier Sciences and Education, Chinese Academy of Sciences, Beijing 100864, China; 4. Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China)ABSTRACT: The polar regions are strategically important for the sustainable development of the global economy due to their abundant natural resources and special geographical location. However, the prolonged low temperature and heavy icing in the polar regions have greatly restricted the process of scientific research, commercial shipping, and energy development. Therefore, the icing problem of various types of equipment has become a hot topic of research and the development of long-lasting and stable anti-icing technology is crucial to advancing the polar development strategy.The icing dilemma faced by ships during polar navigation was systematically expounded. Types of ice accretion on ships were analyzed according to the origin of ice. Various anti-icing technologies were summarized, including active anti-icing technologies (mechanical de-icing, ultrasonic de-icing, heating de-icing, chemical de-icing, etc.) and passive anti-icing coating technologies (gas lubrication, liquid lubrication, "liquid-like" lubrication, interface-controlled fracture, etc.).The gas lubrication is mainly composed of micro/nanocomposite structure in the surface and low surface energy hydrophobic layer, which effectively inhibits the icing process by reducing the attachment of water droplets. However, the收稿日期:2023-03-29;修订日期:2023-10-23Received:2023-03-29;Revised:2023-10-23基金项目:国家自然科学基金面上项目(52273220)Fund:National Natural Science Foundation of China (52273220)引文格式:张祎轩, 刘涛, 刘耀虎, 等. 极地航行船舶防覆冰涂层研究进展[J]. 表面技术, 2024, 53(6): 1-10.ZHANG Yixuan, LIU Tao, LIU Yaohu, et al. Research Progress on Anti-icing Coatings for Polar Ships[J]. Surface Technology, 2024, 53(6): 1-10.*通信作者(Corresponding author)·2·表面技术 2024年3月disadvantage of it is liquid generally slipping into a hierarchical scale and adhering to the surface, resulting in the Cassie-Baxter state converting into the Wenzel state. Water freezing in the Wenzel state will cause mechanical interlocking forces and invalid deicing capabilities. Subsequently, the surface can be worn away after repeatedly de-icing. Although certain special structures have been proven to reduce the transition to the Wenzel state, the complex fabrication process is almost impossible to cover on a large scale. Liquid lubrication and "liquid-like" lubrication can greatly reduce the adhesion strength of ice on the solid surface by effectively reducing the strong physical interaction between ice and surface. Liquid lubrication is built through the overfilling lubricating liquid to the micro/nanopores substrate. Despite adhering within the substrate, lubrication becomes invalid over time by evaporation, erosion, and is contaminated. "Liquid-like" lubrication, covalently attached on one end of a flexible macromolecule onto a smooth substrate, determines the lubricating property. The high mobility and small intermolecular force of polymer enable it to function as a lubricating layer. "Liquid-like" lubrication has been considered a promising coating for its extreme uniformity, low adhesion, transparency, and safety. Interface-controlled fracture makes the crack nucleation and growth at the specific position of the interface quickly, accelerates the interface fracture process, and then makes the ice desorb quickly under the action of low shear stress. Under the action of shear stress, the interface between ice and substrate is not uniform, and macroscopic cracks are preferentially generated in the low shear modulus region. The cracks propagate rapidly, making the ice easier to break away from the substrate surface. The current development of anti-icing technologies in solving the icing problem is summarized. The feasibility of each technology to be applied in polar ships is discussed in depth according to their advantages and disadvantages.In the last section, the work emphasizes the key requirements for special anti-icing coatings for ship equipment, and the importance of active and passive cooperative de-icing strategies in polar ship protection technology is proposed.KEY WORDS: polar; ships; anti-icing; coating materials; ice adhesion极地地区具备丰富的自然资源和特殊的地理位置,对全球经济的可持续发展具有重要的战略意义。

219316079_冷等离子体技术对食品组分的影响及其作用机制

219316079_冷等离子体技术对食品组分的影响及其作用机制

颜心怡,李锦晶,李赤翎,等. 冷等离子体技术对食品组分的影响及其作用机制[J]. 食品工业科技,2023,44(12):445−454. doi:10.13386/j.issn1002-0306.2022070119YAN Xinyi, LI Jinjing, LI Chiling, et al. Effect and Action Mechanism of Cold Plasma Technology on Food Components[J]. Science and Technology of Food Industry, 2023, 44(12): 445−454. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022070119· 专题综述 ·冷等离子体技术对食品组分的影响及其作用机制颜心怡1,李锦晶2,李赤翎1,吴金鸿3,俞 健1,王发祥1,4,刘永乐1,4,李向红1,4,*(1.长沙理工大学食品与生物工程学院,湖南长沙 410114;2.湖南康宝莱蕾硕天然产物有限公司,湖南长沙 410100;3.上海交通大学农业与生物学院,上海 200240;4.湖南省水生资源食品加工工程技术研究中心,湖南长沙 410114)摘 要:冷等离子体作为一种新型的非热加工技术,因其具有安全、绿色、能耗低等优点,在食品加工领域受到广泛关注。

冷等离子体使用的气体在电离过程中产生的紫外线、活性物质(如活性氧、活性氮、羟自由基和离子)等会通过辐射/修饰作用使生物大分子发生刻蚀及交联,或对食品组分(脂质、蛋白质、淀粉等)的表面结构和官能团进行修饰,使组分结构发生变化,从而影响食品的品质、功能特性等。

本文综述了冷等离子体作用对食品主要组分(蛋白质、脂质、淀粉)、维生素和多酚的影响及其可能的作用机制,并讨论了该技术存在的问题和未来发展的方向,以期为冷等离子体在食品工业的应用提供参考。

211050371_正负压一体式无空气X_射线光电子能谱原位转移仓的开发及研制

211050371_正负压一体式无空气X_射线光电子能谱原位转移仓的开发及研制

第 29 卷第 1 期分析测试技术与仪器Volume 29 Number 1 2023年3月ANALYSIS AND TESTING TECHNOLOGY AND INSTRUMENTS Mar. 2023大型仪器功能开发(30 ~ 36)正负压一体式无空气X射线光电子能谱原位转移仓的开发及研制章小余,赵志娟,袁 震,刘 芬(中国科学院化学研究所,北京 100190)摘要:针对空气敏感材料的表面分析,为了获得更加真实的表面组成与结构信息,需要提供一个可以保护样品从制备完成到分析表征过程中不接触大气环境的装置. 通过使用O圈密封和单向密封柱,提出一种简便且有效的设计概念,自主研制了正负压一体式无空气X射线光电子能谱(XPS)原位转移仓,用于空气敏感材料的XPS测试,利用单向密封柱实现不同工作需求下正负压两种模式的任意切换. 通过对空气敏感的金属Li片和CuCl粉末进行XPS分析表明,采用XPS原位转移仓正压和负压模式均可有效避免样品表面接触空气,保证测试结果准确可靠,而且采用正压密封方式转移样品可以提供更长的密封时效性. 研制的原位转移仓具有设计小巧、操作简便、成本低、密封效果好的特点,适合给有需求的用户开放使用.关键词:空气敏感;X射线光电子能谱;原位转移;正负压一体式中图分类号:O657; O641; TH842 文献标志码:B 文章编号:1006-3757(2023)01-0030-07 DOI:10.16495/j.1006-3757.2023.01.005Development and Research of Inert-Gas/Vacuum Sealing Air-Free In-Situ Transfer Module of X-Ray Photoelectron SpectroscopyZHANG Xiaoyu, ZHAO Zhijuan, YUAN Zhen, LIU Fen(Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China)Abstract:For the surface analysis of air sensitive materials, and from the sample preparation to characterization, it is necessary to provide a device that can protect samples from exposing to the atmosphere environment so as to obtain accurate and impactful data of the surface chemistry. Through the use of O-ring and one-way sealing, a simple and effective design concept has been demonstrated, and an inert-gas/vacuum sealing air-free X-ray photoelectron spectroscopic (XPS) in-situ transfer module has been developed to realize the XPS analysis of air sensitive materials. The design of one-way sealing was achieved conveniently by switching between inert-gas and vacuum sealing modes in face of different working requirements. The XPS analysis of air-sensitive metal Li sheets and CuCl powders showed that both the sealing modes (an inert-gas/vacuum sealing) of the XPS in-situ transfer module can effectively avoid air contact on the sample surface, and consequently, can ensure the accuracy and reliability of XPS data. Furthmore, the inert gas sealing mode can keep the sample air-free for a longer time. The homemade XPS in-situ transfer module in this work is characterized by a compact design, convenient operation, low cost and effective sealing, which is suitable for the open access to the users who need it.收稿日期:2022−12−07; 修订日期:2023−01−17.基金项目:中国科学院化学研究所仪器孵化项目[Instrument and Device Functional Developing Project of Institute of Chemistry Chinese Academy of Sciences]作者简介:章小余(1986−),女,硕士,工程师,主要研究方向为电子能谱技术及材料表面分析,E-mail:xyiuzhang@ .Key words:air-sensitive;X-ray photoelectron spectroscopy;in-situ transfer;inert-gas/vacuum sealingX射线光电子能谱(XPS)是一种表面灵敏的分析技术,通常用于固体材料表面元素组成和化学态分析[1]. 作为表面分析领域中最有效的方法之一,XPS广泛应用于纳米科学、微电子学、吸附与催化、环境科学、半导体、冶金和材料科学、能源电池及生物医学等诸多领域[2-3]. 其中在催化和能源电池材料分析中,有一些样品比较特殊,比如碱金属电池[4-6]、负载型纳米金属催化剂[7-8]和钙钛矿材料[9]对空气非常敏感,其表面形态和化学组成接触空气后会迅速发生改变,直接影响采集数据的准确性和有效性,因此这类样品的表面分析测试具有一定难度. 目前,常规的光电子能谱仪制样转移过程通常是在大气环境中,将样品固定在标准样品台上,随后放入仪器进样室内抽真空至1×10−6 Pa,再转入分析室内进行测试. 这种制备和进样方式无法避免样品接触大气环境,对于空气敏感材料,其表面很容易与水、氧发生化学反应,导致无法获得材料表面真实的结构信息.为了保证样品表面状态在转移至能谱仪内的过程中不受大气环境影响,研究人员采用了各种技术来保持样品转移过程中隔绝空气. 比如前处理及反应装置与电子能谱仪腔室间真空传输[10-12]、外接手套箱 [13-14]、商用转移仓[15-16]、真空蒸镀惰性金属比如Al层(1.5~6 nm)[17]等. 尽管上述技术手段有效,但也存在一些缺点,例如配套装置体积巨大、试验过程不易操作、投入成本高等,这都不利于在普通实验室内广泛应用. 而一些电子能谱仪器制造商根据自身仪器的特点也研发出了相应配套的商用真空传递仓,例如Thermofisher公司研发的一种XPS 真空转移仓,转移过程中样品处于微正压密封状态,但其价格昂贵,体积较大,转移过程必须通过手套箱大过渡舱辅助,导致传递效率低,单次需消耗至少10 L高纯氩气,因此购置使用者较少,利用率低.另外有一些国内公司也研发了类似的商品化气体保护原位传递仓,采用微正压方式密封转移样品,但需要在能谱仪器进样室舱门的法兰上外接磁耦合机械旋转推拉杆,其操作复杂且放置样品的有效区域小,单次仅可放置尺寸为3 mm×3 mm的样品3~4个,进样和测试效率较低. 因此,从2016年起本实验团队开始自主研制XPS原位样品转移装置[18],经过结构与性能的迭代优化[19],最终研制出一种正负压一体式无空气XPS原位转移仓[20](本文简称XPS原位转移仓),具有结构小巧、操作便捷、成本低、密封效果好、正压和负压密封两种模式转移样品的特点. 为验证装置的密封时效性能,本工作选取两种典型的空气敏感材料进行测试,一种是金属Li材料,其化学性质非常活泼,遇空气后表面迅速与空气中的O2、N2、S等反应导致表面化学状态改变. 另一种是无水CuCl粉末,其在空气中放置短时间内易发生水解和氧化. 试验结果表明,该XPS 原位转移仓对不同类型的空气敏感样品的无空气转移均可以提供更便捷有效的密封保护. 目前,XPS原位转移仓已在多个科研单位的实验室推广使用,支撑应用涉及吸附与催化、能源环境等研究领域.1 试验部分1.1 XPS原位转移仓的研制基于本实验室ESCALAB 250Xi型多功能光电子能谱仪器(Thermofisher 公司)的特点,研究人员设计了XPS原位转移仓. 为兼顾各个部件强度、精度与轻量化的要求,所有部件均采用钛合金材料.该装置从整体结构上分为样品台、密封罩和紧固挡板三个部件,如图1(a)~(c)所示. 在密封罩内部通过单向密封设计[图1(e)]使得XPS原位转移仓实现正负压一体,实际操作中可通过调节密封罩上的螺帽完成两种模式任意切换. 同时,从图1(e)中可以直观看到,密封罩与样品台之间通过O圈密封,利用带有螺钉的紧固挡板将二者紧密固定. 此外,为确保样品台与密封罩对接方位正确,本设计使用定向槽定位样品台与密封罩位置,保证XPS原位转移仓顺利传接到仪器进样室.XPS原位转移仓使用的具体流程:在手套箱中将空气敏感样品粘贴至样品台上,利用紧固挡板使样品台和密封罩固定在一起,通过调节密封罩上的螺帽将样品所在区域密封为正压惰性气氛(压强为300 Pa、环境气氛与手套箱内相同)或者负压真空状态,其整体装配实物图如图1(d)所示. 该转移仓结构小巧,整体尺寸仅52 mm×58 mm×60 mm,可直接放入手套箱小过渡舱传递. 由于转移仓尺寸小,其第 1 期章小余,等:正负压一体式无空气X射线光电子能谱原位转移仓的开发及研制31原料成本大大缩减,整体造价不高. 转移仓送至能谱仪进样室后,配合样品停放台与进样杆的同时双向对接,将转移仓整体固定在进样室内,如图1(f )所示. 此时关闭进样室舱门开始抽真空,当样品台与密封罩内外压强平衡后密封罩自动解除真空密封,但仍然处于O 圈密闭状态. 等待进样室真空抽至1×10−4Pa 后,使用能谱仪进样室的样品停放台摘除脱离的密封罩[如图1(g )所示],待真空抽至1×10−6Pa ,即可将样品送入分析室进行XPS 测试.整个试验过程操作便捷,实现了样品从手套箱转移至能谱仪内不接触大气环境.1.2 试验过程1.2.1 样品准备及转移试验所用手套箱是布劳恩惰性气体系统(上海)有限公司生产,型号为MB200MOD (1500/780)NAC ;金属Li 片购自中能锂业,纯度99.9%;CuCl 购自ALFA 公司,纯度99.999%.金属Li 片的制备及转移:将XPS 原位转移仓整体通过手套箱过渡舱送入手套箱中,剪取金属Li 片用双面胶带固定于样品台上,分别采用正压、负压两种密封模式将XPS 原位转移仓整体从手套箱中取出,分别在空气中放置0、2、4、8、18、24、48、72 h 后送入能谱仪内,进行XPS 测试.CuCl 粉末的制备及转移:在手套箱中将CuCl 粉末压片[21],使用上述同样的制备方法,将XPS 原位转移仓整体在空气中分别放置0、7、24、72 h 后送入能谱仪内,进行XPS 测试.1.2.2 样品转移方式介绍样品在手套箱中粘贴完成后,分别采用三种方式将其送入能谱仪. 第一种方式是在手套箱内使用标准样品台粘贴样品,将其装入自封袋密封,待能谱仪进样室舱门打开后,即刻打开封口袋送入仪器中开始抽真空等待测试,整个转移过程中样品暴露空气约15 s. 第二种方式是使用XPS 原位转移仓负压密封模式转移样品,具体操作步骤:利用紧固挡板将样品台和密封罩固定在一起,逆时针(OPEN )旋动螺帽至顶部,放入手套箱过渡舱并将其抽为真空,此过程中样品所在区域也抽至负压. 取出整体装置后再顺时针(CLOSE )旋动螺帽至底部,将样品所在区域进一步锁死密封. 样品在负压环境中转移至XPS 实验室,拆卸掉紧固挡板,随即送入能谱仪进样室内. 第三种方式是使用XPS 原位转移仓正压密封模式转移样品,具体操作步骤:利用紧固挡板将样品台和密封罩固定在一起,顺时针(CLOSE )旋螺帽抽气管限位板单向密封柱密封罩主体O 圈样品台紧固挡板(e) 密封罩对接停放台机械手样品台对接进样杆(a)(b)(c)(d)(g)图1 正负压一体式无空气XPS 原位转移仓系统装置(a )样品台,(b )密封罩,(c )紧固挡板,(d )整体装配实物图,(e )整体装置分解示意图,(f )样品台与密封罩在进样室内对接完成,(g )样品台与密封罩在进样室内分离Fig. 1 System device of inert-gas/vacuum sealing air-free XPS in-situ transfer module32分析测试技术与仪器第 29 卷动螺帽至底部,此时样品所在区域密封为正压惰性气氛. 直至样品转移至XPS 实验室,再使用配套真空抽气系统(如图2所示),通过抽气管将样品所在区域迅速抽为负压,拆卸掉紧固挡板,随即送入能谱仪进样室内.图2 能谱仪实验室内配套真空抽气系统Fig. 2 Vacuum pumping system in XPSlaboratory1.2.3 XPS 分析测试试验所用仪器为Thermo Fisher Scientific 公司的ESCALAB 250Xi 型多功能X 射线光电子能谱仪,仪器分析室基础真空为1×10−7Pa ,X 射线激发源为单色化Al 靶(Alk α,1 486.6 eV ),功率150 W ,高分辨谱图在30 eV 的通能及0.05 eV 的步长等测试条件下获得,并以烃类碳C 1s 为284.8 eV 的结合能为能量标准进行荷电校正.2 结果与讨论2.1 测试结果分析为了验证XPS 原位转移仓的密封性能,本文做了一系列的对照试验,选取空气敏感的金属Li 片和CuCl 粉末样品进行XPS 测试,分别采用上述三种方式转移样品,并考察了XPS 原位转移仓密封状态下在空气中放置不同时间后对样品测试结果的影响.2.1.1 负压密封模式下XPS 原位转移仓对金属Li片的密封时效性验证将金属Li 片通过两种(标准和负压密封)方式转移并在空气中放置不同时间,对这一系列样品进行XPS 测试,Li 1s 和C 1s 高分辨谱图结果如图3(a )(b )所示,试验所测得的Li 1s 半峰宽值如表1所列. 根据XPS 结果分析,金属Li 片采用标准样品台进样(封口袋密封),短暂暴露空气约15 s ,此时Li 1s 的半峰宽为1.62 eV. 而采用XPS 原位转移仓负压密封模式转移样品时,装置整体放置空气18 h 内,Li 1s 的半峰宽基本保持为(1.35±0.03) eV. 放置空气24 h 后,Li 1s 的半峰宽增加到与暴露空气15 s 的金属Li 片一样,说明此时原位转移仓的密封性能衰减,金属Li 片与渗入内部的空气发生反应生成新物质导致Li 1s 半峰宽变宽. 由图3(b )中C 1s 高分辨谱图分析,结合能位于284.82 eV 的峰归属为C-C/污染C ,位于286.23 eV 的峰归属为C-OH/C-O-CBinding energy/eVI n t e n s i t y /a .u .Li 1s半峰宽增大暴露 15 s密封放置 24 h 密封放置 18 h 密封放置 8 h 密封放置 4 h 密封放置 0 h6058565452Binding energy/eVI n t e n s i t y /a .u .C 1s(a)(b)暴露 1 min 暴露 15 s 密封放置 24 h 密封放置 18 h 密封放置 0 h292290288284282286280图3 金属Li 片通过两种(标准和负压密封)方式转移并在空气中放置不同时间的(a )Li 1s 和(b )C 1s 高分辨谱图Fig. 3 High-resolution spectra of (a) Li 1s and (b) C 1s of Li sheet samples transferred by two methods (standard andvacuum sealings) and placed in air for different times第 1 期章小余,等:正负压一体式无空气X 射线光电子能谱原位转移仓的开发及研制33键,位于288.61~289.72 eV的峰归属为HCO3−/CO32−中的C[22]. 我们从C 1s的XPS谱图可以直观的看到,与空气短暂接触后,样品表面瞬间生成新的结构,随着暴露时间增加到1 min,副反应产物大量增加(HCO3−/CO32−). 而XPS原位转移仓负压密封模式下在空气中放置18 h内,C结构基本不变,在空气中放置24 h后,C结构只有微小变化. 因此根据试验结果分析,对于空气极其敏感的材料,在负压密封模式下,建议XPS原位转移仓在空气中放置时间不要超过18 h. 这种模式适合对空气极其敏感样品的短距离转移.表 1 通过两种(标准和负压密封)方式转移并在空气中放置不同时间的Li 1s的半峰宽Table 1 Full width at half maxima (FWHM) of Li 1stransferred by two methods (standard and vacuum sealings) and placed in air for different times样品说明进样方式半峰宽/eV密封放置0 h XPS原位转移仓负压密封模式转移1.38密封放置2 h同上 1.39密封放置4 h同上 1.36密封放置8 h同上 1.32密封放置18 h同上 1.32密封放置24 h同上 1.62暴露15 s标准样品台进样(封口袋密封)1.622.1.2 正压密封模式下原位转移仓对金属Li片的密封时效性验证将金属Li片通过两种(标准和正压密封)方式转移并在空气中放置不同时间,对这一系列样品进行XPS测试,Li 1s高分辨谱图结果如图4所示,所测得的Li 1s半峰宽值如表2所列. 根据XPS结果分析,XPS原位转移仓正压密封后,在空气中放置72 h内,Li 1s半峰宽基本保持为(1.38±0.04) eV,说明有明显的密封效果,金属Li片仍然保持原有化学状态. 所以对于空气极其敏感的材料,在正压密封模式下,可至少在72 h内保持样品表面不发生化学态变化. 这种模式适合长时间远距离(可全国范围内)转移空气敏感样品.2.1.3 负压密封模式下XPS原位转移仓对空气敏感样品CuCl的密封时效性验证除了金属Li片样品,本文还继续考察XPS原位转移仓对空气敏感样品CuCl的密封时效性. 图5为CuCl粉末通过两种(标准和负压密封)方式转移并在空气中放置不同时间的Cu 2p高分辨谱图. XPS谱图中结合能[22]位于932.32 eV的峰归属为Cu+的Cu 2p3/2,位于935.25 eV的峰归属为Cu2+的Cu 2p3/2,此外,XPS谱图中位于940.00~947.50 eV 处的峰为Cu2+的震激伴峰,这些震激伴峰被认为是表 2 通过两种(标准和正压密封)方式转移并在空气中放置不同时间的Li 1s的半峰宽Table 2 FWHM of Li 1s transferred by two methods(standard and inert gas sealings) and placed in air fordifferent times样品说明进样方式半峰宽/eV 密封放置0 h XPS原位转移仓正压密封模式转移1.42密封放置2 h同上 1.35密封放置4 h同上 1.35密封放置8 h同上 1.34密封放置18 h同上 1.38密封放置24 h同上 1.39密封放置48 h同上 1.42密封放置72 h同上 1.38暴露15 s标准样品台进样(封口袋密封)1.62Binding energy/eVIntensity/a.u.Li 1s半峰宽比正压密封的宽半峰宽=1.62 eV半峰宽=1.38 eV暴露 15 s密封放置 72 h密封放置 48 h密封放置 24 h密封放置 18 h密封放置 0 h605856545250图4 金属Li片通过两种(标准和正压密封)方式转移并在空气中放置不同时间的Li 1s高分辨谱图Fig. 4 High-resolution spectra of Li 1s on Li sheet samples transferred by two methods (standard and inert gas sealings) and placed in air for different times34分析测试技术与仪器第 29 卷价壳层电子向激发态跃迁的终态效应所产生[23],而在Cu +和Cu 0中则观察不到.根据XPS 结果分析,CuCl 在XPS 原位转移仓保护(负压密封)下,即使放置空气中72 h ,测得的Cu 2p 高分辨能谱图显示只有Cu +存在,说明CuCl 并未被氧化. 若无XPS 原位转移仓保护,CuCl 粉末放置空气中3 min 就发生了比较明显的氧化,从测得的Cu 2p 高分辨能谱图能够直观的看到Cu 2+及其震激伴峰的存在,并且随着放置时间增加到40 min ,其氧化程度也大大增加. 因此,对于空气敏感的无机材料、纳米催化剂和钙钛矿材料等,采用负压密封模式转移就可至少在72 h 内保持样品表面不发生化学态变化.3 结论本工作中自主研制的正负压一体式无空气XPS原位转移仓在空气敏感样品转移过程中可以有效隔绝空气,从而获得样品最真实的表面化学结构.试验者可根据样品情况和实验室条件选择转移模式,并在密封有效时间内将样品从实验室转移至能谱仪中完成测试. 综上所述,该XPS 原位转移仓是一种设计小巧、操作简便、密封性能优异、成本较低的样品无水无氧转移装置,因此非常适合广泛开放给有需求的试验者使用. 在原位和准原位表征技术被广泛用于助力新材料发展的现阶段,希望该设计理念能对仪器功能的开发和更多准原位表征测试的扩展提供一些启示.参考文献:黄惠忠. 论表面分析及其在材料研究中的应用[M ].北京: 科学技术文献出版社, 2002: 16-18.[ 1 ]杨文超, 刘殿方, 高欣, 等. X 射线光电子能谱应用综述[J ]. 中国口岸科学技术,2022,4(2):30-37.[YANG Wenchao, LIU Dianfang, GAO Xin, et al.TheapplicationofX -rayphotoelectronspectroscopy [J ]. China Port Science and Technology ,2022,4 (2):30-37.][ 2 ]郭沁林. X 射线光电子能谱[J ]. 物理,2007,36(5):405-410. [GUO Qinlin. X -ray photoelectron spectro-scopy [J ]. Physics ,2007,36 (5):405-410.][ 3 ]Malmgren S, Ciosek K, Lindblad R, et al. Con-sequences of air exposure on the lithiated graphite SEI [J ]. Electrochimica Acta ,2013,105 :83-91.[ 4 ]Zhang Y H, Chen S M, Chen Y, et al. Functional poly-ethylene glycol-based solid electrolytes with enhanced interfacial compatibility for room-temperature lithium metal batteries [J ]. Materials Chemistry Frontiers ,2021,5 (9):3681-3691.[ 5 ]周逸凡, 杨慕紫, 佘峰权, 等. X 射线光电子能谱在固态锂离子电池界面研究中的应用[J ]. 物理学报,2021,70(17):178801. [ZHOU Yifan, YANG Muzi,SHE Fengquan, et al. Application of X -ray photoelec-tron spectroscopy to study interfaces for solid-state lithium ion battery [J ]. Acta Physica Sinica ,2021,70(17):178801.][ 6 ]Huang J J, Song Y Y, Ma D D, et al. The effect of thesupport on the surface composition of PtCu alloy nanocatalysts: in situ XPS and HS-LEIS studies [J ].Chinese Journal of Catalysis ,2017,38 (7):1229-1236.[ 7 ]Koley P, Shit S C, Sabri Y M, et al. Looking into moreeyes combining in situ spectroscopy in catalytic bio-fuel upgradation with composition-graded Ag-Co core-shell nanoalloys [J ]. ACS Sustainable Chemistry &Engineering ,2021,9 (10):3750-3767.[ 8 ]Opitz A K, Nenning A, Rameshan C, et al. Enhancingelectrochemical water-splitting kinetics by polarization-driven formation of near-surface iron(0): an in situ XPS study on perovskite-type electrodes [J ]. Ange-wandte Chemie (International Ed in English),2015,54(9):2628-2632.[ 9 ]Czekaj I, Loviat F, Raimondi F, et al. Characterization[ 10 ]Binding energy/eVI n t e n s i t y /a .u .Cu 2pCu +Cu 2+暴露 3 min暴露 40 min 密封放置 7 h 密封放置 72 h 密封放置 24 h密封放置 0 h960950945935925955940930920图5 CuCl 粉末通过两种(标准和负压密封)方式转移并在空气中放置不同时间的Cu 2p 高分辨谱图Fig. 5 High-resolution spectra of Cu 2p on CuCl powder samples transferred by two methods (standard and vacuumsealings) and placed in air for different times第 1 期章小余,等:正负压一体式无空气X 射线光电子能谱原位转移仓的开发及研制35of surface processes at the Ni-based catalyst during the methanation of biomass-derived synthesis gas: X -ray photoelectron spectroscopy (XPS)[J ]. Applied Cata-lysis A:General ,2007,329 :68-78.Rutkowski M M, McNicholas K M, Zeng Z Q, et al.Design of an ultrahigh vacuum transfer mechanism to interconnect an oxide molecular beam epitaxy growth chamber and an X -ray photoemission spectroscopy analysis system [J ]. Review of Scientific Instruments ,2013,84 (6):065105.[ 11 ]伊晓东, 郭建平, 孙海珍, 等. X 射线光电子能谱仪样品前处理装置的设计及应用[J ]. 分析仪器,2008(5):8-11. [YI Xiaodong, GUO Jianping, SUN Haizhen, et al. Design of a sample pretreatment device for X -ray photoelectron spectrometer [J ]. Analytical Instrumentation ,2008 (5):8-11.][ 12 ]Aurbach D, Weissman I, Schechter A, et al. X -ray pho-toelectron spectroscopy studies of lithium surfaces pre-pared in several important electrolyte solutions. A comparison with previous studies by Fourier trans-form infrared spectroscopy [J ]. Langmuir ,1996,12(16):3991-4007.[ 13 ]Światowska-Mrowiecka J, Maurice V, Zanna S, et al.XPS study of Li ion intercalation in V 2O 5 thin films prepared by thermal oxidation of vanadium metal [J ].Electrochimica Acta ,2007,52 (18):5644-5653.[ 14 ]Weingarth D, Foelske-Schmitz A, Wokaun A, et al. Insitu electrochemical XPS study of the Pt/[BF 4]system [J ]. Electrochemistry Communications ,2011,13 (6):619-622.[ 15 ]Schneider J D, Agocs D B, Prieto A L. Design of asample transfer holder to enable air-free X -ray photo-electron spectroscopy [J ]. Chemistry of Materials ,2020,32 (19):8091-8096.[ 16 ]Karamurzov B S, Kochur A G, Misakova L B, et al.Calculation of the pure surface composition of the bin-ary alloy according to XPS data obtained after the al-loy surface contact with air [J ]. Journal of Structural Chemistry ,2015,56 (3):576-581.[ 17 ]章小余, 赵志娟. 一种半原位XPS 样品转移装置: 中国, 201620925237.5[P ]. 2017-02-15.[ 18 ]章小余, 袁震, 赵志娟. 一种半原位X 射线光电子能谱分析仪的样品转移装置: 中国, 201720056623.X [P ]. 2017-12-08.[ 19 ]袁震, 章小余, 赵志娟. 一种样品转移装置及转移方法: 中国, 2011203822.1[P ]. 2022-03-01.[ 20 ]刘芬, 赵志娟, 邱丽美, 等. XPS 分析固体粉末时的样品制备法研究[J ]. 分析测试技术与仪器,2007,13(2):107-109. [LIU Fen, ZHAO Zhijuan, QIU Limei, et al. Study of sample preparation method for XPS analysis of powdered samples [J ]. Analysis and Testing Technology and Instruments ,2007,13 (2):107-109.][ 21 ]Wagner C D, Riggs W M, Davis L E, et al. Handbookof X -ray photoelectron spectroscopy [M ]. Eden Prair-ie, Minnesota, 1978.[ 22 ]Watts J F, Wolstenholme J. 表面分析(XPS 和AES)引论[M ]. 吴正龙, 译. 上海: 华东理工大学出版社,2008.[ 23 ]36分析测试技术与仪器第 29 卷。

质检专业术语1

质检专业术语1

质检专业术语质检专业术语1. 认可的实验室accredited laboratory2. 提前装运通知advanced shipment notification (ASN)3. 基准确定benchmarking4. 经营计划business plan5. 计算机辅助设计computer aided design (CAD)6. 计算机辅助工程computer aided engineering (CAE)7. 校准calibration8. 应急计划contingency plan9. 持续改进计划/方案continuous improvement plan/program10. 合同contract11. 控制计划control plan12. 纠正措施计划corrective action plan13. 不良质量成本cost of poor quality14. 横向职能方法cross-functional approach15. 装配性设计design for assembly (DFA)16. 实验设计design of experiment (DOE)17. 设计纪录design record18. 设计责任供方design-responsible suppliers19. 文件documentation20. 安全关注due care21. 设备equipment22. 工程批准的授权engineering approved authorization23. 执行职责executive responsibility24. 有限元分析finite element analysis (FEA)25. 可行性feasibility26. 先进先出first in first out (FIFO)27. 失效模式及后果分析failure mode and effects analysis (FMEA)28. 功能验证functional verification29. 几何尺寸与公差geometric dimensioning & tolerancing (GD&T) 30. 作业指导书job instruction31. 实验室laboratory32. 实验室范围laboratory scope33. 末件比较last off part comparison34. 全尺寸检验layout inspection35. 防错mistake proofing36. 多方论证方法multi-disciplinary approach37. 运行业绩operational performance38. 预见性维护predictive maintenance39. 超额运费premium freight40. 预防性维护preventive maintenance41. 解决问题problem solving42. 程序procedures43. 过程审核process audit44. 过程流程图process flow diagram flow chart45. 产品product46. 产品实现product realization47. 产品审核product audit48. 项目管理project management49. 质量功能展开quality function deployment (QFD)50. 质量手册quality manual51. 反应计划reaction plan52. 外部场所remote location53. 重复性和再现性研究repeatability and reproducibility studies54. 现场site55. 特殊特性special characteristics56. 分承包方subcontractor57. 分承包方的开发subcontractor development58. 供方supplier59. 投标tender60. 工具/工装tool/tooling分析术语英语翻译玻璃漏斗Glass funnel long stem试管test tube test tube brush test tube holder test tube rack蒸发皿evaporating dish small烧杯beaker锥形瓶Erlenmeyer量筒grad cylinder洗瓶plastic wash bottle勺皿casserole ,smallstoppered flask分液漏斗separalory funnelwater bath/oil bathstrring barmagnetic stirrer冷凝器condenserBallast bottle圆颈烧瓶Round-buttom flask试剂瓶reagent bottles托盘天平platform balance 台秤0.1g 托盘pan 指针刻度表pointer and scale crossbeams and sliding weights 游码分析天平two-pan/single-pan analytical balance滴定管burette glass bead(basic) nozzle移液管pipette 胖肚elongated glass bulb洗耳球rubber suction bulb玻棒glass rod玻璃活塞stopcock容量瓶pyknowmeter flasks比重瓶(one-mark)volumetric flasks胖肚吸管one-mark pipette刻度吸管graduated pipettes实验仪器清单1、柜子中四、抽屉中:锥形瓶(conical flask) 250ml×4 药匙(medicine spoon)×1(Erlenmeyer flask) 100 ml×3 滴管(drip tube;dropper)×2烧杯(beaker) 500 ml×1 玻棒(Glass stic)×2250 ml×3 木试管夹(test tube clamp;test tube holder)×1100 ml×3 胖肚吸管(straws) 25 ml×150 ml×2 10 ml×1 容量瓶(volumetric flask) 100 ml×2 乳钵(morta)×1 50 ml×4 洗耳球(ear wadhing bulb)碘量瓶(iodin numoe flask;iodineflask) 500 ml×3试剂瓶(reagent bottle) (无色)×2(棕色)×2 配洗液:量筒(cylinder)100 ml×1 K2Cr2O72g+5ml水→65mlH2SO4(graduated cylinder)10ml×1 边加边搅拌(stir)。

负压状态窄缝通道乙二醇水溶液传热特性

负压状态窄缝通道乙二醇水溶液传热特性

化工进展Chemical Industry and Engineering Progress2023 年第 42 卷第 S1 期负压状态窄缝通道乙二醇水溶液传热特性赵晨1,苗天泽2,张朝阳3,洪芳军1,汪大海1(1 上海交通大学机械与动力工程学院,上海 200240;2 清华大学先进高功率微波重点实验室,北京100084;3上海交通大学巴黎卓越工程师学院,上海 200240)摘要:高效、紧凑的换热方式需求日益增大,具有高度方向速度梯度大的窄缝通道成为最有前景的方式之一。

本文以质量分数为55%的乙二醇水溶液为工质,针对钛窄缝通道在负压工况进行流动沸腾换热实验。

实验在质量流率750~2000kg/(m 2·s)、饱和温度为80~90℃、入口温度60~70℃的条件下进行。

结果表明,钛需要更高的热流密度激活大量成核点,从而其过冷沸腾起始点(ONB )前后平均换热系数h 基本不变;质量流量对于ONB 和沸腾充分发展阶段的平均换热系数影响很大;在高过冷度时,沸腾充分发展阶段,钛窄缝通道换热性能对于入口温度不敏感;提高进口温度降低过冷度可以极大提高平均换热系数,70℃条件下平均换热系数在沸腾充分发展阶段可以提高65%;背压对于换热性能的影响主要在沸腾充分发展阶段,背压越低平均换热系数越大。

关键词:微通道;乙二醇水溶液;负压;气液两相流;流动沸腾;传热中图分类号:TK124 文献标志码:A 文章编号:1000-6613(2023)S1-0148-10Heat transfer characteristics of ethylene glycol aqueous solution in slitchannel under negative pressureZHAO Chen 1,MIAO Tianze 2,ZHANG Chaoyang 3,HONG Fangjun 1,WANG Dahai 1(1 School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; 2 Advanced High PowerMicrowave Key Laboratory, Tsinghua University, Beijing 100084, China; 3 Ecole d'ingenieurs Paris, Shanghai Jiao TongUniversity, Shanghai 200240, China)Abstract: The increasing demand for efficient and compact methods of heat transfer has generated interest in the utilization of a narrow channel with a significant velocity gradient along its height, thus presenting substantial potential. This research study focused on investigating the heat transfer phenomena in a flow boiling system that employs a narrow slot channel made of titanium under negative pressure conditions. The experimental analysis employed a designated working fluid, namely an ethylene glycol aqueous solution with a mass concentration of 55%. The experimentation was conducted under specific operational parameters, encompassing a mass flow rate spanning from 750kg/(m²·s) to 2000kg/(m²·s), a saturation temperature within the range of 80℃ to 90℃, and an inlet temperature ranging from 60℃ to 70℃. The findings of the study revealed that the activation of a substantial quantity of nucleation sites in titanium necessitated an elevated heat flux. Consequently, this phenomenon maintained the average heat transfer coefficient (h ) in a state of relative constancy both prior to and subsequent to the onset of nucleate boiling (ONB). The heat flux required to start of ONB and the mean heat transfer coefficient during the研究开发DOI :10.16085/j.issn.1000-6613.2023-1153收稿日期:2023-07-09;修改稿日期:2023-08-28。

分析术语英语翻译

分析术语英语翻译

分析术语英语翻译玻璃漏斗Glass funnel long stem试管test tube test tube brush test tube holder test tube rack 蒸发皿evaporating dish small烧杯beaker锥形瓶Erlenmeyer量筒grad cylinder洗瓶plastic wash bottle勺皿casserole ,smallstoppered flask分液漏斗separalory funnelwater bath/oil bathstrring barmagnetic stirrer冷凝器condenserBallast bottle圆颈烧瓶Round-buttom flask试剂瓶reagent bottles托盘天平platform balance 台秤0.1g 托盘pan 指针刻度表pointer and scale crossbeams and sliding weights 游码分析天平two-pan/single-pan analytical balance滴定管burette glass bead(basic) nozzle移液管pipette 胖肚elongated glass bulb洗耳球rubber suction bulb玻棒glass rod玻璃活塞stopcock容量瓶pyknowmeter flasks比重瓶(one-mark)volumetric flasks胖肚吸管one-mark pipette刻度吸管graduated pipettes实验仪器清单1、柜子中四、抽屉中:锥形瓶(conical flask) 250ml×4 药匙(medicine spoon)×1 (Erlenmeyer flask) 100 ml×3 滴管(drip tube;dropper)×2 烧杯(beaker) 500 ml×1 玻棒(Glass stic)×2250 ml×3 木试管夹(test tube clamp;test tube holder)×1 100 ml×3 胖肚吸管(straws) 25 ml×150 ml×2 10 ml×1容量瓶(volumetric flask) 100 ml×2 乳钵(morta)×150 ml×4 洗耳球(ear wadhing bulb)碘量瓶(iodin numoe flask;iodineflask) 500 ml×3试剂瓶(reagent bottle) (无色)×2(棕色)×2 配洗液:量筒(cylinder)100 ml×1 K2Cr2O72g+5ml水→65mlH2SO4 (graduated cylinder)10ml×1 边加边搅拌(stir)。

分析化学英语术语翻译

分析化学英语术语翻译
高碘酸盐:periodate
亚硝酸钠法:sodium nitrite method
重氮化反应:diazotization reaction
重氮化滴定法:diazotization titration
亚硝基化反应:nitrozation reaction
亚硝基化滴定法:nitrozation titration
铈量法:cerimetry
高锰酸钾法:potassium permanganate method
条件电位:conditional potential
溴酸钾法:potassium bromate method
硫酸铈法:cerium sulphate method
偏高碘酸:metaperiodic acid
250 ml×3 木试管夹(test tube clamp;test tube holder)×1
100 ml×3 胖肚吸管(straws) 25 ml×1
50 ml×2 10 ml×1
容量瓶(volumetric flask) 100 ml×2 乳钵(morta)×1
50 ml×4 洗耳球(ear wadhing bulb)
两性溶剂:amphototeric solvent
无质子溶剂:aprotic solvent
均化效应:differentiating effect
区分性溶剂:differentiating solvent
离子化:ionization
离解:dissociation
结晶紫:crystal violet
舍弃商:rejection quotient ;Q
化学定量分析
第三章 滴定分析概论

质检专业术语1

质检专业术语1

质检专业术语质检专业术语1. 认可的实验室accredited laboratory2. 提前装运通知advanced shipment notification (ASN)3. 基准确定benchmarking4. 经营计划business plan5. 计算机辅助设计computer aided design (CAD)6. 计算机辅助工程computer aided engineering (CAE)7. 校准calibration8. 应急计划contingency plan9. 持续改进计划/方案continuous improvement plan/program10. 合同contract11. 控制计划control plan12. 纠正措施计划corrective action plan13. 不良质量成本cost of poor quality14. 横向职能方法cross-functional approach15. 装配性设计design for assembly (DFA)16. 实验设计design of experiment (DOE)17. 设计纪录design record18. 设计责任供方design-responsible suppliers19. 文件documentation20. 安全关注due care21. 设备equipment22. 工程批准的授权engineering approved authorization23. 执行职责executive responsibility24. 有限元分析finite element analysis (FEA)25. 可行性feasibility26. 先进先出first in first out (FIFO)27. 失效模式及后果分析failure mode and effects analysis (FMEA)28. 功能验证functional verification29. 几何尺寸与公差geometric dimensioning & tolerancing (GD&T) 30. 作业指导书job instruction31. 实验室laboratory32. 实验室范围laboratory scope33. 末件比较last off part comparison34. 全尺寸检验layout inspection35. 防错mistake proofing36. 多方论证方法multi-disciplinary approach37. 运行业绩operational performance38. 预见性维护predictive maintenance39. 超额运费premium freight40. 预防性维护preventive maintenance41. 解决问题problem solving42. 程序procedures43. 过程审核process audit44. 过程流程图process flow diagram flow chart45. 产品product46. 产品实现product realization47. 产品审核product audit48. 项目管理project management49. 质量功能展开quality function deployment (QFD)50. 质量手册quality manual51. 反应计划reaction plan52. 外部场所remote location53. 重复性和再现性研究repeatability and reproducibility studies54. 现场site55. 特殊特性special characteristics56. 分承包方subcontractor57. 分承包方的开发subcontractor development58. 供方supplier59. 投标tender60. 工具/工装tool/tooling分析术语英语翻译玻璃漏斗Glass funnel long stem试管test tube test tube brush test tube holder test tube rack蒸发皿evaporating dish small烧杯beaker锥形瓶Erlenmeyer量筒grad cylinder洗瓶plastic wash bottle勺皿casserole ,smallstoppered flask分液漏斗separalory funnelwater bath/oil bathstrring barmagnetic stirrer冷凝器condenserBallast bottle圆颈烧瓶Round-buttom flask试剂瓶reagent bottles托盘天平platform balance 台秤0.1g 托盘pan 指针刻度表pointer and scale crossbeams and sliding weights 游码分析天平two-pan/single-pan analytical balance滴定管burette glass bead(basic) nozzle移液管pipette 胖肚elongated glass bulb洗耳球rubber suction bulb玻棒glass rod玻璃活塞stopcock容量瓶pyknowmeter flasks比重瓶(one-mark)volumetric flasks胖肚吸管one-mark pipette刻度吸管graduated pipettes实验仪器清单1、柜子中四、抽屉中:锥形瓶(conical flask) 250ml×4 药匙(medicine spoon)×1(Erlenmeyer flask) 100 ml×3 滴管(drip tube;dropper)×2烧杯(beaker) 500 ml×1 玻棒(Glass stic)×2250 ml×3 木试管夹(test tube clamp;test tube holder)×1100 ml×3 胖肚吸管(straws) 25 ml×150 ml×2 10 ml×1 容量瓶(volumetric flask) 100 ml×2 乳钵(morta)×1 50 ml×4 洗耳球(ear wadhing bulb)碘量瓶(iodin numoe flask;iodineflask) 500 ml×3试剂瓶(reagent bottle) (无色)×2(棕色)×2 配洗液:量筒(cylinder)100 ml×1 K2Cr2O72g+5ml水→65mlH2SO4(graduated cylinder)10ml×1 边加边搅拌(stir)。

纳米物传感器的作文

纳米物传感器的作文

纳米物传感器的作文英文回答:Nanomaterials have revolutionized the field of sensing, enabling the development of nanosensors that can detect and analyze various substances and phenomena at the nanoscale. These nanosensors, also known as nanoscale sensors, are capable of detecting and measuring physical, chemical, and biological parameters with high sensitivity and accuracy. They have a wide range of applications in various fields, including healthcare, environmental monitoring, food safety, and industrial processes.One of the key advantages of nanosensors is their small size, which allows them to be integrated into various devices and systems. For example, nanosensors can be embedded in wearable devices to monitor vital signs and detect health issues in real-time. They can also be used in environmental monitoring systems to detect pollutants and ensure the safety of air and water. In addition,nanosensors can be incorporated into food packaging materials to monitor the freshness and quality of food products.Another important feature of nanosensors is their high sensitivity, which allows them to detect and measure substances and phenomena at extremely low concentrations. This is particularly useful in healthcare applications, where nanosensors can be used for early detection and diagnosis of diseases. For example, nanosensors can detect biomarkers in blood or urine samples that indicate the presence of cancer or other diseases. By detecting these biomarkers at an early stage, nanosensors can help improve patient outcomes and reduce healthcare costs.Furthermore, nanosensors offer enhanced selectivity, meaning they can specifically detect and measure target substances while ignoring interfering substances. This is achieved through the use of functionalized nanomaterials, which can be designed to selectively interact with specific molecules or ions. For instance, nanosensors can be functionalized with antibodies to detect the presence ofspecific pathogens or toxins in food samples. Thisselective detection capability is crucial in ensuring the accuracy and reliability of sensing results.In addition to their small size, high sensitivity, and selectivity, nanosensors also offer the potential for real-time and continuous monitoring. This is due to theirability to rapidly respond to changes in their environment and provide instant feedback. For example, nanosensors can be used in smart home systems to monitor indoor air quality and automatically adjust ventilation systems to maintain a healthy environment. They can also be employed inindustrial processes to monitor and control parameters such as temperature, pressure, and humidity.中文回答:纳米材料已经彻底改变了传感领域,使得纳米传感器的发展成为可能。

本科生、分析研究生均可使用《化学》中常见词汇的中英对照

本科生、分析研究生均可使用《化学》中常见词汇的中英对照

《分析化学》中常见词汇的中英对照第一章绪论分析化学:analytical chemistry定性分析:qualitative analysis定量分析:quantitative analysis物理分析:physical analysis 物理化学分析:physico-chemical analysis仪器分析法:instrumental analysis流动注射分析法:flow injection analysis;FIA顺序注射分析法:sequentical injection analysis。

SIA化学计量学:chemometrics第二章误差的分析数据处理绝对误差:absolute error 相对误差:relative error系统误差:systematic error 可定误差:determinate error 随机误差:accidental error 不可定误差:indeterminate error准确度:accuracy精确度:precision偏差:debiation,d平均偏差:average debiation 相对平均偏差:relative average debiation标准偏差<标准差):standerd deviation。

S相对平均偏差:relatibe standard deviation。

RSD变异系数:coefficient of variation误差传递:propagation of error有效数字:significant figure 置信水平:confidence level显著性水平:level of significance合并标准偏差<组合标准差):pooled standard debiation 舍弃商:rejectionquotient 。

Q化学定量分析第三章滴定分析概论滴定分析法:titrametric analysis滴定:titration容量分析法:volumetric analysis化学计量点:stoichiometric point等当点:equivalent point电荷平衡:charge balance电荷平衡式:charge balance equation质量平衡:mass balance物料平衡:material balance 质量平衡式:mass balance equation第四章酸碱滴定法酸碱滴定法:acid-base titrations质子自递反应:autoprotolysis reaction质子自递常数:autoprotolysis constant质子条件式:proton balance equation酸碱指示剂:acid-base indicator指示剂常数:indicator constant变色范围:colour change interval混合指示剂:mixed indicator 双指示剂滴定法:double indicator titration第五章非水滴定法非水滴定法:nonaqueous titrations质子溶剂:protonic solvent 酸性溶剂:acid solvent碱性溶剂:basic solvent两性溶剂:amphototeric solvent无质子溶剂:aprotic solvent 均化效应:differentiating effect区分性溶剂:differentiating solvent离子化:ionization离解:dissociation结晶紫:crystal violet萘酚苯甲醇: α-naphthalphenol benzyl alcohol奎哪啶红:quinadinered百里酚蓝:thymol blue 偶氮紫:azo violet溴酚蓝:bromophenol blue第六章配位滴定法配位滴定法:compleximetry乙二胺四乙酸:ethylenediamine tetraacetic acid,EDTA螯合物:chelate compound金属指示剂:metal lochrome indcator第七章氧化还原滴定法氧化还原滴定法:oxidation-reduction titration碘量法:iodimetry溴量法:bromimetry ]溴量法:bromine method铈量法:cerimetry高锰酸钾法:potassium permanganate method条件电位:conditional potential溴酸钾法:potassium bromate method硫酸铈法:cerium sulphate method偏高碘酸:metaperiodic acid 高碘酸盐:periodate亚硝酸钠法:sodium nitrite method重氮化反应:diazotization reaction重氮化滴定法:diazotization titration亚硝基化反应:nitrozation reaction亚硝基化滴定法:nitrozation titration外指示剂:external indicator 外指示剂:outside indicator 重铬酸钾法:potassium dichromate method第八章沉淀滴定法沉淀滴定法:precipitation titration容量滴定法:volumetric precipitation method银量法:argentometric method 第九章重量分析法重量分析法:gravimetric analysis挥发法:volatilization method引湿水<湿存水):water of hydroscopicity包埋(藏>水:occluded water 吸入水:water of imbibition 结晶水:water of crystallization组成水:water of composition 液-液萃取法:liquid-liquid extration溶剂萃取法:solvent extration反萃取:counter extraction 分配系数:partitioncoefficient分配比:distribution ratio 离子对<离子缔合物):ion pair沉淀形式:precipitation forms称量形式:weighing forms 《分析化学》下册仪器分析概述物理分析:physical analysis 物理化学分析:physicochemical analysis仪器分析:instrumental analysis第十章电位法及永停滴定法电化学分析:electrochemical analysis电解法:electrolytic analysis method电重量法:electtogravimetry 库仑法:coulometry 库仑滴定法:coulometric titration电导法:conductometry电导分析法:conductometric analysis电导滴定法:conductometric titration电位法:potentiometry直接电位法:dirext potentiometry电位滴定法:potentiometric titration伏安法:voltammetry极谱法:polarography溶出法:stripping method电流滴定法:amperometric titration化学双电层:chemical double layer相界电位:phase boundary potential金属电极电位:electrodepotential化学电池:chemical cell液接界面:liquid junction boundary原电池:galvanic cell电解池:electrolytic cell 负极:cathrode正极:anode电池电动势:eletromotive force指示电极:indicator electrode参比电极:reference electroade标准氢电极:standard hydrogen electrode一级参比电极:primary reference electrode饱和甘汞电极:standard calomel electrode银-氯化银电极:silver silver-chloride electrode 液接界面:liquid junction boundary不对称电位:asymmetry potential表观PH值:apparent PH复合PH电极:combination PH electrode离子选择电极:ion selective electrode敏感器:sensor晶体电极:crystalline electrodes均相膜电极:homogeneous membrance electrodes非均相膜电极:heterog eneous membrance electrodes非晶体电极:non- crystalline electrodes刚性基质电极:rigid matrix electrode流流体载动电极:electrode with a mobile carrier气敏电极:gas sensing electrodes酶电极:enzyme electrodes金属氧化物半导体场效应晶体管:MOSFET离子选择场效应管:ISFET总离子强度调节缓冲剂:total ion strength adjustment buffer,TISAB永停滴定法:dead-stop titration双电流滴定法<双安培滴定法):double amperometric titration第十一章光谱分析法概论普朗克常数:Plank constant 电磁波谱:electromagnetic spectrum光谱:spectrum光谱分析法:spectroscopic analysis原子发射光谱法:atomic emission spectroscopy质量谱:mass spectrum质谱法:mass spectroscopy,MS 第十二章紫外-可见分光光度法紫外-可见分光光度法:ultraviolet and visible spectrophotometry。

gas sensing properties of ptype semiconducting Cr-droped tio2 thin films

gas sensing properties of ptype semiconducting Cr-droped tio2 thin films

Gas sensing properties of p-type semiconductingCr-doped TiO 2thin ®lmsYongxiang Li a,*,Wojtek Wlodarski b ,Kosmas Galatsis b ,Sayed Hassib Moslih b ,Jared Cole c ,Salvy Russo c ,Natasha Rockelmann daThe State Key Lab of High Performance Ceramic and Super®ne Microstructure,Shanghai Institute of Ceramics,Chinese Acedemy of Sciences,Shanghai 200050,ChinabSchool of Electrical and Computer Engineering,RMIT University,Melbourne 3001,AustraliacDepartment of Applied Physics,RMIT University,Melbourne 3001,Australia dDivision of Manufacturing Science and Technology,CSIRO,Melbourne 3169,AustraliaAbstractCr 2O 3±TiO 2thin ®lms were prepared from the sol±gel process.Titanium butoxide was used as the precursor material.The solution was mixed with a chromium compound then spun onto sapphire and silicon substrates at 2500rpm for 30s.The ®lms were annealied at temperatures of between 400and 7008C for 1h.The X-ray diffraction (XRD),scanning electronic microscope (SEM),Rutherford backscatter spectrometry (RBS)and X-ray photoelectron spectroscopy (XPS)techniques were employed for microstructural characteraza-tions.The responses to both NO 2and O 2gases con®rmed that the ®lms are of a p-type behaviour at operating temperatures between 350and 4008C.The ®lms showed a good response to oxygen,in the range from 100ppm to 10%of O 2at an operating temperature of 3708C.The response is also fast and stable.The p-type Cr-doped TiO 2thin ®lms have potential for development of a novel gas sensors.#2002Elsevier Science B.V .All rights reserved.Keywords:Cr-doped TiO 2;p-type semiconductor;Sol±gel process;Gas sensing1.IntroductionTiO 2applications ranging from catalytic and electro-chemical processes through optical coatings to gas sensing devices are rapidly expanding.Consequently,new and important issues continue to arise.A major concern is the effect of doping on the electronic structure of TiO 2and its impact on the gas sensing performance.A platinum-doped titania ®lm oxygen sensor integrated with a temperature compensating thermistor was fabricated by means of tripole magnetron sputtering.This sensor has a fast response and stable output in spite of temperature ¯uctuations [1].The in¯uence of donor type (Nb 5 ),acceptor type (Cr 3 )or Sn 4 additions isovalent with Ti 4 on the electronic structure of r.f.-sputtered TiO 2thin ®lms and its subsequent effect on gas sensor characteristics were reported [2,3].The effect of iron doping on TiO 2thin ®lms deposited by r.f.sputtering showed that the iron causes a structural transformation from anatase to rutile.The electrical measurements indicate that the iron acts as an acceptor impurity [4].The gas sensing properties ofthe binary metal oxide TiO 2±WO 3,TiO 2±MoO 3,TiO 2±V 2O 5have been also studied extensively [5,6].Naturally,most metal oxide thin ®lms are n-type semi-conducting materials.The purpose of the present study is to enhance the performance of the gas sensing thin ®lms,and most importantly to develop a novel p-type semiconducting gas sensing ®lm.Different mole ratios of 10±90%Cr-doped in TiO 2thin ®lms were prepared by the sol±gel process.The structure and electrical properties of the Cr 2O 3±TiO 2thin ®lms are reported in this paper.2.Experimental2.1.Preparation of Cr-doped TiO 2thin filmsThe precursor solution for the sol±gel process was prepared from titanium butoxide and dissolved in butanol.The spin-coating technique was employed (at a speed of 2500rpm for 30s)to deposit the ®lms onto sapphire sub-strates with Pt-®lm interdigital electrodes on the front-side and a Pt-®lm heater on the backside for gas sensing mea-surement.Silicon substrates were used for microstructure characterization.The as-deposited ®lms were left open inairSensors and Actuators B 83(2002)160±163*Corresponding author.Tel.: 86-21-6251-2990-6526;fax: 86-21-6251-3903.E-mail address:yxli@ (Y .Li).0925-4005/02/$±see front matter #2002Elsevier Science B.V .All rights reserved.PII:S 0925-4005(01)01031-0for12h and subsequently annealed at various temperatures, viz.400,500,600and7008C for1h.2.2.Microstructure characterizationThe microstructure and the surface topography of the ®lms were examined using an SEM(Philips XL-30)operat-ing at30kV.The crystal structure of the®lms was studied using a Bruker D8Advanced XRD Diffractometer operat-ing at40mA and40kV,Cu K a1radiation(l 0:154nm) monochromated with a graphite sample monochromator. The RBS analysis was performed using a2.0MeV He2 ion beam(1.5mm diameter)accelerated by a Van de Graaf accelerator.The detector was®xed at1698to the beam direction.Spectra were accumulated up to a total charge of 20m C.The chemical composition of the thin®lms was examined using an XPS on a VG Microlab310F.2.3.Gas sensing measurementsThe gas sensing properties of the®lms to O2were measured using a computerized multimeter system(34401A Hewlet-Packard)and a gas calibration system incorporating mass ¯ow controller set at0.2LPM.The gas response S is de®ned as S R g/R b,where R g is the electrical resistance of diffe-rent O2concentrations and R b is the resistance at baseline (10%O2).The measurements were carried out at diffe-rent operating temperatures between220and4208C.Theambient temperature was208C and RH30%.Certi®ed O2 gas cylinders of100ppm,1000ppm,1and10%balanced with dry N2were used.All results presented are referenced to samples annealed at6008C unless otherwise stated.3.Results and discussion3.1.Microstructure characterizationsFig.1(a)shows a secondary electron image of Cr(20%)-doped TiO2and Fig.1(b)shows the backscatter electron (BSE)image for the®lm on a silicon substrate annealed at 6008C for1h.There are two different regions,black circle-like and grey coloured areas.From the BSE,we may conclude that the black circle-like areas are mainly TiO2dominated and the other areas are Cr2Ti2O7phase(as con®rmed by XRD). The incorporation of Cr in TiO2lattice does not affect the crystallography of pure TiO2material.It is known that TiO2®lms crystallize in the rutile structure during high temperature annealing(T>6008C)in the oxidizing atmosphere.It has been shown that no secondary phases resulting from Cr and Nb doping up to4at.%Cr and6at.%Nb are observed in XRD pattern[3].From the XRD results it is believed that this is also the case for the sol±gel prepared Cr-doped TiO2with5at.% Cr.However,as seen from Fig.2(the thin®lm of Cr10at.% Cr annealed at6008C)a weak re¯ection of Cr2Ti2O7at 2.71AÊand a Si peak at approximately1.35AÊwere observed.RBS is traditionally used to provide detailed depth pro®l-ing information about thin®lm samples.Based on the RBS results of the Cr-doped TiO2thin®lm,it is found that the thickness of the®lms is closer to20nm.As the resolution limit of the detectors used for RBS gives a lower limit of approximately80±100nm,the depth pro®le information could not be determined for the TiO2®lms.The chromium and titanium peaks shown in Fig.3are very small and not resovable due to the fact that the atomic weights are too close.The®lms have a high purity without any other metal contaminations.Fig.4shows XPS scan spectra of the Cr-doped TiO2thin ®lm.The Ti2p and Cr2p spectra indicated the chemical states of Ti and Cr to be Ti4 and Cr3 ,respectively.Two O 1s peaks were observed correponding to O2Àbelonged to Ti or Cr and to silicon(SiO2).Similarly,the Si2p spectra indicated Si±Si bonding(substrate)and SiO2due to oxide formation on the silicon surface.The XPS analysis also con®rmed the expected atomic concentrations of the®lms as shown in Table1.3.2.Gas sensing propertiesThe trivalent Cr3 acts as an acceptor type impurity which can be expressed asCr2O332Cr Ti V o 3OoFig.1.SEM images of Cr-doped TiO2thin film annealed at6008C on Si substrate.(a)Secondary electron(SE)and(b)Backscatter electron(BSE).Y.Li et al./Sensors and Actuators B83(2002)160±163161where V o represents oxygen vacancies,O o is the oxygen ion at the oxygen lattice site and Cr Ti is Cr substitution in Ti sites.The semiconductor sensing mechanism are based on reactions between the surface of the ®lm and the gases in the atmosphere,which cause a change in the semiconductor's resistance due to a charge transfer between the adsorbatesand the adsorbent.For an n-tpye semiconductor,the resis-tance increases due to electron capture by oxidising gas;for p-type,an increase in conductance is found.Fig.5shows the dynamic responses of 35at.%Cr-doped TiO 2thin ®lm to 100ppm,1000ppm,1and 10%oxygen at an operating temperature of 3708C.The baseline is atanFig.2.XRD pattern of Cr±TiO 2film annealed at 6008C on a Sisubstrate.Fig.3.RBS spectra of Cr±TiO 2(50%)thinfilm.Fig.4.XPS scan spectra of the Cr-doped TiO 2thin film annealed at 6008C on a Si substrate.Table 1XPS data for Cr-doped TiO 2thin films Sample Cr 2p (Cr 3 )Ti 2p (Ti 4 )O 1s (SiO 2 OH À)O 1s (O 2À)Si 2p (SiO 2)Si 2p (Si±Si)Ti/Cr ratio 1 1.4539.15838.28521.8609.22120.023 6.32 2.0468.29532.78626.49113.54216.840 4.13 1.8977.67037.23225.06215.96012.179 4.04 1.412 6.57939.84420.99217.70213.471 4.75 1.510 6.66039.77421.62517.10713.324 4.46 2.4149.25832.36229.93217.1438.891 3.872.90411.06228.49437.6119.36910.5603.8162Y.Li et al./Sensors and Actuators B 83(2002)160±163oxygen concentration of 10%in nitrogen.The response is fast,stable and repeatable.The incorporation of chromium cations into the TiO 2lattice initially resulted an increase in the resistor of the thin ®lms.However,acceptor behaviour of Cr was revealed at high partial pressure of oxygen as a change from n-type to p-type conductivity when the dopant increases.The response (resistor of the ®lms)of a p-type is shown opposite to n-type as seen in Fig.5.The response (t res )and recovery (t rec )times are two parameters qualifying the rapidity of a sensor to vary in resistance in a test gas (R g )or a reference gas (R f ).t res and t rec are de®ned as the times taken to 90%of (R g ÀR f )when the test gas is being introduced and to recover to 30%when the reference gasis being restored.As can be seen in Fig.5,the response time is about 1±3min and recovery time is less than 1min.The ®lms were also exposed to 3ppm NO 2at an operating temperature of 4008C as shown in Fig.6.The ®lms con-ductivity (when biased at 1V DC)increases when NO 2gas is introduced.The ®lm also exhibits a p-type semiconductor behaviour.The response of the ®lm,S is 1.1,the response time t res is 85s and recovery time t rec is 160s.4.Conclusionsp-Type Cr-doped TiO 2thin ®lms have been successfully prepared by the sol±gel process.The responses to both NO 2and O 2gases con®rmed that the ®lms are of p-type beha-viour between 350and 4008C.The ®lms showed a fast and stable response oxygen,in the range from 100ppm to 10%O 2at an operating temperature of 3708C.The p-type Cr-doped TiO 2thin ®lms have potential for development of a novel gas sensors.AcknowledgementsThe work was partially supported by the Co-operative Research Center (CRC)for Microtechnology,Australia,the project title ``High performance gas sensing ®lms''.The authors are grateful to Prof.Giorgio Sberveglieri,Gas Sensor Laboratory,Brescia University,Italy,for the use of the NO 2gas calibration system.References[1]J.Sheng,N.Yoshida,J.Karasawa et al.,Platinum-doped titania filmoxygen sensor integrated with temperature compensating thermistor,Sens.Actuators B 41(1997)131±136.[2]R.K.Sharma,M.C.Bhatnagar,G.L.Sharma,Mechanism of highlysensitive and fast response Cr-doped TiO 2oxygen gas sensor,Sens.Actuators B 45(1997)209±215.[3]K.Zakrzewska,M.Radecka,M.Rekas,Effect of Nb,Cr,Sn additionson gas sensing properties of TiO 2thin films,Thin Solid Films 310(1997)161±166.[4]A.Bally,E.N.Korobeinikova,P.E.Schmid et al.,Structural andelectrical properties of Fe-doped TiO 2thin films,J.Phys.D:Appl.Phys.31(1998)1149±1154.[5]F.Bregani,C.Casale,L.E.Depero et al.,Temperature effects on thesize of anatase crystallites in Mo-TiO 2and W-TiO 2powders,Sens.Actuators B 31(1996)25±28.[6]Y .X.Li,K.Galatsis,W.Wlodarski et al.,Microstructural character-ization of MoO 3±TiO 2nanocomposite thin films for gas sensing,Sens.Actuators B 77(2001)27±34.Fig.5.The response of 35%Cr-doped TiO 2film to 100ppm,1000ppm and 1%O 2concentrations at an operating temperature of 3708C.Fig.6.The response of Cr-doped TiO 2film to 3ppm NO 2at an operating temperature of 4008C.Y.Li et al./Sensors and Actuators B 83(2002)160±163163。

分析化学中英语简称

分析化学中英语简称

第一章绪论分析化学:analytical chemistry定性分析:qualitative analysis定量分析:quantitative analysis物理分析:physical analysis物理化学分析:physico-chemical analysis仪器分析法:instrumental analysis流动注射分析法:flow injection analysis;FIA顺序注射分析法:sequentical injection analysis;SIA化学计量学:chemometrics第二章误差的分析数据处理绝对误差:absolute error相对误差:relative error系统误差:systematic error可定误差:determinate error随机误差:accidental error不可定误差:indeterminate error准确度:accuracy精确度:precision偏差:debiation,d平均偏差:average debiation相对平均偏差:relative average debiation标准偏差(标准差):standerd deviation;S相对平均偏差:relatibe standard deviation;RSD变异系数:coefficient of variation误差传递:propagation of error有效数字:significant figure置信水平:confidence level显著性水平:level of significance合并标准偏差(组合标准差):pooled standard debiation 舍弃商:rejection quotient ;Q化学定量分析第三章滴定分析概论滴定分析法:titrametric analysis滴定:titration容量分析法:volumetric analysis化学计量点:stoichiometric point等当点:equivalent point电荷平衡:charge balance电荷平衡式:charge balance equation质量平衡:mass balance物料平衡:material balance质量平衡式:mass balance equation第四章酸碱滴定法酸碱滴定法:acid-base titrations质子自递反应:autoprotolysis reaction质子自递常数:autoprotolysis constant质子条件式:proton balance equation酸碱指示剂:acid-base indicator指示剂常数:indicator constant变色范围:colour change interval混合指示剂:mixed indicator双指示剂滴定法:double indicator titration第五章非水滴定法非水滴定法:nonaqueous titrations质子溶剂:protonic solvent酸性溶剂:acid solvent碱性溶剂:basic solvent两性溶剂:amphototeric solvent无质子溶剂:aprotic solvent均化效应:differentiating effect区分性溶剂:differentiating solvent离子化:ionization离解:dissociation结晶紫:crystal violet萘酚苯甲醇: α-naphthalphenol benzyl alcohol奎哪啶红:quinadinered百里酚蓝:thymol blue偶氮紫:azo violet溴酚蓝:bromophenol blue第六章配位滴定法配位滴定法:compleximetry乙二胺四乙酸:ethylenediamine tetraacetic acid,EDTA 螯合物:chelate compound金属指示剂:metal lochrome indcator第七章氧化还原滴定法氧化还原滴定法:oxidation-reduction titration 碘量法:iodimetry溴量法:bromimetry ]溴量法:bromine method铈量法:cerimetry高锰酸钾法:potassium permanganate method条件电位:conditional potential溴酸钾法:potassium bromate method硫酸铈法:cerium sulphate method偏高碘酸:metaperiodic acid高碘酸盐:periodate亚硝酸钠法:sodium nitrite method重氮化反应:diazotization reaction重氮化滴定法:diazotization titration亚硝基化反应:nitrozation reaction亚硝基化滴定法:nitrozation titration外指示剂:external indicator外指示剂:outside indicator重铬酸钾法:potassium dichromate method第八章沉淀滴定法沉淀滴定法:precipitation titration容量滴定法:volumetric precipitation method 银量法:argentometric method第九章重量分析法重量分析法:gravimetric analysis挥发法:volatilization method引湿水(湿存水):water of hydroscopicity包埋(藏)水:occluded water吸入水:water of imbibition结晶水:water of crystallization组成水:water of composition液-液萃取法:liquid-liquid extration溶剂萃取法:solvent extration反萃取:counter extraction分配系数:partition coefficient分配比:distribution ratio离子对(离子缔合物):ion pair沉淀形式:precipitation forms称量形式:weighing forms《分析化学》下册仪器分析概述物理分析:physical analysis物理化学分析:physicochemical analysis仪器分析:instrumental analysis第十章电位法及永停滴定法电化学分析:electrochemical analysis电解法:electrolytic analysis method电重量法:electtogravimetry库仑法:coulometry库仑滴定法:coulometric titration电导法:conductometry电导分析法:conductometric analysis电导滴定法:conductometric titration电位法:potentiometry直接电位法:dirext potentiometry电位滴定法:potentiometric titration伏安法:voltammetry极谱法:polarography溶出法:stripping method电流滴定法:amperometric titration化学双电层:chemical double layer相界电位:phase boundary potential金属电极电位:electrode potential化学电池:chemical cell液接界面:liquid junction boundary原电池:galvanic cell电解池:electrolytic cell负极:cathrode正极:anode电池电动势:eletromotive force指示电极:indicator electrode参比电极:reference electroade标准氢电极:standard hydrogen electrode 一级参比电极:primary reference electrode 饱和甘汞电极:standard calomel electrode银-氯化银电极:silver silver-chloride electrode液接界面:liquid junction boundary不对称电位:asymmetry potential表观PH值:apparent PH复合PH电极:combination PH electrode离子选择电极:ion selective electrode敏感器:sensor晶体电极:crystalline electrodes均相膜电极:homogeneous membrance electrodes非均相膜电极:heterog eneous membrance electrodes非晶体电极:non- crystalline electrodes刚性基质电极:rigid matrix electrode流流体载动电极:electrode with a mobile carrier气敏电极:gas sensing electrodes酶电极:enzyme electrodes金属氧化物半导体场效应晶体管:MOSFET离子选择场效应管:ISFET总离子强度调节缓冲剂:total ion strength adjustment buffer,TISAB永停滴定法:dead-stop titration双电流滴定法(双安培滴定法):double amperometric titration第十一章光谱分析法概论普朗克常数:Plank constant电磁波谱:electromagnetic spectrum光谱:spectrum光谱分析法:spectroscopic analysis原子发射光谱法:atomic emission spectroscopy质量谱:mass spectrum质谱法:mass spectroscopy,MS第十二章紫外-可见分光光度法紫外-可见分光光度法:ultraviolet and visible spectrophotometry;UV-vis 肩峰:shoulder peak末端吸收:end absorbtion生色团:chromophore助色团:auxochrome红移:red shift长移:bathochromic shift短移:hypsochromic shift蓝(紫)移:blue shift增色效应(浓色效应):hyperchromic effect减色效应(淡色效应):hypochromic effect强带:strong band弱带:weak band吸收带:absorption band透光率:transmitance,T吸光度:absorbance谱带宽度:band width杂散光:stray light噪声:noise暗噪声:dark noise散粒噪声:signal shot noise闪耀光栅:blazed grating全息光栅:holographic graaing光二极管阵列检测器:photodiode array detector 偏最小二乘法:partial least squares method ,PLS 褶合光谱法:convolution spectrometry褶合变换:convolution transform,CT离散小波变换:wavelet transform,WT多尺度细化分析:multiscale analysis供电子取代基:electron donating group吸电子取代基:electron with-drawing group第十三章荧光分析法荧光:fluorescence荧光分析法:fluorometryX-射线荧光分析法:X-ray fulorometry原子荧光分析法:atomic fluorometry分子荧光分析法:molecular fluorometry振动弛豫:vibrational relexation内转换:internal conversion外转换:external conversion体系间跨越:intersystem crossing激发光谱:excitation spectrum荧光光谱:fluorescence spectrum斯托克斯位移:Stokes shift荧光寿命:fluorescence life time荧光效率:fluorescence efficiency荧光量子产率:fluorescence quantum yield荧光熄灭法:fluorescence quemching method散射光:scattering light瑞利光:Reyleith scanttering light拉曼光:Raman scattering light第十四章红外分光光度法红外线:infrared ray,IR中红外吸收光谱:mid-infrared absorption spectrum,Mid-IR远红外光谱:Far-IR微波谱:microwave spectrum,MV红外吸收光谱法:infrared spectroscopy红外分光光度法:infrared spectrophotometry振动形式:mode of vibration伸缩振动:stretching vibration对称伸缩振动:symmetrical stretching vibration不对称伸缩振动:asymmetrical stretching vibration弯曲振动:bending vibration变形振动:formation vibration面内弯曲振动:in-plane bending vibration,β剪式振动:scissoring vibration,δ面内摇摆振动:rocking vibration,ρ面外弯曲振动:out-of-plane bending vibration,γ面外摇摆振动:wagging vibration,ω蜷曲振动:twisting vibration ,τ对称变形振动:symmetrical deformation vibration ,δs不对称变形振动:asymmetrical deformation vibration, δas特征吸收峰:charateristic avsorption band特征频率:characteristic frequency相关吸收峰:correlation absorption band杂化影响:hybridization affect环大小效应:ring size effect吸收峰的强度:intensity of absorption band环折叠振动:ring prckering vibration第十五章原子吸收分光光度法原子光谱法:atomic spectroscopy原子吸收分光光度法:atomic absorption spectrophotometry,AAS 原子发射分光光度法:atomic emmsion spectrophotometry,AES原子荧光分光光度法:atomic fluorescence spectrophotometry,AFS第十六章核磁共振波谱法核磁共振:nuclear magnetic resonance,NMR核磁共振波谱:NMR spectrum核磁共振波谱法:NMR spectroscopy扫场:swept field扫频:seept frequency连续波核磁共振:continuous wave NMR,CW NMRFourier变换NMR:PFT-NMR,FT-NMR二维核磁共振谱:2D-NMR质子核磁共振谱:proton magnetic resonance spectrum,PMR 氢谱:1H-NMR碳-13核磁共振谱:13C-NMR spectrum,13CNMR自旋角动量:spin angular momentum磁旋比:magnetogyric ratio磁量子数:magnetic quantum number,m进动:precession弛豫历程:relaxation mechanism局部抗磁屏蔽:local diamagnetic shielding屏蔽常数:shielding constant化学位移:chemical shift国际纯粹与应用化学协会:IUPAC磁各向异性:magnetic anisotropy远程屏蔽效应:long range shielding effect结面:nodal plane自旋-自旋偶合:spin-spin coupling自旋-自旋分裂:spin=spin splitting单峰:singlet,s双峰:doublet,d三重峰:triplet,t四重峰:quartet,q五重峰:quintet六重峰:sextet七重峰:septet/heptet, h八重峰:octet, o多重峰:multipet,m偕偶:geminal coupling邻偶:vicinal coupling远程偶合:long range coupling磁等价:magnetic eqivalence自旋系统:spin system一级光谱:first order spectrum二级光谱(二级图谱):second order spectrumC-H光谱:C-H correlated spectroscopy,C-H COSY第十七章质谱法质谱分析法:mass spectrometry质谱:mass spectrum,MS棒图:bar graph选择离子检测:selected ion monitoring ,SIM直接进样:direct probe inlet ,DPI接口:interface气相色谱-质谱联用:gas chromatography-mass spectrometry,GC-MS高效液相色谱-质谱联用:high performance liquid chromatography-mass spectrometry,HPLC-MS电子轰击离子源:electron impact source,EI离子峰:quasi-molecular ions化学离子源:chemical ionization source,CI场电离:field ionization,FI场解析:field desorptiion,FD快速原子轰击离子源:fast stom bombardment ,FAB质量分析器:mass analyzer磁质谱仪:magnetic-sector mass spectrometer四极杆质谱仪(四极质谱仪):quadrupole mass spectrometer原子质量单位:amu离子丰度:ion abundance相对丰度(相对强度):relative avundance基峰:base peak质量范围:mass range分辨率:resolution灵敏度:sensitivity信噪比:S/N分子离子:molecular ion碎片离子:fragment ion同位素离子:isotopic ion亚稳离子:metastable ion亚稳峰:metastable peak母离子:paren ion子离子:daughter含奇数个电子的离子:odd electron含偶数个电子的离子:even eletron,EE均裂:homolytic cleavage异裂(非均裂):heterolytic cleavage半均裂:hemi-homolysis cleavage重排:rearragement分子量:MWα-裂解:α-cleavage第十八章色谱分析法概论色谱法(层析法):chromatography固定相:stationary phase流动相:mobile phase超临界流体色谱法:SFC高效毛细管电泳法:high performance capillary electroporesis,HPEC 气相色谱法:gas chromatography,GC液相色谱法:liquid cromatography,LC超临界流体色谱法:supercritical fluid chromatography,SFC气-固色谱法:GSC气-液色谱法:GLC液-固色谱法:LSC液-液色谱法:LLC柱色谱法:column chromatography填充柱:packed column毛细管柱:capillary column微填充柱:icrobore packed column高效液相色谱法:high performance liquid chromatography,HPLC平板色谱法:planar平板色谱法:plane chromatography纸色谱法:paper chromatography薄层色谱法:thin layer chromatography,TLC薄膜色谱法;thiin film chomatography毛细管电泳法:capillary electrophoresis,CE分配色谱法:partition chromatography吸附色谱法:adsorpion chromaography离子交换色谱法:ion exchange chromatography,IEC空间排阻色谱法:steric exclusion chromatography,SEC亲和色谱法:affinity chromatography分配系数:distribution cofficient狭义分配系数:partition coefficient凝胶色谱法:gel chromatography凝胶渗透色谱法:gel permeation chromatography,GPC凝胶过滤色谱法:gel filtration chromatography,GFC渗透系数:permeation coefficien;Kp化学键合相色谱法:chemically bonded-phase chromatography分配系数:distribution coefficient靛菁绿:indocyanine气相色谱-傅立叶变换红外光谱:GC-FTIR第十九章经典液相色谱法薄层色谱法:TLC吸附:adsorption活化:activation脱活性:deactivation交联度:degree of cross linking交换容量:exchange capacity薄层板:thin layer plate展开剂:developing solvent ,developer临界胶束浓度:criticak micolle concentration ,CMC相对比移值:relative Rf, Rr分离度:resolution ,R分离数:separation number,SN煅石膏:Gypsum羧甲基纤维素钠:CMC-Na吸收光谱联用:TLC-UV薄层色谱-荧光联用:TLC-F薄层色谱-红外吸收光谱联用:TLC-IR薄层色谱法:TLC-MS纸色谱法:paper chromatography上行展开:ascending development下行法展开:descending development双向展开:two dimensional develoooment第二十章气相色谱法气相色谱法:gas chromatography前延峰:leading peak拖尾峰:tailing peak对称因子:symmetry factor,fs保留时间:retention time保留体积:retention volume死时间:dead time调整保留时间:asjusted retention time半峰宽:peak width at half height,W1/2 or Y1/2峰宽:peak width,W等温线:isotherm理论塔板高度:height equivalent to atheoretical plate化学键合相:chemically bonded phase丁二酸二乙二醇聚酯:polydiethylene glycol succinate,PDEGS,DEGS 高分子多孔微球:GDX苯乙烯:STY乙基乙烯苯:EST二乙烯苯:DVB涂壁毛细管柱:wall coated open tubular column,WCOT载体涂层毛细管柱:supprot coated open tubular column,SCOT热导检测器:thermal conductivity detector,TCD氢焰离子化检测器:hydrogen flame ionization detector,FID电子捕获检测器:electron capture detector ,ECD噪声:noise,N漂移:drift,d灵敏度:sensitivity检测限(敏感度):detectability,D,M分离度:resolution归一化法:normalization method外标法:external standardization第二十一章高效液相色谱法高效液相色谱法:high performance liquid chromatography,HPLC高速液相色谱法:high speed LC,HSLC高压液相色谱法:high pressure LC,HPLC高分辨液相色谱法:high resolution LC,HRLC液固吸附色谱法(液固色谱法):liquid-solid adsorption chromatography,LSC 液液色谱法:liquid-liquid chromatography,LLC正相:normal phase,NP反相:reversed phase,RP化学键合相色谱法:bonded phase chromatography,BPC十八烷基:octadecylselyl,ODS离子对色谱法:paired ion chromatography,PIC反相离子对色谱法:RPIC离子抑制色谱法:ion suppression chromatography,ISC离子色谱法:ion chromatography,IC手性色谱法:chiral chromatography,CC环糊精色谱法:cyclodextrin chromatography,CDC胶束色谱法:micellar chromatography,MC亲和色谱法:affinity chromatography,AC固定相:stationary phase化学键合相:chemically bonde phase封尾、封顶、遮盖:end capping手性固定相:chiral stationary phase,CSP恒组成溶剂洗脱:isocraic elution梯度洗脱:gradient elution紫外检测器:ultraviolet detector,UVD荧光检测器:fluorophotomeric detector,FD电化学检测器:ECD示差折光检测器:RID光电二极管检测器:photodiode array detector ,DAD三维光谱-波谱图:3D-spectrochromatogram蒸发光散射检测器:evaporative light scattering detector,ELSD安培检测器:ampere detector,AD高效毛细管电泳法:high performance capillary electrophoresis,HPCE 淌度:mobility电泳:electrophoresis电渗:electroosmosis动力进样:hydrodynamic injection电动进样:electrokinetic injection毛细管区带电泳法:capillary zone electrophoresis,CZE胶束电动毛细管色谱:micellar electrokinetic capillary chromatography,MECC毛细管凝胶电泳:capillary gel electrophoresis,CGE筛分:sieving。

POE-g-MAH_对PLA

POE-g-MAH_对PLA

第4期71李梦云,等:四环素和铜离子对生物除磷中微生物胞外聚合物的影响合物中蛋白质和多糖增加量三种配比下相对最高;四环素和铜离子配比为0.894时,四环素与铜离子浓度相当,混合物投加初期胞外聚合物中蛋白质和多糖增加量三种配比下相对最低。

三种配比混合物作用下,随混合物浓度增加,微生物胞外聚合物中蛋白质三维荧光强度逐渐减弱。

参考文献:[1] 李金璞,张雯雯,杨新萍.活性污泥污水处理系统中胞外多聚物的作用及提取方法[J].生态学杂志,2018, 37(9):2825-2833.[2] Mohite B V,Koli S H,Patil S V. Heavy metal stress and its consequences on exopolysaccharide (EPS)-producing pantoea agglomerans[J].Applied Biochemistry and Biotechnology,2018,186(1):199-216.[3] Grabert R,Boopathy R,Nathaniel R,et al. Effect of tetracycline on ammonia and carbon removal by the facultative bacteria in the anaerobic digester of a sewage treatment plant[J].Bioresource Technology,2018,267:265-270.[4] Li J Y,Du Q P,Peng H Q,et al. Spectroscopic investigation of the interaction between extracellular polymeric substances and tetracycline during sorption onto anaerobic ammonium-oxidising sludge[J].Environmental Technology,2021,42(11):1787-1797.[5] Li W W,Yu H Q. Insight into the roles of microbial extracellular polymer substances in metal biosorption[J].Bioresource Technology,2014,160:15-23.[6] Li C X,Xie S Y,Wang Y,et al. Simultaneous heavy metal immobilization and antibiotics removal during synergetic treatment of sewage sludge and pig manure[J].Environmental Science and Pollution Research,2020,27(24):30323-30332.[7] Zhang Y H,Liu S S,Liu H L,et al. Evaluation of the combined toxicity of 15 pesticides by uniform design[J].Pest Management Science,2010,66(8):879-887.[8] Abbondanzi F,Cachada A,Campisi T,et al. Optimisation of a microbial bioassay for contaminated soil monitoring: bacterial inoculum standardisation and comparison with Microtox ® assay[J].Chemosphere,2003,53(8):889-897.[9] 陶梦婷,张瑾,姜慧,等.3种农药对青海弧菌Q67的联合毒性作用特征[J].环境科学与技术,2019,42(6):12-20.[10] Sutherland I W. Biofilm exopolysaccharides:a strong and sticky framework[J].Microbiology,2001,147(1):3-9. L1-3* L1-5* L1-7* L1-9* L2-3* L2-5* L2-7* L2-9* L3-3* L3-5* L3-7* L3-9*图4 三种浓度配比混合物作用下生物除磷中微生物胞外聚合物的三维荧光光谱图(下转第91页)第30卷第4期2022年8月V ol.30 No.4Aug.2022安徽建筑大学学报Journal of Anhui Jianzhu UniversityDOI:10.11921/j.issn.2095-8382.20220412POE-g-MAH对PLA/PP共混材料界面状态及机械性能的影响陈鑫亮1,高 尚1,樊炳宇1,刘 瑾1,2,王 平1,2(1.安徽建筑大学 材料与化学工程学院,安徽 合肥 230601;2.安徽省先进建筑材料国际联合研究中心,安徽 合肥 230601)摘‌要:聚乳酸(PLA)与聚丙烯(PP)的相容性较差,界面相互作用较弱,导致PLA/PP共混材料的力学性能较差。

Ion Pump操作指南说明书

Ion Pump操作指南说明书

Vac Ion Pump OperationThe vacuum pumping mechanism inside ion pumps operate by capturing gas atoms and molecules. They provide a clean, simple, low maintenance alternative for producing and maintaining high and ultra-high. Since ion pumps have a finite gas storage capturing capacity, at some point in time the pump must be reconditioned or replaced. This this is often after many years of solid operation.Operating PrincipleInside the sputter ion vacuum pump a high voltage discharge with potential usually in the 3,000 to 7,000 VDC range is maintained inside a permanently applied magnetic field, ranging from 800 to 2,000 G, to produce a trapped electron cloud. Molecular gas ions are produced when high energy electrons collide with gas molecules. These molecular gas ions are accelerated towards and collide with the cathode sputtering target. The force of this collision is sufficient to cause atoms to be ejected from the cathode and "sputtered" onto the adjacent walls of the pump. Freshly sputtered titanium (Ta) is extremely reactive and will chemically react with active gases. On impact the accelerated ions often become buried within the cathode. The resulting compounds accumulate on the surfaces of the pump elements and pump walls. Active gases are those such as oxygen (02), nitrogen (N2), carbon monoxide (CO), carbon dioxide (C02), and water (H20), as opposed to the noble gases like helium (He), neon (Ne), argon (Ar), krypton (Kr), and xenon (Xe), which are non-reactive. The latter are pumped by "ion burial" which is the plastering over of inert gas atoms by the sputtered getter atoms.Vac Ion Pump SelectionThere are four traditional types of ion pump designs: Diode, Noble Diode, Starcell and Titanium Sublimation. Each are designed in a way to improve pumping efficiency for a targeted specific type of gases.DiodeThe diode ion pump is the simplest type of ion pump being essentially a penning cell, with both sides of the cathode being made of titanium (Ti). The diode ion pump has the highest pumping speed among all configurations for active gases such as oxygen (02), nitrogen (N2), carbon dioxide (C02), carbon monoxide (CO), and similar reactive getterable gases. The simple design and construction means it can be used in close proximity of other high energy electronic devices. They do not however, have good efficiency for noble gases such as argon (Ar), helium (He), or methane (CH4). The titanium cathode has a high solubility for hydrogen (H2) so even though it does not react like other gases with the sputtered cathode material it easily gets embedded in it and covered by the next sputtered film. Diode type ion pumps are popular in UHV applications and are often used in sensitive electron microscopes where there are no concerns of noble gases. Diode ion pumps require positive (+)polarity voltage from the ion pump power supply. 8·1 (505)872-0037I o n Vac Ion Pump Selection( c ont.)Nobel DiodeThe noble diode ion pump has a similar design to the diode ion pump except that one of the cathode plates is replaced by the heavier metal Tantalum (Ta). This change allows better pumping of noble gases like argon (Ar) and helium (He) with lower re-emission. Noble Diode ion pumps are used in any application where the pumping of noble gases is important to the process. Noble gases are pumped by being buried by sputtered material. The high nuclear mass of tantalum increases the back-scattering probability and consequently the pumping speed for noble gases. It's an excellent pump when the aim is to generate UHV and stay at that pressure with occasionally cyclic exposure to noble gases like Argon. They are popular in particle accelerator and synchrotron rings where only the ion pump is used to generate UHV pressures. Noble Diode ion pumps require positive (+)polarity voltage from the ion pump power supply. StarcellThe Starcell is the latest variation of the Triode configuration, which was originally designed for optimal pumping of all gases across the spectra. Its unique star like design gives it a good pumping speed for active gases, hydrogen (H2), and noble gases. Being highly stable, having a good pumping speed, and performance at relatively higher pressures makes it a popular choice with scientists and engineers who need an overall non-gas type dependent ion pump. Starcell technology is used for pumping applications in most existing accelerators and synchrotron sources, beam lines, transfer lines, and similar devices delivering maximum speed for all the gas species. Starcell ion pumps require negative (-) polarity voltage from the ion pump power supply.Combination and Titanium Sublimation PumpI o n pumps used along with TSPs (Titanium Sublimation Pumps) make a great combination high­vacuum pumping system. The titanium sublimation creates extra high pumping speed of the getterable gases, e.g., carbon monoxide (CO), carbon dioxide (C02), hydrogen (H2), nitrogen (N2), and oxygen (02) while the ion pumping mechanisms handle the non-getterable gases such as argon (Ar) and methane (CH4). They are commonly used in scientific research, academic lab, namely in research areas like particle physics, material characterization, space studies, electron microscopes, and various other areas of fundamental scientific research. (505)872-0037AlillENT llarianIon PumpsVaclon Plus is a complete family of ion pumps, controllers, options and accessories, designed to provide solutions to every application. Parameters such as operating pressure, the gas mixture to be pumped, the starting pressure, etc. can vary so dramatically that Agilent Varian decided to develop dedicated ion pump solutions (including controllers and all other accessories) for different applications. The Vaclon Plus family includes 4 different models, the Diode, Noble Diode, Starcell and Titanium Sublimation Pumps. This allows Agilent Varian to provide the best technology for each field of application. The ultimate pressure on these pumps is down to ultra high vacuum (UHV) of 10-11 T orr . The family is complemented by the MiniVac and 4UHV pumpcontrollers that provide different power levels and interface capabilities.Vaclon Plus 300Vaclon Plus 1508·3 (505)872-0037Vaclon Plus 75*Catalog PricingSubject to C hangeI o n AlillENT llarianIon Pumps• •Intake CFF 6.00 in.ULTIMATE PRESSURE: 10-11 Torr*Catalog PricingSubject to C hange (505)872-0037AlillENT llarianIon PumpsIntake CFF 4.50 in.ULTIMATE PRESSURE: 10-11 TorrNominal pumping speed for Nitrogen (1/s) Operating life at 1 x 1 0·6 mbar (hours)Maximum starting pressure (mbar) Weight, kg (lbs.)Max. baking t emperature (•C) CONTROLLERAgilent Varian Part NumberIntake CFF 2.75in. ---�ULTIMATE PRESSURE: 10-11 TorrIdeal Vacuum Part NumberPrice:*80,000 50,00050,000:55x10-2:51x10-3 :51x10-317 (37)3504UHV I o n Pump or Mini Vac9191240 9191220 9191210 P 105784 P 105783P 105782$2,732.00 $3,488.00 $2,601.00Nominal pumping speed for Nitrogen (1/s) 20 2227 Operating life at 1 x 1 0-6 mbar (hours) 80,000 50,00050,000Maximum starting pressure (mbar) <5x10-2<1x 10-3 :51 X 10-3Weight, kg (lbs.) with ferrite magnet 7 (15) Max. baking temperature (•C)350CONTROLLER4UHV I o n Pump or Mini VacAgilent Varian Part Number 9191145 9191125 9191115 Ideal Vacuum Part NumberP 105785 P 105786P 105756Intake CFF 2.75 in.ULTIMATE PRESSURE: 10-11 TorrPrice:*$1,778.00 $1,733.00 $1,733.008·5vacuum products(505)872-0037*Catalog PricingSubject to C hangeAlillENT llarianI o nIon PumpsAgilent Varian offers a wide variety of small size ion pumps designedespecially for electron device and detector applications. The Miniature Vaclon pump is a diode configuration and provides approximately 0.41/s of nitrogen pumping s peed. The 21/s model is a modified diode configuration to enhance starting at low pressure. The 10 1/s pump is a noble gas optimized diode configuration with high efficiency for residual gases such as hydrogen. The pumping speed for noble gases is about 20% of the nominal speed. Pumps that are processed are baked to 400 oc and pinched off under vacuum, which allows the vacuum integrity to be verified by the user just before use. Non-processed pumps are tested for no vacuum leaks and minimum leakage current.Nominal pumping speed for Nitrogen (1/s) Operating life at 1 x 1 0-6 mbar (hours) NAMaximum starting pressure (mbar) Weight, kg (lbs.)0.5(1) 3.6 (8) Max. baking temperature (•C)350Magnets for small pumps must be ordered separately.*without magnet**with magnetMiniature PumpAgilent Varian P/NWith 3/8 in. 00180° stainless steel tube 9130038 With 3/8 in. 00 90 o stainless steel tube9130041 With 3/8 in. 00180° copper tube vacuum processed 9130049 With 3/8 in. 00 90 ° copper tube vacuum processed 9130050 f or Miniature pump9130042 HV cable, (8ft.) long f or Mini Vaclon pumps9240122 2 L/S PumpWith 3/4 in. 00180° stainless steel tube9190521 With 3/4 in. 00180° copper tube, vacuum processed 9190522 With 3/4 in. 00180° stainless steel, vacuum processed 9190523 With 3/4 in. 00 90° stainless steel vacuum processed 9190524 With 11/3 in. CFF 180° vacuum processed 9190520 Magnet f or 2 L/S pump9190038 HV bakeable cable, radiation resistaant, (13ft.) with inerlock f or 2 L/S pump 9290706 10 L/S Pump10 L/S Vaclon pump, vacuum processed, with 2 3/4 in. CFF Magnet f or 10 L/S pump HV cable, (10ft.) for 10 L/S pump*Catalog PricingSubject to C hange9195005 9110030 92407412 LIS Pump SS TubeIdeal Vacuum P/NP106089 P106090 P105760 P106088 P106094 P105771 P106092 P105788 P105789 P106091 P106093 P105790 P105770 P106095 P105791 P105772(505)872-0037Price:*$490.00$492.00 $529.00 $553.00 $278.95 $629.16 $613.00 $848.00 $712.00 $777.00 $689.00 $406.00 $726.92 $1,272.00 $775.28 $690.71AlillENT llariane Combination Titanium Sublimation Pumps (TSP)Ion-Sublimation combination pumps have been a popularchoice for many years for creating ultra high vacuum environments. The titanium sublimation creates extra high getterable gas pumping speed while the ion pumping mechanisms handle the non-getterable gases.This combination pump is a Vaclon Plus 150, they alsocome in 300 and 500 models. They all have an extra side orbottom-mounted 8" ConFiat port. The combination pump includes the cylindrical cryo panel and TSP source mountedto the extra port. Getterable gases enter the end of the cylindrical cryo panel and are pumped by being combinedwith the freshly-deposited titanium there. Liquid nitrogencooling the cryopanel increases the efficiency of the gettering process and adds greatly to the water pumping speed.The Agilent Varian Vaclon Plus series combination pumps allow addition of a cryopanel from the bottom of the pump or from the side. This can be a significant advantage in situations where height restrictions are present. Customized pump configurations are also available. TSP Controller1/2 Standard rackAuto or manual operation Remote control via RS232 Operates TSP filamentTSP Vaclon Plus 150 !on-Sublimation Combination Pump Agilent Varian P/N 150 Diode, with side mounted cryopanel, with TSP cart. with installed heater 120VAC 9192510150 Diode, with side mounted cryopanel, with TSP cart. with installed heater 220VAC 9192511150 Nobel Diode, with side mounted cryopanel, with TSP cart. with installed heater 120VAC 9192520150 Nobel Diode, with side mounted cryopanel, with TSP cart. with installed heater 220VAC 9192521150 Starcell, with side mounted cryopanel, with TSP cart. with installed heater 120 VAC 9192540150 Starcell, with side mounted cryopanel, with TSP cart. with installed heater 220VAC 9192541TSP filament cartridge on 2.75 in. CFF 9160050 Replacement filaments, 12 each 9160051 Titanium Sublimation Pump Control unit RS232120VAC 9290032 Titanium Sublimation Pump Control unit RS232 220VAC 9290033 Sublimation Cryopanel on 8 in. CFF 9190180 Signal cable for TSP Cartridge to controller (12ft.) 9240730Si nal cable for Mini Ti·Ball to controller (12ft.)g 9240752 8·7 (505)872-0037TSP Vaclon Plus150 StarcellN2 610 L/SH2 1380 L/SPressure 1Q-llmbarP105257Ideal Vacuum P/NP105254P105793P105257P105258P r i c e:*$10,733.00$1,235.00$2,240.00$827.74*Catalog PricingSubject to C hangeAlillENT llarianI o nControllerThe new state-of-the-art Agilent Varian 4UHV Ion Pump Controller operates up to four ion pumps simultaneously and independently. The 4UHV starts and controls ion pumps of any type (Diode, Noble Diode, StarCell) and size (from 20 to 500 1/s). A large four-line LCD display allows simultaneous reading of individual pump voltage, current and pressure. The variable voltage feature ensures optimum pumping speed and pressure reading throughout the operating pressure range. Built-in set points, remote operation and RS232/485 computer interface are standard (Profibus and Ethernet optional).The 4UHV will select the right operating voltage to optimize the pumping speed of your ion pumps. By applying High Voltage in accordance with operating pressure, pumping speed performance is improved. It is important when ordering to be informed that the 4UHV ion pump controller can be purchased with up to four high voltage channels in different output power ratings with a maximum sum total power of 400 Watts. It is also important to know that the output polarity is NOT field adjustable on these 4UHV controllers, you must select an appropriate part number with desired output polarity, e.g., (Diode & Noble Diode) need positive voltages, while T riode style elements (old style T riode & StarCell) need negative voltages for operation. See options below.4UHV Contro l lersAgilent P/N 1 x 120 Watt Negative Voltage C ontroller 9299100 1 x 120 Watt Positive Voltage C ontroller 9299101 1 x 200 Watt Negative Voltage Controller 9299010 1 x 200 Watt Positive Voltage C ontroller 9299011 2 x 80 Watt Negative Voltage Controller 9299200 2 x 80 Watt Positive Voltage C ontroller 9299201 2 x 200 Watt Negative Voltage C ontroller 9299020 2 x 200 Watt Positive Voltage C ontroller 9299021 1 x 200 Watt Positive Voltage & 1 x200 Watt Negative Voltage 92990224 x 80 Watt Negative Voltage C ontroller 9299400 4 x 80 Watt Positive V oltage C ontroller9299401 2 x 80 Watt Positive Voltage 2 x 80 Watt Negative Voltage 9299402 2 x 80 Watt Negative Voltage 1 x 200 Watt Negative Voltage 9299210 2 x 80 Watt Positive V oltage 1 x 200 Watt Positive Voltage2 x 80 Watt Positive V oltage 1 x 200 Watt Negative Voltage 2 x 80 Watt Negative Voltage 1 x 200 Watt Positive Voltage *Catalog PricingSubject to C hange92992119299212 9299213Ideal Vac P/N P105255 P105803 P105804 P105805 P105806 P105807 P105768 P105808 P105809 P105810 P105811 P105812 P105813 P105814 P105815 P105816 Price :* $2,550. $2,550. $3,850. $3,850. $3,950. $3,950. $6,150. $6,150. $6,765. $6,450. $6,450. $7,095. $5,750. $5,750. $6,325. $6,325. 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00Agilen t Tec:hno loties4UHV Pump Control ler1 150 S t .arCe 11 t�ot Present Not Present NotPresentifInput Voltage 100-240 VACInput frequency S0/60hzDisplay4 rows with 20 charactersAvailable Configurations1 x 120W, 1 x 200W, 2x80W, 2x200W,4x80W + 1 x 200WMinimum Configurations One HV card with 120 W, 200 W or 2x80 WOutput voltage 3.5 and 7 kvOutput current 40mA for 80 W, 1 O OmA f or 200WModes of operation Local I Serial I RemoteFront panel readings Voltage, Pressure, Current, StatusCurrent measurement range10 nA to 100 mAInput signals On/Off, Protect, Step ModeOutput signals Analog out, NC Set-point, No Set-pointHV connectorFischer Type 105Output power maximum 400WcommunicationsRS232/485 standard, Profibus, Ethernet optionalF or 4UHV Controlle rs Agilent P/N Ideal Vac P/N Price:*HV bakeable cable, radiation resistant, 13ft. 9290705 P105256 $726.92 HV bakeable cable, radiation resistant, 23ft. 9290707 P105794 $806.21 HV bakeable cable, radiation resistant, 33ft. 9290708 P105795 $903.12 HV bakeable cable, radiation resistant, 66ft. 9290709 P105796 $1,334.32Rack adapter 19 in.9290064 NA $685.34 Mains AC cable NEMA 10ft. 9699958 P103999 $88.03 Mains AC cable Europe plug, 1Oft.9699957P104463$88.03NOTE: 4UHV Controllers do not comewith Mains AC cable, must be purchased separately(505)872-0037 8·8AlillENT llarianControllerThe MiniVac Ion Pump Controller is designed to economically operateany Vaclon Plus type and size ion pump: Diode, Noble Diode, and StarCell, from Miniature to 500 1/s pumps. The MiniVac is very compact and light, can be operated in local or remote mode, and is suitable for high radiation environments.Medium pumps: (Vaclon Plus 20 to 75) can be operated at anypressure below 1 x 10-5 Torr (continuous operation).Large pumps: (Vaclon Plus 150 to 500) can be operated at anypressure below 2 x 10-6 Torr (continuous operation). The MiniVac is designed to withstand continuous operation at short circuit conditions, without damaging the ion pump or itself. A 24 VDC battery-operable version is available for portable applications. The requirement of negative or positive potential depends on the pumping element installed in the ion pump. Diode style elements (Diode & Noble Diode) need positive voltages, while Triode style elements (old style Triode & StarCell) need negative voltages for operation. The Mini Vac ion pump controllers can be field set to + or -to match your ion pump polarity requirement.Mini Vac ControllerFor any Vaclon Plus ion pumpAgi l ent P/N With Fischer HV connector, US plug, 120 VAC preset 9290191 With Fischer HV connector, E uro plug,220 VAC preset 9290290 With Fischer HV connector, US plug, 24 VDC9290196 For 2 and 10 L/S pumpsWith King HV connector, US plug, 120 VAC preset 9290190 With King HV connector, Euro plug,220 VAC preset 9290291 With King HV connector, US plug, 24 VDC9290197 AccessoriesRack adapter9699191 For any Vaclon Plus ion pumpHV bakeable cable, r adiation resistant, 13ft. 9290705 HV bakeable cable, r adiation resistant, 23ft. 9290707 HV bakeable cable, r adiation resistant, 33ft. 9290708 HV bakeable cable, r adiation resistant, 66ft.9290709 HV bakeable cable, radiation resistant, 13ft. (for 2 L/S pumps)9290706HV bakeable cable, r adiation resistant, 1Oft. (for 10 & 8 L/S pumps) 9240741Ideal Vac P/N P105800 P105801 P105802 P105797 P105798 P105799P105256 P105794 P105795 P105796 P105770 P105772 Pric$1,310 e:* .00 .00 .00 $1,310 $1,310 $1,310 $1,310 $1,310 .00 .00 .00 $455 .82 $726 .92 .21 .12 $806 $903 $1 33 $72 $694.32 6.92 0.71 In ut Out utFront panelRear panel100-130 VAC or 180-240 VAC or 24 VDCVoltage: 5000 VDC (open load) Current: 15mA (short circuit) Max. ower: 21W (3kV at 7 mAlHV ON, HIGH LOAD, and POLARITY LEDs LED baragraph linear scale for current &volta e indicationRecorder Output 0 to + 10 VDC linear proportional to current (1 0 V = 10 mAl3Nine pin "D" type connector with followingavailable signals and commandsRecorder out uts:0 to +5 VDC, linear proportionalto HV (1 V = 1 kV)0 to + 10 VDC, linear proportionalto current (1 0 V = 10 mAl0 to + 10 VDC, linear proportionalto current 10V= 1 mAl HV ON confirm signal:Contact rating-1 A at 250 VAC; 0.2 A at 30 VDCRemote HV ON/OFF (interlock) commandHV connector: Fischer type 105 or King type, 10 kV*Catalog PricingSubject to C hange8·9(505)872-0037。

METHOD AND APPARATUS FOR CONTINUOUS GAS MONITORING

METHOD AND APPARATUS FOR CONTINUOUS GAS MONITORING

专利名称:METHOD AND APPARATUS FORCONTINUOUS GAS MONITORING USINGMICRO-COLORIMETRIC SENSING ANDOPTICAL TRACKING OF COLOR SPATIALDISTRIBUTION发明人:Nongjian Tao,Di Wang,Chenwen Lin申请号:US17681128申请日:20220225公开号:US20220178834A1公开日:20220609专利内容由知识产权出版社提供专利附图:摘要:A micro-colorimetric sensor for sensing target chemicals using edge tracking includes a substrate. A plurality of parallel linear channels of porous media is entrenched into the substrate and each linear channel includes a sensing material adapted to sense one of several specific target chemicals in air. The plurality of parallel linear channels is separated by barrier material from the adjacent parallel linear channel where the barrier material blocks diffusion of chemicals from one linear channel to another. A plate is affixed over the substrate top to cover the plurality of parallel linear channels. An air sample is diffused along the micro-colorimetric sensor and color images are captured. An intensity profile is derived from the plurality of color images to determine a maximum and a minimum intensity value along the sensor. A plurality of positions along the sensor is tracked to determine an edge position.申请人:Arizona Board of Regents on behalf of Arizona State University地址:Scottsdale AZ US国籍:US更多信息请下载全文后查看。

盐效应辅助水蒸气蒸馏法提取丁香精油及抗氧化活性评价

盐效应辅助水蒸气蒸馏法提取丁香精油及抗氧化活性评价

核农学报2024,38(3):0512~0521Journal of Nuclear Agricultural Sciences盐效应辅助水蒸气蒸馏法提取丁香精油及抗氧化活性评价黄嘉玲胡瑜文陆倩宋欠欠李诚胡滨*(四川农业大学食品学院,四川雅安625014)摘要:为提高丁香精油提取率,本研究以丁香为原料,通过单因素试验和响应面优化盐效应辅助水蒸气蒸馏提取丁香精油的最佳工艺条件,再对两种方法提取丁香精油的提取率、理化性质、化学组成、主要官能团结构、热力学性质以及体外抗氧化活性等进行比较。

结果表明,盐效应辅助水蒸气蒸馏法提取的最佳工艺为液料比13.20∶1 mL·g-1、NaCl浓度3.70%、提取时间4.0 h,该工艺下的提取率达到18.56%,比水蒸气蒸馏法高3.79个百分点。

扫描电镜观察表明,盐效应促进水分子运动加快从而对原料细胞壁的充分水解是快速提取的主要原因。

气相色谱-质谱分析表明,两种方法提取的丁香精油主要成分均为丁香酚,且相对含量无明显差异。

理化性质、热力学性质、主要官能团结构的测定和抗氧化试验表明,盐效应辅助水蒸气蒸馏法未对丁香精油品质和抗氧化能力产生影响。

综上,盐效应辅助水蒸气蒸馏法提取丁香精油的工艺具有可行性。

本研究为丁香精油的提取和进一步利用提供了参考。

关键词:丁香精油;盐效应辅助水蒸气蒸馏;理化性质;气相色谱-质谱;抗氧化活性DOI:10.11869/j.issn.1000‑8551.2024.03.0512丁香(Eugenia caryophyllata Thunb.)是桃金娘科植物,原产自印度尼西亚,在我国广东、广西、云南等地广泛种植。

丁香干燥花蕾呈研棒状,长1~2 cm,花冠圆球形,棕褐色或褐黄色,是我国允许使用的食品香料,也可以作为中药,是天然、绿色、安全的植物[1]。

丁香精油(clove essential oil,CEO)是从丁香干燥花蕾中提取的挥发性芳香物质,主要成分为丁香酚、石竹烯和乙酰基丁香酚,其中丁香酚相对含量在60%以上[2-4],在抑菌、抗氧化、抗炎、驱虫等过程中发挥主要作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Ionization gas sensing in a microelectrode system with carbon nanotubes Zhongyu Hou,a͒Dong Xu,and Bingchu CaiThe National Key Laboratory of Micro/Nano Fabrication Technology,Shanghai Jiaotong University,Shanghai200030,China;Key Laboratory for Thin Film and Microfabrication of Ministry of Education,Shanghai Jiaotong University,Shanghai200030,China;and Research Institute of Micro and NanoScience and Technology,Shanghai Jiaotong University,Shanghai200030,China͑Received6July2006;accepted13October2006;published online20November2006͒An efficient technology for manufacturing high-performance ionization gas sensors using carbonnanotubes as electrode materials that identify gases in some short sampling distance is developed inthis letter.The microarray withfive sensor units of different gap sizes͑SϷ6,7,8,10,and12␮m͒can break down gases at distinct threshold voltages and currents depending on the gap size and gasspecies.The quite low operation voltage,high accuracy,and chip-based nature may be consideredas significant improvements in ionization gas sensors.©2006American Institute of Physics.͓DOI:10.1063/1.2392994͔Ionization gas sensors operate based onfingerprinting ionization characteristics of different pared to absorption-based gas sensors,they are not limited by the electrophilicity or absorption energy of gases,instead,they are sensitive to the gaseous ionization and drift property.1–4 Consequently,they can be considered as an efficient alterna-tive technology.However,ionization gas sensors are quite limited by their bulky complicated architecture mainly in-duced by the risky high voltage operation.Although carbon nanotubes͑CNTs͒were utilized as electrode materials due to its largefield enhancement factor͑␤͒that can efficiently converge the electricfield energy and initiate corona dis-charges at low voltages,it is still impossible to decrease the operation voltage below safe operation criteria͑36V͒͑Refs. 1and2͒because reducing gap spacing below10␮m is also necessary,whereas it is inevitably difficult to precisely con-trol the gap spacing in such a scale in the reported gas-gap capacitance structure with CNT electrodes.As a result,it is crucial to develop new designs for the innovation of ioniza-tion gas sensors,currently.The context mentioned above elicits the significance of this letter’s purport—to introduce a microelectromechanical system͑MEMS͒-based hollow slot electrode system with CNT sidewalls͑herein referred to as HSEN͒with short gap spacing of6–12␮m for gas sensing applications.The geometry of the HSEN,the design of the sensor array,the top viewfield scanning electron microscopy ͑FESEM͒͑Philips Sirion200͒image,and the device fabrica-tionflow are demonstrated in Figs.1͑a͒–1͑d͒,respectively. The processflow is as follows.͑1͒The CNTs’slurry͑the content and preparation method were reported in Ref.5͒was screen printed on a Cr/Au thinfilm͑270nm͒that was sput-ter deposited on a clean glass substrate.After annealing at 350°C for40min,the CNTfilms͑CNTFs͒are of1.5␮m in thickness.͑2͒After the photolithography process using SU-8 photoresist,plasma patterning of CNTFs was performed in a reactive ion etching system͑Nextral NE100͒using 50SCCM͑SCCM denotes cubic centimeter per minute at STP͒O2as etchant for40min.Because the photoresist is difficult to be etched by the oxygen plasma,the plasma’s lateralflow undercuts the CNTFs and results in a HSEN structure demonstrated by the FESEM image of Fig.2͑a͒. When the electrode beam wasflaked off from the substrate, one can observe the state of the etched CNTF sidewall,as indicated in Fig.2͑b͒.The lateral depth of the microhollow is 1–2␮m,which can be controlled by the plasma etching parameters.The error in the geometry parameters’estimation ͑based on FESEM and optical microscopy observations͒is less than±0.4␮m.The discharge behavior of the array infive atmospheric gases has been carefully examined.6The external current͑I͒as a function of the applied voltage͑V͒,͑0–40V͒and the sampling time͑t͒have been examined using an Agilent 4156C.The sampling point number is set to850–1000, which indicates31–47mV step increment or15–50ms time interval.a͒Electronic mail:zhyhou@FIG.1.͑Color online͒Schematics of͑a͒the HSEN electrode geometry,͑b͒the design of the sensor system,and͑d͒the fabrication processes.In͑b͒,different gaps of S AB,S BC,S CD,and S DE define different sensor units in anarray.͑c͒is the FESEM images of the fabricated device.APPLIED PHYSICS LETTERS89,213502͑2006͒0003-6951/2006/89͑21͒/213502/3/$23.00©2006American Institute of Physics89,213502-1Downloaded 20 May 2008 to 202.120.54.181. Redistribution subject to AIP license or copyright; see /apl/copyright.jspIn Fig.3,I -V curves of different sweep times of ͑a ͒͑first time ͒,͑b ͒͑50th time ͒,and ͑c ͒͑150th time ͒demonstrate the I -V patterns of the discharge in air ͑S =8␮m ͒.The devices with other gap spacing behave similarly.Figure 3indicates that the threshold voltage ͑voltages corresponding to the first burst peaks,V t ͒of the discharge in air in this electrode sys-tem is ϳ20V,which can be powered by portable pared with a similar structure using Ni electrodes,6V t is 15times lower.This result may be attributed to the intense field enhancement effect,1,7fine field emission property 8of CNTs,and the small gap size that further lower the necessary bias to generate an intense electric field.Besides,the onset current density is about ͑2.2±0.2͒ϫ104A/cm 2,which can guarantee an output on the order of microampere by increas-ing ϳ30%in the length of the electrode beam or the thick-ness of the CNTFs.However,as shown in Fig.3͑d ͒,the most astonishing result is probably the good reproducibility of those onset bursts,which indicates that the largest deviation of V t is less than 0.25V and the largest relative deviation of onset current ͑I t ͒over the averaged value of 50sets of data is less than 8.5%.Figure 4demonstrates the I -t curves of the discharge in air ͑S =8␮m ͒.Devices with other gap spacing behave simi-larly.Phenomenally,the I -t patterns can be ranked into three groups while V is increased from 0to 40V in 1–2V steps;this may reflect three discharge current evolution phases:͑I ͒1–100pA ͑V =0–6V ͒,͑II ͒10–50nA ͑V =8–18V ͒,and ͑III ͒0.1–2.5␮A ͑V =20–40V ͒.As shown in Fig.4,in con-trast with the random bursts in phase III,in phases I and II ͑the curves in phase I are not plotted due to they are noises ͒,no bursting patterns have ever been recorded except for the case of 18V that is close to V t .Figure 5is the plot of V t for different gases.Basically,the average deviation of I t ͑8%–12%͒is larger than that of V t ͑4%–6%͒.This is because I t is determined by the number of bridging channels,which are less reproducible comparedwith V t that is determined by electrode geometry and gas property.Besides,in Fig.5,one can find that mixing small amount of ͑10%͒CO 2or ͑1%͒He in air can produce evident changes in V t ;this reflects that the threshold behavior of discharges in short gaps ͑S Ϸ6–12␮m ͒is still sensitive to the gas species,although collision processes are less intense than those electrode systems with large gaps.The other fun-damental information indicated in Fig.5is that the thresh-olds are very sensitive to the gap size;this could be usedtoFIG.3.͑Color online ͒͑a ͒–͑c ͒are the plots of voltage sweep results ͑S Ϸ8␮m ͒,from which three groups of data in the range of 18–22V have been plotted in ͑d ͒.FIG.4.͑Color online ͒Current vs time sampling results at applied voltages of 8,18,and 30V.FIG.2.͑Color online ͒FESEM micrographs of the fabricated device struc-ture of ͑a ͒the side view and ͑b ͒the film stack of a beam.The squares mark the area being enlarged.Downloaded 20 May 2008 to 202.120.54.181. Redistribution subject to AIP license or copyright; see /apl/copyright.jspincrease the identification accuracy because more ionization characteristics could be utilized as the references for a gas.Technically,this could be realized easily through fabrication of more slot patterns.This feature may be considered as a high-performance array behavior.In this section,we will focus on the explanation of the specifically reproducible threshold behavior of the I -V curves.Above all,given the fact that the onset burst of a discharge is determined by the electrode geometry and gas species,it should be reproducible when these two factors are fixed.Then,supported by the I -t curves shown in Fig.4,a triphasic discharge model can explain the pattern form of the I -V curves shown in Fig.3.͑1͒In phase I,the electric field is not strong enough to initiate any detectable ionization pro-cesses;this results in the recorded current within the back-ground noise ͑1–100pA in our setup ͒.͑2͒In phase II,be-cause ␤Ϸ100–2000͑Refs.9–11͒in a plasma treated CNTF,the rational estimation of the local electric field could be 60–1200V ␮m −1at the bias of 8V ͑S Ϸ8␮m ͒,where field induced emission and ionization can be initiated and dis-charge processes can take place in anode and cathode inde-pendently.In anode region,electrons are accelerated towards anode and multiplied,leaving the metastable and positive space charges along their traces.In cathode region,reverse process can result in a rising distribution of the metastable and negative space charge towards the gap.The dissipation of space charges in both regions is weakened by the micro-hollow geometry near the electrode vicinity.The resulted space charge regions have the same polarity as their respec-tive electrodes and act as “virtual electrodes”expanding to-wards the gap;this enhances the potential difference and photon ionization,which could further decrease the voltage for triggering a bridging plasma and increase the current den-sity.Their spatial propagations can be weakened by electron-ion recombination so that the temporal development of I is a steadily increasing process as revealed by the I -t curves ͑Fig.4.͑3͒In phase III,some streamers bridge the bipolar space charge regions instead of solid electrodes directly,i.e.,the space charge regions act as “buffers;”this significantly in-creases the recombination rate of bipolar charges.As a result,the space charge region will shrink and greatly weaken the electric field in the gap so that the streamers cannot sustain.Instead,the space charge evolution must recruit unipolar pro-cess again,in which the external current is 10–100nA ͑close to the order of phase II ͒.However,the residual space charge and higher applied voltage make this process un-steady and lead to a “phase pendulum”behavior indicated by those sudden choke-off regions ͑10–350nA,shown in Fig.3͒between every two streamerlike bursts.In conclusion,the chip-based HSEN ionization gas sen-sors exhibit significant improvement in almost all key as-pects of performance compared to conventional designs,such as quite low operation voltages,low power consump-tion,improved accuracy,and enhanced integration compat-ibility.These features make this design a competitive candi-date for developing smart MEMS-based gas sensor systems.The experiments are also fundamentally interesting for the microdischarge physics.This work was supported by Developing Foundation of Shanghai Science and Technology ͑0452nm056͒and National Basic Research Program of China ͑No.2006CB300406͒.1Ashish Modi,Nikhil Koratkar,Eric Lass,Bingqing Wei,and Pulickel M.Ajayan,Nature ͑London ͒424,171͑2003͒.2Yong Zhang,Junhua Liu,Xin Li,Xiaojun Tang,and Changchun Zhu,Sens.Actuators,A 125,15͑2005͒.3J.Suehle,R.E.Cavicchi,M.Gaitan,and S.Semancik,IEEE Electron Device Lett.24,118͑1993͒.4G.Mueller,A.Friedberger,P.Kreisl,S.Ahlers,O.Schulz,and T.Becker,Thin Solid Films 436,34͑2003͒.5Zhongyu Hou,Bingchu Cai,and Dong Xu,Appl.Phys.Lett.89,053105͑2006͒.6See EPAPS Document No.E-APPLAB-69-227647.The performance comparison of similar electrode geometry with and without CNTs are given.The document can be reached via a direct link in the online article’s HTML reference section or via the EPAPS homepage ͑/pubservs/epaps.html ͒.7Richard G.Forbes,C.J.Edgcombe,and U.Valdrè,Ultramicroscopy 95,57͑2003͒.8W.Zhang,T.S.Fisher,and S.V .Garimella,J.Appl.Phys.96,6066͑2004͒.9J.L.Kwo,Meiso Yokoyama,W.C.Wang,F.Y .Chuang,and I.N.Lin,Diamond Relat.Mater.9,1270͑2000͒.10Jihua Zhang,Xi Wang,Weidong Yu,Tao Feng,Fumin Zhang,Zhihong Zheng,Qiong Li,and Xianghuai Liu,Solid State Commun.127,289͑2003͒.11Juntao Li,Wei Lei,Xiaobing Zhang,Xuedong Zhou,Qilong Wang,Yuninig Zhang,Appl.Surf.Sci.220,96͑2003͒.FIG.5.Illustration of discharge threshold fingerprints of different gases,where A,B,C,D,and E represent the sensors with gap spacing of 6,7,8,10,and 12␮m,respectively.Downloaded 20 May 2008 to 202.120.54.181. Redistribution subject to AIP license or copyright; see /apl/copyright.jsp。

相关文档
最新文档