化学中常用计量盘点
3化学常用计量
2+
+ 4
24
) mol/L
)= c(Al3+)=
2b − c 3a
mol/L 答案 C
考点二
阿伏加德罗常数的应用
表示阿伏加德罗常数的值。 【例2】 用NA表示阿伏加德罗常数的值。下 】 列叙述正确的是 应,转移电子数为3NA 转移电子数为 N B.标准状况下,22.4 L己烷中共价键数目为 标准状况下, 标准状况下 己烷中共价键数目为 19 NA ( ) A.常温常压下的 常温常压下的33.6 L氯气与 g铝充分反 氯气与27 铝充分反 常温常压下的 氯气与
4.“七个无关”:物质的量、质量、粒子数的多 七个无关” 物质的量、质量、 七个无关 少均与温度、压强的高低无关; 少均与温度、压强的高低无关;物质的量浓度的大 小与所取该溶液的体积多少无关( 小与所取该溶液的体积多少无关(但溶质粒子数的 多少与溶液体积有关)。 多少与溶液体积有关)。 在a L Al2(SO4)3和(NH4)2SO4的混合溶液中加入 恰好使溶液中的SO 离子完全沉淀; 离子完全沉淀; b mol BaCl2,恰好使溶液中的 如加入足量强碱并加热可得到c 如加入足量强碱并加热可得到c mol NH3,则原溶 液 中的Al 离子浓度( 中的 − c3+离子浓度(mol/L)c ) 2b 2b − c 2b − 为
有关阿伏加德罗常数的应用问题, 有关阿伏加德罗常数的应用问题,实质上是以 物质的量为中心的各物理量间的换算, 物质的量为中心的各物理量间的换算,需要特别注 意的是准确掌握有关概念的内涵。主要有: 意的是准确掌握有关概念的内涵。主要有: 1.状态问题,如标准状况下SO3为固态,戊烷为 状态问题,如标准状况下 为固态, 状态问题 液态。 液态。标准状况下的气体适用气体摩尔体积 (22.4 L/mol),相同状况下的气体适用阿伏加德罗 ) 相同状况下的气体适用阿伏加德罗 定律。 定律。 2.特殊物质的摩尔质量,如D2O、18O2等。 特殊物质的摩尔质量, 特殊物质的摩尔质量 、 3.物质分子中的原子个数,如O3、白磷、稀有气 物质分子中的原子个数, 白磷、 物质分子中的原子个数 体等。 体等。 4.某些物质中的化学键,如SiO2、P4、CO2等。 某些物质中的化学键, 某些物质中的化学键
常用化学计量
常用化学计量化学计量是化学中一种非常重要的概念,用于描述化学反应中物质的量之间的关系。
在化学实验和工业生产中,化学计量被广泛应用于计算反应物和生成物的量,以及确定反应的理论产率和实际产率。
本文将介绍常用的化学计量方法和相关概念。
一、摩尔和摩尔质量摩尔(mol)是国际计量单位制中物质的量的单位,表示物质中粒子(如原子、分子、离子)的数量。
1摩尔物质中的粒子数被称为阿伏伽德罗常数,约为6.022×10^23。
摩尔质量指的是1摩尔物质的质量,单位是克/mol。
摩尔质量可以通过化学元素的相对原子质量来计算。
二、化学方程式和化学计量关系化学方程式用化学符号和化学式表示化学反应的过程,包括反应物和生成物之间的摩尔比例关系。
在化学方程式中,反应物前的系数表示了物质的摩尔比例,称为化学计量系数。
根据化学计量系数,可以推导出反应物消耗和生成物产生的摩尔比例关系。
三、摩尔比和摩尔比例摩尔比是指化学反应中不同物质的摩尔数量之比。
在化学方程式中,反应物和生成物之间的摩尔比可以通过化学计量系数得到。
摩尔比例是指不同物质的摩尔比与其化学计量系数之间的关系。
摩尔比例可以用来确定反应物的限量和过量,以及预测反应的理论产率。
四、反应物的限量和过量反应物的限量是指在化学反应中,限制了反应进行的物质。
反应物的限量取决于摩尔比例和反应物的初始量。
反应物的过量是指在化学反应中,存在超过摩尔比例所需量的反应物。
反应物的过量可能会导致浪费和产物纯度的降低。
五、理论产率和实际产率理论产率是指在理想条件下,根据化学计量关系计算得到的产物的量。
理论产率取决于反应物的摩尔比和反应物的初始量。
实际产率是指在实际实验条件下,实际得到的产物的量。
实际产率受到实验操作和反应条件等因素的影响,往往低于理论产率。
六、反应的收率和纯度反应的收率是指实际产率与理论产率之间的比值,用来评估反应的效率。
收率可以用来判断反应条件的优化和反应过程的控制。
反应的纯度是指产物中所含目标物质的纯度,通常用质量百分比表示。
化学中常用计量
化学中常用计量编稿:柳世明审稿:李志强责编:宋杰【内容讲解】一、基本关系图二.几组概念:1.物质的量与摩尔(mol)物质的量是衡量物质所含微粒数多少的物理量,其单位是摩尔(mol)。
摩尔只适用于微观粒子,不适用于宏观物质。
2.阿伏加德罗常数与6.02×1023mol-1阿伏加德罗常数(N A)定义: 12g12C所含碳原子数(精确值),约是6.02×10233.摩尔质量与化学式量摩尔质量:单位物质的量的物质所具有的质量,单位:g/mol化学式量:该物质一个粒子的质量与一个12C质量的1/12之比所得的数值4.气体摩尔体积与22.4L/mol气体摩尔体积:单位物质的量的气体所具有的体积,单位:L/mol,符号:V m。
在标准状况下(0℃ 101kPa)V m=22.4 L/mol三.相关算式:1.关于阿伏加德罗定律和推论:同温同压下:n1/n2=V1/V2=N1/N2M1/M2=ρ1/ρ2=D(相对密度)同温同体积:P1/P2=n1/n2同温同压同体积:M1/M2=m1/m22.气体状态方程PV=nRT PM=ρRT3.求平均相对分子质量的方法:=M1×a%+M2×b%+M3×c%+……=m/n(SPT)=V m×ρ=22.4L/mol×ρg/L=22.4ρg/mol/M i=ρ/ρi=D说明:质量、物质的量、微粒数不受条件限制,体积、密度受条件限制。
四.一定物质的量浓度溶液的配制1.原理:c= n/v2.仪器:容量瓶(规格、标识(温度、容积))、胶头滴管、玻璃棒、量筒、烧杯、托盘天平3.实验步骤:计算、称量(量取)、溶解、冷却、转移(往容量瓶中转移溶液用玻璃棒)、洗涤(水的用量\2-3次)、定容(1—2cm)、装瓶贴签注意:①NaOH固体的称量(烧杯或表面皿)②浓硫酸的稀释4.误差分析:以配置0.1mol/L的NaOH溶液为例能引起误差的一些操作所配溶液浓度用滤纸称NaOH 偏小未洗涤烧杯和玻璃棒偏小容量瓶有少量蒸馏水无影响定容摇匀时,液面下降,再加水偏小定容时仰视刻度线偏小定容时俯视刻度线偏大5、关于物质的量浓度的计算(1)对物质的量浓度的计算问题,应准确掌握概念、公式,在应用时,还要注意溶质的质量守恒、物质的量守恒及溶液的电荷守恒、质量守恒等。
化学实验中的计量与测量
化学实验中的计量与测量计量和测量是化学实验中不可或缺的环节,它们对于实验结果的准确性和可靠性至关重要。
本文将探讨化学实验中的计量和测量方法以及其在实验中的应用。
一、计量方法计量方法是指用来量定物质质量、体积或浓度的方法。
在化学实验中,我们通常使用以下几种常见的计量方法:1. 秤量法:秤量法是最常用的计量方法之一。
它通过使用天平来测量物质的质量,可以非常准确地确定物质的量。
2. 滴定法:滴定法用于测量溶液中某种物质含量的方法。
它通过滴加已知浓度的试剂到待测溶液中,通过观察化学反应的终点来确定待测物质的含量。
3. 分光光度法:分光光度法用于测量溶液中某种物质的浓度。
它利用光的吸收、透过或反射来测量物质的浓度。
通过将待测溶液与标准溶液进行比较,可以得到溶液中物质的浓度。
二、测量方法测量方法是指用来测量物质性质或实验结果的方法。
在化学实验中,我们常用以下几种测量方法:1. 体积测量:体积测量用来确定液体或气体的体积。
在实验中,可以使用量筒、烧瓶、移液管等器材进行体积测量。
2. 直接称量:直接称量是指将待测物直接放在天平上进行称量。
它适用于固体物质或能够定量取样的液体物质的测量。
3. 温度测量:温度测量是指测量物质温度的方法。
常用的温度测量器有温度计、红外线温度计等。
三、计量与测量的应用计量和测量在化学实验中有着广泛的应用。
下面以几个例子来说明它们的应用:1. 用秤量法测量反应物的质量:在化学反应中,通常需要按照一定的化学计量比例使用反应物。
通过使用天平可以准确地测量反应物的质量,从而保证反应物质量比例的准确性。
2. 使用滴定法确定溶液中物质的含量:滴定法可以帮助确定溶液中某种物质的浓度或含量。
例如,可以使用滴定法来测量酸碱溶液中的酸或碱的浓度,从而进行准确的配制或定量分析。
3. 通过体积测量来确定反应物质量:在一些化学反应中,反应物的质量不能直接测量,但可以通过测量其体积来间接确定质量。
例如,在气体反应中,可以使用气体收集装置测量气体的体积,从而计算出反应物的质量。
常用化学计量与化学用语知识点整理概括
常用化学计量一、物质的量与阿伏伽德罗常数:1、物质的量描述对象:微观粒子,比如分子、原子、粒子、中子、质子、电子等。
单位mol 符号n2、阿伏伽德罗常数12 g 12C中所含有的碳原子数,1mol=1 个≈6.02×1023个3、摩尔质量:单位物质的量的物质所具有的质量,单位一般为g·mol-1,此时与相对原子质量(Ar)或相对分子质量(Mr)数值相等,摩尔质量有单位而相对原子质量或相对分子质量无单位。
4、气体摩尔体积:单位物质的量的气体的体积大小与温度、压强有关标准状况下的气体(纯气体或混合气体)摩尔体积:约22.4 (近似值)5、阿伏加德罗定律及其推论定律:同温同压下,相同体积的任何气体都含有相同的分子数。
PV=nRT6、物质的量浓度:单位溶液体积包含的溶剂的物质的量单位:溶液稀释与浓缩的换算式溶质质量分数(a%)、溶解度(S)、物质的量浓度(c)、溶液密度(ρ)的换算关系(饱和溶液):不同密度的溶液相互混合,总体积计算式:例题:取14.3 g Na2CO3·xH2O溶于水配成100 mL溶液,然后逐滴加入稀盐酸直至没有气体放出为止,用去盐酸10 mL,并收集到气体1120 mL(标准状况)。
求:(1)Na2CO3·xH2O 的物质的量;(2)稀盐酸的物质的量浓度;(3)x的值。
二、一定物质的量浓度溶液的配置1、容量瓶、烧瓶、玻璃棒、托盘天平、药匙、胶头滴管。
2、计算、称量、溶解(稀释)、冷却、移液、定容、装瓶贴标签。
3、注意:容量瓶使用前要验漏、洗涤,不能润洗。
只能配一定体积的溶液。
转移溶液是要是室温,玻璃棒在瓶颈刻度线下。
4、误差分析阿伏伽德罗常数的应用陷阱问题1、状况条件:考查气体时,一定要特别关注是标准状况下还是非标准状况,标准状况可以用22.4mol/L计算。
2、物质状态:考查气体摩尔体积时,常用标准状况(0℃,常压)下非气态的物质来迷惑学生,在标准状况下,水、SO3、碳原子数大于4的烃、乙醇、四氯化碳、氯仿、苯、HF、二硫化碳等许多有机物都不是气态。
高考化学知识点考点总结:常用化学计量
考点22 物质的量、阿伏加德罗常数、摩尔质量1.物质的量(1)物质的量是七个基本物理量之一,其意义是表示含有一定量数目的粒子的集体。
符号为:n ,单位为:摩尔(mol )。
(2)物质的量的基准(N A ):以0.012kg 12C 所含的碳原子数即阿伏加德罗常数作为物质的量的基准。
阿伏加德罗常数可以表示为N A ,其近似值为6.02×1023 mol -12.摩尔质量(M )1摩尔物质的质量,就是该物质的摩尔质量,单位是g/mol 。
1mol 任何物质均含有阿伏加德罗常数个粒子,但由于不同粒子的质量不同,因此,1 mol 不同物质的质量也不同;12C 的相对原子质量为12,而12 g 12C 所含的碳原子为阿伏加德罗常数,即1 mol 12C 的质量为12g 。
同理可推出1 mol 其他物质的质量。
3.关系式:n =A N N ;n =M m [例1]下列关于物质的量的叙述中,正确的是( )A.1mol 食盐含有6.02×1023个分子B.Mg 的摩尔质量为24C.1mol 水中含有2mol 氢和1mol 氧D.1molNe 含有6.02×1024个电子[解析] NaCl 为离子化合物,其结构中无分子,且食盐为宏观物质,不可用mol 来描述,故A 不正确;Mg 的摩尔质量为24g/mol ,单位不对,故B 不正确;C 中对1mol 水的组成的描述不正确,应为:1mol 水中含有2mol 氢原子和1mol 氧原子;故答案为D 。
[答案]D特别提醒:1.摩尔只能描述原子、分子、离子、质子、中子和电子等肉眼看不到、无法直接称量的化学微粒,不能描述宏观物质。
如1mol 麦粒、1mol 电荷、1mol 元素的描述都是错误的。
2.使用摩尔作单位时,应该用化学式(符号)指明粒子的种类。
如1mol 水(不正确)和1molH 2O (正确);1mol 食盐(不正确)和1molNaCl(正确)3.语言过于绝对。
化学中常用计量
化学中常用计量1.同位素相对原子质量以12C的一个原子质量的1/12作为标准,其他元素的一种同位素原子的质量和它相比较所得的数值为该同位素相对原子质量,单位是“一”,一般不写。
2.元素相对原子质量(即平均相对原子质量)由于同位素的存在,同一种元素有若干种原子,所以元素的相对原子质量是按各种天然同位素原子所占的一定百分比计算出来的平均值,即按各同位素的相对原子质量与各天然同位素原子百分比乘积和计算平均相对原子质量。
3.相对分子质量一个分子中各原子的相对原子质量×原子个数的总和称为相对分子质量。
4.物质的量的单位——摩尔物质的量是国际单位制(SI)的7个基本单位之一,符号是n。
用来计量原子、分子或离子等微观粒子的多少。
摩尔是物质的量的单位。
简称摩,用mol表示①使用摩尔时,必须指明粒子的种类:原子、分子、离子、电子或其他微观粒子。
②1mol任何粒子的粒子数叫做阿伏加德罗常数。
阿伏加德罗常数符号N A,通常用6.02 ×1023 molˉ1这个近似值。
③物质的量,阿伏加德罗常数,粒子数(N)有如下关系:n=N·NA5.摩尔质量:单位物质的量的物质所具有的质量叫做摩尔质量。
用M表示,单位:g·molˉ1或kg·molˉ1。
①任何物质的摩尔质量以g·molˉ1为单位时,其数值上与该物质的式量相等。
②物质的量(n)、物质的质量(m)、摩尔质量(M)之间的关系如下:M=m ·n6.气体摩尔体积:单位物质的量气体所占的体积叫做气体摩尔体积。
用Vm表示,Vm=V÷n。
常用单位L·molˉ1第 1 页共2 页①标准状况下,气体摩尔体积约为22.4 L·molˉ1。
阿伏加德罗定律及推论:定律:同温同压下,相同体积的任何气体都会有相同数目的分子。
理想气体状态方程为:PV=nRT(R为常数)由理想气体状态方程可得下列结论:①同温同压下,V1:V2=n1:n2②同温同压下,P1:P2=Ml:M2③同温同体积时,nl:n2=Pl:P2………7.物质的量浓度以单位体积里所含溶质B的物质的量来表示溶液组成的物理量,叫做溶质B的物质的量浓度。
基本概念-化学中常用计量汇总
第三节化学中常用计量【知识网络】【易错指津】1.使用摩尔时,一定要指出物质的名称或写出化学式。
如1molH2,1molH+,而不能写成“1mol 氢”。
2.阿伏加德罗常数的标准是人为规定的。
如果改变了它的标准,则摩尔质量、气体摩尔体积、物质的量浓度等均发生改变。
而质量、粒子数、一定质量的气体体积、气体密度等客观存在因素并不会因此而改变。
3.物质的量是指微观粒子多少的物理量。
微观粒子可以是分子、原子、电子、质子、中子以及他们的特定组合。
物质的量与物质的质量有关而与物质所处的状态无关。
4.对题目所问微粒种类有所忽视。
如误认为“2g氢气所含氢原子数目为N A”说法正确。
5.摩尔质量与温度、压强无关;不同的物质一般不同。
(H3PO4和H2SO4;CO、C2H4、N2;CaCO3和KHCO3相同)6.对气体摩尔体积的概念不清。
气体摩尔体积是对气体而言,并且是在标准状况下1mol气体的体积。
若不在标准状况下或不是气体就不适用。
如:标准状况下,辛烷是液体,不能用气体摩尔体积进行计算。
固体和液体也有摩尔体积,但一般没有相同的数值。
标准状况(0℃,1.01×105Pa)不同于通常状况(25℃,1.01×105Pa)。
7.物质的量的大小,可衡定物质所含微粒的多少,但物质的量的数值并不是微粒的个数,它的个数应该是物质的量乘以6.02×1023mol-`。
8.气体摩尔体积使用的条件是:前提——标准状况;是指气体本身的状况,而不是外界条件的状况,因此就不能说“1mol水蒸气在标准状况下所占的体积是22.4L”。
研究对象是——气体(包括混合气体),但概念中的“任何气体”却不包括一些易挥发性物质的蒸气,如水蒸气、溴蒸气、碘蒸气等。
量的标准是——1mol,结论——约是22.4L,此外还应注意:并非只有标准状况下,1mol气体的体积才约是22.4L。
9.外界温度和压强影响气体体积的大小,但气体的质量和物质的量的多少则不受其影响。
中学化学中常用的物理量及其单位的名称和符号
t
秒
s
中学化学还常பைடு நூலகம்min、h、d
密度
ρ
千克每立方米
kg/m3
中学化学一般用g/cm3或g/L
压力、压强
P
帕[斯卡]
Pa
中学化学还常用kPa
热力学温度
T
开[尔文]
K
反应热
△H
焦[耳]每摩[尔]
J/mol
中学化学还常用kJ/mol
中学化学一般用L/mol
B的物质的量浓度或B的浓度
cB
摩[尔]每立方米或摩[尔]每升
mol/m3mol/L
中学化学一般用mol/L
B的化学计量数
B
一
1
B的质量分数
wB
一
1
B的摩尔分数
xB
一
1
长度
l或L
米
m
中学化学还常用cm、nm等
质量
m
千克(公斤)
kg
中学化学还常用g、t
体积
V
立方米
m3
中学化学还常用mL、L、cm3
中学化学中常用的物理量及其单位的名称和符号
物理量名称
物理量符号
单位名称
单位符号
备注
相对原子质量
Ar
一
1
相对分子质量
Mr
一
1
分子或其他基本单元数
N
一
1
物质的量
n
摩[尔]
mol
阿伏加德罗常数
NA
每摩[尔]
mol-1
摩尔质量
M
千克每摩[尔]
kg/mol
中学化学一般用g/mol
摩尔体积
Vm
立方米每摩[尔]
m3/mol
3总复习:化学中的常用计量
第三讲 化学中的常用计量一、物质的量1、物质的量物质的量通常是表示物质所含微观粒子数目多少的物理量。
构成物质的微粒有原子、离子、分子、质子、中子、电子等。
因此在使用物质的量这一物理量时必须指明微粒的种类。
例如:1mol O ,或1mol O 2,而不能笼统地称1mol 氧,再例如:1mol e -。
2、阿伏加德罗常数规定0.012kg 12C 含有的碳原子数定为阿伏加德罗常数。
符号为 ,通常使用这个近似值。
3、物质的量(n )与微粒个数(N )、阿伏加德罗常数(N A )之间关系: n = N =4、摩尔质量单位物质的量的物质所具有的质量,符号为 ,其单位是 。
二、气体摩尔体积1、影响气体体积的因素从微观来看:① ;② ;③ 。
对于气体来说,根据气体可以压缩这一实验事实可知,气体微粒间距离很大,根据实验事实可知,通常情况下,分子间距离是气体微粒直径的10倍左右。
因此气体体积取决于微粒间的距离,当压强和温度一定时,气体微粒间距离一定,所以当气体分子数一定,则气体体积一定,反之,在压强和温度一定时,相同体积的任何气体分子数相等。
2、阿伏加德罗定律及其推论阿伏加德罗定律——在相同的压强和温度下,相同体积的任何气体都含有相同数目的分子,即气体物质的量之比等于气体体积之比。
(n —物质的量,V —气体体积)。
推论1:在同温同压下,气体密度之比等于式量之比(ρ—密度,M —式量)。
推证:设气体质量为M ,体积为V 。
根据 则:推论2:在同温同体积下,气体压强之比等于物质的量之比,即 :212122112211ρρρρ=⇒=M M m m M m M m上述三个关系式包含了气体的分子数、体积、压强、密度和式量等状态。
3、气体摩尔体积经测定,在1.01×105Pa, 00C时,(标准状况)1mol任何气体的体积,都约为22.4L。
通常称为气体摩尔体积。
气体摩尔体积是阿伏加德罗定律的一个特例。
在掌握气体摩尔体积时要注意4个要点:(1)标准状况;(2)1mol;(3)任何气体,(包括单一气体或混合气体);(4)约22.4L。
知识讲解-化学中的常用计量-基础
高考总复习 化学中的常用计量编稿:房鑫 审稿:张灿丽【考试目标】1.认识相对原子质量、相对分子质量的含义,并能进行有关计算。
2.了解物质的量的单位——摩尔(mol )、摩尔质量、气体摩尔体积、阿伏加德罗常数的含义。
3.根据物质的量与微粒(原子、分子、离子等)数目、气体体积(标准状况下)之间的相互关系进行有关计算。
4.掌握阿伏加德罗定律及质量守恒定律的实际应用。
【知识络】以物质的量为核心的各物理量的相互关系:【要点梳理】考点一、物质的量及其单位1.物质的量(n )(1)概念:用0.012 kg 12C 中所含的原子数目作为标准来衡量其他微粒集体所含微粒数目多少的物理量。
(2)单位:摩尔,简称“摩”,符:mol 。
要点诠释:物质的量与质量、长度一样是七个基本物理量之一,它表示含有一定数目的粒子的集合体,用n 表示。
作为专用名词,“物质的量”四个字是一个整体,不得拆分或简化,不得添加任何字,更不能将其当做物质的数量或物质的质量。
2.摩尔(1)概念:摩尔是物质的量的单位,1 mol 物质含有阿伏加德罗常数值个微粒。
(2)适用范围及注意事项①用mol 为单位只能用于物质的微观粒子,如分子、原子、离子或它们的特定组合。
不能用于宏观物质。
②用mol 为单位必须指明物质微粒(或微粒组合)的符。
3.阿伏加德罗常数(N A )(1)含义:0.012 kg 12C 中所含碳原子数为阿伏加德罗常数,根据实验测得其数值约为6.02×1023。
1 mol 任何物质均含有阿伏加德罗常数个相应微粒。
(2)单位:mol ―1,符N A 。
(3)微粒数(N )、物质的量(n )与阿伏加德罗常数(N A )三者关系。
n =AN N ,利用该关系式,已知其中任意两个量,可以求第三个量。
要点诠释:受客观条件的限制,目前科学界还不能测出阿伏加德罗常数的准确值,通常使用6.02×1023 mol -1这个近似值。
也就是说,1 mol 任何粒子的粒子数约为6.02×1023,如1 mol 氧原子中约含有6.02×1023个氧原子。
常用化学计量知识点整理
常用化学计量知识点整理一、物质的量与阿伏伽德罗常数:1、物质的量描述对象:微观粒子,比如分子、原子、粒子、中子、质子、电子等。
单位mol 符号n2、阿伏伽德罗常数12 g 12C中所含有的碳原子数,1mol=1 个≈6.02×1023个3、摩尔质量:单位物质的量的物质所具有的质量,单位一般为g·mol-1,此时与相对原子质量(Ar)或相对分子质量(Mr)数值相等,摩尔质量有单位而相对原子质量或相对分子质量无单位。
4、气体摩尔体积:单位物质的量的气体的体积大小与温度、压强有关标准状况下的气体(纯气体或混合气体)摩尔体积:约 22.4 (近似值)5、阿伏加德罗定律及其推论定律:同温同压下,相同体积的任何气体都含有相同的分子数。
PV=nRT6、物质的量浓度:单位溶液体积包含的溶剂的物质的量单位:溶液稀释与浓缩的换算式溶质质量分数(a%)、溶解度(S)、物质的量浓度(c)、溶液密度(ρ)的换算关系(饱和溶液):不同密度的溶液相互混合,总体积计算式:例题:取14.3 g Na2CO3·xH2O溶于水配成100 mL溶液,然后逐滴加入稀盐酸直至没有气体放出为止,用去盐酸10 mL,并收集到气体1120 mL(标准状况)。
求: (1)Na2CO3·xH2O的物质的量;(2)稀盐酸的物质的量浓度;(3)x的值。
二、一定物质的量浓度溶液的配置1、容量瓶、烧瓶、玻璃棒、托盘天平、药匙、胶头滴管。
2、计算、称量、溶解(稀释)、冷却、移液、定容、装瓶贴标签。
3、注意:容量瓶使用前要验漏、洗涤,不能润洗。
只能配一定体积的溶液。
转移溶液是要是室温,玻璃棒在瓶颈刻度线下。
4、误差分析阿伏伽德罗常数的应用陷阱问题1、状况条件:考查气体时,一定要特别关注是标准状况下还是非标准状况,标准状况可以用22.4mol/L计算。
2、物质状态:考查气体摩尔体积时,常用标准状况(0℃,常压)下非气态的物质来迷惑学生,在标准状况下,水、SO3、碳原子数大于4的烃、乙醇、四氯化碳、氯仿、苯、HF、二硫化碳等许多有机物都不是气态。
化学相关计量知识点总结
化学相关计量知识点总结1. 化学式和摩尔质量化学式是用化学符号表示化合物中各元素的种类和数量的一种表示方法。
例如,水的化学式是H2O,表示其中含有2个氢原子和1个氧原子。
化学式中的元素符号和下标表示元素的种类和数量,可以通过化学式计算出化合物的摩尔质量。
摩尔质量是指化合物中每个摩尔(即Avogadro常数对应的质量)所含的质量,通常以单位g/mol表示。
2. 摩尔和摩尔质量之间的关系摩尔是化学中的一个计量单位,表示物质的量。
在化学反应中,常常需要根据反应物和生成物的摩尔数量来计算各种化学量。
摩尔质量和摩尔之间的关系可以用来计算物质的质量和数量之间的关系。
例如,通过化学式和物质的质量可以计算出物质的摩尔质量,进而计算出物质的摩尔数量。
3. 化学反应的平衡和摩尔比化学反应的平衡指的是在反应物和生成物之间达到一定的平衡状态,反应物和生成物的摩尔比在平衡状态下是一定的。
反应物和生成物的摩尔比可以通过化学式和平衡方程式来计算。
通过摩尔比的计算可以确定反应物的限制摩尔和过量摩尔,进而确定反应物的数量和产物的生成量。
4. 反应物的限制摩尔和过量摩尔反应物的限制摩尔是指在化学反应中限制反应的那种反应物,生成物的生成量取决于它的摩尔数量。
而过量摩尔是指在化学反应中过量的那种反应物,生成物的生成量取决于它的摩尔数量。
通过摩尔比和平衡方程式可以确定反应物的限制摩尔和过量摩尔,进而确定反应的生成量。
5. 摩尔概念在化学反应中的应用在化学反应中,摩尔概念是一种非常重要的概念,通过摩尔的概念可以计算出反应物和生成物的摩尔数量,确定反应物的限制摩尔和过量摩尔,计算出生成物的生成量等。
摩尔概念在化学反应中的应用非常广泛,可以帮助化学家了解反应物和生成物之间的数量关系,进而预测反应的进行情况,优化反应条件等。
6. 摩尔与体积之间的关系在气相反应中,反应物和生成物的摩尔之间可以通过气体的体积比来表示。
根据气体的摩尔体积定律,理论上理想气体在相同条件下,其体积与摩尔的数量成正比。
化学专题一化学常用计量
【关于NA几个易考易错题分类】
1、物质的聚集状态、外界条件 用到气体摩尔体积22.4L·mol-1时,必须注意是否是气体,且是否处于标 准状态。 即:如果给体积就看条件和状态。 外界条件: 标准状况下:0℃、101kPa (273K、101kPa ) ; 常温常 压下:25℃、101kPa ; 干扰选项一般设在用“常温常压”、“相同状况”、“通常状况”、“25℃, 1.01×105Pa”等说法来代替“标准状况”
6
考点一:关于阿伏加德罗常数(NA)的判断 【考题展现】
2(.(201)2江苏∙8)设NA为阿伏伽德罗常数的值。下列说法正确的是 ABC. ..常标标温 准准常 状状压 况况下 下下, ,,11081.1g.2mHLoC2lOHC3含l2C溶H有2于O的H水原中,子含转总有移数分的为子电3的N子数A 数目目为为00.5.1NNA A D.常温常压下,2.24LCO和CO2混合气体中含有的碳原子数目为 0.1NA
13
【关于NA几个易考易错题分类】
3、 考查特殊物质中共价键数目 如:CO2、稀有气体、P4、烷烃、烯烃等有机物、金刚石、Si、SiO2、石墨 (1)31g白磷中含有NA个P-P键 ( (23))(乙烯08和上丙海烯卷的)混室合温物下2,8g1中mo含l乙有烷3N分A个子共含价有键8NA个共价键 ( (45))1Si2Og2金晶刚体石中和,每6摩0gSSi原iO2子中与各2含NA有个4ON原A个子S形i-成O键共和价C键-C键 (6) 12g石墨中含有C—C键的个数为1.5NA
16
【关于NA几个易考易错题分类】
5、注意题示反应是否为可逆过程,如电离、水解等。某些离子或原子团在水中
能发生水解反应,离子数目要改变。如乙酸的电离、铁离子的水解等
化学计算计量单位
化学计算计量单位在化学领域,计量单位起着重要的作用,用于表示物质的质量、体积、浓度等性质。
本文将介绍常用的化学计算计量单位及其转换方法,帮助读者更好地理解和应用化学知识。
一、质量计量单位在化学实验和计算中,质量是一个常用的计量指标。
常见的质量计量单位有克、毫克和微克等。
1. 克(g)是国际单位制(SI)中常用的质量单位,1克等于1000毫克(mg)或1000000微克(μg)。
计量单位转换方法:1克=1000毫克=1000000微克。
2. 毫克(mg)是克的千分之一,常用于表示质量较小的物质。
1毫克等于0.001克,或者等于1000微克。
计量单位转换方法:1毫克=0.001克=1000微克。
3. 微克(μg)是克的百万分之一,常用于表示质量极小的物质。
1微克等于0.000001克,或者等于0.001毫克。
计量单位转换方法:1微克=0.000001克=0.001毫克。
二、体积计量单位在化学实验和计算中,体积是另一个重要的计量指标。
常见的体积计量单位有升、毫升和微升等。
1. 升(L)是国际单位制中常用的体积单位,1升等于1000毫升(mL)或1000000微升(μL)。
计量单位转换方法:1升=1000毫升=1000000微升。
2. 毫升(mL)是升的千分之一,常用于表示体积较小的液体。
1毫升等于0.001升,或者等于1000微升。
计量单位转换方法:1毫升=0.001升=1000微升。
3. 微升(μL)是升的百万分之一,常用于表示体积极小的液体。
1微升等于0.000001升,或者等于0.001毫升。
计量单位转换方法:1微升=0.000001升=0.001毫升。
三、浓度计量单位在化学分析和实验中,浓度是一个关键的计量指标,用于表示溶液中溶质的含量。
常用的浓度计量单位有摩尔/升、克/升和百分比等。
1. 摩尔/升(mol/L),也称为摩尔浓度或物质浓度,是表示溶质摩尔数与溶剂体积之比的单位。
例如,1摩尔/升的溶液中,每升溶液中包含1摩尔的溶质。
化学中常用计量
注意事项: ①每一容量瓶只能配制瓶上规定容积的溶液; ②使用前要检查是否漏水; ③不能加热,不能久贮溶液,不能在瓶内溶解固 体 或稀释液体。
2、配制的步骤 计算
称量(量取)
溶解
摇匀
定容
转移
考虑:天平、量筒、滴定管的最小读数是多少?
考虑:称量NaOH 时应注意哪些问题? 考虑:容量瓶是否一定要干燥?
【答案】(1)0.046mol/L(2)900mL(3)999mL。
有关热化学方程式的计算
1. 根据反应热书写热化学方程式 例:在101kPa和25℃时,1g甲醇完全燃烧生成CO2和H2O,同 时放出22.68KJ热量。(1)求:甲醇的燃烧热;(2)请写出 反应的热化学反应方程式。
△H=32g/mol×22.68kJ/g=725.8kJ/mol CH3OH(l)+3/2O2 (g)= CO2 (g) + 2H2O (l) ; △H=725.8kJ/mol
mB =m浓×m浓 % =m稀×m稀% 由溶质稀释后物质的量不变有:
nB =C浓×V浓=C稀×V稀. (2)溶液在稀释或混合时,溶液的总体积不一定是二者混
合的体积之和。如给出溶液混合后的密度,应根据质 量和密度求体积。
一定物质的量浓度溶液的配制
1、容量瓶的认识
规格:50mL、100mL、250mL、500mL和1000mL 特点:①容量瓶上标有温度和量程。
后容器中的压强之比接近于
A 1︰11
B 1︰11
C 7︰11
D 11︰7
B
物质的量浓度
1、物质的量浓度:CB
定义:以单位体积溶液里所含溶质B的物质的量来表示 的溶液组成的物理量。单位为 mol/L
化学技术实验中的常用计量单位与换算方法
化学技术实验中的常用计量单位与换算方法化学技术实验在现代科学研究和工程应用中扮演着重要角色。
为了准确测量物质的质量、体积和浓度等特性,化学家们使用一系列标准计量单位和换算方法。
本文将介绍化学实验中常用的计量单位和相应的换算方法,以帮助读者更好地理解和应用这些技术。
1. 质量的计量单位和换算方法质量是衡量物质数量的重要指标,常用的计量单位是克(g)。
在实验中,如果需要将其他质量单位转换为克,可以使用以下换算方法:- 千克(kg)和克(g)之间的换算:1 kg = 1000 g- 毫克(mg)和克(g)之间的换算:1 g = 1000 mg例如,如果实验中需要用到10 mg的某种化合物,可以将其转换为克,即0.01 g。
2. 体积的计量单位和换算方法体积是描绘物质占据空间大小的重要参数,常用的计量单位是升(L)和毫升(mL)。
在实验中,如果需要将其他体积单位转换为升或毫升,可以使用以下换算方法:- 厘米立方(cm³)和升(L)之间的换算:1 L = 1000 cm³- 毫升(mL)和升(L)之间的换算:1 L = 1000 mL例如,如果实验中需要用到50 cm³的溶液,可以将其转换为升,即0.05 L。
3. 浓度的计量单位和换算方法浓度是描述溶液中溶质相对于溶剂的含量的指标。
常用的计量单位是摩尔(mol)和摩尔分数(mole fraction)。
在实验中,如果需要将其他浓度单位转换为摩尔或摩尔分数,可以使用以下换算方法:- 摩尔质量(molar mass)和质量(g)之间的换算:将质量(g)除以物质的摩尔质量(单位:g/mol)- 摩尔体积(molar volume)和体积(L)之间的换算:将体积(L)乘以浓度(mol/L)- 摩尔分数(mole fraction)与质量分数(mass fraction)之间的换算:将摩尔分数除以物质的摩尔质量例如,如果实验中需要制备0.1 mol/L的某种溶液,可以根据具体试剂的摩尔质量来计算所需质量,并将其转换为体积。
高考一轮复习攻略:化学中常用计量盘点
2019高考一轮复习攻略:化学中常用计量盘点【易错指津】1.使用摩尔时,一定要指出物质的名称或写出化学式。
如1molH2,1molH+,而不能写成“1mol氢”。
2.阿伏加德罗常数的标准是人为规定的。
如果改变了它的标准,则摩尔质量、气体摩尔体积、物质的量浓度等均发生改变。
而质量、粒子数、一定质量的气体体积、气体密度等客观存在因素并不会因此而改变。
3.物质的量是指微观粒子多少的物理量。
微观粒子可以是分子、原子、电子、质子、中子以及他们的特定组合。
物质的量与物质的质量有关而与物质所处的状态无关。
4.对题目所问微粒种类有所忽视。
如误认为“2g氢气所含氢原子数目为NA”说法正确。
5.摩尔质量与温度、压强无关;不同的物质一般不同。
(H3PO4和H2SO4;CO、C2H4、N2;CaCO3和KHCO3相同)6.对气体摩尔体积的概念不清。
气体摩尔体积是对气体而言,并且是在标准状况下1mol气体的体积。
若不在标准状况下或不是气体就不适用。
如:标准状况下,辛烷是液体,不能用气体摩尔体积进行计算。
固体和液体也有摩尔体积,但一般没有相同的数值。
标准状况(0℃,1.01×105Pa)不同于通常状况(25℃,1.01×105Pa)。
7.物质的量的大小,可衡定物质所含微粒的多少,但物质的量的数值并不是微粒的个数,它的个数应该是物质的量乘以6.02×1023mol-`。
8.气体摩尔体积使用的条件是:前提——标准状况;是指气体本身的状况,而不是外界条件的状况,因此就不能说“1mol 水蒸气在标准状况下所占的体积是22.4L”。
研究对象是——气体(包括混合气体),但概念中的“任何气体”却不包括一些易挥发性物质的蒸气,如水蒸气、溴蒸气、碘蒸气等。
量的标准是——1mol,结论——约是22.4L,此外还应注意:并非只有标准状况下,1mol气体的体积才约是22.4L。
9.外界温度和压强影响气体体积的大小,但气体的质量和物质的量的多少则不受其影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
化学中常用计量盘点
【易错指津】
1.使用摩尔时,一定要指出物质的名称或写出化学式。
如1molH2,1molH+,而不能写成“1mol氢”。
2.阿伏加德罗常数的标准是人为规定的。
如果改变了它的标准,则摩尔质量、气体摩尔体积、物质的量浓度等均发生改变。
而质量、粒子数、一定质量的气体体积、气体密度等客观存在因素并不会因此而改变。
3.物质的量是指微观粒子多少的物理量。
微观粒子可以是分子、原子、电子、质子、中子以及他们的特定组合。
物质的量与物质的质量有关而与物质所处的状态无关。
4.对题目所问微粒种类有所忽视。
如误认为“2g氢气所含氢原子数目为NA”说法正确。
5.摩尔质量与温度、压强无关;不同的物质一般不同。
(H3PO4和H2SO4;CO、C2H4、N2;CaCO3和KHCO3相同)
6.对气体摩尔体积的概念不清。
气体摩尔体积是对气体而言,并且是在标准状况下1mol气体的体积。
若不在标准状况下或不是气体就不适用。
如:标准状况下,辛烷是液体,不能用气体摩尔体积进行计算。
固体和液体也有摩尔体积,但一般没有相同的数值。
标准状况(0℃,1.01×105Pa)不同于通常状况(25℃,1.01×105Pa)。
7.物质的量的大小,可衡定物质所含微粒的多少,但物质的量的数值并不是微粒的个数,它的个数应该是物质的量乘以6.02×1023mol-`。
8.气体摩尔体积使用的条件是:前提——标准状况;是指气体本身的状况,而不是外界条件的状况,因此就不能说“1mol水蒸气在标准状况下所占的体积是22.4L”。
研究对象是——气体(包括混合气体),但概念中的“任何气体”却不包括一些易挥发性物质的蒸气,如水蒸气、溴蒸气、碘蒸气等。
量的标准是——1mol,结论——约是22.4L,此外还应注意:并非只有标准状况下,1mol气体的体积才约是22.4L。
9.外界温度和压强影响气体体积的大小,但气体的质量和物质的量的多少则不受其影响。
10.对阿伏加德罗常数的判断题:
(1)若给出物质的体积:一看是否为标准状况下----不为标准状况无法求n;二看物质在标准状况下是否为气体---不为气态无法求n;
(2)若给出气体的物质的量或质量:粒子数与外界条件无关;
(3)若是惰性气体,注意为单原子分子;
(4)若是气体单质,不一定是双原子分子;
(5)其他:联系水解、电解、P4(6个P-P键)、SiO2(Si-O四键)等。