高中数学三视图教案
高中数学讲义:三视图——几何体的体积问题
三视图——⼏何体的体积问题一、基础知识:1、常见几何体的体积公式:(:S 底面积,:h 高)(1)柱体:V S h=×(2)锥体:13V S h =×(3)台体:(1213V S S h =++×,其中1S 为上底面面积,2S 为下底面面积(4)球:343V R p =2、求几何体体积要注意的几点(1)对于多面体和旋转体:一方面要判定几何体的类型(柱,锥,台),另一方面要看好该几何体摆放的位置是否是底面着地。
对于摆放“规矩”的几何体(底面着地),通常只需通过俯视图看底面面积,正视图(或侧视图)确定高,即可求出体积。
(2)对于组合体,首先要判断是由哪些简单几何体组成的,或是以哪个几何体为基础切掉了一部分。
然后再寻找相关要素(3)在三视图中,每个图各条线段的长度不会一一给出,但可通过三个图之间的联系进行推断,推断的口诀为“长对正,高平齐,宽相等”,即正视图的左右间距与俯视图的左右间距相等,正视图的上下间距与侧视图的上下间距相等, 侧视图的左右间距与俯视图的上下间距相等。
二、典型例题:例1:已知一个几何体的三视图如图所示,则该几何体的体积为_________思路:从正视图,侧视图可判断出几何体与锥体相关(带尖儿),从俯视图中可看出并非圆锥和棱锥,而是两者的一个组合体(一半圆锥+ 三棱锥),所以12V V V =+圆锥棱锥,锥体的高计算可得h =(利用正视图),底面积半圆的半径为6,三角形底边为12,高为6(俯视图看出),所以1126362S =××=三角形,2636S p p =×=圆,则13V S h =×=三角形棱锥,13V S h =××=圆圆锥,所以12V V =+=+圆锥棱锥答案:+例2:已知一棱锥的三视图如图所示,其中侧视图和俯视图都是等腰直角三角形,正视图为直角梯形,则该棱锥的体积为 .思路:观察可发现这个棱锥是将一个侧面摆在地面上,而棱锥的真正底面体现在正视图(梯形)中,所以()1424122S =×+×=底,而棱锥的高为侧视图的左右间距,即4h =,所以1163V S h =×=底答案:16例3:若某几何体的三视图如图所示,则此几何体的体积是________.思路:该几何体可拆为两个四棱柱,这两个四棱柱的高均为4(俯视图得到),其中一个四棱柱底面为正方形,边长为2(正视图得到),所以2112416V S h =×=×=,另一个四棱柱底面为梯形,上下底分别为2,6,所以()2126282S =+×=,228432V S h =×=×=。
机械制图中的三视图(高中数学研究性学习)
【使用说明】1.认真阅读课本p21-p23,课前完成导学案的问题导学及例题1、2,牢记基础知识,理解三视图的原理。A层完成所有题目,B层完成**外的题目,C层完成不带*的题目
2.认真完成,规范作图;课上小组合作探讨,答疑解惑.理解三视图的画法和原理
3.小பைடு நூலகம்长在课上讨论环节起引领作用,提高效率
例2、若一个几何体的主视图和左视图都是等腰三角形,俯视图是圆,则这个几何体可能是()
(A)圆柱(B)三棱柱(C)圆锥(D)球体
方法总结:
探究三由三视图画直观图
例3.图中是一个几何体的三视图,画出它的直观图.
(例3图
练习:已知圆柱的底面半径为2cm,高为5cm,画出这个圆柱的三视图.
【课堂小结】
(1)知识方面
二、问题导学
1.动手操作:自己用一本书向三个两两互相垂直的投射面平移(类比正投影)
观察书本在投射面上产生的覆盖区域。
2.画出三个两两互相垂直的平面作为投射面
3.一个物体的主视图、俯视图、左视图的排列规则是怎样的?其画法规律是什么?
画出下列几何体的三视图(正四棱锥、四棱柱、圆柱、圆锥)
思考:1.直观图中的棱(沿)在三视图中如何体现?有什么规律?
(2)数学思想及方法方面___________________________________________________
2.三视图之间各长度关系有什么联系?
课内探究部分
探究一三视图的画法
例1.如图所示的是一个零件的直观图,画出这个几何体的三视图.
(注:被挡住的轮廓线画成虚线,尺寸线用细实线标出)
变式:已知一个正三棱柱的底面边长为3cm,高为5cm,画出这个正三棱柱的三视图.在图上标出各边的长度.
人教B版高中数学必修2第二章1.1.5空间几何体的三视图
全国中小学“教学中的互联网搜索”优秀教学案例评选教案设计中学数学(1.1.5空间几何体的三视图)一、教案背景1、面向学生:中学学科:数学2、课时:13、学生课前准备:(1)物品:三角板、圆规等(2)复习投影与直观图相关知识①平行投影:在一束平行光线照射下形成的投影。
点、线、三角形在平行投影后的结果。
②中心投影:光由一点向外散射形成的投影。
其投影的大小随物体与投影中心间距离的变化而变化,所以其投影不能反映物体的实形。
③直观图:(斜二测画法的规则)(3)数学与文学(为情境导入做准备)【百度文库】/view/bb94b5bbfd0a79563c1e7252.html (4)数学与美术(为引入三视图做准备)【百度文库】/view/b43349e2524de518964b7dec.html 4、教师课前准备:除了准备实物投影仪,多媒体投影,在课前还网上收集参考教案、参考课件以及课例视频。
①参考教案:【百度文库】/view/4cbe6227a5e9856a56126084.html②参考课件:【百度文库】/view/9ab3f62c2af90242a895e5bb.html③参考课例:【百度视频】/v_show/id_XMjA0OTU1Mjcy.html二、三维目标:1、知识与技能:能画出简单几何体的三视图;能识别三视图所表示的空间几何体。
2、过程与方法:通过直观感知,操作确认,提高学生的空间想象能力、几何直观能力,培养学生的应用意识。
3、情感态度与价值观:感受数学就在身边,提高学生的学习立体几何的兴趣,培养学生大胆创新、勇于探索、互相合作的精神。
三、教材分析本节课是在学习空间几何体结构特征,投影与直观图之后,尚未学习点、直线、平面位置关系的情况下教学的。
三视图利用物体的三个投影来表现空间几何体,是用平面图形表示空间几何体的一种方式。
它能够帮助我们从不同侧面、不同角度认识几何体的结构特征,使我们能够根据平面图形想象空间几何体的形状和结构。
最新人教版高中数学必修2第一章《三视图》教案
示范教案整体设计教学分析在上一节认识空间几何体直观图的基础上,本节来学习空间几何体的表示形式,以进一步提高对空间几何体结构特征的认识.主要内容是:画出空间几何体的三视图.比较准确地画出几何图形,是学好立体几何的前提.因此,本节内容是立体几何的基础之一,教学中应给以充分的重视.画三视图是学习立体几何的基本技能,同时,通过三视图的学习,可以丰富学生的空间想象力.“视图”是将物体按正投影法向投影面投射时所得到的投影图.光线自物体的前面向后投影所得的投影图称为“主视图”,自左向右投影所得的投影图称为“左视图”,自上向下投影所得的投影图称为“俯视图”.用这三种视图即可刻画空间物体的几何结构特征,这种图称之为“三视图”.三维目标1.了解空间图形的不同表示形式和相互转化,发展学生的空间想象能力,培养学生转化与化归的数学思想方法.2.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,并能识别上述三视图表示的立体模型,会用材料(如纸板)制作模型,提高学生识图和画图的能力,培养其探究精神和意识.重点难点教学重点:画出简单组合体的三视图,给出三视图,还原或想象出原实际图的结构特征.教学难点:识别三视图所表示的几何体.课时安排1课时教学过程导入新课设计1.能否熟练画出上节所学习的几何体?工程师如何制作工程设计图纸?我们常用三视图和直观图表示空间几何体,三视图是观察者从三个不同角度观察同一个几何体而画出的图形;直观图是观察者站在某一点观察几何体而画出的图形.三视图和直观图在工程建设、机械制造以及日常生活中具有重要意义.本节我们将在学习投影知识的基础上,学习空间几何体的三视图.教师指出课题:三视图.设计2.“横看成岭侧成峰”,这说明从不同的角度看同一物体视觉的效果可能不同,要比较真实地反映出物体的结构特征,我们可从多角度观看物体,这堂课我们主要学习空间几何体的三视图.在初中,我们已经学习了正方体、长方体、圆柱、圆锥、球的三视图(主视图、左视图、俯视图),你能画出空间几何体的三视图吗?教师点出课题:三视图.推进新课新知探究提出问题(1)在初中,我们已经学习了正方体、长方体、圆柱、圆锥、球的三视图,请你回忆三视图包含哪些部分?(2)主视图、左视图和俯视图各是如何得到的?(3)一般地,怎样排列三视图?(4)主视图、左视图和俯视图分别是从几何体的正前方、正左方和正上方观察到的几何体的正投影图,它们都是平面图形.观察长方体的三视图,你能得出同一个几何体的主视图、左视图和俯视图在形状、大小方面的关系吗?讨论结果:(1)三视图包含主视图、左视图和俯视图.(2)光线从几何体的前面向后面正投影,得到的投影图叫该几何体的主视图(又称正视图);光线从几何体的左面向右面正投影,得到的投影图叫该几何体的左视图(又称侧视图);光线从几何体的上面向下面正投影,得到的投影图叫做该几何体的俯视图.(3)三视图的位置关系:一般地,左视图在主视图的右边;俯视图在主视图的下边.如下图所示.(4)投影规律:①主视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;左视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度.②一个几何体的主视图和左视图高度一样,主视图和俯视图长度一样,左视图和俯视图宽度一样,即主、俯视图——长对正;主、左视图——高平齐;俯、左视图——宽相等.画组合体的三视图时要注意的问题:(1)要确定好主视、左视、俯视的方向,同一物体三视的方向不同,所画的三视图可能不同.(2)判断简单组合体的三视图是由哪几个基本几何体生成的,注意它们的生成方式,特别是它们的交线位置.(3)若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,分界线和可见轮廓线都用实线画出,不可见轮廓线,用虚线画出.(4)要检验画出的三视图是否符合“长对正、高平齐、宽相等”的基本特征,即主、俯视图长对正;主、左视图高平齐;俯、左视图宽相等,前后对应.由三视图还原为实物图时要注意的问题:我们由实物图可以画出它的三视图,实际生产中,工人要根据三视图加工零件,需要由三视图还原成实物图,这要求我们能由三视图想象它的空间实物形状,主要通过主、俯、左视图的轮廓线(或补充后的轮廓线)还原成常见的几何体,还原实物图时,要先从三视图中初步判断简单组合体的组成,然后利用轮廓线(特别要注意虚线)逐步作出实物图.应用示例思路1例1图(1)所示的是一个零件的直观图,画出这个几何体的三视图.(1) (2)解:这个几何体的三视图如图(2)所示.在视图中,被挡住的轮廓线画成虚线,尺寸线用细实线标出;D表示直径,R表示半径;单位不注明时按mm计.点评:本题主要考查简单组合体的三视图.对于简单空间几何体的组合体,一定要认真观察,先认识它的基本结构,然后再画它的三视图.变式训练1.画出下图所示的几何体的三视图.答案:三视图如下图所示.例2图(1)所示的是一个奖杯的三视图,画出它的直观图.(1)(2)解:从奖杯的三视图可以看出,奖杯的底座是一个正棱台,它的上底面是边长为60 mm 的正方形,下底面是边长为100 mm的正方形,高为20 mm.底座的上面是一个底面对角线长为40 mm,高72 mm的正四棱柱,它的底面的对角线分别与棱台底面的边平行,它的底面的中心在棱台上、下底面中心的连线上.奖杯的最上部,在正四棱柱上底面的中心放着一个直径为28 mm的球.根据以上分析,画出奖杯的直观图,如上图(2)所示.变式训练螺栓是棱柱和圆柱构成的组合体,如图1,画出它的三视图.解:该物体是由一个正六棱柱和一个圆柱组合而成的,主视图反映正六棱柱的三个侧面和圆柱侧面,左视图反映正六棱柱的两个侧面和圆柱侧面,俯视图反映该物体投影后是一个正六边形和一个圆(中心重合).它的三视图为图2.图1图2思路2例3如图甲所示,在正方体ABCD—A1B1C1D1中,E、F分别是AA1、C1D1的中点,G 是正方形BCC1B1的中心,则四边形AGFE在该正方体的各个面上的投影可能是下图乙中的__________.活动:要画出四边形AGFE在该正方体的各个面上的投影,只需画出四个顶点A、G、F、E在每个面上的投影,再顺次连结即得到在该面上的投影,并且在两个平行平面上的投影是相同的.解析:在面ABCD和面A1B1C1D1上的投影是图乙(1);在面ADD1A1和面BCC1B1上的投影是图乙(2);在面ABB1A1和面DCC1D1上的投影是上图乙(3).答案:(1)(2)(3)点评:本题主要考查平行投影和空间想象能力.画出一个图形在一个平面上的投影的关键是确定该图形的关键点(如顶点)等,画出这些关键点的投影,再依次连结即可得此图形在该平面上的投影.如果对平行投影理解不充分,做该类题目容易出现不知所措的情形,避免出现这种情形的方法是依据平行投影的含义,借助于空间想象来完成.变式训练如图(1)所示,E、F分别为正方体面A DD′A′、面BCC′B′的中心,则四边形BFD′E 在该正方体的各个面上的投影可能是图(2)的________.解析:四边形BFD′E在正方体ABCD—A′B′C′D′的面ADD′A′、面BCC′B′上的投影是C;在面DCC′D′、面ABB′A′上的投影是B;同理,在面ABCD、面A′B′C′D′上的投影也是B.答案:BC例4如下图所示,甲、乙、丙是三个立体图形的三视图,甲、乙、丙对应的标号正确的是()①长方体②圆锥③三棱锥④圆柱A.④③②B.②①③C.①②③D.③②④解析:由于甲的俯视图是圆,则该几何体是旋转体,又因主视图和左视图均是矩形,则甲是圆柱;由于乙的俯视图是三角形,则该几何体是多面体,又因主视图和左视图均是三角形,则该多面体的各个面都是三角形,则乙是三棱锥;由于丙的俯视图是圆,则该几何体是旋转体,又因主视图和左视图均是三角形,则丙是圆锥.答案:A点评:本题主要考查三视图和简单几何体的结构特征.根据三视图想象空间几何体,是培养空间想象能力的重要方式,这需要根据几何体的主视图、左视图、俯视图的几何特征,想象整个几何体的几何特征,从而判断三视图所描述的几何体.通常是先根据俯视图判断是多面体还是旋转体,再结合主视图和左视图确定具体的几何结构特征,最终确定是简单几何体还是简单组合体.变式训练1.图1是一几何体的三视图,想象该几何体的几何结构特征,画出该几何体的形状.图1 图2解析:由于俯视图有一个圆和一个四边形,则该几何体是由旋转体和多面体拼接成的组合体,结合左视图和主视图,可知该几何体是上面一个圆柱,下面是一个四棱柱拼接成的组合体.答案:上面一个圆柱,下面是一个四棱柱拼接成的组合体.该几何体的形状如图2所示.2. (2007山东高考,理3)如下列几何体各自的三视图中,有且仅有两个视图相同的是()A.①②B.①③C.①④D.②④解析:正方体的三视图都是正方形,所以①不符合题意,排除A、B、C.答案:D点评:虽然三视图的画法比较烦琐,但是三视图是考查空间想象能力的重要形式,因此是新课标高考的必考内容之一,足够的空间想象能力才能保证顺利解决三视图问题.知能训练1.下列各项不属于三视图的是()A.主视图B.左视图C.后视图D.俯视图解析:根据三视图的规定,后视图不属于三视图.答案:C2.两条相交直线的平行投影是()A.两条相交直线B.一条直线C.两条平行直线D.两条相交直线或一条直线解析:借助于长方体模型来判断,如下图所示,在长方体ABCD—A1B1C1D1中,一束平行光线从正上方向下照射.则相交直线CD1和DC1在面ABCD上的平行投影是同一条直线CD,相交直线CD1和BD1在面ABCD上的平行投影是两条相交直线CD和BD.答案:D3.甲、乙、丙、丁四人分别面对面坐在一个四边形桌子旁边,桌上一张纸上写着数字“9”,如下图所示.甲说他看到的是“6”,乙说他看到的是“ 6”,丙说他看到的是“ 9”,丁说他看到的是“9”,则下列说法正确的是()A.甲在丁的对面,乙在甲的左边,丙在丁的右边B.丙在乙的对面,丙的左边是甲,右边是乙C.甲在乙的对面,甲的右边是丙,左边是丁D.甲在丁的对面,乙在甲的右边,丙在丁的右边解析:由甲、乙、丙、丁四人的叙述,可以知道这四人的位置如下图所示,由此可得甲在丁的对面,乙在甲的右边,丙在丁的右边.答案:D4.如果一个空间几何体的主视图与左视图均为全等的等边三角形,俯视图为一个圆及其圆心,那么这个几何体为()A.棱锥B.棱柱C.圆锥D.圆柱解析:由于俯视图是一个圆及其圆心,则该几何体是旋转体,又因主视图与左视图均为全等的等边三角形,则该几何体是圆锥.答案:C5.某几何体的三视图如下图所示,那么这个几何体是()A.三棱锥B.四棱锥C.四棱台D.三棱台解析:由所给三视图可以判定对应的几何体是四棱锥.答案:B6.用若干块相同的小正方体搭成一个几何体,该几何体的三视图如下图所示,则搭成该几何体需要的小正方体的块数是()A.8 B.7C.6 D.5解析:由主视图和左视图可知,该几何体有两层小正方体拼接成,由俯视图,可知最下层有5个小正方体,由左视图可知上层仅有一个正方体,则共有6个小正方体.答案:C7.画出下图所示正四棱锥的三视图.解析:正四棱锥的主视图与左视图均为等腰三角形,俯视图为正方形,对角线体现正四棱锥的四条侧棱.答案:正四棱锥的三视图如下图.拓展提升问题:用数个小正方体组成一个几何体,使它的主视图和俯视图如下图所示,俯视图中小正方形中的字母表示在该位置的小立方体的个数.(1)你能确定哪些字母表示的数?(2)该几何体可能有多少种不同的形状?分析:解决本题的关键在于观察主视图、俯视图,利用三视图规则中的“在三视图中,每个视图都反映物体两个方向的尺寸.主视图反映物体的上下和左右尺寸,俯视图反映物体的前后和左右尺寸,左视图反映物体的前后和上下尺寸”.又“主视图与俯视图长对正,主视图与左视图高平齐,俯视图与左视图宽相等”,所以,我们可以得到a=3,b=1,c=1,d,e,f中的最大值为2.解:(1)面对数个小立方体组成的几何体,根据对主视图与俯视图的观察我们可以得出下列结论:①a=3,b=1,c=1;②d,e,f中的最大值为2.所以上述字母中我们可以确定的是a=3,b=1,c=1.(2)当d,e,f中有一个是2时,有3种不同的形状;当d,e,f有两个是2时,有3种不同的形状;当d,e,f都是2时,有一种形状.所以该几何体可能有7种不同的形状.课堂小结本节课学习了:1.中心投影和平行投影.2.简单几何体和组合体的三视图的画法及其投影规律.3.由三视图判断原几何体的结构特征.作业本节练习A2,3,4题.设计感想本节课的教学,以课程标准为指南,结合学生已有知识和经验而设计.设计时考虑到课程标准和高考要求,重点讲解由三视图判断几何体的结构特征,也就是画三视图时,尺寸不作严格要求.教学设计中使用了大量图片,建议在实际应用时尽量使用信息技术,让学生从动态过程获得三视图的感性认识,以便从整体上把握三视图的画法.备课资料科技新知——恐龙的形成电子计算机进入电影行业,导致了电影制作技术的革命,电脑特技所显示出的近乎无所不能的威力,使电影可以展示出人类梦想中的世界.1993年,在好莱坞制作的科幻片《侏罗纪公园》里,造型逼真,凶猛残暴的恐龙令观众深感恐惧.这是借电脑技术创造的一个银幕奇迹.为了拍摄《侏罗纪公园》,美国ILM(工业光磁)工作室经过3个月的艰苦工作,调用10亿字节的储存容量在电脑屏幕上制作出一头3米长的恐龙外形.绘制人员把绿色的非洲风景照片输入电脑,同时将恐龙的形象嵌入照片内,再模拟两架照相机的多次成像过程,把照片上仅有的一头恐龙变成10多头恐龙.然后再由绘画专家把恐龙每一秒内的动作分解为24幅连续变化的静止画面,将每幅画面按照上述过程制成电影胶片,这样经放映机放映后,观众就可以从银幕上看到一群恐龙在草地上捕猎的奇幻场面了.为了让他们创造的恐龙象真的猛兽那样在银幕上追逐厮杀,ILM的超级绘画计算机绘制出了一个恐龙运动特写镜头,每一幅草图上都画出恐龙的三视图,甚至标出每一块骨骼的位置.先在已有的骨骼上附上肌肉,然后根据日照的明暗程度给它上色,最后通过皱纹,鳞片和一些泥土对它进行细致的调整.在现在形形色色的网络游戏中,三视图知识更是得到普遍的运用,不管是人物的制作还是场景的制作都离不开三视图,三视图的制作犹如文章的草稿.无论是在2D游戏制作还是在3D游戏模型制作前,都要针对角色或个别道具进行三视图的指定.。
高中数学_1.2 投影与三视图教学设计学情分析教材分析课后反思
教学设计学情分析学生在义务教育阶段已经学习过三视图的基本作法,但只要求能作简单几何体的三视图,如长方体、正方体以及一些正方体的组合等,主要停留在形的认识上,而对于三视图的概念还不清晰。
学生在义务教育阶段只接触了从空间几何体到三视图的单向转化,还无法准确将三视图还原成实物模型。
对于三视图的学习,先用诗句“横看成岭侧成峰”创设情境,引入新课。
接着用汽车设计图纸作引入复习回顾三视图,让学生体会作三视图刻画空间几何体的必要性,然后简单复习长方体的三视图,在学生原有知识的基础上进行新知识的建构,引出三视图的作图方法与规范要求。
1.1.5 投影与三视图测评练习◆基础训练1.下面是一些立体图形的三视图(如图),•请在括号内填上立体图形的名称.2.如图4-3-26,下列图形都是几何体的平面展开图,你能说出这些几何体的名称吗?3.如图,从不同方向看下面左图中的物体,右图中三个平面图形分别是从哪个方向看到的?4.一天,小明的爸爸送给小明一个礼物,小明打开包装后画出它的主视图和俯视图如图所示.根据小明画的视图,你猜小明的爸爸送给小明的礼物是()A.钢笔 B.生日蛋糕 C.光盘 D.一套衣服5.一个几何体的主视图和左视图如图所示,它是什么几何体?请你补画出这个几何体的俯视图.6.一个物体的三视图如图所示,试举例说明物体的形状.7.已知一个几何体的三视图如图所示,则该几何体的体积为多少?8.已知几何体的主视图和俯视图如图所示.(1)画出该几何体的左视图;(2)该几何体是几面体?它有多少条棱?多少个顶点?(3)该几何体的表面有哪些你熟悉的平面图形?◆提高训练9.小刚的桌上放着两个物品,它的三视图如图所示,你知道这两个物品是什么吗?10.一个由几个相同的小立方体搭成的几何体的俯视图如图所示,方格里的数字表示该位置的小立方体的个数,请你画出这个几何体的主视图和左视图.11.如图所示,下列三视图所表示的几何体存在吗?如果存在,请你说出相应的几何体的名称.12.由若干个相同的小立方体搭成的一个几何体的主视图和俯视图如图所示,俯视图的方格中的字母和数字表示该位置上小立方体的个数,求x,y的值.13.由几个小立方体叠成的几何体的主视图和左视图如图,求组成几何体的小立方体个数的最大值与最小值.◆拓展训练14.已知一个木头模型的三视图如图所示,与实际尺寸的比例为1:50.(1)请画出这个模型的立体图形(尺寸按三视图);(2)从三视图中量出尺寸,并换算成实际尺寸,标注在立体图形上;(3)制作这个模型的木料密度为360kg/m3,则这个模型的质量是多少kg?如要漆这个模型,每千克油漆可以漆1m2,则需要多少油漆?教学效果分析学生在义务教育阶段已经学习过三视图的基本作法,但只要求能作简单几何体的三视图,如长方体、正方体以及一些正方体的组合等,主要停留在形的认识上,而对于三视图的概念还不清晰。
《三视图》教案(汇总三篇)
《三视图》教案(汇总三篇)(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的教育资料,如工作总结、工作计划、工作报告、活动总结、实习报告、演讲稿、规章制度、心得体会、自我鉴定、其他范文等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of educational materials for everyone, such as work summaries, work plans, work reports, activity summaries, internship reports, speeches, rules and regulations, experiences, self-evaluation, and other sample articles. If you want to learn about different data formats and writing methods, please pay attention!《三视图》教案(汇总三篇)《三视图》教案篇1黑龙江省实验中学课时计划备课时间200 年月日授课日期200 年月日星期第课时年班教材第二章第三节课题三视图教学目标1、掌握一般技术图样所采用的投射方法。
高中数学三视图优秀教案
高中数学三视图优秀教案
教学内容:三视图
教学目标:
1. 了解三视图的概念;
2. 掌握三视图的绘制方法;
3. 熟练应用三视图解决实际问题。
教学准备:
1. 课件或书籍;
2. 黑板、彩色粉笔、橡皮;
3. 直尺、铅笔、量角器。
教学过程:
一、导入(5分钟)
教师引导学生回顾前几次课程内容,让学生了解三视图的重要性,并激发学生学习的兴趣。
二、理论讲解(15分钟)
1. 教师讲解三视图的概念和作用,并介绍正视图、侧视图、俯视图的绘制方法;
2. 教师通过示范和举例,让学生理解三视图的绘制过程。
三、绘制练习(20分钟)
1. 学生根据教师给出的示范,尝试绘制简单物体的三视图;
2. 学生相互交流,纠正错误,共同提高绘制技巧。
四、实例分析(15分钟)
1. 教师给出实际物体的三视图,让学生根据三视图画出物体的真实图形;
2. 学生分组讨论,共同解决问题。
五、小结(5分钟)
教师对本节课的重点知识进行总结,并强调三视图在几何学习中的重要性。
六、作业布置(5分钟)
布置作业:练习绘制更复杂的物体的三视图,并应用三视图解决实际问题。
教学反思:
本节课通过理论讲解、绘制练习和实例分析相结合的方式,让学生对三视图有了全面的了解和掌握。
但是在绘制练习中,部分学生存在绘制错误的情况,可能是因为对绘制方法理解不够透彻。
下节课需要加强绘制技巧的讲解,帮助学生提高绘制的准确性和效率。
高中数学新北师大版精品教案《3.1简单组合体的三视图》
2021 年全国中小学“一师一优课”活动教学设计参评组别课件比赛参评科目高中数学参评科目黄洁琼报送日期目录1.教学设计基本信息 (2)2.教学设计理念 (3)3.学情分析 (3)4.教材分析与处理...................................................3-4 5.教学目标设计 (5)6.教学方法.........................................................5-6 7.教学实施流程图 (6)8.教学实施过程……………………………………………7-129 教学板书 (13)10 教学反思 (13)11附页………………………………………………………14-18《三视图》一、教学设计基本信息表二、教学设计理念(一)我对教学的理解教育的理性思辨始于“人为什么要教育”,而课程诞生于人们对“学生学会了什么”的科学解释。
从最终习得的结果来看,我认为“学”包括了三种结果:成果、过程、创造。
成果即学生通过学习而获得的成果;过程性结果是学习经历就是所需要的学习结果;而创造性结果强调的是通过预设过程期待某一结果的产生,结果重要但是它是开放的,难以预设成果。
基于此,“教”的意义就在于如何让学生经历正确的“过程与方法”,以获得值得学习的“知识与技能”,来实现意义。
另一方面,由于现在是信息社会,实际生活中学生每时每刻都在接收大量信息,但信息不等于知识,知识不等于智慧。
因此“教”的过程不应该和生活相区别,也应该是“生活化”的过程。
在这样的充满大量“原始信息”的课堂中,“教”会学生甄别信息、筛选信息、使用信息。
(二)教学设计意图本次课程的教学设计依据建构主义理论,通过科学的设计情景,引导学生从自己已有知识出发,对新的知识进行重新构建。
通过想象、设问、质疑、讨论、解惑来梳理教材内容,在做中学,在学中做。
最终使得学生“学”得三个结果:1、成果:了解简单组合体、三视图的概念,了解三视图的画图规则和步骤,会画出简单组合体的三视图;2、过程:在小组讨论中,培养学生观察、学习、分析和解决问题的能力。
高中数学课件《三视图》
阐述制作俯视图的流程和技巧,如比例
尺、画笔选择等。
3
俯视图实例分析
呈现俯视图在实际应用中的案例和作用,
常见错误和注意事项
4
如显示尺寸、描绘结构等。
列举俯视图绘制中的常见错误和技巧, 如线条处理、标注规范等。
综合应用
三视图综合分析
分析综合三视图的相关内容,如 尺寸、比例、实物构成等。
三视图的应用案例
正视图
正视图的定义
详细解释正视图的定义、特点和 标注方式。
正视图的制作方法
介绍制作正视图的流程,包括准 备、构图、标注等步骤。
正视图实例分析
展示正视图的实际案例,解读各 个部分的特点和技巧。
常见错误和注意事项
列举一些常见的正视图错误和注 意事项,并提供纠正方法。
侧视图
侧视图的定义
详细阐述侧视图的定义、特点和手绘制作方法。
总结本课学习到的三视图知识点,反思不足之处, 并展望未来学习方向。
小结
完成本节课的考核,完成下列练习,提交至教师指定邮箱。
演示三视图在不同领域的实际应 用案例和作用,如工程制图、产 品设计等。
三视图练习题
展示三视图练习题和解答方法, 巩固学习成果。
总结及反思
三视图的重要性回顾 三视图在实际应用中的作用 学习三视图的收获和不足
概括三视图的核心知识点和应用场景,并强调其 重要性。
说明三视图在工程、设计、制造等多个领域的实 际应用作用。
侧视图实例分析
呈现侧视图在不同领域的实际应用案例,分析其 构图、标注和表现要点。
侧视图的制作方法
介绍侧视图的绘制流程和常用工具,如比例尺、 圆规等。
常见错误和注意事项
指出侧视图常见的错误和绘制技巧,如避免变形、 重点突出等。
空间几何体的三视图和直观图第一课时教学设计教学内容
1.2空间几何体的三视图和直观图(第一课时)教学设计一、教学内容分析(一)教材地位和作用三视图是立体几何的基础之一,画出空间几何体的三视图并能将三视图还原为直观图,是建立空间观念的基础和训练学生几何直观能力的有效手段。
在近几年的高考考查中,利用三视图求直观图体积或表面积的题型屡见不鲜,这种题型的本质即为由三视图还原直观图,所以要求学生掌握由三视图还原直观图这部分内容显得尤其重要。
三视图对部分对学生的逻辑思维能力和空间想象能力提出了较高的要求,使学生谈“图”色变。
本节课是普通高中新课程人教版《必修2》第一章第二节第一课时的内容,是在学习空间几何体的结构特征之后,直观图之前,尚未学习点、直线、平面位置关系的情况下教学的。
学生在义务教育阶段,已经初步接触了正方体、长方体的几何特征以及简单几何体的表面积、体积的计算,会从不同的方向看物体得到不同的视图的方法。
与初中教学内容相比较,本节增加学习了台体的有关内容,简单组合体涉及柱体、锥体、台体以及球体,比义务教育阶段数学课程“空间与图形”部分呈现的组合体多。
通过本节知识的学习,为下一章点、直线、平面之间的位置关系学习打下基础,同时有利于培养学生空间想象能力,几何直观能力的,有利于培养学生学习立体几何的兴趣,体会数学的实用价值。
(二)教学内容及结构本章的主要内容是认识空间图形,通过对空间几何体的整体把握,培养和发展空间想象能力。
从学生熟悉的物体入手,使学生对物体形状的认识由感性上升到理性;通过三视图和直观图的学习,进一步认识空间几何体的结构。
本节课教材从了解中心投影和平行投影出发介绍三视图是利用三个正投影来表示空间几何体的的方法,并给出三视图的概念及作图规则。
要求学生能画出简单空间图形的三视图,能识别上述的三视图所表示的立体模型。
在此基础上,学习画出简单组合体(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,并识别三视图所表示的简单组合体。
(三)教学重难点1、重点:(1)画出空间几何体及简单组合体的三视图,(2)给出三视图,还原或想象出原实际图的结构特征,体会三视图的作用。
三视图还原直观图教案
三视图还原直观图教案(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用范文,如学习资料、英语资料、学生作文、教学资源、求职资料、创业资料、工作范文、条据文书、合同协议、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides various types of practical sample essays, such as learning materials, English materials, student essays, teaching resources, job search materials, entrepreneurial materials, work examples, documents, contracts, agreements, other essays, etc. Please pay attention to the different formats and writing methods of the model essay!三视图还原直观图教案本节课是“空间几何体的三视图和直观图”的第一课时,主要内容是投影和三视图,这部分知识是立体几何的基础之一,一起看看三视图还原直观图教案!欢迎查阅!三视图还原直观图教案1一、教材的地位和作用本节课是“空间几何体的三视图和直观图”的第一课时,主要内容是投影和三视图,这部分知识是立体几何的基础之一,一方面它是对上一节空间几何体结构特征的再一次强化,画出空间几何体的三视图并能将三视图还原为直观图,是建立空间概念的基础和训练学生几何直观能力的有效手段。
《三视图》教学设计
《三视图》教学设计一、教学内容分析通用技术必修模块“技术与设计1”第六章第二节《常见的技术图样》之“正投影与三视图”(苏教版)主要描述了正投影形成三视图的方法、原理,三视图的绘制(识读)方法和规律等。
三视图作为一种技术图样是设计交流与表达的一种常用的技术语言形式。
学生通过本节的学习,掌握绘制简单三视图的基础知识和技能,本节内容也是后续知识“形体的尺寸标注”和“机械加工图”的基础。
在这里起到一个呈上启下的作用。
二、学情分析通过前面章节的学习,高中学生能够较熟练地绘制(识读)平面图和正等轴测图,也有光线投射成影的感知和体验。
教学可以从学生的现有知识和经验出发,按照直观感知、操作确认、思辩求证的认识过程展开,建构正投影与三视图的知识体系。
但学生的空间思维还受到定向模式的限制,很难发散思考一些个别现象,处理个特殊案例的能力有待提高,如不可见部分和重叠等。
三、教学目标1.知识目标:(1)理解投影法的基本概念和方法;(2)掌握正投影法方法、特性及三视图成图原理和规律;(3)掌握三视图一般绘图规则。
2.能力目标:(1)掌握简单的三视图的绘制(识读);(2)学会规范作图的方法和技能。
3.情感态度价值观:(1)经历三视图的作图过程,体验技术图样的魅力(2)形成科学的空间三围思维方式,培养学生严谨的思维与态度。
4、教学重点:(1)掌握三视图成图原理和规律;(2)掌握简单的三视图的绘制(识读)。
5、教学难点:(1)能规范绘制和识读简单的三视图。
四、教学准备准备积木,利用塑料胶纸和泡沫制作多个的模型。
五、教学策略及媒体运用在本节的教学中,将采用“主导—主体(分享—互助提升)”的设计模式,引导学生进行自主探究、知识建构和能力拓展。
总体教学流程为:“情境导入,知识建构,合作探究,总结提升,能力拓展”。
1、通过生活小故事的情景导学,激发学生对“技术语言的种类”进行回顾和复习以及注意在技术活动中选用恰当的技术语言进行交流的重要性,对本节课内容产生强烈的求知欲望。
人教版高中数学必修二1.2.2 空间几何体的三视图学案+课时训练
人教版高中数学必修二第1章空间几何体1.2.2空间几何体的三视图学案【要点梳理夯实基础】知识点1投影的概念阅读教材P11~P12第二行内容,完成下列问题.1.投影的定义由于光的照射,在不透明物体后面的屏幕上可以留下这个物体的影子,这种现象叫做投影.其中,把光线叫做投影线,把留下物体影子的屏幕叫做投影面.2.中心投影与平行投影[思考辨析学练结合]判断(正确的打“√”,错误的打“×”)(1)矩形的平行投影一定是矩形.()(2)平行四边形的平行投影可能是正方形.()(3)两条相交直线的平行投影可能平行.()(4)如果一个三角形的投影仍是三角形,那么它的中位线的平行投影,一定是这个三角形的平行投影的中位线.()【解析】利用平行投影的概念和性质进行判断.【答案】(1)×(2)√(3)×(4)√知识点2三视图阅读教材P12第三行~P14内容,完成下列问题.1.三视图的有关概念空间几何体的三视图是用正投影得到的,这种投影下与投影面平行的平面图形留下的影子与平面图形的形状和大小是完全相同的,三视图包括主视图、左视图、俯视图.正视图:光线从几何体的前面向后面正投影得到的投影图。
侧视图:光线从几何体的左面向右面正投影得到的投影图。
俯视图:光线从几何体的上面向下面正投影得到的投影图。
规律:一个几何体的正视图和侧视图高度一样,正视图和俯视图长度一样,侧视图与俯视图宽度一样。
2.三视图的画法(1)画三视图时,重叠的线只画一条,挡住的线要画成虚线;(2)三视图的主视图、左视图、俯视图分别是从几何体的正前方、正左方、正上方观察几何体得到的正投影图;(3)观察简单组合体是由哪几个简单几何体组成的,并注意它们的组成方式,特别是它们的交线位置.3.常见旋转体的三视图(1)球的三视图都是半径相等的圆.(2)水平放置的圆锥的主视图和侧视图均为全等的等腰三角形.(3)水平放置的圆台的主视图和左视图均为全等的等腰梯形.(4)水平放置的圆柱的主视图和左视图均为全等的矩形.[思考辨析学练结合]1.一个几何体的三视图如图所示,则该几何体可以是()A.棱柱B.棱台C.圆柱D.圆台[解析][先观察俯视图,再结合正视图和侧视图还原空间几何体.由俯视图是圆环可排除A,B,由正视图和侧视图都是等腰梯形可排除C,故选D.][答案] D2. 判断下列说法是否正确,正确的在它后面的括号里打“√”,错误的打“×”.(1)球的任何截面都是圆.()(2)有一个面是多边形,其余各面都是三角形的几何体是棱锥.()(3)正方体、球、圆锥各自的三视图中,三视图均相同.()[答案](1)×(2)×(3)×3.下列命题中正确的是()A.用一个平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台B.平行四边形的直观图是平行四边形C.有两个面平行,其余各面都是平行四边形的几何体叫棱柱D.正方形的直观图是正方形[解析]B[用一个平行于底面的平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台;平行四边形的直观图是平行四边形;有两个面平行,其余各面都是平行四边形的几何体不一定是棱柱;正方形的直观图是平行四边形,故选B.][答案]B【合作探究析疑解难】考点1 中心投影与平行投影[典例1]如图,点E,F分别是正方体的面ADD1A1和面BCC1B1的中心,则四边形BFD1E在该正方体的面上的正投影可能是图中的________.(要求把可能的序号都填上)[点拨]利用点B,F,D1,E在正方体各面上的正投影的位置来判断.[解答]其中(2)可以是四边形BFD1E在正方体的面ABCD或在面A1B1C1D1上的投影.(3)可以是四边形BFD1E在正方体的面BCC1B1上的投影.[答案](2)(3)[解法总结]画投影图的关键及常用方法1.关键:画一个图形在一个投影面上的投影的关键是确定该图形的关键点(如顶点,端点等)及这些关键点的投影,再依次连接就可得到图形在投影面上的投影.2.常用方法:投影问题与垂直关系紧密联系,投影图形的形状与投影线和投射图形有关系,在解决有些投影问题时,常借助于正方体模型寻求解题方法.1.在正方体ABCD-A′B′C′D′中,E、F分别是A′A、C′C的中点,则下列判断正确的是________.图1-2-3①四边形BFD′E在底面ABCD内的投影是正方形;②四边形BFD′E在面A′D′DA内的投影是菱形;③四边形BFD′E在面A′D′DA内的投影与在面ABB′A′内的投影是全等的平行四边形.[解析]①四边形BFD′E的四个顶点在底面ABCD内的投影分别是点B、C、D、A,故投影是正方形,正确;②设正方体的边长为2,则AE=1,取D′D的中点G,则四边形BFD′E在面A′D′DA内的投影是四边形AGD′E,由AE∥D′G,且AE=D′G,∴四边形AGD′E是平行四边形.但AE=1,D′E =5,故四边形AGD′E不是菱形;对于③,由②知是两个边长分别相等的平行四边形,从而③正确.[答案]①③考点2 画空间几何体的三视图[典例2]画出下列几何体的三视图.(1)(2)(3)[点拨]确定正前方→画正视图→画侧视图→画俯视图[解答]三视图如图(1)(2)(3)所示.画三视图的注意事项1.务必做到长对正,宽相等,高平齐.2.三视图的安排方法是正视图与侧视图在同一水平位置,且正视图在左,侧视图在右,俯视图在正视图的正下方.3.若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,要注意实、虚线的画法.2.画出如图所示几何体的三视图.解:图①为正六棱柱,正视图和侧视图都是矩形,正视图中有两条竖线,侧视图中有一条竖线,俯视图是正六边形.图②为一个圆锥与一个圆台的组合体,按圆锥、圆台的三视图画出它们的组合形状.三视图如图所示.考点3 由三视图还原空间几何体探究1如图是一个立体图形的三视图,请观察三视图,由三视图,你能知道该几何体是什么吗?并试着画出图形.[提示]由三视图可知,该几何体为正四棱锥,如图所示.探究2若某空间几何体的正视图和侧视图均为正三角形,请探究该几何体的形状.[提示]若该几何体的正视图和侧视图均为正三角形,则该几何体为轴截面为等边三角形的圆锥,如图所示.[典例3]根据三视图(如图所示)想象物体原形,指出其结构特征,并画出物体的实物草图.[点拨]由正视图、侧视图确定几何体为锥体,再结合俯视图确定其是四棱锥,由俯视图可知其底面形状,再结合正视图、侧视图所给信息画直观图.[解答]由俯视图知,该几何体的底面是一直角梯形;再由正视图和侧视图知,该几何体是一四棱锥,且有一侧棱与底面垂直,所以该几何体如图所示.[解法总结]由三视图还原几何体时,一般先由俯视图确定底面,由正视图与侧视图确定几何体的高及位置,同时想象视图中每一部分对应实物部分的形状.3.如图是一个物体的三视图,则此三视图所描述的物体是下列哪个几何体?()[解析]由俯视图可知该几何体为旋转体,由正视图、侧视图、俯视图可知该几何体是由圆锥、圆柱组合而成.[答案] D【学习检测巩固提高】1.一条直线在平面上的正投影是()A.直线B.点C.线段D.直线或点[解析]当直线与平面垂直时,其正投影为点,其他位置时其正投影均为直线,故选D.[答案] D2.已知某物体的三视图如图所示,那么这个物体的形状是()A.长方体B.圆柱C.立方体D.圆锥[解析]俯视图是圆,所以为旋转体,可排除A、C,又正、侧视图为矩形,所以不是圆锥,排除D.故选B.[答案] B3. 中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头,若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()[解析][由题意可知带卯眼的木构件的直观图如图所示,由直观图可知其俯视图应选A.][答案] A4.如图,在正方体ABCD-A1B1C1D1中,P为BD1的中点,则△P AC在该正方体各个面上的正投影可能是()A.①②B.①④C.②③D.②④[解析][P点在上下底面投影落在AC或A1C1上,所以△P AC在上底面或下底面的投影为①,在前面、后面以及左面,右面的投影为④,故选B.][答案] B5.如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱[解析][由题知,该几何体的三视图为一个三角形、两个四边形,经分析可知该几何体为三棱柱.][答案] B6.水平放置的下列几何体,正视图是长方形的是______(填序号).①②③④[解析]①③④的正视图为长方形,②的正视图为等腰三角形.[答案]①③④7.一物体及其正视图如图所示:①②③④则它的侧视图与俯视图分别是图形中的________.[解析]侧视图是矩形中间有条实线,应选③;俯视图为矩形中间有两条实线,且为上下方向,应选②.[答案]③②8.如图所示的三视图表示的几何体是什么?画出物体的形状.[解]该三视图表示的是一个四棱台,如图.[解题反思]已知三视图,判断几何体的技巧①一般情况下,根据主视图、俯视图确定是柱体、锥体还是组合体.②根据俯视图确定是否为旋转体,确定柱体、锥体类型、确定几何体摆放位置.③综合三视图特别是在俯视图的基础上想象判断几何体.④一定要熟记常见几何体的三视图!。
人教版高中数学必修二115《三视图》课件
对于需要应用剖视图或断面图的情况,首先要明确剖切或断开的平面位置和方向,然后根据 物体的形状和尺寸绘制出相应的剖视图或断面图。在绘制过程中要注意保持图形的准确性和 清晰度。
05
学生实践操作与互动环节
分组讨论不同组合体结构特点
分组
将班级学生分成若干小组,每组 4-6人,确保每组学生具有一定的
教学方法和手段
教学方法
本节课采用讲解、示范、练习和讨论相结合的教学方法。首先 通过讲解和示范让学生了解三视图的基本知识和绘制方法,然 后通过练习让学生熟练掌握绘制技巧,最后通过讨论让学生深 入理解三视图的应用。
教学手段
本节课采用多媒体课件辅助教学,通过展示各种几何体的三视 图,让学生更加直观地了解三视图的概念和性质。同时,通过 动画演示和互动练习等手段激发学生的学习兴趣和积极性。
人教版高中数学必修 二115《三视图》课件
contents
目录
• 课程介绍与目标 • 三视图基本概念与性质 • 绘制三视图方法与步骤 • 典型例题分析与解答 • 学生实践操作与互动环节 • 课程总结与拓展延伸
01
课程介绍与目标
教材内容和目标
• 教材内容:本节课主要学习三视图的概念、性质、绘制方法和 应用。通过本节课的学习,学生将掌握正视图、侧视图和俯视 图的基本知识和绘制技巧,能够运用三视图描述简单几何体的 形状和大小。
教材内容和目标
教学目标:通过本节 课的学习,学生应该 能够
学会绘制简单几何体 的三视图;
掌握三视图的基本概 念和性质;
教材内容和目标
01
能够运用三视图描述简单几何体的 形状和大小;
02
培养学生的空间想象能力和几何直 观能力。
教学重点与难点
高中数学阅读教案模板
高中数学阅读教案模板
主题:解析几何中的三视图
课时:1课时
目标:通过阅读文章,学生能够了解解析几何中的三视图概念,并能够运用到实际问题中。
教学内容:
1. 什么是三视图?
2. 三视图的投影规律
3. 三视图在解析几何中的应用
教学方法:
1. 教师讲解
2. 学生小组讨论
3. 阅读课文并回答问题
教学过程:
1. 导入:让学生观察周围的物体,讨论在不同角度观察物体会有什么不同的视图。
2. 阅读:让学生阅读关于三视图的文章,并回答相关问题。
3. 探究:学生分组讨论三视图的具体概念和应用,并向全班汇报。
4. 拓展:教师讲解三视图在解析几何中的具体应用,并引导学生练习相关题目。
5. 总结:学生总结今天所学内容,并提出问题和疑惑。
资源准备:
1. 课文材料
2. 投影仪
3. 小组讨论工具
评估方式:
1. 学生的阅读理解能力
2. 学生的讨论和表达能力
3. 学生对于三视图应用的理解和运用能力
延伸活动:
1. 邀请学生根据自己的三视图设计一个简单的建筑模型。
2. 给学生布置相关的解析几何题目作业。
反思与评估:
1. 教案执行的效果如何?
2. 学生对于三视图的理解和运用情况如何?
3. 是否需要调整教学方法和资源准备?。
江苏省邳州市第二中学高中数学《1.1.5 三视图》教案 北师大版必修2
“三视图”(第1课时)教学设计教学任务分析教学流程安排活动 5 小结知识拓展升华教学过程设计问题与情景师生行为设计意图〔活动1〕1.情景引入制作小零件。
X师傅是铸造厂的工人,今天我有事情拜托他,想让他给我制作一个如图所示的小零件,我如何准确的告诉他小零件的形状和规格?2.给出视图的定义。
3.欣赏工程中的三视图。
4.介绍视图的产生。
教师提问:(1)如何准确的表达小零件的尺寸大小?(2)除了用文字的语言,可不可以用图形的语言表示?(3)你们生活中见过三视图吗?活动中教师应关注:学生是否理解将立体图形分解成平面图形来表达的意义。
明确学习三视图的作用,并且为明确正投影画视图的意义?通过介绍视图的产生,使学生感受到数学来源于生活,产生于实践。
〔活动2〕1.对长方体的六个面进行正投影,并思考为什么选择用三视图来表达几何体的形状及尺寸。
总结:从前向后正投影在正面内得到主视图。
从左向右正投影在侧面内得到左视图。
从上向下正投影在水平面内得到俯视图。
教师提问:(1)选择什么样的视图可以比较准确全面的表达几何体?(2)我们对长方体的六个不同方向进行正投影,可以分别得到什么样的视图?(3)这些视图分别反映了几何体的哪些尺寸?(4)只要观察哪些视图就可以比较全面的表达这个长方体的形状、大小?活动中教师应关注:(1)学生是否理解用投影定义视图。
(2)学生是否理解用三种视图表示立体图形的道理。
引出三视图的概念,并理解用三视图来表达几何体形状、大小的意义。
在定义三维投影面时,让学生举出教室里的三维投影面,如墙角。
帮助学生理解互相垂直的三维投影面。
〔活动3〕1.思考三视图的画法。
2.课件演示:对几何体进行正投影得到三视图。
3.将水平面、侧面、正面展开到同一平面,观察得到三种视图的位置关系。
4.同桌讨论得到三种视图大小上的规律。
教师提问:(1)如何绘制一个几何体的三视图?(观察:从不同方向正视几何体观察几何体的三视图)。
(2)除了观察,将这三种视图画在同一平面它们的位置和大小尺寸有什么关系吗?(3)现在将空间中的三种视图展开到同一平面,你还能确定它们各自的名称吗?(4)除了位置上的关系,在大小尺寸上,三种视图彼此之间又存在什么关系?(5)对于其他几何体,如何表示它的长、宽、高?(6)探索了这些规律后,我们在画三视图时,除了要观察三个方向的正投影外,还需要考虑什么?活动中教师应关注:观察很重要,要强调,要正对物体用视线对所看物体进行正投影。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版高中数学必修二
§1.2.2空间几何体的三视图
⒈知识目标:使学生学会画三视图、体会三视图的作用,能由三视图想象几何体,从而进行几何体与其三视图之间的相互转化。
⒉能力目标:通过三视图的学习,提高学生的空间想象能力、分析问题、解决问题的能力。
⒊情感目标:通过学生自己的实践,学会画三视图,从而培养学生大胆创新、勇于探索、
自主合作的精神,培养学生的空间想象能力和动手操作能力,生活中让学生学会多角度看问题.
教学的重点和难点:
重点:画出空间几何体的三视图,体会三视图的作用。
难点:识别三视图所表示的空间几何体。
教学模式与手段:
直观教学法、讨论教学法、启导发现法、多媒体辅助教学法。
教材分析:
这节课主要是让学生经历从不同方向观察物体的活动过程,体会从不同方向观察同一物体可能会看到不同的平面图形,能识别几何体的三视图,会画立方体及其简单组合体的三视图,了解三视图在现实生活中的应用价值。
通过学习,进一步发展学生的空间观念,让学生逐步形成对空间图形与平面图形的认识与区别,体会现实生活中处处有图形,处处有数学。
在生活中,我们观察与评价同一个人,同一件事也应该从不同角度去考虑,只有这样,才会发现许多美好的闪光的东西,从而感受生活是多么的美好。
这一课时的内容是教师有意识的培养学生主动探索精神和合作学习的好材料,同时也是向学生渗透空间观念,培养空间感的好时机。
设计理念:
本节课在设计上注重课堂的开放性,力求充满生命活力,在学习过程中让学生主动参与,使学生在参与活动过程中感受体验由空间物体到平面图形的相互转换。
教学设计
人教版高中数学必修二
情境相互讨论交流,
体会含义,得到
感悟:观察事物
要全面。
识到全面细致的观察分析,提高学生的兴趣,引入本节内容。
新知探究1、认识三视图
正视图----(光线)从前至后得正面(投影)
侧视图----从左至右得左面
俯视图----从上至下得上面
总结三视图的定义:光线从几何体的前面向后面正投影得到的投
影图叫做主视图;光线从几何体的左面向右面正投影得到的投影
图叫做左视图;光线从几何体的上面向下面正投影得到的投影图
叫做俯视图。
主视图、左视图、俯视图合称三视图。
2.三视图的画法
如图所示的长方体的长、宽、高分别为a、b、c,画出这个长方
体的三视图。
问题:
①长方体的长、宽、高分别指哪个尺寸?②这个长方体的三视图
分别是什么形状的?
③正视图、侧视图和俯视图的长方形的长宽高分别为多少?
④正视图和侧视图中有没有相等的线段?正视图和俯视图呢?
侧视图和俯视图呢?
展示:
长方体三视图的形成,形状,三视图与长方体大小关系。
3学以致用,巩固新知
例题1 画出几何体的三视图
例题2如图是三棱柱的位置发生改变,试画出其三视图,并比较
它们的异同。
回答问题,互相
补充。
进一步了解三
视图的含义,观
看演示过程。
学生探究几何
体与其三视图
的形状大小关
系:长对正,高
平齐,宽相等。
学生探究画几
何体的三视图
学生唤醒记
忆,提高学习
的信心。
使学生体会三
视图的形成原
理,正确深入
理解三视图的
本质。
使学生理解几
何体与其三视
图之间的大小
关系,熟练正
确的画出三视
图。
使学生理解什
么样的棱画实a
c
b
人教版高中数学必修二
展示:两个三视图
轮廓线要求:眼见为实,不见为虚
小结:
1.侧视图在主视图右边,俯视图在主视图下边。
2.按照“长对正、高平齐、宽相等”作出对应的三视图。
它是指:正视图和俯视图一样长:正视图和侧视图一样高:俯视图和侧视图一样宽。
3.作图时,能看见的轮廓线和棱用实线表示,不能看见的用虚线表示。
问题:以上是根据几何体画三视图,反之,你能依据三视图得出几何体的形状吗?
例题3
请说出与下列三视图对应的几何体名称。
练习:下列三视图中表示的是哪个几何体?
巩固提高:
1画出下列组合体的三视图
2.有一个正方体,在它的各个面上分别标上字母A、B、C、D、
E、F,甲、乙、丙三位同学从不同的方向去观察其正方体,观察结果如图所示.问这个正方体各个面上的字母对面各是什么字母?时,不同的棱用
不同的线表示:
能够看见的轮
廓线和棱用实
线,不能看见的
轮廓线和棱用
虚线。
学生总结画三
视图的方法及
注意事项。
根据三视图想
象得出空间几
何体的形状。
个人尝试,小组
交流,得出组合
体的三视图。
线,什么样的
棱画虚线,能
够正确画出各
个线条。
使学生加深对
三视图的理
解,掌握画三
视图的方法。
加深对三视图
的认识,提高
学生的识图能
力,培养学生
的空间想象
力。
提高学生的空
间想象力,加
深对三视图的
理解。
人教版高中数学必修二
3.有个几何体的三视图如图,则搭成该几何体需要多少个小正方
体?
小结问题:本节我们学习到了哪些内容?
展示:本节内容
回顾本节所学
知识
巩固成果
作业层次一:完成课本15页练习
层次二:课后探究:
如图是一块带有圆形空洞和长方形空洞的小木板,则下列物体中
既可以堵住圆形空洞,又可以堵住方形空洞的是( )
加深学生对三
视图的理解,
提高空间想象
力、观察分析
能力。