2020【鲁教版】最新版中考数学一轮复习练习十(图形与变换)
【鲁教版】最新中考数学一轮复习:考点专练(24份打包,含答案)
(实数部分)A 级 基础题1.在-1,0,1,2这四个数中,既不是正数也不是负数的是( ) A .-1 B .0 C .1 D .22.-2的绝对值等于( ) A .2 B .-2 C.12 D .±23.-4的倒数的相反数是( ) A .-4 B .4 C .-14 D.144.-3的倒数是( ) A .3 B .-3 C.13 D .-135.无理数-3的相反数是( ) A .- 3 B. 3 C.13 D .-136.下列各式,运算结果为负数的是( )A .-(-2)-(-3)B .(-2)×(-3)C .(-2)2D .(-3)-37.某天最低气温是-5 ℃,最高气温比最低气温高8 ℃,则这天的最高气温是________℃.8.如果x -y <0,那么x 与y 的大小关系是x ____y (填“<”或“>”).9.已知一粒米的质量是0.000 021千克,这个数字用科学记数法表示为( ) A .21×10-4千克 B .2.1×10-6千克 C .2.1×10-5千克 D .2.1×10-4千克10.计算:|-5|-(2-3)0+6×1132⎛⎫- ⎪⎝⎭+(-1)2.B 级 中等题11.实数a ,b 在数轴上的位置如图所示,下列式子错误的是( ) A .a <b B .|a |>|b | C .-a <-b D .b -a >012.北京时间2011年3月11日,日本近海发生9.0级强烈地震.本次地震导致地球当天自转快了0.000 001 6秒.这里的0.000 001 6秒请你用科学记数法表示________________________秒.13.将1,2,3,6按下列方式排列.若规定(m ,n )表示第m 排从左向右第n 个数,则(5,4)与(14,5)表示的两数之积是________.14.计算:|-3 3|-2cos30°-2-2+(3-π)0. 15.计算:-22+-113⎛⎫⎪⎝⎭-2cos60°+|-3|.C 级 拔尖题16.如图X1-1-2,矩形ABCD 的顶点A ,B 在数轴上,CD =6,点A 对应的数为-1,则点B 所对应的数为__________.图X1-1-217.观察下列等式:第1个等式:a 1=11×3=12×113⎛⎫- ⎪⎝⎭; 第2个等式:a 2=13×5=12×1135⎛⎫- ⎪⎝⎭;第3个等式:a 3=15×7=12×1157⎛⎫- ⎪⎝⎭; 第4个等式:a 4=17×9=12×1179⎛⎫- ⎪⎝⎭;请解答下列问题:(1)按以上规律列出第5个等式:a 5=___________=______________;(2)用含有n 的代数式表示第n 个等式:a n =______________=____________(n 为正整数);(3)求a 1+a 2+a 3+a 4+…+a 100的值. 选做题18.请你规定一种适合任意非零实数a ,b 的新运算“a ⊕b ”,使得下列算式成立: 1⊕2=2⊕1=3,(-3)⊕(-4)=(-4)⊕(-3)=-76,(-3)⊕5=5⊕(-3)=-415,…你规定的新运算a ⊕b =_______(用a ,b 的一个代数式表示).(代数式部分)A 级 基础题1.某省初中毕业学业考试的同学约有15万人,其中男生约有a 万人,则女生约有( )A .(15+a )万人B .(15-a )万人C .15a 万人 D.15a万人2.若x =m -n ,y =m +n ,则xy 的值是( ) A .2 m B 。
2021年山东省中考一轮复习数学分层练习【鲁教版(五四制)】10. 一次函数的图象与性质
10. 一次函数的图象与性质基础训练1. (2020嘉兴)一次函数y =2x -1的图象大致是( )2. (2020泰州)点P (a ,b )在函数y =3x +2的图象上,则代数式6a -2b +1的值等于( ) A. 5 B. 3 C. -3 D. -13. (2020安徽)已知一次函数y =kx +3的图象经过点A ,且y 随x 的增大而减小,则点A 的坐标可以是( )A. (-1,2)B. (1,-2)C. (2,3)D. (3,4)4. (2020凉山州)若一次函数y =(2m +1)x +m -3的图象不经过第二象限,则m 的取值范围是( ) A. m >-12 B. m <3 C. -12<m <3 D. -12<m ≤35. (2020邵阳)已知正比例函数y =kx (k ≠0)的图象过点(2,3),把正比例函数y =kx (k ≠0)的图象平移,使它过点(1,-1),则平移后的函数图象大致是( )6. 若函数y =32x +1和y =ax -2的图象交于点A (m ,4),则关于x 的方程ax -2=4的解为( )A. x =2B. x =-2C. x =6D. x =-67. (2020益阳)一次函数y =kx +b 的图象如图所示,则下列结论正确的是( ) A. k <0 B. b =-1 C. y 随x 的增大而减小 D. 当x >2时,kx +b <0第7题图8. (2019枣庄)如图,一直线与两坐标轴的正半轴分别交于A ,B 两点,P 是线段AB 上任意一点(不包括端点),过点P 分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为8,则该直线的函数表达式是( )A. y =-x +4B. y =x +4C. y =x +8D. y =-x +8第8题图9. (2020上海)已知正比例函数y =kx (k 是常数,k ≠0)的图象经过第二、四象限,那么y 的值随x 的增大而_______.(填“增大”或“减小”)10. (2020黔东南州)把直线y =2x -1向左平移1个单位长度,再向上平移2个单位长度,则平移后所得直线的解析式为_______.11. (2020临沂)点(-12,m )和点(2,n )在直线y =2x +b 上,则m 与n 的大小关系是_______.12. (2020遵义)如图,直线y =kx +b (k 、b 是常数k ≠0)与直线y =2交于点A (4,2),则关于x 的不等式kx +b <2的解集为_______.第12题图13.(2020黔西南州)如图,正比例函数的图象与一次函数y =-x +1的图象相交于点P ,点P 到x 轴的距离是2,则这个正比例函数的解析式是_______.第13题图巩固训练14. (2020陕西)在平面直角坐标系中,O 为坐标原点.若直线y =x +3分别与x 轴、直线y =-2x 交于点A 、B ,则△AOB 的面积为( )A. 2B. 3C. 4D. 615. (2020湖州)已知在平面直角坐标系xOy 中,直线y =2x +2和直线y =23x +2分别交x 轴于点A 和点B.则下列直线中,与x 轴的交点不在线段AB 上的直线是( )A. y =x +2B. y =2x +2C. y =4x +2D. y =233x +216. 如图,正比例函数y =32x 的图象与一次函数y =34x +32的图象交于点A ,若点P 是直线AB 上的一个动点,则线段OP 长的最小值为( )A. 1B. 32C. 65D. 2第16题图17. 在平面直角坐标系xOy 中,点A 的坐标为(-1,2),点B 的坐标为(m ,2),若直线y =x -1与线段AB 有公共点,则m 的值可以为_________ (写出一个即可) .18. (2020滨州)如图,在平面直角坐标系中,直线y =-12x -1与直线y =-2x +2相交于点P ,并分别与x 轴相交于点A 、B.(1)求交点P 的坐标; (2)求△P AB 的面积;(3)请把图象中直线y =-2x +2在直线y =-12x -1上方的部分描黑加粗,并写出此时自变量x 的取值范围.第18题图能力提升19. (2020河北)表格中的两组对应值满足一次函数y=kx+b,现画出了它的图象为直线l,如图.而某同学为观察k,b对图象的影响,将上面函数中的k与b交换位置后得另一个一次函数,设其图象为直线l′.(1)求直线l的解析式;(2)请在图上画出..直线l′(不要求列表计算),并求直线l′被直线l和y轴所截线段的长;(3)设直线y=a与直线l,l′及y轴有三个不同的交点,且其中两点关于第三点对称,直接..写出a的值.第19题图参考答案1. B 【解析】对于一次函数y =2x -1,∵k =2>0,b =-1<0,∴函数的图象经过第一、三、四象限.2. C 【解析】∵点P (a ,b )在函数y =3x +2的图象上,∴b =3a +2,即3a -b =-2.∴6a -2b +1=2(3a -b )+1=-4+1=-3.3. B 【解析】A.将点(-1,2)代入y =kx +3,得2=-k +3,即k =1>0,则y 随x 的增大而增大,故此选项错误;B.将点(1,-2)代入y =kx +3,得-2=k +3,即k =-5<0,则y 随x 的增大而减小,故此选项正确;C.将点(2,3)代入y =kx +3,得3=2k +3,即k =0,则y 不是关于x 的一次函数,故此选项错误;D.将点(3,4)代入y =kx +3,得4=3k +3,即k =13>0,则y 随x 的增大而增大,故此选项错误.4. D 【解析】一次函数y =(2m +1)x +m -3的图象不经过第二象限,即经过第一、三、四象限,则⎩⎪⎨⎪⎧2m +1>0,m -3≤0,解得-12<m ≤3.5. D 【解析】将(2,3)代入y =kx 得k =32,设平移后的解析式为y =32x +b ,将(1,-1)代入得b =-52,∴平移后的函数解析式为y =32x -52,其图象如选项D 所示.6. A 【解析】∵函数y =32x +1经过点A (m ,4),∴32m +1=4,解得m =2.∵函数y =32x +1和y =ax-2的图象交于点A (m ,4),∴关于x 的方程ax -2=4的解为x =2.7. B 【解析】∵函数图象经过一、三、四象限,∴k >0,A 选项错误;∵函数图象与y 轴的交点坐标为(0,-1),把(0,-1)代入y =kx +b 得b =-1,B 选项正确;由函数图象可知:y 随x 的增大而增大,C 选项错误;当x >2时,函数图象在x 轴上方,即kx +b >0,D 选项错误.8. A 【解析】如解图,设点P 的坐标为(x ,y ),∵P 点在第一象限,∴PC =x ,PD =y .∵矩形PDOC 的周长为8,∴2(x +y )=8.∴x +y =4,即y =-x +4.第8题解图9. 减小 【解析】∵函数y =kx (k 是常数,k ≠0)的图象经过第二、四象限,∴k <0,∴y 的值随x 的增大而减小.10. y =2x +3 【解析】直线y =2x -1向左平移1个单位长度可得y =2(x +1)-1,再向上平移2个单位长度可得y =2(x +1)+1,故平移后所得直线的解析式为y =2x +3.11. m <n 【解析】∵直线y =2x +b 中,k =2>0,∴此函数y 随着x 的增大而增大.∵-12<2,∴m<n .12. x <4 【解析】由函数图象可知,当y <2时,x <4,∴不等式kx +b <2的解集为x <4.13. y =-2x 【解析】∵点P 到x 轴的距离是2,∴点P 的纵坐标为2,把y =2代入y =-x +1得2=-x +1,解得x =-1,∴P (-1,2).设正比例函数的解析式为y =kx (k ≠0),把P (-1,2)代入y =kx 中得2=-k ,解得k =-2,∴正比例函数的解析式为y =-2x .14. B 【解析】如解图,在直线y =x +3中,当y =0时,x =-3,∴A (-3,0),∴OA =3,联立⎩⎪⎨⎪⎧y =x +3y =-2x ,解得⎩⎪⎨⎪⎧x =-1,y =2,∴B (-1,2),∴点B 到OA 的距离为2,∴S △AOB =12×2×3=3.第14题解图15. C 【解析】在直线y =2x +2中,令y =0,则x =-1.在直线y =23x +2中,令y =0,则x =-3,∴A (-1,0),B (-3,0).要使与x 轴的交点不在线段AB 上,即直线与x 轴的交点不在-3与-1之间.经计算,A 选项直线与x 轴的交点为(-2,0),在线段AB 上,不符合题意;B 选项直线与x 轴的交点为(-2,0),在线段AB 上,不符合题意;C 选项直线与x 轴的交点为(-12,0),不在线段AB 上,符合题意;D 选项直线与x 轴的交点为(-3,0),在线段AB 上,不符合题意.16. C 【解析】由⎩⎨⎧y =32x ,y =34x +32,得⎩⎪⎨⎪⎧x =2,y =3,∴A (2,3).在一次函数y =34x +32中,令y =0,得x =-2,∴B (-2,0),∴S △AOB =12OB ·|y A |=12×2×3=3,AB =(2+2)2+32=5.∵当OP ⊥AB 时,OP 最小,∴S △AOB=12AB ·OP 最小,∴12×5OP 最小=3,∴OP 最小=65. 17. 4(答案不唯一) 【解析】在直线y =x -1中,当y =2时,2=x -1,∴x =3.∵点A 、B 的坐标分别为(-1,2)、(m ,2),直线y =x -1与线段AB 有公共点,∴m ≥3.∴m 的值可以是4.18. 解:(1)∵直线y =-12x -1与直线y =-2x +2相交于点P ,∴解方程组⎩⎪⎨⎪⎧y =-12x -1,y =-2x +2,得⎩⎪⎨⎪⎧x =2,y =-2,∴点P 的坐标为(2,-2);(2)∵直线y =-12x -1与x 轴交于点A ,∴点A 的坐标为(-2,0).∵直线y =-2x +2与x 轴交于点B , ∴点B 的坐标为(1,0). ∴AB =3.∴△ABP 的面积=12×3×2=3;(3)描黑加粗如解图,由图象知, x <2.第18题解图19. 解:(1)∵(-1,-2),(0,1)在函数y =kx +b 的图象上,∴⎩⎪⎨⎪⎧-2=-k +b ,1=b ,解得⎩⎪⎨⎪⎧k =3,b =1. ∴直线l 的解析式为y =3x +1; (2)依题意,直线l ′的解析式为y =x +3, ∴直线l ′的图象如解图所示:第19题解图联立方程组⎩⎪⎨⎪⎧y =3x +1,y =x +3,解得⎩⎪⎨⎪⎧x =1,y =4, ∴直线l 与直线l ′的交点坐标为(1,4). 又∵直线l ′与y 轴的交点坐标为(0,3),∴直线l ′被直线l 和y 轴所截得的线段长为(1-0)2+(4-3)2=2; (3)a 的值为52或175或7.【解法提示】直线y =a 与直线l ,l ′及y 轴的交点分别为(a -13,a ),(a -3,a )及(0,a ).①若a >1时,当(a -13,a ),(a -3,a )关于(0,a )对称,∴a -13=-(a -3), 解得a =52;当(a -13,a ),(0,a )关于(a -3,a )对称,∴2(a -3)=a -13,解得a =175;当(a -3,a ),(0,a )关于(a -13,a )对称,∴(a -3)=2×a -13,解得a =7;②若a <1时,当(a -3,a ),(0,a )关于(a -13,a )对称,∴(a -3)=2×a -13,解得a =7,不合题意舍去. 综上所述,a 的值为52或175或7.。
【备战2023中考】中考数学一轮复习基础练——图形的变换(含答案)
【备战2023中考】中考数学一轮复习基础练——图形的变换时间:45分钟满分:80分一、选择题(每题4分,共32分)1.下列图形中,既是中心对称图形又是轴对称图形的是()2.如图,将△ABC沿BC方向平移1 cm得到对应的△A′B′C′.若B′C=2 cm,则BC′的长是()A.2 cm B.3 cm C.4 cm D.5 cm(第2题)(第3题)3.如图,在△ABC中,∠B=32°,将△ABC沿直线m翻折,点B落在点D的位置,则∠1-∠2的度数是()A.32°B.45°C.60°D.64°4.几何体的三视图如图所示,这个几何体是()(第4题)(第5题)5.如图,△ABC与△DEF位似,点O为位似中心,已知OA∶OD=1∶2,则△ABC与△DEF的周长比为()A.1∶2 B.1∶3 C.1∶4 D.1∶56.如图,在等腰直角三角形ABC中,∠ACB=90°,点D为△ABC内一点,将线段CD绕点C 逆时针旋转90°后得到CE ,连接BE ,若∠DAB =15°,则∠ABE =( ) A .75° B .78° C .80°D .92°(第6题) (第7题)7.如图,在矩形ABCD 中,AB =5,AD =3,点E 为BC 边上一点,把△CDE 沿DE 翻折,点C 恰好落在AB 边上的点F 处,则CE 的长是( ) A .1 B.43 C.32D.538.如图,在平面直角坐标系中,点A ,B 的坐标分别为(0,2),(-1,0),将△ABO 绕点O 顺时针旋转得到△A 1B 1O ,若AB ⊥OB 1,则点A 1的坐标为( )(第8题)A.⎝ ⎛⎭⎪⎫255,455B.⎝ ⎛⎭⎪⎫455,255 C.⎝ ⎛⎭⎪⎫23,43 D.⎝ ⎛⎭⎪⎫45,85 二、填空题(每题4分,共16分)9.若点A 与点B (2,-3)关于y 轴对称,则点A 的坐标为________.10.如图,这个图案绕着它的中心旋转α(0°<α<360°)后能够与它本身重合,则α可以为________.(写出一个即可)(第10题)11.利用尺规作图,如图,作△ABC 边BC 上的高正确的是________.(第11题)12.在平面直角坐标系中,有A(3,-3),B(5,3)两点,现另取一点C(1,n),当AC+BC的值最小时,n的值为________.三、解答题(共32分)13.(14分)如图,在平面直角坐标系中,网格的每个小方格都是边长为1个单位长度的正方形,点A,B,C的坐标分别为A(1,2),B(3,1),C(2,3),先以原点O为位似中心在第三象限内画一个△A1B1C1,使它与△ABC位似,且相似比为21,然后再把△ABC绕原点O逆时针旋转90°得到△A2B2C2.(1)画出△A1B1C1,并直接写出点A1的坐标;(2)画出△A2B2C2,并求出在旋转过程中,点A到点A2所经过的路径长.(第13题)14.(18分)如图,在△ABC中,∠ABC=135°,AC=3,现将△ABC绕点A顺时针旋转90°得到△ADE,再将线段ED绕点E顺时针旋转90°得到线段EF,连接BD,BF,DF.(第14题)(1)求证:B,D,E三点共线;(2)求BF的长.答案一、1.A 2.C 3.D 4.C 5.A 6.A 7.D 8.A 二、9.(-2,-3) 10.60°(答案不唯一) 11.② 12.-1三、13.解:(1)如图所示,△A 1B 1C 1即为所求,点A 1的坐标为(-2,-4).(第13题)(2)如图所示,△A 2B 2C 2即为所求.∵点A 的坐标为(1,2),故由勾股定理得OA =12+22=5, ∴点A 到点A 2所经过的路径长为90×π×5180=5π2.14.(1)证明:由旋转性质可知△ABC ≌△ADE ,AB =AD ,BC =DE =FE ,∠BAD =∠DEF=90°, ∴∠ADB =45°.∵∠ADE =∠ABC =135°,∴∠ADB +∠ADE =45°+135°=180°, 即B ,D ,E 三点共线.(2)解:由(1)易得△ABD 和△EDF 都是等腰直角三角形, ∴BD AB =DFDE = 2.∵DE =BC ,∴BD AB =DFBC= 2.由(1)可知B ,D ,E 三点共线,∠EDF =45°, ∴∠BDF =180°-∠EDF =180°-45°=135°, ∴∠BDF =∠ABC , ∴△ABC ∽△BDF , ∴BF AC =BDAB = 2. ∵AC =3,∴BF =3 2.。
2020年中考数学一轮复习培优训练:《图形认识初步》
2020年中考数学一轮复习培优训练:《图形认识初步》1.已知点O是直线AB上的一点,∠COE=90°,OF是∠AOE的平分线.(1)当点C,E,F在直线AB的同侧(如图1所示)时.∠AOC=38°时,求∠BOE和∠COF的度数,∠BOE和∠COF有什么数量关系?(2)当点C与点E,F在直线AB的两旁(如图2所示)时,∠AOC=38°,(1)中∠BOE 和∠COF的数量关系的结论是否成立?请给出你的结论并说明理由;2.如图,O是直线AB上的一点,∠AOC=45°,OE是∠BOC内部的一条射线,且OF平分∠AOE.(1)如图1,若∠COF=35°,求∠EOB的度数;(2)如图2,若∠EOB=40°,求∠COF的度数;(3)如图3,∠COF与∠EOB有怎样的数量关系?请说明理由.3.如图,将一副直角三角尺的直角顶点C叠放在一起.(1)若∠DCE=35°,∠ACB=;若∠ACB=140°,则∠DCE=;(2)猜想∠ACB与∠DCE的大小有何特殊关系,并说明理由;(3)若保持三角尺BCE不动,三角尺ACD的CD边与CB边重合,然后将三角尺ACD绕点C按逆时针方向任意转动一个角度∠BCD.设∠BCD=α(0°<α<90°)①∠ACB能否是∠DCE的4倍?若能求出α的值;若不能说明理由.②三角尺ACD转动中,∠BCD每秒转动3°,当∠DCE=21°时,转动了多少秒?4.点O是直线AB上的一点,∠COD=90°,射线OE平分∠BOC.(1)如图1,如果∠AOC=50°,依题意补全图形,写出求∠DO E度数的思路(不需要写出完整的推理过程);(2)将OD绕点O顺时针旋转一定的角度得到图2,使得OC在直线AB的上方,若∠AOC =α,其他条件不变,依题意补全图形,并求∠DOE的度数(用含α的代数式表示);(3)将OD绕点O继续顺时针旋转一周,回到图1的位置.在旋转过程中,你发现∠AOC 与∠DOE(0°≤∠AOC≤180°,0°≤∠DOE≤180°)之间有怎样的数量关系?请直接写出你的发现.5.点O为直线AB上一点,在直线AB同侧任作射线OC,OD,使得∠COD=90°.(1)如图1,过点O作射线OE,当OE恰好为∠AOC的角平分线时,另作射线OF,使得OF平分∠BOD,则∠EOF的度数是(度).(2)如图2,过点O作射线OE,当OE恰好为∠AOD的角平分线时,求出∠BOD与∠COE 的数量关系;(3)过点O作射线OE,当OC恰好为∠AOE的角平分线时,另作射线OF,使得OF平分∠COD,若∠EOC=3∠EOF,直接写出∠AOE的度数.6.已知∠AOB=100°,作射线OC,再分别∠AOC和∠BOC的平分线OD、OE.(1)如图①,当∠BOC=60°时,则∠DOE=度;(2)如图②,若射线OC在∠AOB内部绕O点旋转,当∠BOC=α时,则∠DOE=;(3)若∠AOB=m,当射线OC在∠AOB外绕O点旋转时,画出图形,判断∠DOE的大小否发生变化若变化,说明理由;若不变,求∠DOE的度数.(用含m的代数式表示)7.已知:∠AOB=140°,OC, OM,ON是∠AOB内的射线.(1)如图1所示,若OM平分∠BOC,ON平分∠AOC,求∠MON的度数:(2)如图2所示,OD也是∠AOB内的射线,∠COD=15°,ON平分∠AOD,OM平分∠BOC.当∠COD绕点O在∠AOB内旋转时,∠MON的位置也会变化但大小保持不变,请求出∠MON 的大小;(3)在(2)的条件下,以∠AOC=20°为起始位置(如图3),当∠COD在∠AOB内绕点O以每秒3°的速度逆时针旋转t秒,若∠AON:∠BOM=19:12,求t的值.8.已知O是直线AB上的一点,∠COD=90°,OE平分∠BOC.(1)如图①,若∠AOC=36°,求∠DOE的度数;(2)在图①中,若∠AOC=α,直接写出∠DOE的度数(用含α的代数式表示);(3)将图①中的∠COD绕顶点O顺时针旋转至图②的位置探究∠AOC和∠DOE的度数之间的关系,写出你的结论,并说明理由.9.已知∠AOB=160°,∠COE=80°,OF平分∠AOE.(1)如图1,若∠COF=14°,求∠BOE的度数.(2)当射线OE绕点O逆时针旋转到如图2的位置时,探究∠BOE与∠COF的数量关系,并说明理由.(3)在(2)的条件下,如图3,在∠BOE的内部是否存在一条射线OD,使得∠BOD=90°,且∠DOF=3∠DOE?若存在,请求出∠COF的度数;若不存在,请说明理由.10.如图1,点O为直线AB上一点,过点O作射线OC,将一直角的直角顶点放在点O处,即∠MON,反向延长射线ON,得到射线OD.(1)当∠MON的位置如图(1)所示时,使∠NOB=20°,若∠BOC=120°,求∠COD的度数.(2)当∠MON的位置如图(2)所示时,使一边OM在∠BOC的内部,且恰好平分∠BOC,问:射线ON的反向延长线OD是否平分∠AOC?请说明理由;注意:不能用问题(1)中的条件(3)当∠MON的位置如图(3)所示时,射线ON在∠AOC的内部,若∠BOC=120°.试探究∠AOM与∠NOC之间的数量关系,不需要证明,直接写出结论.11.如图①,已知∠AOB=80°,OC是∠AOB内的一条射线,OD,OE分别平分∠BOC和∠COA.(1)求∠DOE的度数;(2)当射线OC绕点O旋转到OB的左侧时如图②(或旋转到OA的右侧时如图③),OD,OE仍是∠BOC和∠COA的平分线,此时∠DOE的大小是否和(1)中的答案相同?若相同,请选取一种情况写出你的求解过程;若不相同,请说明理由.12.已知A,O, B三点在同一条直线上,OD平分∠AOC,OE平分∠BOC.(1)若∠AOC=90°,如图1,则∠DOE=°;(2)若∠AOC=50°,如图2,求∠DOE的度数;(3)由上面的计算,你认为∠DOE=°;(4)若∠AOC=α,(0°<α<180°)如图3,求∠DOE的度数.13.根据阅读材料,回答问题.材料:如图所示,有公共端点(O)的两条射线组成的图形叫做角(∠AOB).如果一条射线(OC)把一个角(∠AOB)分成两个相等的角(∠AOC和∠B OC),这条射线(OC)叫做这个角的平分线.这时,∠AOC=∠BOC=∠AOB(或2∠AOC=2∠BOC=∠AOB).问题:平面内一定点A在直线MN的上方,点O为直线MN上一动点,作射线OA,OP,OA′.当点O在直线MN上运动时,始终保持∠MOP=90°,∠AOP=∠A′OP,将射线OA绕点O 顺时针旋转60°得到射线OB.(1)如图1,当点O运动到使点A在射线OP的左侧时,若OB平分∠A′OP,求∠AOP 的度数;(2)当点O运动到使点A在射线OP的左侧,∠AOM=3∠A′OB时,求∠AOP的值;(3)当点O运动到某一时刻时,∠A′OB=150°,直接写出此时∠BOP的度数.14.如图,已知∠AOC=∠BOD=120°,∠BOC=∠AOD.(1)求∠AOD的度数;(2)若射线OB绕点O以每秒旋转20°的速度顺时针旋转,同时射线OC以每秒旋转15°的速度逆时针旋转,设旋转的时间为t秒(0<t<6),试求当∠BOC=20°时t的值;(3)若∠AOB绕点O以每秒旋转5°的速度逆时针旋转,同时∠COD绕点O以每秒旋转10°的速度逆时针旋转,设旋转的时间为t秒(0<t<18),OM平分∠AOC,ON平分∠BOD,在旋转的过程中,∠MON的度数是否发生改变?若不变,求出其值:若改变,说明理由.15.已知∠AOD=160°,OB、OC、OM、ON是∠AOD内的射线.(1)如图1,若OM平分∠AOB,ON平分∠BOD.当OB绕点O在∠AOD内旋转时,求∠MON 的大小;(2)如图2,若∠BOC=20°,OM平分∠AOC,ON平分∠BOD.当∠BOC绕点O在∠AOD 内旋转时,求∠MON的大小;(3)在(2)的条件下,若∠AOB=10°,当∠BOC在∠AOD内绕着点O以2度/秒的速度逆时针旋转t秒时,∠AOM=∠DON.求t的值.参考答案1.(1)解:∵∠COE=90°,∠AOC=38°,∴∠BOE=180°﹣90°﹣38°=52°,∠AOE=90°+38°=128°,…(2分)∵OF平分∠AOE,∴∠AOF=64°,…(4分)∴∠COF=64°﹣38°=26°;…(6分)∴∠BOE=2∠COF…(7分)(2)成立;∠BOE=2∠COF,理由如下:∵∠COE=90°,∠AOC=38°,∴∠AOE=90°﹣38°=52°,…(8分)∴∠BOE=180°﹣52°=128°,…(10分)∵OF平分∠AOE,∴∠AOF=∠AOE=26°,…(12分).∴∠COF=38°+26°=64°;∴∠BOE=2∠COF…(13分)2.(1)∵∠AOC=45°,∠COF=35°∴∠AOF=∠AOC+∠COF=80°∵OF平分∠AOE,∴∠AOE=2∠AOF=160°∵∠AOB是平角∴∠AOB=180°∴∠BOE=∠AOB﹣∠AOE=20°答:∠EOB的度数是20°.( 2)∠AOE=180°﹣40°=140°∵OF平分∠AOE,∴∠AOF=∠AOE=70°∴∠COF=∠AOF﹣∠AOC=70°﹣45°=25°答:∠COF的度数是25°.( 3)∠EOB+2∠COF=90°,理由如下:设∠COF=α,∠BOE=β∵∠AOB是平角,∴∠AOE=180°﹣β∵OF平分∠AOE,∴2∠AOF=∠AOE=180°﹣β∴2α=2∠COF=2(∠AOF﹣∠AOC)=2∠AOF﹣2∠AOC=180°﹣β﹣2×45°=90°﹣β∴2α+β=90°即∠EOB+2∠COF=90°3.解:(1)∵∠ACD=∠ECB=90°,∠DCE=35°,∴∠ACB=180°﹣35°=145°.∵∠ACD=∠ECB=90°,∠ACB=140°,∴∠DCE=180°﹣140°=40°.故答案为:145°,40°;(2)∠ACB+∠DCE=180°或互补,理由:∵∠ACE+∠ECD+∠DCB+∠ECD=180.∵∠ACE+∠ECD+∠DCB=∠ACB,∴∠ACB+∠DCE=180°,即∠ACB与∠DCE互补.(3)①当∠ACB是∠DCE的4倍,∴设∠ACB=4x,∠DCE=x,∵∠ACB+∠DCE=180°,∴4x+x=180°解得:x=36°,∴α=90°﹣36°=54°;②设当∠DCE=21°时,转动了t秒,∵∠BCD+∠DCE=90°,∴3t+21=90,t=23°,答:当∠DCE=21°时,转动了23秒.4.解:(1)补全图形如图1所示;解题思路如下:①由∠AOC+∠BOC=180°,∠AOC=50°,得∠BOC=130°;②由OE平分∠BOC,得∠COE=65°;③由OD⊥OC,得∠COD=90°;④由∠COD=90°,∠COE=65°,得∠DOE=25°;(2)补全图形如图2所示;∵∠AOC=α,∴∠BOC=180°﹣α,∵射线OE平分∠BOC,∴∠COE=BOC=90°﹣,∵∠COD=90°,∴∠DOE=90°﹣∠COE=;(3)如图1,∠DOE=∠AOC,如图2∠DOE=180°∠AOC,故∠AOC与∠DOE之间的数量关系为∠DOE=∠AOC或∠DOE=180°∠AOC.5.解:(1)∵∠COD=90°,∴∠AOC+∠BOD=90°,∵OE为∠AOC的角平分线,OF平分∠BOD,∴∠EOC=∠AOC,∠DOF=∠BOD,∴∠EOF=∠COD+∠EOC+∠DOF=90°+(∠AOC+∠BOD)=90°+×90°=135°,故答案为:135;(2)∵∠COD=90°,∴∠COE+∠EOD=90°,∴∠EOD=90°﹣∠COE,∵OE为∠AOD的角平分线,∴∠AOD=2∠EOD=2(90°﹣∠COE)=180°﹣2∠COE,∵∠BOD+∠AOD=180°,∴∠BOD=180°﹣∠AOD=180°﹣180°+2∠COE=2∠COE;(3)①如图3所示时,∵∠COD=90°,OF平分∠COD,∴∠COF=∠EOC+∠EOF=45°,∵∠EOC=3∠EOF,∴4∠EOF=45°,∴∠EOF=11.25°,∴∠EOC=33.75°,∵OC为∠AOE的角平分线,∴∠AOE=2∠EOC=67.5°;②如图4所示时,∵∠COD=90°,OF平分∠COD,∴∠COF=45°,∵∠EOC=3∠EOF,∴∠COF=2∠EOF=45°,∴∠EOF=22.5°,∴∠COE=45°+22.5°=67.5°,∵OC为∠AOE的角平分线,∴∠AOE=2∠COE=135°;综上所述,∠AOE的度数为67.5°或135°.6.解:(1)∵∠AOB=100°,∠BOC=60°,∴∠AOC=40°∵OD、OE分别平分∠AOC和∠BOC,∴∠COE=∠COB=30°,∠COD=∠AOC=20°,∴∠DOE=50°;故答案是:50;(2)∵当∠BOC=α时,理由:∠DOE=∠DOC+∠COE=∠COB+∠AOC=(∠COB+∠AOC)=∠AOB=50°;故答案是:50°;(3)∠DOE的大小发生变化,∠DOE=m或180°﹣m.如图①,∠DOE=m;理由:∠DOE=∠DOC﹣∠COE=∠AOC﹣∠COB=(∠AOC﹣∠COB)=∠AOB=m;如图②,∠DOE=180°﹣m.理由:∠DOE=∠DOC+∠COE=∠AOC+∠COB=(∠AOC+∠COB)=(360°﹣∠AOB)=180°﹣m.7.解:(1)∵ON平分∠AOC,OM平分∠BOC,∴∠CON=∠AOC,∠COM=∠BOC∠MON=∠CON+∠COM=(∠AOC+∠BOC)=∠AOB又∠AOB=140°∴∠MON=70°答:∠MON的度数为70°.(2)∵OM平分∠BOC,ON平分∠AOD,∴∠COM=∠BOC,∠DON=∠AOD即∠MON=∠COM+∠DON﹣∠COD=∠BOC+∠AOD﹣∠COD=(∠BOC+∠AOD)﹣∠COD.=(∠BOC+∠AOC+∠COD)﹣∠COD=(∠AOB+∠COD)﹣∠COD=(140°+15°)﹣15°=62.5°答:∠MON的度数为62.5°.(3)∠AON=(20°+3t+15°),∠BOM=(140°﹣20°﹣3t)又∠AON:∠BOM=19:12,12(35°+3t)=19(120°﹣3t)得t=20答:t的值为20.8.解:(1)由题意得:∠BOC=180°﹣∠AOC=180°﹣36°=144°,∵OE平分∠BOC,∴∠COE=∠BOC=×144°=72°,∵∠COD=90°,∴∠DOE=∠COD﹣∠COE=90°﹣72°=18°;(2)由题意得:∠BOC=180°﹣∠AOC=180°﹣α,∵OE平分∠BOC,∴∠COE=∠BOC=×(180°﹣α)=90°﹣α,∵∠COD=90°,∴∠DOE=∠COD﹣∠COE=90°﹣(90°﹣α)=α;(3)∠AOC=2∠DOE,理由如下:∵∠COD=90°,∴∠COE=90°﹣∠DOE,∵OE平分∠BOC,∴∠BOC=2∠COE=2(90°﹣∠DOE),∴∠AOC=180°﹣∠BOC=180°﹣2(90°﹣∠DOE)=2∠DOE.9.解:(1)∵OF平分∠AOE,∴∠AOE=2∠EOF,∵∠AOE=∠AOB﹣∠BOE,∴2∠EOF=∠AOB﹣∠BOE,∴2(∠COE﹣∠COF)=∠AOB﹣∠BOE,∵∠AOB=160°,∠COE=80°,∴160°﹣2∠COF=160°﹣∠BOE,∴∠BOE=2∠COF,若∠COF=14°时,∠BOE=28°;(2)∠BOE=2∠COF,理由如下:∵OF平分∠AOE,∴∠AOE=2∠EOF,∵∠AOE=∠AOB﹣∠BOE,∴2∠EOF=∠AOB﹣∠BOE,∴2(∠COE﹣∠COF)=∠AOB﹣∠BOE,∵∠AOB=160°,∠COE=80°,∴160°﹣2∠COF=160°﹣∠BOE,∴∠BOE=2∠COF,(3)存在,理由如下:设∠AOF=∠EOF=2x,∵∠DOF=3∠DOE,∴∠DOE=x,∵∠BOD=90°,∴2x+2x+x+90°=160°,解得:x=14°,∴∠BOE=90°+x=104°,∴∠COF=×104°=52°,∴在∠BOE的内部存在一条射线OD,使得∠BOD=90°,且∠DOF=3∠DOE.10.解:(1)∵∠AOB=180°,∠NOB=20°,∠BOC=120°,∴∠COD=∠AOB﹣∠NOB﹣∠BOC=180°﹣20°﹣120°=40°,∴∠COD为40°;(2)OD平分∠AOC,理由如下:∵∠MON=90°,∴∠DOM=180°﹣∠MON=180°﹣90°=90°,∴∠DOC+∠MOC=∠MOB+∠BON=90°,∵OM平分∠BOC,∴∠MOC=∠MOB,∴∠DOC=∠BON,∵∠BON+∠AON=∠AON+∠AOD=180°∴∠BON=∠AOD,又∵∠BON=∠COD,∴∠COD=∠AOD,∴OD平分∠AOC;(3)∵∠BOC=120°,∴∠AOC=180°﹣∠BOC=60°,∵∠MON=90°,∴∠MON﹣∠AOC=30°,∴(∠MON﹣∠AON)﹣(∠AOC﹣∠AON)=30°,即∠AOM﹣∠NOC=30°.11.解:(1)∵OD,OE分别是∠BOC和∠COA的平分线,∴∠COD=∠BOC,∠COE=∠COA,∴∠DOE=∠COD+∠COE=∠BOC+∠AOC=∠AOB=40°;(2)∠DOE的大小与(1)中答案相同,仍为40°,选图②说明,理由如下:∠DOE=∠COE﹣∠COD=∠AOC﹣∠BOC=(∠AOC﹣∠BOC)=∠AOB=40°.12.解:(1)∵A,O,B三点在同一条直线上,∴∠AOB=180°,∵∠AOC=90°,∴∠BOC=90°,∵OD平分∠AOC,OE平分∠BOC,∴∠DOC=∠AOC=45°,∠COE=∠BOC=45°,∴∠DOE=∠DOC+∠COE=45°+45°=90°,故答案为:90;(2)∵∠AOC=50°,∴∠BOC=180°﹣50°=130°,同(1)得:∠DOC=∠AOC=25°,∠COE=∠BOC=65°,∴∠DOE=∠DOC+∠COE=25°+65°=90°;(3)由上面的计算,∠DOE=90°,故答案为:90;(4)∵∠AOB=180,∴∠BOC=180°﹣α,同(1)得:∠DOC=∠AOC=α,∠COE=∠BOC=(180°﹣α)=90°﹣α,∴∠DOE=∠DOC+∠COE=α+90°﹣α=90°.13.解:(1)设∠AOP的度数为x,由题意可知:∠A′OP=x,∠POB=60°﹣x因为OB平分∠A′OP,所以2∠POB=∠A′OP,所以2(60°﹣x)=x解得,x=40.答:∠AOP的度数为40°.(2)①如图2,当射线OB在∠A′OP内部时,设∠AOP的度数为y,由题意可知:∠A′OP=y,∠POB=60°﹣y,∵∠MOP=90°,∴∠AOM=90°﹣y,∵∠AOM=3∠A′OB,∴∠A′OB=(90°﹣y),∵∠A′OB+∠POB=∠A′OP,∴(90°﹣y)+(60°﹣y)=y,解得,y=;②如图3,当射线OB在∠A′OP外部时,设∠AOP的度数为y,由题意可知:∠A′OP=y,∠POB=60°﹣y,∵∠MOP=90°,∴∠AOM=90°﹣y,∵∠AOM=3∠A′OB,∴∠A′OB=(90°﹣y),∵∠AOP+∠A′OP+∠A′OB=60°,∴y+y+(90°﹣y)=60°,解得,y=18°.答;∠AOP的值为或18°.(3)如图4,当∠A′OB=150°时,由图可得:∠A′OA=∠A′OB﹣∠AOB=150°﹣60°=90°,又∵∠AOP=∠A′OP,∴∠AOP=45°,∴∠BOP=60°+45°=105°;如图5,当∠A′OB=150°时,由图可得:∠A′OA=360°﹣150°﹣60°=150°,又∵∠AOP=∠A′OP,∴∠AOP=75°,∴∠BOP=60°+75°=135°;当射线OP在MN下面时,∠BOP=75°或45°.综上所述:∠BOP的度数为105°或135°或75°或45°.14.解:如图所示:(1)设∠AOD=5x°,∵∠BOC=∠AOD∴∠BOC=•5x°=3x°又∵∠AOC=∠AOB+∠BOC,∠BOD=∠DOC+∠BOC,∠AOD=∠AOB+∠BOC+∠DOC,∴∠AOC+∠BOD=∠AOD+∠BOC,又∵∠AOC=∠BOD=120°,∴5x+3x=240解得:x=30°∴∠AOD=150°;(2)∵∠AOD=150°,∠BOC=∠AOD,∴∠BOC=90°,①若线段OB、OC重合前相差20°,则有:20t+15t+20=90,解得:t=2,②若线段OB、OC重合后相差20°,则有:20t+15t﹣90=20解得:,又∵0<t<6,∴t=2或t=;(3)∠MON的度数不会发生改变,∠MON=30°,理由如下:∵旋转t秒后,∠AOD=150°﹣5t°,∠AOC=120°﹣5t°,∠BOD=120°﹣5t°∵OM、ON分别平分∠AOC、∠BOD∴∠AOM=∠AOC=,∠DON==∴∠MON=∠AOD﹣∠AOM﹣∠DON=150°﹣5t°﹣﹣=30°.15.解:(1)因为∠AOD=160°,OM平分∠AOB,ON平分∠BOD,所以∠MOB=∠AOB,∠BON=∠BOD,即∠MON=∠MOB+∠BON=∠AOB∠BOD=(∠AOB+∠BOD)=∠AOD=80°,答:∠MON的度数为80°;(2)因为OM平分∠AOC,ON平分∠BOD,所以∠MOC=∠AOC,∠BON=∠BOD,①射线OC在OB左侧时,如图:∠MON=∠MOC+∠BON﹣∠BOC=∠AOC∠BOD﹣∠BOC=(∠AOC+∠BOD)﹣∠BOC=(∠AOD+∠BOC)﹣∠BOC=×180°﹣20°=70°;②射线OC在OB右侧时,如图:∠MON=∠MOC+∠BON+∠BOC=∠AOC∠BOD+∠BOC=(∠AOC+∠BOD)+∠BOC=(∠AOD﹣∠BOC)+∠BOC=×140°+20°=90°;答:∠MON的度数为70°或90°.(3)∵射线OB从OA逆时针以2°每秒的速度旋转t秒,∠COB=20°,∴根据(2)中的第一种情况,得∠AOC=∠AOB+∠COB=2t°+10°+20°=2t°+30°.∵射线OM平分∠AOC,∴∠AOM=∠AOC=t°+15°.∵∠BOD=∠AOD﹣∠BOA,∠AOD=160°,∴∠BOD=150°﹣2t°.∵射线ON平分∠BOD,∴∠DON=∠BOD=75°﹣t°.又∵∠AOM:∠DON=2:3,∴(t+15):(75﹣t)=2:3,解得t=21.根据(2)中的第二种情况,观察图形可知:这种情况不可能存在∠AOB=10°.答:t的值为21秒.。
初中数学 图形的变换(知识点总结及练习)
图形的变换一、平移1.定义:把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同,图形的这种移动叫做平移变换,简称平移。
2.性质:(1)平移不改变图形的大小和形状,但图形上的每个点都沿同一方向进行了移动。
(2)连接各组对应点的线段平行(或在同一直线上)且相等。
二、轴对称1.定义:把一个图形沿着某条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线成轴对称,该直线叫做对称轴。
2.性质:(1)关于某条直线对称的两个图形是全等形。
(2)如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线。
(3)两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上。
3.判定:如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。
三、旋转1.定义:把一个图形绕某一点O转动一个角度的图形变换叫做旋转,其中O叫做旋转中心,转动的角叫做旋转角。
2.性质:(1)对应点到旋转中心的距离相等。
(2)对应点与旋转中心所连线段的夹角等于旋转角。
四、中心对称1.定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。
2.性质:(1)关于中心对称的两个图形是全等形。
(2)关于中心对称的两个图形,对称点连线都过对称中心,并且被对称中心平分。
(3)关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等。
3.判定:如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。
五、坐标系中对称点的特征1.两个点关于原点对称时,它们的坐标的符号相反,即点P(x,y)关于原点的对称点为P’(-x,-y)2.关于x轴对称的点的特征两个点关于x轴对称时,它们的坐标中,x相等,y的符号相反,即点P(x,y)关于x轴的对称点为P’(x,-y)3.两个点关于y轴对称时,它们的坐标中,y相等,x的符号相反,即点P(x,y)关于y轴的对称点为P’(-x,y)一、选择题1.在图形的平移中,下列说法中错误的是()A.图形上任意点移动的方向相同;B.图形上任意点移动的距离相同C.图形上可能存在不动点;D.图形上任意对应点的连线长相等2.如图所示图形中,是由一个矩形沿顺时针方向旋转90°后所形成的图形的是()A.(1)(4)B.(2)(3)C.(1)(2)D.(2)(4)第4题图3.在旋转过程中,确定一个三角形旋转的位置所需的条件是()①三角形原来的位置;②旋转中心;③三角形的形状;④旋转角.A.①②④B.①②③C.②③④D.①③④4.如图,O是正六边形ABCDEF的中心,下列图形中可由△OBC平移得到的是()A.△COD B.△OAB C.△OAF D.△OEF5.下列说法正确的是()A.分别在△ABC的边AB、AC的反向延长线上取点D、E,使DE∥BC,则△ADE是△ABC放大后的图形;B.两个位似图形的面积比等于位似比;C.位似多边形中对应对角线之比等于位似比;D.位似图形的周长之比等于位似比的平方6.下面选项中既是中心对称图形又是轴对称图形的是()A.等边三角形B.等腰梯形C.五角星D.菱形7.下列图形中对称轴的条数多于两条的是()A.等腰三角形B.矩形C.菱形D.等边三角形8.在如图所示的四个图案中既包含图形的旋转,又有图形的轴对称设计的是()9.钟表上2时15分,时针与分针的夹角是()A.30°B.45°C.22.5°D.15°二、填空题10.一个正三角形至少绕其中心旋转________度,就能与本身重合,一个正六边形至少绕其中心旋转________度,就能与其自身重合.11.如图,可以看作是由一个三角形通过_______次旋转得到的,每次分别旋转了__________.12.如图,在梯形ABCD中,将AB平移至DE处,则四边形ABED是_______四边形.13.已知等边△ABC,以点A为旋转中心,将△ABC旋转60°,这时得到的图形应是一个_______,且它的最大内角是______度.14.如果两个位似图形的对应线段长分别为3cm和5cm,且较小图形的周长为30cm,则较大图形周长为________.15.将如左图所示,放置的一个Rt△ABC(∠C=90°)绕斜边AB旋转一周,所得到的几何体的主视图是右图所示四个图形中的_______(只填序号).16.如图,一张矩形纸片,要折叠出一个最大的正方形纸,小明把矩形的一个角沿折痕翻折上去,使AB边和AD边上的AF重合,则四边形ABEF就是一个最大的正方形,他的判定方法是_______第16题图第17题图17.如图,有一腰长为5cm,底边长为4cm的等腰三角形纸片,•沿着底边上的中线将纸片剪开,得到两个全等的直角三角形纸片,用这两个直角三角形纸片拼成的平面图形中有_______个不同的四边形.三、解答题18.如图,平移图中的平行四边形ABCD使点A移动至E点,作出平移后的图形.19.如图,作出Rt△ABC绕点C顺时针旋转90°、180°、270°后的图案,看看得到的图案是什么?20.如图,P是正方形内一点,将△ABP绕点B顺时针方向旋转能与△CBP′重合,若BP=3,求PP′.21.如图所示,四边形ABCD是正方形,E点在边DE上,F点在线段CB•的延长线上,且∠EAF=90°.(1)试证明:△ADE≌△ABF.(2)△ADE可以通过平移、翻转、旋转中的哪种方法到△ABF的位置.(3)指出线段AE与AF之间的关系.22.如图,在直角梯形ABCD中,AD∥BC,CD⊥BC,E为BC边上的点,将直角梯形ABCD沿对角线BD 折叠,使△ABD与△EBD重合(如图中的阴影部分).若∠A=120°,•AB=4cm,求梯形ABCD的高CD.23.如图,正方形ABCD内一点P,使得PA:PB:PC=1:2:3,请利用旋转知识,•证明∠APB=135°.(提示:将△ABP绕点B顺时针旋转90°至△BCP′,连结PP′)。
2020中考数学一轮复习练习九(图形的认识)(无答案) 鲁教版
(图形的认识)命题方向:这部分内容涉及的知识点多,包括初中阶段平面几何所有相关的概念、定理、定义,是几何学的基础,每年中考题的必考内容,题型涉及面广。
备考攻略:掌握这部分内容需熟记、理解各种图噶尔相关概念、定义,理解定理,尤其是在解答文字叙述没有给出图形的几何题时,要考虑图形是否唯一,应画出全部符合条件的图形来,否则会丢解。
巩固练习:1.如图所示,用量角器度量∠AOB,可以读出∠AOB的度数为()A.45° B.55° C.125°D.135°2.如图,直线A B,CD交于点O,射线OM平分∠AOC,若∠BOD=76°,则∠BOM等于()A.38° B.104°C.142°D.144°3.如图,直线l1,l2,l3交于一点,直线l4∥l1,若∠1=124°,∠2=88°,则∠3的度数为()(A.26° B.36° C.46° D.56°4.如图,直线a,b被直线c所截,a∥b,∠1=∠2,若∠3=40°,则∠4等于()A.40°B.50°C.70°D.80°5.下面是“经过已知直线外一点作这条直线的垂线”的尺规作图过程:已知:直线l和l外一点P.(如图1)求作:直线l的垂线,使它经过点P.作法:如图2(1)在直线l上任取两点A,B;(2)分别以点A,B为圆心,AP,BP长为半径作弧,两弧相交于点Q;(3)作直线PQ.所以直线PQ就是所求的垂线.请回答:该作图的依据是.6.阅读下面材料:在数学课上,老师提出如下问题:小芸的作法如下:老师说:“小芸的作法正确.”请回答:小芸的作图依据是.(7.如图是某个几何体的三视图,该几何体是()A.圆锥 B.三棱锥C.圆柱 D.三棱柱8.如图是几何体的三视图,该几何体是()A.圆锥 B.圆柱 C.正三棱柱 D.正三棱锥9.如图是某个几何体的三视图,该几何体是()(A.长方体B.正方体C.圆柱 D.三棱柱1091.若下图是某几何体的表面展开图,则这个几何体是.(11.如图,小军、小珠之间的距离为2.7m,他们在同一盏路灯下的影长分别为1.8m,1.5m,已知小军、小珠的身高分别为1.8m,1.5m,则路灯的高为m.。
鲁教版中考数学试卷真题
一、选择题(每题3分,共30分)1. 下列各组数中,互为相反数的是()A. 2和-3B. -2和3C. 0和-0D. 1和-12. 若a、b、c为等差数列,且a+b+c=0,则下列选项中正确的是()A. a=0,b=0,c=0B. a=0,b≠0,c≠0C. a≠0,b=0,c≠0D. a≠0,b≠0,c=03. 若x=2是方程2x^2-3x+1=0的解,则x^2+2x-3=()A. 1B. 2C. 3D. 44. 下列各式中,表示直角三角形的是()A. a^2+b^2=c^2B. a^2-b^2=c^2C. a^2+2ab=c^2D. a^2-2ab=c^25. 若一个长方体的长、宽、高分别为2cm、3cm、4cm,则它的体积是()A. 12cm^3B. 24cm^3C. 36cm^3D. 48cm^36. 下列函数中,图象为一条直线的是()A. y=x^2B. y=2x+1C. y=|x|D. y=x^37. 若一个圆的半径为r,则它的直径是()A. 2rB. 3rC. 4rD. 5r8. 下列选项中,能被4整除的是()A. 18B. 24C. 30D. 369. 若a、b、c、d为四边形ABCD的四个顶点,且a+b+c+d=0,则四边形ABCD是()A. 平行四边形B. 矩形C. 菱形D. 梯形10. 若一个数的平方根是±2,则这个数是()A. 4B. -4C. 2D. -2二、填空题(每题3分,共30分)11. 若a、b、c、d为等差数列,且a+b+c+d=20,则b=()12. 若一个数的平方根是±3,则这个数的立方根是()13. 若一个长方体的长、宽、高分别为3cm、4cm、5cm,则它的体积是()14. 若一个圆的半径为5cm,则它的周长是()15. 若一个数的平方根是±5,则这个数是()16. 若a、b、c、d为四边形ABCD的四个顶点,且a+b+c+d=0,则四边形ABCD是()17. 若一个圆的半径为7cm,则它的直径是()18. 若一个数的平方根是±7,则这个数的立方根是()19. 若a、b、c、d为等差数列,且a+b+c+d=24,则b=()20. 若一个圆的半径为9cm,则它的周长是()三、解答题(每题15分,共60分)21. 解下列方程:(1)3x-2=5(2)2(x+3)=722. 已知a、b、c、d为等差数列,且a+b+c+d=24,求b的值。
2019年、2020年山东省中考试题分类数学(12)——图形的变换(含答案)
2019年、2020年山东省数学中考试题分类(12)——图形的变换一.轴对称图形(共2小题)1.(2020•淄博)下列图形中,不是轴对称图形的是()A.B.C.D.2.(2019•东营)下列图形中,是轴对称图形的是()A.B.C.D.二.关于x轴、y轴对称的点的坐标(共1小题)3.(2020•菏泽)在平面直角坐标系中,将点P(﹣3,2)向右平移3个单位得到点P',则点P'关于x轴的对称点的坐标为()A.(0,﹣2)B.(0,2)C.(﹣6,2)D.(﹣6,﹣2)三.轴对称-最短路线问题(共1小题)4.(2020•潍坊)如图,在Rt△AOB中,∠AOB=90°,OA=3,OB=4,以点O为圆心,2为半径的圆与OB交于点C,过点C作CD⊥OB交AB于点D,点P是边OA上的动点.当PC+PD最小时,OP的长为()A .12B .34C .1D .32 四.翻折变换(折叠问题)(共5小题)5.(2020•烟台)如图,在矩形ABCD 中,点E 在DC 上,将矩形沿AE 折叠,使点D 落在BC 边上的点F 处.若AB =3,BC =5,则tan ∠DAE 的值为( )A .12B .920C .25D .13 6.(2020•青岛)如图,将矩形ABCD 折叠,使点C 和点A 重合,折痕为EF ,EF 与AC 交于点O .若AE =5,BF =3,则AO 的长为( )A .√5B .32√5C .2√5D .4√57.(2020•枣庄)如图,在矩形纸片ABCD 中,AB =3,点E 在边BC 上,将△ABE 沿直线AE 折叠,点B 恰好落在对角线AC 上的点F 处,若∠EAC =∠ECA ,则AC 的长是( )A .3√3B .4C .5D .68.(2020•滨州)如图,对折矩形纸片ABCD ,使AD 与BC 重合,得到折痕EF ,把纸片展平后再次折叠,使点A 落在EF 上的点A ′处,得到折痕BM ,BM 与EF 相交于点N .若直线BA ′交直线CD 于点O ,BC =5,EN =1,则OD 的长为( )A .12√3B .13√3C .14√3D .15√39.(2020•威海)如图,四边形ABCD 是一张正方形纸片,其面积为25cm 2.分别在边AB ,BC ,CD ,DA 上顺次截取AE =BF =CG =DH =acm (AE >BE ),连接EF ,FG ,GH ,HE .分别以EF ,FG ,GH ,HE 为轴将纸片向内翻折,得到四边形A 1B 1C 1D 1.若四边形A 1B 1C 1D 1的面积为9cm 2,则a = .五.图形的剪拼(共1小题)10.(2020•烟台)七巧板是我们祖先的一项创造,被誉为“东方魔板”.在一次数学活动课上,小明用边长为4cm 的正方形纸片制作了如图所示的七巧板,并设计了下列四幅作品﹣﹣“奔跑者”,其中阴影部分的面积为5cm 2的是( )A .B .C .D .六.旋转的性质(共1小题)11.(2020•菏泽)如图,将△ABC 绕点A 顺时针旋转角α,得到△ADE ,若点E 恰好在CB 的延长线上,则∠BED 等于( )A .α2B .23αC .αD .180°﹣α七.中心对称图形(共7小题)12.(2020•潍坊)下列图形,既是中心对称图形又是轴对称图形的是( )A .B .C .D .13.(2020•烟台)下列关于数字变换的图案中,是中心对称图形但不是轴对称图形的是() A . B . C . D .14.(2020•青岛)下列四个图形中,中心对称图形是( )A .B .C.D.15.(2020•临沂)下列交通标志中,是中心对称图形的是()A.B.C.D.16.(2020•德州)下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.17.(2020•滨州)下列图形:线段、等边三角形、平行四边形、圆,其中既是轴对称图形,又是中心对称图形的个数为()A.1B.2C.3D.4 18.(2019•莱芜区)下列图形中,既是中心对称,又是轴对称的是()A.B.C.D.八.坐标与图形变化-旋转(共3小题)19.(2020•青岛)如图,将△ABC先向上平移1个单位,再绕点P按逆时针方向旋转90°,得到△A′B′C′,则点A的对应点A′的坐标是()A.(0,4)B.(2,﹣2)C.(3,﹣2)D.(﹣1,4)20.(2020•枣庄)如图,平面直角坐标系中,点B在第一象限,点A在x轴的正半轴上,∠AOB=∠B=30°,OA=2.将△AOB绕点O逆时针旋转90°,点B的对应点B'的坐标是()A.(−√3,3)B.(﹣3,√3)C.(−√3,2+√3)D.(﹣1,2+√3)21.(2020•烟台)如图,已知点A(2,0),B(0,4),C(2,4),D(6,6),连接AB,CD,将线段AB绕着某一点旋转一定角度,使其与线段CD重合(点A与点C重合,点B与点D重合),则这个旋转中心的坐标为.九.利用旋转设计图案(共1小题)22.(2020•枣庄)如图的四个三角形中,不能由△ABC经过旋转或平移得到的是()A.B.C.D.一十.几何变换综合题(共1小题)23.(2020•东营)如图1,在等腰三角形ABC中,∠A=120°,AB=AC,点D、E分别在边AB、AC上,AD=AE,连接BE,点M、N、P分别为DE、BE、BC的中点.(1)观察猜想.图1中,线段NM、NP的数量关系是,∠MNP的大小为.(2)探究证明把△ADE绕点A顺时针方向旋转到如图2所示的位置,连接MP、BD、CE,判断△MNP 的形状,并说明理由;(3)拓展延伸把△ADE绕点A在平面内自由旋转,若AD=1,AB=3,请求出△MNP面积的最大值.一十一.相似三角形的判定与性质(共5小题)24.(2020•东营)如图,在正方形ABCD中,点P是AB上一动点(不与A、B重合),对角线AC、BD相交于点O,过点P分别作AC、BD的垂线,分别交AC、BD于点E、F,交AD 、BC 于点M 、N .下列结论:①△APE ≌△AME ;②PM +PN =AC ;③PE 2+PF 2=PO 2;④△POF ∽△BNF ;⑤点O 在M 、N 两点的连线上.其中正确的是( )A .①②③④B .①②③⑤C .①②③④⑤D .③④⑤ 25.(2020•潍坊)如图,点E 是▱ABCD 的边AD 上的一点,且DE AE =12,连接BE 并延长交CD 的延长线于点F ,若DE =3,DF =4,则▱ABCD 的周长为( )A .21B .28C .34D .4226.(2019•东营)如图,在正方形ABCD 中,点O 是对角线AC 、BD 的交点,过点O 作射线OM 、ON 分别交BC 、CD 于点E 、F ,且∠EOF =90°,OC 、EF 交于点G .给出下列结论:①△COE ≌△DOF ;②△OGE ∽△FGC ;③四边形CEOF 的面积为正方形ABCD 面积的14;④DF 2+BE 2=OG •OC .其中正确的是( )A.①②③④B.①②③C.①②④D.③④27.(2020•临沂)如图,在△ABC中,D、E为边AB的三等分点,EF∥DG∥AC,H为AF 与DG的交点.若AC=6,则DH=.28.(2020•济宁)如图,在四边形ABCD中,以AB为直径的半圆O经过点C,D.AC与BD相交于点E,CD2=CE•CA,分别延长AB,DC相交于点P,PB=BO,CD=2√2.则BO的长是.一十二.位似变换(共1小题)29.(2020•德州)在平面直角坐标系中,点A的坐标是(﹣2,1),以原点O为位似中心,把线段OA放大为原来的2倍,点A的对应点为A′.若点A'恰在某一反比例函数图象上,则该反比例函数解析式为.一十三.相似形综合题(共1小题)30.(2020•枣庄)在△ABC中,∠ACB=90°,CD是中线,AC=BC,一个以点D为顶点的45°角绕点D旋转,使角的两边分别与AC、BC的延长线相交,交点分别为点E、F,DF与AC交于点M,DE与BC交于点N.(1)如图1,若CE =CF ,求证:DE =DF ;(2)如图2,在∠EDF 绕点D 旋转的过程中,试证明CD 2=CE •CF 恒成立;(3)若CD =2,CF =√2,求DN 的长.一十四.计算器—三角函数(共1小题)31.(2020•淄博)已知sin A =0.9816,运用科学计算器求锐角A 时(在开机状态下),按下的第一个键是( )A .B .C .D . 一十五.解直角三角形(共2小题)32.(2020•聊城)如图,在4×5的正方形网格中,每个小正方形的边长都是1,△ABC 的顶点都在这些小正方形的顶点上,那么sin ∠ACB 的值为( )A .3√55B .√175C .35D .45 33.(2020•菏泽)如图,在△ABC 中,∠ACB =90°,点D 为AB 边的中点,连接CD ,若BC =4,CD =3,则cos ∠DCB 的值为 .一十六.解直角三角形的应用-仰角俯角问题(共6小题)34.(2019•日照)如图,甲乙两楼相距30米,乙楼高度为36米,自甲楼顶A 处看乙楼楼顶B处仰角为30°,则甲楼高度为()A.11米B.(36﹣15√3)米C.15√3米D.(36﹣10√3)米35.(2020•济宁)如图,小明在距离地面30米的P处测得A处的俯角为15°,B处的俯角为60°.若斜面坡度为1:√3,则斜坡AB的长是米.36.(2020•潍坊)某校“综合与实践”小组采用无人机辅助的方法测量一座桥的长度.如图,桥AB是水平并且笔直的,测量过程中,小组成员遥控无人机飞到桥AB的上方120米的点C处悬停,此时测得桥两端A,B两点的俯角分别为60°和45°,求桥AB的长度.37.(2020•威海)居家学习期间,小晴同学运用所学知识在自家阳台测对面大楼的高度.如图,她利用自制的测角仪测得该大楼顶部的仰角为45°,底部的俯角为38°;又用绳子测得测角仪距地面的高度AB为31.6m.求该大楼的高度(结果精确到0.1m).(参考数据:sin38°≈0.62,cos38°≈0.79,tan38°≈0.78)38.(2020•德州)如图,无人机在离地面60米的C处,观测楼房顶部B的俯角为30°,观测楼房底部A的俯角为60°,求楼房的高度.39.(2020•聊城)如图,小莹在数学综合实践活动中,利用所学的数学知识对某小区居民楼AB的高度进行测量,先测得居民楼AB与CD之间的距离AC为35m,后站在M点处测得居民楼CD的顶端D的仰角为45°,居民楼AB的顶端B的仰角为55°,已知居民楼CD的高度为16.6m,小莹的观测点N距地面1.6m.求居民楼AB的高度(精确到1m).(参考数据:sin55°≈0.82,cos55°≈0.57,tan55°≈l.43).一十七.解直角三角形的应用-方向角问题(共2小题)40.(2020•济宁)一条船从海岛A出发,以15海里/时的速度向正北航行,2小时后到达海岛B处.灯塔C在海岛A的北偏西42°方向上,在海岛B的北偏西84°方向上.则海岛B到灯塔C的距离是()A.15海里B.20海里C.30海里D.60海里41.(2019•济南)某数学社团开展实践性研究,在大明湖南门A测得历下亭C在北偏东37°方向,继续向北走105m后到达游船码头B,测得历下亭C在游船码头B的北偏东53°方向.请计算一下南门A与历下亭C之间的距离约为()(参考数据:tan37°≈3 4,tan53°≈4 3)A.225m B.275m C.300m D.315m 一十八.简单几何体的三视图(共1小题)42.(2020•威海)下列几何体的左视图和俯视图相同的是()A.B.C.D.一十九.简单组合体的三视图(共4小题)43.(2020•潍坊)将一个大正方体的一角截去一个小正方体,得到的几何体如图所示,则该几何体的左视图是()A.B.C.D.44.(2020•青岛)如图所示的几何体,其俯视图是()A.B.C.D.45.(2020•德州)如图1是用5个相同的正方体搭成的立体图形.若由图1变化至图2,则三视图中没有发生变化的是()A.主视图B.主视图和左视图C.主视图和俯视图D.左视图和俯视图46.(2019•烟台)如图所示的几何体是由9个大小相同的小正方体组成的,将小正方体①移走后,所得几何体的三视图没有发生变化的是()A.主视图和左视图B.主视图和俯视图C.左视图和俯视图D.主视图、左视图、俯视图二十.由三视图判断几何体(共4小题)47.(2020•烟台)如图,是一个几何体的三视图,则这个几何体是()A.B.C.D.48.(2020•菏泽)一个几何体由大小相同的小立方块搭成,它的俯视图如图所示,其中小正方形中的数字表示在该位置小立方块的个数,则该几何体的主视图为()A.B.C.D.49.(2020•临沂)根据图中三视图可知该几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱50.(2019•济南)以下给出的几何体中,主视图是矩形,俯视图是圆的是()A.B.C.D.2019年、2020年山东省数学中考试题分类(12)——图形的变换参考答案与试题解析一.轴对称图形(共2小题)1.【解答】解:A、是轴对称图形,故本选项不符合题意;B、是轴对称图形,故本选项不符合题意;C、是轴对称图形,故本选项不符合题意;D、不是轴对称图形,故本选项符合题意.故选:D.2.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选:D.二.关于x轴、y轴对称的点的坐标(共1小题)3.【解答】解:∵将点P(﹣3,2)向右平移3个单位得到点P',∴点P'的坐标是(0,2),∴点P'关于x轴的对称点的坐标是(0,﹣2).故选:A.三.轴对称-最短路线问题(共1小题)4.【解答】解:如图,延长CO交⊙O于点E,连接ED,交AO于点P,此时PC+PD的值最小.∵CD⊥OB,∴∠DCB=90°,又∠AOB=90°,∴∠DCB =∠AOB ,∴CD ∥AO∴BC BO =CD AO∵OC =2,OB =4,∴BC =2,∴24=CD 3,解得,CD =32; ∵CD ∥AO ,∴EO EC =PO DC ,即24=PO 32,解得,PO =34 故选:B .四.翻折变换(折叠问题)(共5小题)5.【解答】解:∵四边形ABCD 为矩形,∴AD =BC =5,AB =CD =3,∵矩形ABCD 沿直线AE 折叠,顶点D 恰好落在BC 边上的F 处,∴AF =AD =5,EF =DE ,在Rt △ABF 中,BF =√AF 2−AB 2=√25−9=4,∴CF =BC ﹣BF =5﹣4=1,设CE =x ,则DE =EF =3﹣x在Rt △ECF 中,∵CE 2+FC 2=EF 2,∴x 2+12=(3﹣x )2,解得x =43,∴DE =EF =3﹣x =53,∴tan ∠DAE =DE AD =535=13, 故选:D .6.【解答】解:∵矩形ABCD ,∴AD ∥BC ,AD =BC ,AB =CD ,∴∠EFC =∠AEF ,由折叠得,∠EFC =∠AFE ,∴∠AFE =∠AEF ,∴AE =AF =5,由折叠得,FC=AF,OA=OC,∴BC=3+5=8,在Rt△ABF中,AB=√52−32=4,在Rt△ABC中,AC=√42+82=4√5,∴OA=OC=2√5,故选:C.7.【解答】解:∵将△ABE沿直线AE折叠,点B恰好落在对角线AC上的点F处,∴AF=AB,∠AFE=∠B=90°,∴EF⊥AC,∵∠EAC=∠ECA,∴AE=CE,∴AF=CF,∴AC=2AB=6,故选:D.8.【解答】解一:∵EN=1,∴由中位线定理得AM=2,由折叠的性质可得A′M=2,∵AD∥EF,∴∠AMB=∠A′NM,∵∠AMB=∠A′MB,∴∠A′NM=∠A′MB,∴A′N=2,∴A′E=3,A′F=2过M点作MG⊥EF于G,∴NG=EN=1,∴A′G=1,由勾股定理得MG=√22−12=√3,∴BE=DF=MG=√3,∴OF:BE=2:3,解得OF=2√3 3,∴OD=√3−2√33=√33.故选:B.解二:连接AA'.∵EN=1,∴由中位线定理得AM=2,∵对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,∴A'A=A'B,∵把纸片展平后再次折叠,使点A落在EF上的点A′处,得到折痕BM,∴A'B=AB,∠ABM=∠A'BM,∴△ABA'为等边三角形,∴∠ABA′=∠BA′A=∠A′AB=60°,又∵∠ABC=∠BAM=90°,∴∠ABM=∠A'BM=∠A'BC=30°,∴BM=2AM=4,AB=√3AM=2√3=CD.在直角△OBC中,∵∠C=90°,∠OBC=30°,∴OC=BC•tan∠OBC=5×√33=5√33,∴OD=CD﹣OC=2√3−5√33=√33.故选:B.9.【解答】解:∵四边形ABCD是一张正方形纸片,其面积为25cm2,∴正方形纸片的边长为5cm,∵AE=BF=CG=DH=acm,∴BE=AH=(5﹣a)cm,又∠A=∠B=90°,∴△AHE≌△BEF(SAS),同理可得△AHE≌△BEF≌△DGH≌CFG,由折叠的性质可知,图中的八个小三角形全等.∵四边形A1B1C1D1的面积为9cm2,∴三角形AEH的面积为(25﹣9)÷8=2(cm2),12a(5﹣a)=2,解得a1=1(舍去),a2=4.故答案为:4.五.图形的剪拼(共1小题)10.【解答】解:最小的等腰直角三角形的面积=18×12×42=1(cm2),平行四边形面积为2cm2,中等的等腰直角三角形的面积为2cm2,最大的等腰直角三角形的面积为4cm2,则A、阴影部分的面积为2+2=4(cm2),不符合题意;B、阴影部分的面积为1+2=3(cm2),不符合题意;C、阴影部分的面积为4+2=6(cm2),不符合题意;D、阴影部分的面积为4+1=5(cm2),符合题意.故选:D.六.旋转的性质(共1小题)11.【解答】解:∵∠ABC=∠ADE,∠ABC+∠ABE=180°,∴∠ABE+∠ADE=180°,∴∠BAD+∠BED=180°,∵∠BAD=α,∴∠BED=180°﹣α.故选:D.七.中心对称图形(共7小题)12.【解答】解:A.不是轴对称图形,是中心对称图形,故此选项不符合题意;B.是轴对称图形,不是中心对称图形,故此选项不符合题意;C.是轴对称图形,也是中心对称图形,故此选项符合题意;D.是轴对称图形,不是中心对称图形,故此选项不符合题意;故选:C.13.【解答】解:A、是中心对称图形,不是轴对称图形,故此选项符合题意;B、不是中心对称图形,是轴对称图形,故此选项不符合题意;C、既不是中心对称图形,也不是轴对称图形,故此选项不符合题意;D、既是轴对称图形,也是中心对称图形,故此选项不符合题意.故选:A.14.【解答】解:A、不是中心对称图形,不符合题意;B、不是中心对称图形,不符合题意;C、不是中心对称图形,不符合题意;D、是中心对称图形,符合题意.故选:D.15.【解答】解:A、不是中心对称图形,不符合题意;B、是中心对称图形,符合题意;C、不是中心对称图形,不符合题意;D、不是中心对称图形,不符合题意.故选:B.16.【解答】解:A、不是轴对称图形,也不是中心对称图形.故此选项不合题意;B、是中心对称图形但不是轴对称图形.故此选项符合题意;C、既是轴对称图形,又是中心对称图形.故此选项不合题意;D、是轴对称图形,不是中心对称图形.故此选项不合题意.故选:B.17.【解答】解:线段是轴对称图形,也是中心对称图形;等边三角形是轴对称图形,不是中心对称图形;平行四边形不是轴对称图形,是中心对称图形;圆是轴对称图形,也是中心对称图形;则既是轴对称图形又是中心对称图形的有2个.故选:B.18.【解答】解:A、不是中心对称图形,也不是轴对称图形,故本选项错误;B、既是中心对称图形又是轴对称图形,故本选项正确;C、不是中心对称图形,是轴对称图形,故本选项错误;D、是中心对称图形,不是轴对称图形,故本选项错误.故选:B.八.坐标与图形变化-旋转(共3小题)19.【解答】解:如图,△A′B′C′即为所求,则点A的对应点A′的坐标是(﹣1,4).故选:D.20.【解答】解:如图,过点B′作B′H⊥y轴于H.在Rt△A′B′H中,∵A′B′=2,∠B′A′H=60°,∴A′H=A′B′cos60°=1,B′H=A′B′sin60°=√3,∴OH=2+1=3,∴B′(−√3,3),故选:A.21.【解答】解:平面直角坐标系如图所示,旋转中心是P点,P(4,2).故答案为(4,2).九.利用旋转设计图案(共1小题)22.【解答】解:由题意,选项A,C,D可以通过平移,旋转得到,选项B可以通过翻折得到.故选:B.一十.几何变换综合题(共1小题)23.【解答】解:(1)∵AB=AC,AD=AE,∴BD=CE,∵点M、N、P分别为DE、BE、BC的中点,∴MN=12BD,PN=12CE,MN∥AB,PN∥AC,∴MN=PN,∠ENM=∠EBA,∠ENP=∠AEB,∴∠MNE+∠ENP=∠ABE+∠AEB,∵∠ABE+∠AEB=180°﹣∠BAE=60°,∴∠MNP=60°,故答案为:NM=NP;60°;(2)△MNP是等边三角形.理由如下:由旋转可得,∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴BD=CE,∠ABD=∠ACE,∵点M、N、P分别为DE、BE、BC的中点.∴MN =12BD ,PN =12CE ,MN ∥BD ,PN ∥CE ,∴MN =PN ,∠ENM =∠EBD ,∠BPN =∠BCE ,∴∠ENP =∠NBP +∠NPB =∠NBP +∠ECB ,∵∠EBD =∠ABD +∠ABE =∠ACE +∠ABE ,∴∠MNP =∠MNE +∠ENP =∠ACE +∠ABE +∠EBC +∠EBC +∠ECB =180°﹣∠BAC =60°,∴△MNP 是等边三角形;(3)根据题意得,BD ≤AB +AD ,即BD ≤4,∴MN ≤2,∴△MNP 的面积=12MN ⋅√32MN =√34MN 2,∴△MNP 的面积的最大值为√3.一十一.相似三角形的判定与性质(共5小题)24.【解答】解:∵四边形ABCD 是正方形∴∠BAC =∠DAC =45°.∵在△APE 和△AME 中,{∠PAE =∠MAE AE =AE ∠AEP =∠AEM,∴△APE ≌△AME (SAS ),故①正确;∴PE =EM =12PM ,同理,FP =FN =12NP .∵正方形ABCD 中AC ⊥BD ,又∵PE ⊥AC ,PF ⊥BD ,∴∠PEO =∠EOF =∠PFO =90°,且△APE 中AE =PE∴四边形PEOF 是矩形.∴PF =OE ,∴PE +PF =OA ,又∵PE =EM =12PM ,FP =FN =12NP ,OA =12AC ,∴PM +PN =AC ,故②正确;∵四边形PEOF 是矩形,∴PE =OF ,在直角△OPF 中,OF 2+PF 2=PO 2,∴PE 2+PF 2=PO 2,故③正确.∵△BNF 是等腰直角三角形,而△POF 不一定是等腰直角三角形,故④错误; 连接OM ,ON ,∵OA 垂直平分线段PM .OB 垂直平分线段PN ,∴OM =OP ,ON =OP ,∴OM =OP =ON ,∴点O 是△PMN 的外接圆的圆心,∵∠MPN =90°,∴MN 是直径,∴M ,O ,N 共线,故⑤正确.故选:B .25.【解答】解:∵四边形ABCD 是平行四边形,∴AB ∥CF ,AB =CD ,∴△ABE ∽△DFE ,∴DE AE =FD AB =12, ∵DE =3,DF =4,∴AE =6,AB =8,∴AD =AE +DE =6+3=9,∴平行四边形ABCD 的周长为:(8+9)×2=34.故选:C .26.【解答】解:①∵四边形ABCD 是正方形,∴OC=OD,AC⊥BD,∠ODF=∠OCE=45°,∵∠MON=90°,∴∠COM=∠DOF,∴△COE≌△DOF(ASA),故①正确;②∵△COE≌△DOF,∴OE=OF,∵∠MON=90°,∴∠OEG=45°=∠FCG,∵∠OGE=∠FGC,∴△OGE∽△FGC,故②正确;③∵△COE≌△DOF,∴S△COE=S△DOF,∴S四边形CEOF =S△OCD=14S正方形ABCD,故③正确;④∵△COE≌△DOF,∴OE=OF,又∵∠EOF=90°,∴△EOF是等腰直角三角形,∴∠OEG=45°=∠OCE,∵∠EOG=∠COE,∴△OEG∽△OCE,∴OE:OC=OG:OE,∴OG•OC=OE2,∵OC=12AC,OE=√22EF,∴OG•AC=EF2,∵CE=DF,BC=CD,∴BE=CF,又∵Rt △CEF 中,CF 2+CE 2=EF 2,∴BE 2+DF 2=EF 2,∴OG •AC =BE 2+DF 2,故④错误,故选:B .27.【解答】解:∵D 、E 为边AB 的三等分点,EF ∥DG ∥AC ,∴BE =DE =AD ,BF =GF =CG ,AH =HF ,∴AB =3BE ,DH 是△AEF 的中位线,∴DH =12EF ,∵EF ∥AC ,∴△BEF ∽△BAC ,∴EF AC =BE AB ,即EF 6=BE 3BE ,解得:EF =2,∴DH =12EF =12×2=1,故答案为:1.28.【解答】解:连结OC ,如图,∵CD 2=CE •CA ,∴CD CE =CA DC ,而∠ACD =∠DCE ,∴△CAD∽△CDE,∴∠CAD=∠CDE,∵∠CAD=∠CBD,∴∠CDB=∠CBD,∴BC=DC;设⊙O的半径为r,∵CD=CB,∴CD̂=CB̂,∴∠BOC=∠BAD,∴OC∥AD,∴PCCD =POOA=2rr=2,∴PC=2CD=4√2,∵∠PCB=∠P AD,∠CPB=∠APD,∴△PCB∽△P AD,∴PCPA =PBPD,即4√23r=6√2,∴r=4(负根已经舍弃),∴OB=4,故答案为4.一十二.位似变换(共1小题)29.【解答】解:∵点A的坐标是(﹣2,1),以原点O为位似中心,把线段OA放大为原来的2倍,点A的对应点为A′,∴A′坐标为:(﹣4,2)或(4,﹣2),∵A'恰在某一反比例函数图象上,∴该反比例函数解析式为:y=−8 x.故答案为:y=−8 x.一十三.相似形综合题(共1小题)30.【解答】(1)证明:∵∠ACB=90°,AC=BC,CD是中线,∴∠ACD=∠BCD=45°,∠ACF=∠BCE=90°,∴∠DCF =∠DCE =135°, 在△DCF 和△DCE 中,{CF =CE ∠DCF =∠DCE DC =DC,∴△DCF ≌△DCE (SAS )∴DE =DF ;(2)证明:∵∠DCF =135°, ∴∠F +∠CDF =45°,∵∠FDE =45°,∴∠CDE +∠CDF =45°,∴∠F =∠CDE ,∵∠DCF =∠DCE ,∠F =∠CDE , ∴△FCD ∽△DCE ,∴CF CD =CD CE ,∴CD 2=CE •CF ;(3)解:过点D 作DG ⊥BC 于G , ∵∠DCB =45°,∴GC =GD =√22CD =√2,由(2)可知,CD 2=CE •CF ,∴CE =CD 2CF =2√2,∵∠ECN =∠DGN ,∠ENC =∠DNG , ∴△ENC ∽△DNG ,∴CN NG =CE DG ,即√2−NG NG =√2√2, 解得,NG =√23,由勾股定理得,DN =√DG 2+NG 2=2√53.一十四.计算器—三角函数(共1小题)31.【解答】解:∵已知sin A=0.9816,运用科学计算器求锐角A时(在开机状态下)的按键顺序是:2ndF,sin,0.9816,∴按下的第一个键是2ndF.故选:D.一十五.解直角三角形(共2小题)32.【解答】解:如图,过点A作AH⊥BC于H.在Rt△ACH中,∵AH=4,CH=3,∴AC=√AH2+CH2=√42+32=5,∴sin∠ACH=AHAC=45,故选:D.33.【解答】解:过点D作DE⊥BC,垂足为E,∵∠ACB=90°,DE⊥BC,∴DE∥AC,又∵点D为AB边的中点,∴E是BC的中点,∴BE=EC=12BC=2,在Rt△DCE中,cos∠DCB=ECCD=23,故答案为:23.一十六.解直角三角形的应用-仰角俯角问题(共6小题)34.【解答】解:过点A 作AE ⊥BD ,交BD 于点E ,在Rt △ABE 中,AE =30米,∠BAE =30°,∴BE =30×tan30°=10√3(米),∴AC =ED =BD ﹣BE =(36﹣10√3)(米).∴甲楼高为(36﹣10√3)米.故选:D .35.【解答】解:如图所示:过点A 作AF ⊥BC 于点F ,∵斜面坡度为1:√3,∴tan ∠ABF =AF BF =1√3=√33, ∴∠ABF =30°,∵在P 处进行观测,测得山坡上A 处的俯角为15°,山脚B 处的俯角为60°, ∴∠HPB =30°,∠APB =45°,∴∠HBP =60°,∴∠PBA =90°,∠BAP =45°,∴PB =AB ,∵PH =30m ,sin60°=PH PB =30PB =√32,解得:PB =20√3,故AB=20√3(m),故答案为:20√3.36.【解答】解:如图示:过点C作CD⊥AB,垂足为D,由题意得,∠MCA=∠A=60°,∠NCB=∠B=45°,CD=120(米),在Rt△ACD中,AD=CDtan60°=√3=40√3(米),在Rt△BCD中,∵∠CBD=45°,∴BD=CD=120(米),∴AB=AD+BD=(40√3+120)(米).答:桥AB的长度为(40√3+120)米.37.【解答】解:过点A作AH⊥CD于H,如图:则四边形ABDH是矩形,∴HD=AB=31.6m,在Rt△ADH中,∠HAD=38°,tan∠HAD=HD AH,∴AH=HDtan∠HAD=31.6tan38°=31.60.78≈40.51(m),在Rt△ACH中,∠CAH=45°,∴CH=AH=40.51m,∴CD=CH+HD=40.51+31.6=72.11≈72.1(m),答:该大楼的高度约为72.1m.38.【解答】解:过B作BE⊥CD交CD于E,由题意得,∠CBE=30°,∠CAD=60°,在Rt△ACD中,tan∠CAD=tan60°=CDAD=√3,∴AD=60√3=20√3,∵∠BED=∠BAD=∠ADE=90°,∴四边形ADEB是矩形,∴BE=AD=20√3,在Rt△BCE中,tan∠CBE=tan30°=CEBE=√33,∴CE=20√3×√33=20,∴ED=CD﹣CE=60﹣20=40,∴AB=ED=40(米),答:楼房的高度为40米.39.【解答】解:过点N作EF∥AC交AB于点E,交CD于点F,则AE=MN=CF=1.6,EF=AC=35,∠BEN=∠DFN=90°,EN=AM,NF=MC,则DF=DC﹣CF=16.6﹣1.6=15,在Rt△DFN中,∵∠DNF=45°,∴NF=DF=15,∴EN=EF﹣NF=35﹣15=20,在Rt△BEN中,∵tan∠BNE=BE EN,∴BE=EN•tan∠BNE=20×tan55°≈20×1.43=28.6,∴AB=BE+AE=28.6+1.6≈30.答:居民楼AB的高度约为30米.一十七.解直角三角形的应用-方向角问题(共2小题)40.【解答】解:如图.根据题意得:∠CBD=84°,∠CAB=42°,∴∠C=∠CBD﹣∠CAB=42°=∠CAB,∴BC=AB,∵AB=15×2=30(海里),∴BC=30(海里),即海岛B到灯塔C的距离是30海里.故选:C.41.【解答】解:如图,作CE⊥BA于E.设EC=xm,BE=ym.在Rt△ECB中,tan53°=ECEB,即43=xy,在Rt△AEC中,tan37°=ECAE,即34=x105+y,解得x=180,y=135,∴AC=√EC2+AE2=√1802+2402=300(m),故选:C.一十八.简单几何体的三视图(共1小题)42.【解答】解:选项A中的几何体的左视图和俯视图为:选项B中的几何体的左视图和俯视图为:选项C中的几何体的左视图和俯视图为:选项D中的几何体的左视图和俯视图为:因此左视图和俯视图相同的是选项D中的几何体.故选:D.一十九.简单组合体的三视图(共4小题)43.【解答】解:从几何体的左边看可得到一个正方形,正方形的右上角处有一个看不见的小正方形画为虚线,故选:D.44.【解答】解:从上面看是一个矩形,矩形的中间处有两条纵向的实线,实线的两旁有两条纵向的虚线.故选:A.45.【解答】解:图1主视图第一层三个正方形,第二层左边一个正方形;图2主视图第一层三个正方形,第二层右边一个正方形;故主视图发生变化;左视图都是第一层两个正方形,第二层左边一个正方形,故左视图不变;俯视图都是底层左边是一个正方形,上层是三个正方形,故俯视图不变.∴不改变的是左视图和俯视图.故选:D.46.【解答】解:将正方体①移走后,主视图不变,俯视图变化,左视图不变,故选:A.二十.由三视图判断几何体(共4小题)47.【解答】解:结合三个视图发现,这个几何体是长方体和圆锥的组合图形.故选:B.48.【解答】解:从正面看所得到的图形为.故选:A.49.【解答】解:根据图中三视图可知该几何体是三棱柱.故选:B.50.【解答】解:A、主视图是圆,俯视图是圆,故A不符合题意;B、主视图是矩形,俯视图是矩形,故B不符合题意;C、主视图是三角形,俯视图是圆,故C不符合题意;D、主视图是个矩形,俯视图是圆,故D符合题意;故选:D.。
【鲁教版】2020中考数学一轮复习练习五(图形与坐标)
(图形与坐标)命题方向:平面直角坐标系、点与坐标是初中数学的基础知识,它是学习函数的基础。
这部分内容在中考取出题比较简单,一般以选择题、填空题为主,也有少许的解答题是联合图形的某些变换来确立点的地点。
备考攻略:掌握这部分内容要做到:①会依据坐标描绘点的地点;②能依据点的地点写出它的坐标;③能在方格纸上成立坐标系描绘几何图形的地点;④灵巧运用不一样的方式来确立物体的地点。
1.稳固练习:以平行四边形ABCD的极点A为原点,直线AD为x轴成立直角坐标系,已知B、D点的坐标分别为(1,3),(4,0),把平行四边形向上平移2个单位,那么C点平移后相应的点的坐标是()(A)(3,3)(B)(5,3)(C)(3,5)(D)(5,5)2.若点A的坐标为(6,3),O为坐标原点,将OA绕点O按顺时针方向旋转900获得OA',则点A'的坐标为()A.(3,-6)B.(-3,6)C.(-3,-6)D.(3,6)5.平面直角坐标系中,与点(2,-3)对于原点中心对称的点是6.A.(-3,2)B.(3,-2)7.C.(-2,3)D.(2,3)8.图(三)的坐标平面上有一正五边形ABCDE,此中C、D两点坐标分9.别为(1,0)、(2,0).若在没有滑动的状况下,将此正五边形沿着x轴向右转动,则转动过程中,以下何者会经过点(75,0)10.()A.A B.B C.C D.D在平面直角坐标系xOy中,我们把横、纵坐标都是整数的点叫做整点.已知点A(0,4),点B是x轴正半轴上的整点,记△AOB内部(不包含界限)的整点个数为 m.当m=3时,点B的横坐标的全部可能值是;当点B的横坐标为4n(n为正整数)时,m=(用含n的代数式表示).6.在平面直角坐标系xOy中,对于点P(x,y),我们把点P′(﹣y+1,x+1)叫做点P陪伴点.已知点A1的陪伴点为A2,点A2的陪伴点为A3,点A3的陪伴点为A4,,这样挨次获得点坐标为(3,1),则点A3的坐标为A1,A2,A3,,A n,.若点A1的,点A2014的坐标为;若点A1的坐标为(a,b),对于随意的正整数 n,点A n均在x轴上方,则a,b应知足的条件为.(7.如图是利用平面直角坐标系画出的故宫博物院的主要建筑散布图,若这个坐标系分别以正东、正北方向为x轴、y轴的正方向,表示太和门的点的坐标为(0,﹣1),表示九龙壁的点的坐标为(4,1),则表示以下宫殿的点的坐标正确的是()A.景仁宫(4,2)B.养心殿(﹣2,3)C.保和殿(1,0)D.武英殿(﹣,﹣4)8.如图,直线 m⊥n,在某平面直角坐标系中,x轴∥m,y轴∥n,点A的坐标为(﹣4,2),点B的坐标为(2,﹣4),则坐标原点为()A.O1B.O2C.O3D.O4初三年级某班有54名学生,所在教室有6行9列座位,用(m,n)表示第m行第n列的座位,新学期准备调整座位,设某个学生本来的座位为(m,n),假如调整后的座位为(i,j),则称该生作了平移[a,b]=[m-i,n-j],并称a+b为该生的地点数。
2020年【初中学业考数学】真题及模拟:几何变换与规律性问题(解析版)[山东]
『中考真题·分项详解』『真金试炼·备战中考』编在前面:历年的中考卷可以让学生认识到中考的题型,命题风格,各知识板块的分值分布,考查的重点及难点。
这对于初三学生备战中考具有很大的指导意义。
而且历年的中考真题还有中考风向标的作用,学生可以通过中考试卷分析命题趋势自我预测一下可能会出现的重点难点。
这对于学生来说帮助非常大。
很多学生在初三在复习阶段会买很多的预测试卷儿或者是模拟题。
虽然也能够帮助学生扩展题面见识更多的题型,但是这些复习资料是与中考真题相比是无法比拟的。
利用好中考真题可以获得事半功倍的效果。
老师通常会在中考第二轮复习期间要求学生做至少三遍中考真题,每一遍都会有不同的侧重点。
通常第一遍就是按照中考节奏去完成试卷。
目的就是为了让学生能够掌握中考的节奏。
了解中考题试卷难易的题型分布等。
中考真题通常是80%是基础题型,20%是难题。
第一遍做中考真题并不强调分数的重要性。
主要是要把握中考的做题节奏,合理安排时间。
第二遍通常要注重准确率。
因为通过第一遍做题和对答案以后,需要花时间对错题进行分析,对难题做出归纳总结。
掌握中考真题的做题思路和方法。
而且在做第二遍的时候,要尽可能的去缩短时间。
同时避免再犯第一次做题的错误,以能够锻炼做题的速度和准确率。
做第三遍的时候就要要求百分之百的正确率。
因为经过前两次的反复练习,对中考真题已经很熟悉。
尤其是对中考试卷进行研究以后,那么对于平时的模拟考试,就会显得非常简单。
一般情况下模拟考试的题型都能够在之前的中考真题中找到真实题型!需要注意的是,如果在第三次,做中考真题的时候还会出现错误,那就需要好好地反省一下了。
中考真题的作用是独一无二的,你做再多的模拟试卷都不如做一套中考真题作用大,所以在考试前一定要认真做中考真题,并总结分析真题规律!专题09 几何变换与规律性问题一、选择题1.(2020.临沂)下列交通标志中,是中心对称图形的是()A. B. C. D.【答案】B【分析】根据中心对称图形的定义和交通标志的图案特点即可解答.【详解】解:A、不是中心对称图形,故选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故选项错误;D、不是中心对称图形,故本选项错误.故选:B.【点睛】本题考查中心对称图形的概念:在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.2.(2020.青岛)下列四个图形中,中心对称图形是()A. B. C. D.【答案】D【分析】根据中心对称图形的概念结合各图形的特点求解.【详解】解:A、不是中心对称图形,不符合题意;B、不是中心对称图形,不符合题意;C、不是中心对称图形,不符合题意;D、中心对称图形,符合题意.故选:D.【点睛】本题考查了中心对称图形与轴对称图形的概念.判断中心对称图形是要寻找对称中心,图形旋转180度后与原图形重合.3.(2020.德州)下列图形中,是中心对称图形但不是轴对称图形的是()A. B. C. D.【答案】B【分析】根据中心对称图形和轴对称图形的定义判断即可.【详解】解:∵A中的图形旋转180°后不能与原图形重合,∴A中的图象不是中心对称图形,∴选项A不正确;∵B中的图形旋转180°后能与原图形重合,∴B中的图形是中心对称图形,但不是轴对称图形,∴选项B正确;∵C中的图形旋转180°后能与原图形重合,∴C中的图形是中心对称图形,也是轴对称图形,∴选项C不正确;∵D中的图形旋转180°后不能与原图形重合,∴D中的图形不是中心对称图形,∴选项D不正确;故选:B.【点睛】本题考查了轴对称图形和中心对称图形的定义,熟练掌握轴对称图形和中心对称图形的定义是解题的关键.4.(2020.淄博)下列图形中,不是轴对称图形的是()A.B.C.D.【答案】D【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】解:A、是轴对称图形,故本选项不符合题意;B、是轴对称图形,故本选项不符合题意;C、是轴对称图形,故本选项不符合题意;D、不是轴对称图形,故本选项符合题意.故选:D.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.(2020.滨州)下列图形:线段、等边三角形、平行四边形、圆,其中既是轴对称图形,又是中心对称图形的个数为()A.1 B.2 C.3 D.4【答案】B【分析】根据轴对称图形与中心对称图形的概念求解.解:线段是轴对称图形,也是中心对称图形;等边三角形是轴对称图形,不是中心对称图形;平行四边形不是轴对称图形,是中心对称图形;圆是轴对称图形,也是中心对称图形;则既是轴对称图形又是中心对称图形的有2个.故选:B.6.(2020.潍坊)下列图形,既是中心对称图形又是轴对称图形的是()A. B. C. D.【答案】C【分析】根据轴对称图形与中心对称图形的概念依次对各项进行判断即可.【详解】A.不是轴对称图形,是中心对称图形,故此选项不符合题意;B.是轴对称图形,不是中心对称图形,故此选项不符合题意;C.是轴对称图形,也是中心对称图形,故此选项符合题意;D.是轴对称图形,不是中心对称图形,故此选项不符合题意;故选:C.7.(2020.烟台)下列关于数字变换的图案中,是中心对称图形但不是轴对称图形的是()。
山东省2019年、2020年数学中考试题分类(12)——图形的变换(含解析)
山东省2019年、2020年数学中考试题分类(12)——图形的变换一.选择题(共37小题)1.(2020•威海)下列几何体的左视图和俯视图相同的是()A.B.C.D.2.(2020•烟台)七巧板是我们祖先的一项创造,被誉为“东方魔板”.在一次数学活动课上,小明用边长为4cm的正方形纸片制作了如图所示的七巧板,并设计了下列四幅作品﹣﹣“奔跑者”,其中阴影部分的面积为5cm2的是()A.B.C.D.3.(2020•东营)如图,在正方形ABCD中,点P是AB上一动点(不与A、B重合),对角线AC、BD相交于点O,过点P分别作AC、BD的垂线,分别交AC、BD于点E、F,交AD、BC于点M、N.下列结论:①△APE≌△AME;①PM+PN=AC;①PE2+PF2=PO2;①△POF∽△BNF;①点O在M、N两点的连线上.其中正确的是()A.①①①①B.①①①①C.①①①①①D.①①①4.(2020•潍坊)如图,在Rt△AOB中,∠AOB=90°,OA=3,OB=4,以点O为圆心,2为半径的圆与OB交于点C,过点C作CD⊥OB交AB于点D,点P是边OA上的动点.当PC+PD最小时,OP的长为()A .12B .34C .1D .32 5.(2020•潍坊)下列图形,既是中心对称图形又是轴对称图形的是( )A .B .C .D .6.(2020•淄博)下列图形中,不是轴对称图形的是( ) A . B .C .D .7.(2020•淄博)已知sin A =0.9816,运用科学计算器求锐角A 时(在开机状态下),按下的第一个键是( )A .B .C .D .8.(2020•烟台)如图,在矩形ABCD 中,点E 在DC 上,将矩形沿AE 折叠,使点D 落在BC 边上的点F处.若AB =3,BC =5,则tan ∠DAE 的值为( )A .12B .920C .25D .13 9.(2020•烟台)如图,是一个几何体的三视图,则这个几何体是( )A .B .C .D .10.(2020•潍坊)将一个大正方体的一角截去一个小正方体,得到的几何体如图所示,则该几何体的左视图是( )A .B .C .D . 11.(2020•潍坊)如图,点E 是①ABCD 的边AD 上的一点,且DD DD =12,连接BE 并延长交CD 的延长线于点F ,若DE =3,DF =4,则①ABCD 的周长为( )A .21B .28C .34D .4212.(2020•烟台)下列关于数字变换的图案中,是中心对称图形但不是轴对称图形的是( )A .B .C .D .13.(2020•菏泽)一个几何体由大小相同的小立方块搭成,它的俯视图如图所示,其中小正方形中的数字表示在该位置小立方块的个数,则该几何体的主视图为( )A .B .C .D .14.(2020•菏泽)如图,将△ABC 绕点A 顺时针旋转角α,得到△ADE ,若点E 恰好在CB 的延长线上,则∠BED 等于( )A .D 2B .23αC .αD .180°﹣α15.(2020•青岛)下列四个图形中,中心对称图形是( )A .B .C .D .16.(2020•临沂)下列交通标志中,是中心对称图形的是( )A .B .C .D .17.(2020•青岛)如图所示的几何体,其俯视图是( )A .B .C .D .18.(2020•临沂)根据图中三视图可知该几何体是( )A .三棱锥B .三棱柱C .四棱锥D .四棱柱19.(2020•青岛)如图,将△ABC 先向上平移1个单位,再绕点P 按逆时针方向旋转90°,得到△A ′B ′C ′,则点A 的对应点A ′的坐标是( )A .(0,4)B .(2,﹣2)C .(3,﹣2)D .(﹣1,4)20.(2020•菏泽)在平面直角坐标系中,将点P (﹣3,2)向右平移3个单位得到点P ',则点P '关于x 轴的对称点的坐标为( )A .(0,﹣2)B .(0,2)C .(﹣6,2)D .(﹣6,﹣2)21.(2020•青岛)如图,将矩形ABCD 折叠,使点C 和点A 重合,折痕为EF ,EF 与AC 交于点O .若AE=5,BF =3,则AO 的长为( ) A .√5 B .32√5 C .2√5 D .4√522.(2020•枣庄)如图,在矩形纸片ABCD 中,AB =3,点E 在边BC 上,将△ABE 沿直线AE 折叠,点B恰好落在对角线AC 上的点F 处,若∠EAC =∠ECA ,则AC 的长是( )A .3√3B .4C .5D .623.(2020•滨州)如图,对折矩形纸片ABCD ,使AD 与BC 重合,得到折痕EF ,把纸片展平后再次折叠,使点A 落在EF 上的点A ′处,得到折痕BM ,BM 与EF 相交于点N .若直线BA ′交直线CD 于点O ,BC =5,EN =1,则OD 的长为( )A .12√3B .13√3C .14√3D .15√324.(2020•枣庄)如图,平面直角坐标系中,点B 在第一象限,点A 在x 轴的正半轴上,∠AOB =∠B =30°,OA=2.将△AOB绕点O逆时针旋转90°,点B的对应点B'的坐标是()A.(−√3,3)B.(﹣3,√3)C.(−√3,2+√3)D.(﹣1,2+√3)25.(2020•枣庄)如图的四个三角形中,不能由△ABC经过旋转或平移得到的是()A.B.C.D.26.(2020•德州)如图1是用5个相同的正方体搭成的立体图形.若由图1变化至图2,则三视图中没有发生变化的是()A.主视图B.主视图和左视图C.主视图和俯视图D.左视图和俯视图27.(2020•德州)下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.28.(2020•聊城)如图,在4×5的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在这些小正方形的顶点上,那么sin∠ACB的值为()A .3√55B .√175 C .35 D .45 29.(2020•滨州)下列图形:线段、等边三角形、平行四边形、圆,其中既是轴对称图形,又是中心对称图形的个数为( )A .1B .2C .3D .430.(2020•济宁)一条船从海岛A 出发,以15海里/时的速度向正北航行,2小时后到达海岛B 处.灯塔C在海岛A 的北偏西42°方向上,在海岛B 的北偏西84°方向上.则海岛B 到灯塔C 的距离是( )A .15海里B .20海里C .30海里D .60海里31.(2019•济南)某数学社团开展实践性研究,在大明湖南门A 测得历下亭C 在北偏东37°方向,继续向北走105m 后到达游船码头B ,测得历下亭C 在游船码头B 的北偏东53°方向.请计算一下南门A 与历下亭C 之间的距离约为( )(参考数据:tan37°≈34,tan53°≈43) A .225m B .275m C .300m D .315m32.(2019•济南)以下给出的几何体中,主视图是矩形,俯视图是圆的是( )A .B .C .D .33.(2019•莱芜区)下列图形中,既是中心对称,又是轴对称的是( )A .B .C .D .34.(2019•日照)如图,甲乙两楼相距30米,乙楼高度为36米,自甲楼顶A 处看乙楼楼顶B 处仰角为30°,则甲楼高度为( )A .11米B .(36﹣15√3)米C .15√3米D .(36﹣10√3)米35.(2019•东营)如图,在正方形ABCD 中,点O 是对角线AC 、BD 的交点,过点O 作射线OM 、ON 分别交BC 、CD 于点E 、F ,且∠EOF =90°,OC 、EF 交于点G .给出下列结论:①△COE ≌△DOF ;①△OGE ∽△FGC ;①四边形CEOF 的面积为正方形ABCD 面积的14;①DF 2+BE 2=OG •OC .其中正确的是( )A .①①①①B .①①①C .①①①D .①①36.(2019•烟台)如图所示的几何体是由9个大小相同的小正方体组成的,将小正方体①移走后,所得几何体的三视图没有发生变化的是( )A .主视图和左视图B .主视图和俯视图C .左视图和俯视图D .主视图、左视图、俯视图37.(2019•东营)下列图形中,是轴对称图形的是( )A .B .C .D .二.填空题(共7小题)38.(2020•烟台)如图,已知点A (2,0),B (0,4),C (2,4),D (6,6),连接AB ,CD ,将线段AB绕着某一点旋转一定角度,使其与线段CD 重合(点A 与点C 重合,点B 与点D 重合),则这个旋转中心的坐标为 .39.(2020•威海)如图,四边形ABCD是一张正方形纸片,其面积为25cm2.分别在边AB,BC,CD,DA 上顺次截取AE=BF=CG=DH=acm(AE>BE),连接EF,FG,GH,HE.分别以EF,FG,GH,HE 为轴将纸片向内翻折,得到四边形A1B1C1D1.若四边形A1B1C1D1的面积为9cm2,则a=.40.(2020•临沂)如图,在△ABC中,D、E为边AB的三等分点,EF∥DG∥AC,H为AF与DG的交点.若AC=6,则DH=.41.(2020•菏泽)如图,在△ABC中,∠ACB=90°,点D为AB边的中点,连接CD,若BC=4,CD=3,则cos∠DCB的值为.42.(2020•德州)在平面直角坐标系中,点A的坐标是(﹣2,1),以原点O为位似中心,把线段OA放大为原来的2倍,点A的对应点为A′.若点A'恰在某一反比例函数图象上,则该反比例函数解析式为.43.(2020•济宁)如图,在四边形ABCD中,以AB为直径的半圆O经过点C,D.AC与BD相交于点E,CD2=CE•CA,分别延长AB,DC相交于点P,PB=BO,CD=2√2.则BO的长是.44.如图,小明在距离地面30米的P处测得A处的俯角为15°,B处的俯角为60°.若斜面坡度为1:√3,则斜坡AB的长是米.三.解答题(共6小题)45.(2020•东营)如图1,在等腰三角形ABC中,∠A=120°,AB=AC,点D、E分别在边AB、AC上,AD=AE,连接BE,点M、N、P分别为DE、BE、BC的中点.(1)观察猜想.图1中,线段NM、NP的数量关系是,∠MNP的大小为.(2)探究证明把△ADE绕点A顺时针方向旋转到如图2所示的位置,连接MP、BD、CE,判断△MNP的形状,并说明理由;(3)拓展延伸把△ADE绕点A在平面内自由旋转,若AD=1,AB=3,请求出△MNP面积的最大值.46.(2020•潍坊)某校“综合与实践”小组采用无人机辅助的方法测量一座桥的长度.如图,桥AB是水平并且笔直的,测量过程中,小组成员遥控无人机飞到桥AB的上方120米的点C处悬停,此时测得桥两端A,B两点的俯角分别为60°和45°,求桥AB的长度.47.(2020•威海)居家学习期间,小晴同学运用所学知识在自家阳台测对面大楼的高度.如图,她利用自制的测角仪测得该大楼顶部的仰角为45°,底部的俯角为38°;又用绳子测得测角仪距地面的高度AB 为31.6m.求该大楼的高度(结果精确到0.1m).(参考数据:sin38°≈0.62,cos38°≈0.79,tan38°≈0.78)48.(2020•枣庄)在△ABC中,∠ACB=90°,CD是中线,AC=BC,一个以点D为顶点的45°角绕点D 旋转,使角的两边分别与AC、BC的延长线相交,交点分别为点E、F,DF与AC交于点M,DE与BC 交于点N.(1)如图1,若CE=CF,求证:DE=DF;(2)如图2,在∠EDF绕点D旋转的过程中,试证明CD2=CE•CF恒成立;(3)若CD=2,CF=√2,求DN的长.49.(2020•德州)如图,无人机在离地面60米的C处,观测楼房顶部B的俯角为30°,观测楼房底部A 的俯角为60°,求楼房的高度.50.(2020•聊城)如图,小莹在数学综合实践活动中,利用所学的数学知识对某小区居民楼AB的高度进行测量,先测得居民楼AB与CD之间的距离AC为35m,后站在M点处测得居民楼CD的顶端D的仰角为45°,居民楼AB的顶端B的仰角为55°,已知居民楼CD的高度为16.6m,小莹的观测点N距地面1.6m.求居民楼AB的高度(精确到1m).(参考数据:sin55°≈0.82,cos55°≈0.57,tan55°≈l.43).山东省2019年、2020年数学中考试题分类(12)——图形的变换一.选择题(共37小题)1.(2020•威海)下列几何体的左视图和俯视图相同的是()A.B.C.D.【答案】D【解答】解:选项A中的几何体的左视图和俯视图为:选项B中的几何体的左视图和俯视图为:选项C中的几何体的左视图和俯视图为:选项D中的几何体的左视图和俯视图为:因此左视图和俯视图相同的是选项D中的几何体.故选:D.2.(2020•烟台)七巧板是我们祖先的一项创造,被誉为“东方魔板”.在一次数学活动课上,小明用边长为4cm的正方形纸片制作了如图所示的七巧板,并设计了下列四幅作品﹣﹣“奔跑者”,其中阴影部分的面积为5cm2的是()A .B .C .D .【答案】D 【解答】解:最小的等腰直角三角形的面积=18×12×42=1(cm 2),平行四边形面积为2cm 2,中等的等腰直角三角形的面积为2cm 2,最大的等腰直角三角形的面积为4cm 2,则A 、阴影部分的面积为2+2=4(cm 2),不符合题意;B 、阴影部分的面积为1+2=3(cm 2),不符合题意;C 、阴影部分的面积为4+2=6(cm 2),不符合题意;D 、阴影部分的面积为4+1=5(cm 2),符合题意.故选:D .3.(2020•东营)如图,在正方形ABCD 中,点P 是AB 上一动点(不与A 、B 重合),对角线AC 、BD 相交于点O ,过点P 分别作AC 、BD 的垂线,分别交AC 、BD 于点E 、F ,交AD 、BC 于点M 、N .下列结论: ①△APE ≌△AME ;①PM +PN =AC ;①PE 2+PF 2=PO 2;①△POF ∽△BNF ;①点O 在M 、N 两点的连线上.其中正确的是( )A .①①①①B .①①①①C .①①①①①D .①①①【答案】B【解答】解:∵四边形ABCD 是正方形∴∠BAC =∠DAC =45°.∵在△APE 和△AME 中, {∠DDD =∠DDD DD =DD DDDD =DDDD,∴△APE ≌△AME (SAS ),故①正确;∴PE =EM =12PM ,同理,FP =FN =12NP . ∵正方形ABCD 中AC ⊥BD ,又∵PE ⊥AC ,PF ⊥BD ,∴∠PEO =∠EOF =∠PFO =90°,且△APE 中AE =PE∴四边形PEOF 是矩形.∴PF =OE ,∴PE +PF =OA ,又∵PE =EM =12PM ,FP =FN =12NP ,OA =12AC ,∴PM +PN =AC ,故①正确;∵四边形PEOF 是矩形,∴PE =OF ,在直角△OPF 中,OF 2+PF 2=PO 2,∴PE 2+PF 2=PO 2,故①正确.∵△BNF 是等腰直角三角形,而△POF 不一定是等腰直角三角形,故①错误;连接OM ,ON ,∵OA 垂直平分线段PM .OB 垂直平分线段PN ,∴OM =OP ,ON =OP ,∴OM =OP =ON ,∴点O 是△PMN 的外接圆的圆心,∵∠MPN =90°,∴MN 是直径,∴M ,O ,N 共线,故①正确.故选:B .4.(2020•潍坊)如图,在Rt △AOB 中,∠AOB =90°,OA =3,OB =4,以点O 为圆心,2为半径的圆与OB 交于点C ,过点C 作CD ⊥OB 交AB 于点D ,点P 是边OA 上的动点.当PC +PD 最小时,OP 的长为( )A .12B .34C .1D .32 【答案】B【解答】解:如图,延长CO 交①O 于点E ,连接ED ,交AO 于点P ,此时PC +PD 的值最小.∵CD ⊥OB ,∴∠DCB =90°,又∠AOB =90°,∴∠DCB =∠AOB ,∴CD ∥AO∴DD DD =DD DD∵OC =2,OB =4,∴BC =2,∴24=DD 3,解得,CD =32;∵CD ∥AO ,∴DD DD =DD DD ,即24=DD32,解得,PO =34 故选:B .5.(2020•潍坊)下列图形,既是中心对称图形又是轴对称图形的是( )A .B .C .D .【答案】C【解答】解:A .不是轴对称图形,是中心对称图形,故此选项不符合题意;B .是轴对称图形,不是中心对称图形,故此选项不符合题意;C .是轴对称图形,也是中心对称图形,故此选项符合题意;D .是轴对称图形,不是中心对称图形,故此选项不符合题意;故选:C .6.(2020•淄博)下列图形中,不是轴对称图形的是( )A .B .C .D .【答案】D【解答】解:A 、是轴对称图形,故本选项不符合题意;B 、是轴对称图形,故本选项不符合题意;C 、是轴对称图形,故本选项不符合题意;D 、不是轴对称图形,故本选项符合题意.故选:D .7.(2020•淄博)已知sin A =0.9816,运用科学计算器求锐角A 时(在开机状态下),按下的第一个键是()A .B .C .D .【答案】D【解答】解:∵已知sin A =0.9816,运用科学计算器求锐角A 时(在开机状态下)的按键顺序是:2ndF ,sin ,0,∴按下的第一个键是2ndF .故选:D .8.(2020•烟台)如图,在矩形ABCD 中,点E 在DC 上,将矩形沿AE 折叠,使点D 落在BC 边上的点F处.若AB =3,BC =5,则tan ∠DAE 的值为( )A .12B .920C .25D .13 【答案】D【解答】解:∵四边形ABCD 为矩形,∴AD =BC =5,AB =CD =3,∵矩形ABCD 沿直线AE 折叠,顶点D 恰好落在BC 边上的F 处,∴AF =AD =5,EF =DE ,在Rt △ABF 中,BF =√DD 2−DD 2=√25−9=4,∴CF =BC ﹣BF =5﹣4=1,设CE =x ,则DE =EF =3﹣x在Rt △ECF 中,∵CE 2+FC 2=EF 2,∴x 2+12=(3﹣x )2,解得x =43,∴DE =EF =3﹣x =53, ∴tan ∠DAE =DD DD =535=13, 故选:D .9.(2020•烟台)如图,是一个几何体的三视图,则这个几何体是( )A .B .C .D .【答案】B【解答】解:结合三个视图发现,这个几何体是长方体和圆锥的组合图形.故选:B .10.(2020•潍坊)将一个大正方体的一角截去一个小正方体,得到的几何体如图所示,则该几何体的左视图是( )A .B .C .D .【答案】D【解答】解:从几何体的左边看可得到一个正方形,正方形的右上角处有一个看不见的小正方形画为虚线,故选:D .11.(2020•潍坊)如图,点E 是①ABCD 的边AD 上的一点,且DD DD =12,连接BE 并延长交CD 的延长线于点F ,若DE =3,DF =4,则①ABCD 的周长为( )A .21B .28C .34D .42 【答案】C【解答】解:∵四边形ABCD 是平行四边形,∴AB ∥CF ,AB =CD ,∴△ABE ∽△DFE ,∴DD DD =DD DD =12, ∵DE =3,DF =4,∴AE =6,AB =8,∴AD =AE +DE =6+3=9,∴平行四边形ABCD 的周长为:(8+9)×2=34.故选:C .12.(2020•烟台)下列关于数字变换的图案中,是中心对称图形但不是轴对称图形的是( )A .B .C .D .【答案】A【解答】解:A 、是中心对称图形,不是轴对称图形,故此选项符合题意;B 、不是中心对称图形,是轴对称图形,故此选项不符合题意;C 、既不是中心对称图形,也不是轴对称图形,故此选项不符合题意;D 、既是轴对称图形,也是中心对称图形,故此选项不符合题意.故选:A .13.(2020•菏泽)一个几何体由大小相同的小立方块搭成,它的俯视图如图所示,其中小正方形中的数字表示在该位置小立方块的个数,则该几何体的主视图为( )A .B .C .D .【答案】A 【解答】解:从正面看所得到的图形为.故选:A .14.(2020•菏泽)如图,将△ABC 绕点A 顺时针旋转角α,得到△ADE ,若点E 恰好在CB 的延长线上,则∠BED 等于( )A .D 2B .23αC .αD .180°﹣α【答案】D【解答】解:∵∠ABC =∠ADE ,∠ABC +∠ABE =180°,∴∠ABE +∠ADE =180°,∴∠BAD +∠BED =180°,∵∠BAD =α,∴∠BED =180°﹣α.故选:D .15.(2020•青岛)下列四个图形中,中心对称图形是( )A .B .C .D .【答案】D【解答】解:A 、不是中心对称图形,不符合题意;B 、不是中心对称图形,不符合题意;C 、不是中心对称图形,不符合题意;D 、是中心对称图形,符合题意.故选:D .16.(2020•临沂)下列交通标志中,是中心对称图形的是( )A .B .C.D.【答案】B【解答】解:A、不是中心对称图形,不符合题意;B、是中心对称图形,符合题意;C、不是中心对称图形,不符合题意;D、不是中心对称图形,不符合题意.故选:B.17.(2020•青岛)如图所示的几何体,其俯视图是()A.B.C.D.【答案】A【解答】解:从上面看是一个矩形,矩形的中间处有两条纵向的实线,实线的两旁有两条纵向的虚线.故选:A.18.(2020•临沂)根据图中三视图可知该几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱【答案】B【解答】解:根据图中三视图可知该几何体是三棱柱.故选:B.19.(2020•青岛)如图,将△ABC先向上平移1个单位,再绕点P按逆时针方向旋转90°,得到△A′B′C′,则点A的对应点A′的坐标是()A .(0,4)B .(2,﹣2)C .(3,﹣2)D .(﹣1,4)【答案】D【解答】解:如图,△A ′B ′C ′即为所求,则点A 的对应点A ′的坐标是(﹣1,4).故选:D .20.(2020•菏泽)在平面直角坐标系中,将点P (﹣3,2)向右平移3个单位得到点P ',则点P '关于x 轴的对称点的坐标为( )A .(0,﹣2)B .(0,2)C .(﹣6,2)D .(﹣6,﹣2)【答案】A【解答】解:∵将点P (﹣3,2)向右平移3个单位得到点P ',∴点P '的坐标是(0,2),∴点P '关于x 轴的对称点的坐标是(0,﹣2).故选:A .21.(2020•青岛)如图,将矩形ABCD 折叠,使点C 和点A 重合,折痕为EF ,EF 与AC 交于点O .若AE=5,BF =3,则AO 的长为( ) A .√5 B .32√5 C .2√5 D .4√5【答案】C【解答】解:∵矩形ABCD ,∴AD ∥BC ,AD =BC ,AB =CD ,∴∠EFC =∠AEF ,由折叠得,∠EFC =∠AFE ,∴∠AFE =∠AEF ,∴AE =AF =5,由折叠得,FC =AF ,OA =OC ,∴BC =3+5=8,在Rt △ABF 中,AB =√52−32=4,在Rt △ABC 中,AC =√42+82=4√5,∴OA =OC =2√5,故选:C .22.(2020•枣庄)如图,在矩形纸片ABCD 中,AB =3,点E 在边BC 上,将△ABE 沿直线AE 折叠,点B恰好落在对角线AC 上的点F 处,若∠EAC =∠ECA ,则AC 的长是( )A .3√3B .4C .5D .6【答案】D【解答】解:∵将△ABE 沿直线AE 折叠,点B 恰好落在对角线AC 上的点F 处,∴AF =AB ,∠AFE =∠B =90°,∴EF ⊥AC ,∵∠EAC =∠ECA , ∴AE =CE ,∴AF =CF ,∴AC =2AB =6,故选:D .23.(2020•滨州)如图,对折矩形纸片ABCD ,使AD 与BC 重合,得到折痕EF ,把纸片展平后再次折叠,使点A 落在EF 上的点A ′处,得到折痕BM ,BM 与EF 相交于点N .若直线BA ′交直线CD 于点O ,BC =5,EN =1,则OD 的长为( ) A .12√3 B .13√3 C .14√3 D .15√3【答案】B【解答】解:∵EN =1,∴由中位线定理得AM =2, 由折叠的性质可得A ′M =2,∵AD ∥EF ,∴∠AMB =∠A ′NM ,∵∠AMB =∠A ′MB ,∴∠A ′NM =∠A ′MB ,∴A ′N =2,∴A ′E =3,A ′F =2过M 点作MG ⊥EF 于G ,∴NG =EN =1,∴A ′G =1,由勾股定理得MG =√22−12=√3,∴BE =DF =MG =√3,∴OF :BE =2:3,解得OF=2√3 3,∴OD=√3−2√33=√33.故选:B.24.(2020•枣庄)如图,平面直角坐标系中,点B在第一象限,点A在x轴的正半轴上,∠AOB=∠B=30°,OA=2.将△AOB绕点O逆时针旋转90°,点B的对应点B'的坐标是()A.(−√3,3)B.(﹣3,√3)C.(−√3,2+√3)D.(﹣1,2+√3)【答案】A【解答】解:如图,过点B′作B′H⊥y轴于H.在Rt△A′B′H中,∵A′B′=2,∠B′A′H=60°,∴A′H=A′B′cos60°=1,B′H=A′B′sin60°=√3,∴OH=2+1=3,∴B′(−√3,3),故选:A.25.(2020•枣庄)如图的四个三角形中,不能由△ABC经过旋转或平移得到的是()A.B.C .D .【答案】B【解答】解:由题意,选项A ,C ,D 可以通过平移,旋转得到,选项B 可以通过翻折,平移,旋转得到. 故选:B .26.(2020•德州)如图1是用5个相同的正方体搭成的立体图形.若由图1变化至图2,则三视图中没有发生变化的是( )A .主视图B .主视图和左视图C .主视图和俯视图D .左视图和俯视图【答案】D【解答】解:图1主视图第一层三个正方形,第二层左边一个正方形;图2主视图第一层三个正方形,第二层右边一个正方形;故主视图发生变化;左视图都是第一层两个正方形,第二层左边一个正方形,故左视图不变;俯视图都是底层左边是一个正方形,上层是三个正方形,故俯视图不变.∴不改变的是左视图和俯视图.故选:D .27.(2020•德州)下列图形中,是中心对称图形但不是轴对称图形的是( ) A . B . C . D .【答案】B【解答】解:A 、不是轴对称图形,也不是中心对称图形.故此选项不合题意;B 、是中心对称图形但不是轴对称图形.故此选项符合题意;C 、既是轴对称图形,又是中心对称图形.故此选项不合题意;D 、是轴对称图形,不是中心对称图形.故此选项不合题意.故选:B .28.(2020•聊城)如图,在4×5的正方形网格中,每个小正方形的边长都是1,△ABC 的顶点都在这些小正方形的顶点上,那么sin ∠ACB 的值为( )A .3√55B .√175 C .35 D .45 【答案】D【解答】解:如图,过点A 作AH ⊥BC 于H .在Rt △ACH 中,∵AH =4,CH =3,∴AC =√DD 2+DD 2=√42+32=5,∴sin ∠ACH =DD DD =45, 故选:D .29.(2020•滨州)下列图形:线段、等边三角形、平行四边形、圆,其中既是轴对称图形,又是中心对称图形的个数为( )A .1B .2C .3D .4【答案】B【解答】解:线段是轴对称图形,也是中心对称图形;等边三角形是轴对称图形,不是中心对称图形;平行四边形不是轴对称图形,是中心对称图形;圆是轴对称图形,也是中心对称图形;则既是轴对称图形又是中心对称图形的有2个.故选:B .30.(2020•济宁)一条船从海岛A 出发,以15海里/时的速度向正北航行,2小时后到达海岛B 处.灯塔C在海岛A 的北偏西42°方向上,在海岛B 的北偏西84°方向上.则海岛B 到灯塔C 的距离是( )A .15海里B .20海里C .30海里D .60海里【答案】C【解答】解:如图.根据题意得:∠CBD =84°,∠CAB =42°,∴∠C =∠CBD ﹣∠CAB =42°=∠CAB ,∴BC =AB ,∵AB =15×2=30(海里),∴BC =30(海里),即海岛B 到灯塔C 的距离是30海里.故选:C .31.(2019•济南)某数学社团开展实践性研究,在大明湖南门A 测得历下亭C 在北偏东37°方向,继续向北走105m 后到达游船码头B ,测得历下亭C 在游船码头B 的北偏东53°方向.请计算一下南门A 与历下亭C 之间的距离约为( )(参考数据:tan37°≈34,tan53°≈43)A.225m B.275m C.300m D.315m 【答案】C【解答】解:如图,作CE⊥BA于E.设EC=xm,BE=ym.在Rt△ECB中,tan53°=DDDD,即43=DD,在Rt△AEC中,tan37°=DDDD,即34=D105+D,解得x=180,y=135,∴AC=√DD2+DD2=√1802+2402=300(m),故选:C.32.(2019•济南)以下给出的几何体中,主视图是矩形,俯视图是圆的是()A.B.C.D.【答案】D【解答】解:A、主视图是圆,俯视图是圆,故A不符合题意;B、主视图是矩形,俯视图是矩形,故B不符合题意;C、主视图是三角形,俯视图是圆,故C不符合题意;D、主视图是个矩形,俯视图是圆,故D符合题意;故选:D.33.(2019•莱芜区)下列图形中,既是中心对称,又是轴对称的是()A.B.C .D .【答案】B【解答】解:A 、不是中心对称图形,也不是轴对称图形,故本选项错误;B 、既是中心对称图形又是轴对称图形,故本选项正确;C 、不是中心对称图形,是轴对称图形,故本选项错误;D 、是中心对称图形,不是轴对称图形,故本选项错误.故选:B .34.(2019•日照)如图,甲乙两楼相距30米,乙楼高度为36米,自甲楼顶A 处看乙楼楼顶B 处仰角为30°,则甲楼高度为( )A .11米B .(36﹣15√3)米C .15√3米D .(36﹣10√3)米【答案】D【解答】解:过点A 作AE ⊥BD ,交BD 于点E ,在Rt △ABE 中,AE =30米,∠BAE =30°,∴BE =30×tan30°=10√3(米),∴AC =ED =BD ﹣BE =(36﹣10√3)(米).∴甲楼高为(36﹣10√3)米.故选:D .35.(2019•东营)如图,在正方形ABCD 中,点O 是对角线AC 、BD 的交点,过点O 作射线OM 、ON 分别交BC 、CD 于点E 、F ,且∠EOF =90°,OC 、EF 交于点G .给出下列结论:①△COE ≌△DOF ;①△OGE ∽△FGC ;①四边形CEOF 的面积为正方形ABCD 面积的14;①DF 2+BE 2=OG •OC .其中正确的是( )A.①①①①B.①①①C.①①①D.①①【答案】B【解答】解:①∵四边形ABCD是正方形,∴OC=OD,AC⊥BD,∠ODF=∠OCE=45°,∵∠MON=90°,∴∠COM=∠DOF,∴△COE≌△DOF(ASA),故①正确;①∵△COE≌△DOF,∴OE=OF,∵∠MON=90°,∴∠OEG=45°=∠FCG,∵∠OGE=∠FGC,∴△OGE∽△FGC,故①正确;①∵△COE≌△DOF,∴S△COE=S△DOF,∴D四边形DDDD =D△DDD=14D正方形DDDD,故①正确;①∵△COE≌△DOF,∴OE=OF,又∵∠EOF=90°,∴△EOF是等腰直角三角形,∴∠OEG=45°=∠OCE,∵∠EOG=∠COE,∴△OEG∽△OCE,∴OE:OC=OG:OE,∴OG•OC=OE2,∵OC=12AC,OE=√22EF,∴OG•AC=EF2,∵CE=DF,BC=CD,∴BE=CF,又∵Rt△CEF中,CF2+CE2=EF2,∴BE2+DF2=EF2,∴OG•AC=BE2+DF2,故①错误,故选:B.36.(2019•烟台)如图所示的几何体是由9个大小相同的小正方体组成的,将小正方体①移走后,所得几何体的三视图没有发生变化的是()A.主视图和左视图B.主视图和俯视图C.左视图和俯视图D.主视图、左视图、俯视图【答案】A【解答】解:将正方体①移走后,主视图不变,俯视图变化,左视图不变,故选:A.37.(2019•东营)下列图形中,是轴对称图形的是()A.B.C.D.【答案】D【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选:D.二.填空题(共7小题)38.(2020•烟台)如图,已知点A(2,0),B(0,4),C(2,4),D(6,6),连接AB,CD,将线段AB 绕着某一点旋转一定角度,使其与线段CD重合(点A与点C重合,点B与点D重合),则这个旋转中心的坐标为(4,2).【答案】见试题解答内容【解答】解:平面直角坐标系如图所示,旋转中心是P点,P(4,2).故答案为(4,2).39.(2020•威海)如图,四边形ABCD是一张正方形纸片,其面积为25cm2.分别在边AB,BC,CD,DA 上顺次截取AE=BF=CG=DH=acm(AE>BE),连接EF,FG,GH,HE.分别以EF,FG,GH,HE 为轴将纸片向内翻折,得到四边形A1B1C1D1.若四边形A1B1C1D1的面积为9cm2,则a=4.【答案】见试题解答内容【解答】解:∵四边形ABCD是一张正方形纸片,其面积为25cm2,∴正方形纸片的边长为5cm,∵AE=BF=CG=DH=acm,∴BE=AH=(5﹣a)cm,又∠A=∠B=90°,∴△AHE≌△BEF(SAS),同理可得△AHE≌△BEF≌△DGH≌CFG,由折叠的性质可知,图中的八个小三角形全等.∵四边形A1B1C1D1的面积为9cm2,∴三角形AEH的面积为(25﹣9)÷8=2(cm2),1 2a(5﹣a)=2,解得a1=1(舍去),a2=4.故答案为:4.40.(2020•临沂)如图,在△ABC中,D、E为边AB的三等分点,EF∥DG∥AC,H为AF与DG的交点.若AC=6,则DH=1.【答案】见试题解答内容【解答】解:∵D、E为边AB的三等分点,EF∥DG∥AC,∴BE=DE=AD,BF=GF=CG,AH=HF,∴AB =3BE ,DH 是△AEF 的中位线,∴DH =12EF ,∵EF ∥AC , ∴△BEF ∽△BAC , ∴DD DD =DD DD ,即DD 6=DD 3DD , 解得:EF =2, ∴DH =12EF =12×2=1,故答案为:1.41.(2020•菏泽)如图,在△ABC 中,∠ACB =90°,点D 为AB 边的中点,连接CD ,若BC =4,CD =3,则cos ∠DCB 的值为 23 . 【答案】见试题解答内容【解答】解:过点D 作DE ⊥BC ,垂足为E ,∵∠ACB =90°,DE ⊥BC ,∴DE ∥AC ,又∵点D 为AB 边的中点,∴E 是BC 的中点,∴BE =EC =12BC =2,在Rt △DCE 中,cos ∠DCB =DD DD =23, 故答案为:23. 42.(2020•德州)在平面直角坐标系中,点A 的坐标是(﹣2,1),以原点O 为位似中心,把线段OA 放大为原来的2倍,点A 的对应点为A ′.若点A '恰在某一反比例函数图象上,则该反比例函数解析式为 y =−8D . 【答案】见试题解答内容【解答】解:∵点A 的坐标是(﹣2,1),以原点O 为位似中心,把线段OA 放大为原来的2倍,点A 的对应点为A ′,∴A ′坐标为:(﹣4,2)或(4,﹣2),∵A '恰在某一反比例函数图象上,∴该反比例函数解析式为:y =−8D .故答案为:y =−8D . 43.(2020•济宁)如图,在四边形ABCD 中,以AB 为直径的半圆O 经过点C ,D .AC 与BD 相交于点E ,CD 2=CE •CA ,分别延长AB ,DC 相交于点P ,PB =BO ,CD =2√2.则BO 的长是 4 .【答案】见试题解答内容【解答】解:连结OC ,如图, ∵CD 2=CE •CA ,∴DD DD =DD DD ,而∠ACD =∠DCE ,∴△CAD ∽△CDE ,∴∠CAD =∠CDE ,∵∠CAD =∠CBD ,∴∠CDB =∠CBD ,∴BC =DC ;设①O 的半径为r ,∵CD =CB ,∴DD̂=DD ̂, ∴∠BOC =∠BAD ,∴OC ∥AD ,∴DD DD =DD DD =2D D =2,∴PC =2CD =4√2,∵∠PCB =∠P AD ,∠CPB =∠APD ,∴△PCB ∽△P AD ,∴DD DD =DD DD ,即4√23D =62,∴r =4(负根已经舍弃),∴OB =4,故答案为4.44.如图,小明在距离地面30米的P 处测得A 处的俯角为15°,B 处的俯角为60°.若斜面坡度为1:√3,则斜坡AB 的长是 20√3 米.【答案】见试题解答内容【解答】解:如图所示:过点A 作AF ⊥BC 于点F , ∵斜面坡度为1:√3,∴tan ∠ABF =DD DD =3=√33, ∴∠ABF =30°,∵在P处进行观测,测得山坡上A处的俯角为15°,山脚B处的俯角为60°,∴∠HPB=30°,∠APB=45°,∴∠HBP=60°,∴∠PBA=90°,∠BAP=45°,∴PB=AB,∵PH=30m,sin60°=DDDD=30DD=√32,解得:PB=20√3,故AB=20√3(m),故答案为:20√3.三.解答题(共6小题)45.(2020•东营)如图1,在等腰三角形ABC中,∠A=120°,AB=AC,点D、E分别在边AB、AC上,AD=AE,连接BE,点M、N、P分别为DE、BE、BC的中点.(1)观察猜想.图1中,线段NM、NP的数量关系是NM=NP,∠MNP的大小为60°.(2)探究证明把△ADE绕点A顺时针方向旋转到如图2所示的位置,连接MP、BD、CE,判断△MNP的形状,并说明理由;(3)拓展延伸把△ADE绕点A在平面内自由旋转,若AD=1,AB=3,请求出△MNP面积的最大值.【答案】见试题解答内容【解答】解:(1)∵AB=AC,AD=AE,∴BD=CE,∵点M、N、P分别为DE、BE、BC的中点,∴MN=12BD,PN=12CE,MN∥AB,PN∥AC,∴MN=PN,∠ENM=∠EBA,∠ENP=∠AEB,∴∠MNE+∠ENP=∠ABE+∠AEB,∵∠ABE+∠AEB=180°﹣∠BAE=60°,∴∠MNP=60°,故答案为:NM=NP;60°;(2)△MNP是等边三角形.理由如下:由旋转可得,∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴BD=CE,∠ABD=∠ACE,∵点M、N、P分别为DE、BE、BC的中点.∴MN=12BD,PN=12CE,MN∥BD,PN∥CE,∴MN=PN,∠ENM=∠EBD,∠BPN=∠BCE,∴∠ENP=∠NBP+∠NPB=∠NBP+∠ECB,∵∠EBD=∠ABD+∠ABE=∠ACE+∠ABE,∴∠MNP=∠MNE+∠ENP=∠ACE+∠ABE+∠EBC+∠EBC+∠ECB=180°﹣∠BAC=60°,∴△MNP是等边三角形;(3)根据题意得,BD≤AB+AD,即BD≤4,∴MN≤2,∴△MNP的面积=12DD⋅√32DD=√34DD2,∴△MNP的面积的最大值为√3.46.(2020•潍坊)某校“综合与实践”小组采用无人机辅助的方法测量一座桥的长度.如图,桥AB是水平并且笔直的,测量过程中,小组成员遥控无人机飞到桥AB的上方120米的点C处悬停,此时测得桥两端A,B两点的俯角分别为60°和45°,求桥AB的长度.【答案】见试题解答内容【解答】解:如图示:过点C作CD⊥AB,垂足为D,由题意得,∠MCA=∠A=60°,∠NCB=∠B=45°,CD=120(米),在Rt△ACD中,AD=DDDDD60°=3=40√3(米),在Rt△BCD中,∵∠CBD=45°,∴BD=CD=120(米),∴AB=AD+BD=(40√3+120)(米).答:桥AB的长度为(40√3+120)米.47.(2020•威海)居家学习期间,小晴同学运用所学知识在自家阳台测对面大楼的高度.如图,她利用自制的测角仪测得该大楼顶部的仰角为45°,底部的俯角为38°;又用绳子测得测角仪距地面的高度AB 为31.6m.求该大楼的高度(结果精确到0.1m).(参考数据:sin38°≈0.62,cos38°≈0.79,tan38°≈0.78)。
中考数学压轴题专题10图形变换综合题探究专题(学生版+解析版)
专题十图形变换综合题探究专题【考题研究】本专题主要包括图形的变换和相似形.其中轴对称图形、平移、中心对称图形的识别,相似三角形性质以填空和选择题为主,主要是考查对图形的识别和性质;图形的折叠、平移、旋转与几何图形面积相关的计算问题以填空题和解答题为主,主要是考查对几何问题的综合运用能力;而相似三角形的性质及判断定的应用往往还会结合圆或者解直角三角形等问题一并考查,主要是以解答题为主。
【解题攻略】图形的轴对称、平移、旋转是近年中考的新题型、热点题型,它主要考查学生的观察与实验能力,探索与实践能力,因此在解题时应注意以下方面:1.熟练掌握图形的轴对称、图形的平移、图形的旋转的基本性质和基本方法。
2.结合具体问题大胆尝试,动手操作平移、旋转,探究发现其内在规律是解答操作题的基本方法。
3.注重图形与变换的创新题,弄清其本质,掌握其基本的解题方法,尤其是折叠与旋转等。
【解题类型及其思路】1.变换中求角度注意平移性质:平移前后图形全等,对应点连线平行且相等.2.变换中求线段长时把握折叠的性质:折线是对称轴、折线两边图形全等、对应点连线垂直对称轴、对应边平行或交点在对称轴上.3.变换中求坐标时注意旋转性质:对应线段、对应角的大小不变,对应线段的夹角等于旋转角.4.变换中求面积,注意前后图形的变换性质及其位置等情况。
【典例指引】类型一【图形的平移】【典例指引1】1.两个三角板ABC,DEF按如图所示的位置摆放,点B与点D重合,边AB与边DE在同一条直线上(假设图形中所有的点、线都在同一平面内),其中,∠C=∠DEF=90°,∠ABC=∠F=30°,AC =DE=4 cm.现固定三角板DEF,将三角板ABC沿射线DE方向平移,当点C落在边EF上时停止运动.设三角板平移的距离为x(cm),两个三角板重叠部分的面积为y(cm2).(1)当点C落在边EF上时,x=________cm;(2)求y关于x的函数表达式,并写出自变量x的取值范围;(3)设边BC的中点为点M,边DF的中点为点N,直接写出在三角板平移过程中,点M与点N之间距离的最小值.【举一反三】如图①,将两块全等的三角板拼在一起,其中△ABC的边BC在直线l上,AC⊥BC且AC=BC;△EFP的边FP也在直线l上,边EF与边AC重合,EF⊥FP且EF=FP.(1)在图①中,通过观察、测量,猜想直接写出AB与AP满足的数量关系和位置关系,不要说明理由;(2)将三角板△EFP沿直线l向左平移到图②的位置时,EP交AC于点Q,连接AP、BQ.猜想写出BQ 与AP满足的数量关系和位置关系,并说明理由.类型二【图形的轴对称--折叠】【典例指引2】将一个直角三角形纸片放置在平面直角坐标系中,点,点,点.是边上的一点(点不与点,重合),沿着折叠该纸片,得点的对应点.(Ⅰ)如图①,当时,求点的坐标;(Ⅱ)如图②,当点落在轴上时,求点的坐标;(Ⅲ)当与坐标轴平行时,求点的坐标(直接写出结果即可).【举一反三】如图,在矩形ABCD中,点E在边CD上,将该矩形沿AE折叠,使点D落在边BC上的点F 处,过点F作FG∥CD,交AE于点G,连接DG.(1)求证:四边形DEFG为菱形;(2)若CD=8,CF=4,求CEDE的值.【典例指引3】如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.(1)求证:DE⊥AG;(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图2.①在旋转过程中,当∠OAG′是直角时,求α的度数;②若正方形ABCD的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.【举一反三】(1)(问题发现)如图1,在Rt△ABC中,AB=AC=2,∠BAC=90°,点D为BC的中点,以CD为一边作正方形CDEF,点E恰好与点A重合,则线段BE与AF的数量关系为(2)(拓展研究)在(1)的条件下,如果正方形CDEF绕点C旋转,连接BE,CE,AF,线段BE与AF的数量关系有无变化?请仅就图2的情形给出证明;(3)(问题发现)当正方形CDEF旋转到B,E,F三点共线时候,直接写出线段AF的长.【典例指引4】如图,二次函数y=x2﹣3x的图象经过O(0,0),A(4,4),B(3,0)三点,以点O为位似中心,在y轴的右侧将△OAB按相似比2:1放大,得到△OA′B′,二次函数y=ax2+bx+c(a≠0)的图象经过O,A′,B′三点.(1)画出△OA′B′,试求二次函数y=ax2+bx+c(a≠0)的表达式;(2)点P(m,n)在二次函数y=x2﹣3x的图象上,m≠0,直线OP与二次函数y=ax2+bx+c(a≠0)的图象交于点Q(异于点O).①连接AP,若2AP>OQ,求m的取值范围;②当点Q在第一象限内,过点Q作QQ′平行于x轴,与二次函数y=ax2+bx+c(a≠0)的图象交于另一点Q′,与二次函数y=x2﹣3x的图象交于点M,N(M在N的左侧),直线OQ′与二次函数y=x2﹣3x的图象交于点P′.△Q′P′M∽△QB′N,则线段NQ的长度等于.【举一反三】如图所示,网格纸中的每个小方格都是边长为1的正方形,我们把以格点间连线为边的三角形称为“格点三角形”,图中的△ABC是格点三角形.在建立平面直角坐标系后,点B的坐标为(-1,-1).(1)把△ABC向下平移5格后得到△A1B1C1,写出点A1,B1,C1的坐标,并画出△A1B1C1;(2)把△ABC绕点O按顺时针方向旋转180°后得到△A2B2C2,写出点A2,B2,C2的坐标,并画出△A2B2C2;(3)把△ABC以点O为位似中心放大得到△A3B3C3,使放大前后对应线段的比为1∶2,写出点A3,B3,C3的坐标,并画出△A3B3C3.【新题训练】1.在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(﹣4,5),(﹣1,3).(1)请在如图所示的网格平面内作出平面直角坐标系;(2)写出点B的坐标;(3)将△ABC向右平移5个单位长度,向下平移2个单位长度,画出平移后的图形△A′B′C′;(4)计算△A′B′C′的面积﹒(5)在x轴上存在一点P,使P A+PC最小,直接写出点P的坐标.2.如图(1),在平面直角坐标系中,点A ,B 的坐标分别为(﹣1,0),(3,0),将线段AB 先向上平移2个单位长度,再向右平移1个单位长度,得到线段CD ,连接AC ,BD ,构成平行四边形ABDC . (1)请写出点C 的坐标为 ,点D 的坐标为 ,S 四边形ABDC ;(2)点Q 在y 轴上,且S △QAB =S 四边形ABDC ,求出点Q 的坐标;(3)如图(2),点P 是线段BD 上任意一个点(不与B 、D 重合),连接PC 、PO ,试探索∠DCP 、∠CPO 、∠BOP 之间的关系,并证明你的结论.3.(问题情境)在综合实践课上,同学们以“图形的平移”为主题开展数学活动,如图①,先将一张长为4,宽为3的矩形纸片沿对角线剪开,拼成如图所示的四边形ABCD ,3AD =,4BD =,则拼得的四边形ABCD 的周长是_____.(操作发现)将图①中的ABE △沿着射线DB 方向平移,连结AD 、BC 、AF 、CE ,如图②.当ABE △的平移距离是12BE 的长度时,求四边形AECF 的周长. (操作探究)将图②中的ABE △继续沿着射线DB 方向平移,其它条件不变,当四边形ABCD 是菱形时,将四边形ABCD 沿对角线剪开,用得到的四个三角形拼成与其面积相等的矩形,直接写出所有可能拼成的矩形周长.4.如图,在66⨯的正方形方格中,每个小正方形的边长都为1,顶点都在网格线交点处的三角形,ABC V 是一个格点三角形.()1在图①中,请判断ABC V 与DEF V 是否相似,并说明理由;()2在图②中,以O 为位似中心,再画一个格点三角形,使它与ABC V 的位似比为2:1()3在图③中,请画出所有满足条件的格点三角形,它与ABC V 相似,且有一条公共边和一个公共角.5.已知:AD 是ABC ∆的高,且BD CD =.(1)如图1,求证:BAD CAD ∠=∠;(2)如图2,点E 在AD 上,连接BE ,将ABE ∆沿BE 折叠得到'A BE ∆,'A B 与AC 相交于点F ,若BE =BC ,求BFC ∠的大小;(3)如图3,在(2)的条件下,连接EF ,过点C 作CG EF ⊥,交EF 的延长线于点G ,若10BF =,6EG =,求线段CF 的长.图1. 图2. 图3.6.如图,长方形OABC 在平面直角坐标系xOy 的第一象限内,点A 在x 轴正半轴上,点C 在y 轴的正半轴上,点D 、E 分别是OC 、BC 的中点,30∠=︒CDE ,点E 的坐标为()2,a .(1)求a 的值及直线DE 的表达式;(2)现将长方形OABC 沿DE 折叠,使顶点C 落在平面内的点'C 处,过点'C 作y 轴的平行线分别交x 轴和BC 于点F ,G .①求'C 的坐标;②若点P 为直线DE 上一动点,连接'PC ,当'PC D ∆为等腰三角形,求点P 的坐标.(说明:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半)7.如图1,四边形ABCD 的对角线AC ,BD 相交于点O ,OB =OD ,OC =OA +AB ,AD =m ,BC =n ,∠ABD +∠ADB =∠ACB .(1)填空:∠BAD 与∠ACB 的数量关系为________;(2)求m n的值; (3)将△ACD 沿CD 翻折,得到△A ′CD (如图2),连接BA ′,与CD 相交于点P .若CD =5+12,求PC 的长.8.如图,直线:y=﹣33x+4与x轴、y轴分别別交于点M、点N,等边△ABC的高为3,边BC在x轴上,将△ABC沿着x轴的正方向平移,在平移过程中,得到△A1B1C1,当点B1与原点O重合时,解答下列问题:(1)点A1的坐标为.(2)求△A1B1C1的边A1C1所在直线的解析式;(3)若以P、A1、C1、M为顶点的四边形是平行四边形,请直接写出P点坐标.9.已知:△ABC和△ADE均为等边三角形,连接BE,CD,点F,G,H分别为DE,BE,CD中点.(1)当△ADE绕点A旋转时,如图1,则△FGH的形状为,说明理由;(2)在△ADE旋转的过程中,当B,D,E三点共线时,如图2,若AB=3,AD=2,求线段FH的长;(3)在△ADE旋转的过程中,若AB=a,AD=b(a>b>0),则△FGH的周长是否存在最大值和最小值,若存在,直接写出最大值和最小值;若不存在,说明理由.10.综合与实践问题背景折纸是一种许多人熟悉的活动,将折纸的一边二等分、四等分都是比较容易做到的,但将一边三等分就不是那么容易了,近些年,经过人们的不懈努力,已经找到了多种将正方形折纸一边三等分的精确折法,最著名的是由日本学者芳贺和夫发现的三种折法,现在被数学界称之为芳贺折纸三定理.其中,芳贺折纸第一定理的操作过程及内容如下(如图1):操作1:將正方形ABCD对折,使点A与点D重合,点B与点C重合.再将正方形ABCD展开,得到折痕EF;操作2:再将正方形纸片的右下角向上翻折,使点C与点E重合,边BC翻折至B'E的位置,得到折痕MN,B'E与AB交于点P.则P即为AB的三等分点,即AP:PB=2:1.解决问题(1)在图1中,若EF与MN交于点Q,连接CQ.求证:四边形EQCM是菱形;(2)请在图1中证明AP:PB=2:l.发现感悟若E为正方形纸片ABCD的边AD上的任意一点,重复“问题背景”中操作2的折纸过程,请你思考并解决如下问题:(3)如图2.若DEAE=2.则APBP=;(4)如图3,若DEAE=3,则APBP=;(5)根据问题(2),(3),(4)给你的启示,你能发现一个更加一般化的结论吗?请把你的结论写出来,不要求证明.11.在平面直角坐标系中,四边形AOBC 是矩形,点(0,0)O ,点(5,0)A ,点(0,3)B .以点A 为中心,顺时针旋转矩形AOBC ,得到矩形ADEF ,点O ,B ,C 的对应点分别为D ,E ,F .(Ⅰ)如图①,当点D 落在BC 边上时,求点D 的坐标; (Ⅱ)如图②,当点D 落在线段BE 上时,AD 与BC 交于点H . ①求证ADB AOB △△≌; ②求点H 的坐标.(Ⅲ)记K 为矩形AOBC 对角线的交点,S 为KDE △的面积,求S 的取值范围(直接写出结果即可).12.已知O 为直线MN 上一点,OP ⊥MN ,在等腰Rt △ABO 中,90BAO ∠=︒,AC ∥OP 交OM 于C ,D 为OB 的中点,DE ⊥DC 交MN 于E .(1) 如图1,若点B 在OP 上,则①AC OE (填“<”,“=”或“>”);②线段CA 、CO 、CD 满足的等量关系式是 ;(2) 将图1中的等腰Rt △ABO 绕O 点顺时针旋转α(045α︒<<︒),如图2,那么(1)中的结论②是否成立?请说明理由;(3) 将图1中的等腰Rt △ABO 绕O 点顺时针旋转α(),请你在图3中画出图形,并直接写出线段CA 、CO 、CD 满足的等量关系式 ;13.如图1,在中,,,点,分别在边,上,,连接,点,,分别为,,的中点.(1)观察猜想图1中,线段与的数量关系是,位置关系是;(2)探究证明把绕点逆时针方向旋转到图2的位置,连接,,,判断的形状,并说明理由;(3)拓展延伸把绕点在平面内自由旋转,若,,请直接写出面积的最大值.14.已知∠MAN=135°,正方形ABCD绕点A旋转.(1)当正方形ABCD旋转到∠MAN的外部(顶点A除外)时,AM,AN分别与正方形ABCD的边CB,CD 的延长线交于点M,N,连接MN.①如图1,若BM=DN,则线段MN与BM+DN之间的数量关系是;②如图2,若BM≠DN,请判断①中的数量关系是否仍成立?若成立,请给予证明;若不成立,请说明理由;(2)如图3,当正方形ABCD旋转到∠MAN的内部(顶点A除外)时,AM,AN分别与直线BD交于点M,N,探究:以线段BM,MN,DN的长度为三边长的三角形是何种三角形,并说明理由.15.已知:如图,是由一个等边△ABE和一个矩形BCDE拼成的一个图形,其点B,C,D的坐标分别为(1,2),(1,1),(3,1).(1)直接写出E点和A点的坐标;(2)试以点B为位似中心,作出位似图形A1B1C1D1E1,使所作的图形与原图形的位似比为3∶1;(3)直接写出图形A1B1C1D1E1的面积.16.如图1,将长为10的线段OA绕点O旋转90°得到OB,点A的运动轨迹为»AB,P是半径OB上一动点,Q是»AB上的一动点,连接PQ.发现:∠POQ=________时,PQ有最大值,最大值为________;思考:(1)如图2,若P是OB中点,且QP⊥OB于点P,求»BQ的长;(2)如图3,将扇形AOB沿折痕AP折叠,使点B的对应点B′恰好落在OA的延长线上,求阴影部分面积;探究:如图4,将扇形OAB沿PQ折叠,使折叠后的弧QB′恰好与半径OA相切,切点为C,若OP=6,求点O到折痕PQ的距离.17.(本小题10分)将一个直角三角形纸片ABO,放置在平面直角坐标系中,点A(3,0),点B(0,1),点O(0,0).过边OA上的动点M(点M不与点O,A重合)作MN⊥AB于点N,沿着MN折叠该纸片,得顶点A的对应点A′.设OM =m,折叠后的△A′MN与四边形OMNB重叠部分的面积为S.(Ⅰ)如图①,当点A′与顶点B重合时,求点M的坐标;(Ⅱ)如图②,当点A′落在第二象限时,A′M与OB相交于点C,试用含m的式子表示S;(Ⅲ)当S=324时,求点M的坐标(直接写出结果即可).18.如图1,一副直角三角板满足AB =BC ,AC =DE ,∠ABC =∠DEF =90°,∠EDF =30°操作:将三角板DEF 的直角顶点E 放置于三角板ABC 的斜边AC 上,再将三角板DEF 绕点E 旋转,并使边DE 与边AB 交于点P ,边EF 与边BC 于点Q . 探究一:在旋转过程中,(1)如图2,当1CEEA =时,EP 与EQ 满足怎样的数量关系?并给出证明; (2)如图3,当2CEEA=时,EP 与EQ 满足怎样的数量关系?并说明理由; (3)根据你对(1)、(2)的探究结果,试写出当CEm EA=时,EP 与EQ 满足的数量关系式为 ,其中m 的取值范围是 .(直接写出结论,不必证明) 探究二:若2CEEA=且AC =30cm ,连接PQ ,设△EPQ 的面积为S (cm 2),在旋转过程中: (1)S 是否存在最大值或最小值?若存在,求出最大值或最小值;若不存在,说明理由. (2)随着S 取不同的值,对应△EPQ 的个数有哪些变化,求出相应S 的值或取值范围.专题十图形变换综合题探究专题【考题研究】本专题主要包括图形的变换和相似形.其中轴对称图形、平移、中心对称图形的识别,相似三角形性质以填空和选择题为主,主要是考查对图形的识别和性质;图形的折叠、平移、旋转与几何图形面积相关的计算问题以填空题和解答题为主,主要是考查对几何问题的综合运用能力;而相似三角形的性质及判断定的应用往往还会结合圆或者解直角三角形等问题一并考查,主要是以解答题为主。
2020年中考数学一轮复习第7章图形与变换(付)
第七章图形与变换第一节图形的轴对称与中心对称姓名:________ 班级:________ 用时:______分钟1.(2018·山东德州中考)下列图形中,既是轴对称图形又是中心对称图形的是( )2.若下列选项中的图形均为正多边形,恰有4条对称轴的是( )3.(2019·易错题)等腰三角形是轴对称图形,它的对称轴是( )A.过顶点的直线B.底边上的高C.顶角的平分线所在的直线D.腰上的高所在的直线4.如图,△ABC与△A′B′C′是成中心对称,下列说法不正确的是( )A.S△ABC=S△A′B′C′B.AB=A′B′,AC=A′C′,BC=B′C′C.AB∥A′B′,AC∥A′C′,BC∥B′C′D.S△ACO=S△A′B′O5.(2018·浙江嘉兴中考)将一张正方形纸片按如图步骤①,②沿虚线对折两次,然后沿③中平行于底边的虚线剪去一个角,展开铺平后的图形是( )6.已知点P(-2,1),则点P关于x轴对称的点的坐标是____________________7.线段AB的两个端点关于点O中心对称,若AB=10,则OA=______.8.如图,在平面直角坐标系xOy中,若点B与点A关于点O中心对称,则点B的坐标为________________.9.如图,在Rt△ABC中,∠ACB=90°,点D在AB边上,将△CBD沿CD折叠,使点B恰好落在AC边上的点E处.若∠A=26°,则∠CDE=__________.10.如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)画出△ABC关于y轴的对称图形△A1B1C1,并写出B1点的坐标;(2)画出△ABC绕原点O旋转180°后得到的图形△A2B2C2,并写出B2点的坐标;(3)在x轴上求作一点P,使△PAB的周长最小,并直接写出点P的坐标.11.把一张长方形纸片按如图①,图②的方式从右向左连续对折两次后得到图③,再在图③中挖去一个如图所示的三角形小孔,则重新展开后得到的图形是( )12.如图,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE最小,则这个最小值为( )A. 3 B.2 3 C.2 6 D. 613.(2018·山东潍坊中考)在平面内由极点、极轴和极径组成的坐标系叫做极坐标系.如图,在平面上取定一点O称为极点;从点O出发引一条射线Ox称为极轴;线段OP的长度称为极径.点P的极坐标就可以用线段OP的长度以及从Ox转动到OP的角度(规定逆时针方向转动角度为正)来确定,即P(3,60°)或P(3,-300°)或P(3,420°)等,则点P关于点O成中心对称的点Q的极坐标表示不正确的是( )A.Q(3,240°) B.Q(3,-120°)C.Q(3,600°) D.Q(3,-500°)14.如图,在正方形方格中,阴影部分是7个小正方形所形成的图案,再将方格内空白的一个小正方形涂上阴影,使得到的新图案成为一个轴对称图形的涂法有______种.15.如图是一张三角形纸片ABC,AB=AC=5.折叠该纸片,使点A落在BC的中点上,折痕经过AC上的点E,则AE的长为__________.16.如图,在平行四边形中挖去一个矩形,在请用无刻度的直尺,准确作出一条直线将剩下图形的面积平分.(保留作图痕迹)17.(2018·山东威海中考)如图,将矩形ABCD(纸片)折叠,使点B与AD边上的点K重合,EG为折痕;点C与AD边上的点K重合,FH为折痕.已知∠1=67.5°,∠2=75°,EF=3+1,求BC的长.18.在图5×5的方格中,沿着已有的线画一个简单连续的闭合圈作篱笆,篱笆不能“自身相交”.小方格中的数表示这小方格上属于篱笆的边数(如123),篱笆经过两个黑点,而且对于以“黑点”为中心的长方形,它边上的篱笆也以这个黑点为对称中心.(在原图上画即可)参考答案【基础训练】1.B 2.B 3.C 4.D 5.A6.(-2,-1) 7.5 8.(2,-1) 9.71°10.解:(1)△A1B1C1如图所示,B1(-4,2);(2)△A2B2C2如图所示,B2(-4,-2);(3)△PAB如图所示,P(2,0).【拔高训练】11.C 12.B 13.D14.3 15.2.516.解:如图所示.17.解:由题意得∠3=180°-2∠1=45°,∠4=180°-2∠2=30°,BE=KE,KF=FC,如图,过点K作KM⊥BC于点M,设KM=x,则EM=x、MF=3x,∴x+3x=3+1,解得x=1,∴EK=2,KF=2,∴BC=BE+EF+FC=EK+EF+KF=3+2+3,∴BC的长为3+2+ 3.【培优训练】18.解:根据题意所画图形如下所示:(答案不唯一).第二节图形的平移与旋转姓名:________ 班级:________ 用时:______分钟1.(2019·易错题)下列现象中属于平移的是( )A.升降电梯从一楼升到五楼B.闹钟的钟摆运动C.树叶从树上随风飘落D.方向盘的转动2.如图,将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,若∠AOB=15°,则∠AOB′的度数是( )A.25° B.30° C.35° D.40°3.(2018·海南中考)如图,在平面直角坐标系中,△ABC位于第一象限,点A的坐标是(4,3),把△ABC向左平移6个单位长度,得到△A1B1C1,则点B1的坐标是( )A.(-2,3) B.(3,-1)C.(-3,1) D.(-5,2)4.(2018·浙江绍兴模拟)如图,△ABC为钝角三角形,将△ABC绕点A按逆时针方向旋转120°得到△AB′C′,连结BB′,若AC′∥BB′,则∠CAB′的度数为( )A.45° B.60° C.70° D.90°5.如图,在长方形ABCD中,AB=10 cm,BC=6 cm,将长方形ABCD沿着AB方向平移______cm,才能使平移后的长方形与原来的长方形ABCD重叠部分的面积为24 cm2.6.如图,在△ABC中,AB=4,BC=6,∠B=60°,将三角形ABC沿着射线BC的方向平移2个单位后,得到三角形△A′B′C′,连结A′C,则△A′B′C的周长为________.7.在平面直角坐标系xOy中,已知点A(3,4),将OA绕坐标原点O旋转90°至OA′,则点A′的坐标是______________________________.8.如图,方格纸中每个小正方形的边长都是1个单位长度,Rt△ABC的三个顶点A(-2,2),B(0,5),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,得到△A1B1C,请画出△A1B1C的图形.(2)平移△ABC,使点A的对应点A2坐标为(-2,-6),请画出平移后对应的△A2B2C2的图形.(3)若将△A1B1C绕某一点旋转可得到△A2B2C2,请直接写出旋转中心的坐标.9.某数学兴趣小组开展动手操作活动,设计了如图所示的三种图形,现计划用铁丝按照图形制作相应的造型,则所用铁丝的长度关系是( )A.甲种方案所用铁丝最长B.乙种方案所用铁丝最长C.丙种方案所用铁丝最长D.三种方案所用铁丝一样长10.如图,格点△A′B′C′是格点△ABC经过某种变换后得到的图形,如果△ABC中有一点P的坐标为(a,b),那么变换后它的对应点Q的坐标为( )A.(a-4,b+5) B.(a+5,b-2)C.(a+5,b-4) D.(a+4,b-5)11.(2018·广西贺州中考)如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连结BB′,若∠A′B′B=20°,则∠A的度数是__________.12.(2018·浙江台州中考)如图,把平面内一条数轴x绕原点O逆时针旋转角θ(0°<θ<90°)得到另一条数轴y,x轴和y轴构成一个平面斜坐标系.规定:过点P作y轴的平行线,交x轴于点A,过点P作x轴的平行线,交y轴于点B,若点A在x轴上对应的实数为a,点B在y轴上对应的实数为b,则称有序实数对(a,b)为点P的斜坐标,在某平面斜坐标系中,已知θ=60°,点M的斜坐标为(3,2),点N与点M关于y轴对称,则点N的斜坐标为________________.13.(2018·云南曲靖中考)如图:图象①②③均是以P0为圆心,1个单位长度为半径的扇形,将图形①②③分别沿东北,正南,西北方向同时平移,每次移动一个单位长度,第一次移动后图形①②③的圆心依次为P1P2P3,第二次移动后图形①②③的圆心依次为P4P5P6…,依此规律,P0P2 018=__________个单位长度.14.已知,如图,在平面直角坐标系中,正三角形OAB的顶点B的坐标为(2,0),点A在第一象限内.(1)求点A的坐标.(2)如图,将△OAB沿O到A的方向平移4个单位至△O′A′B′的位置,即AA′=4,求点B′的坐标.(3)如图,将△OAB沿O到A的方向平移n个单位至△O′A′B′的位置,若平移后的B′点横坐标为2 019,求n的值.15.一块竹条编织物,先将其按如图所示绕直线MN翻转180°,再将它按逆时针方向旋转90°,所得的竹条编织物是( )参考答案【基础训练】1.A 2.B 3.C 4.D5.6 6.12 7.(-4,3)或(4,-3)8.解:(1)如图所示,△A1B1C即为所求.(2)如图所示,△A2B2C2即为所求.(3)旋转中心的坐标为(0,-2).【拔高训练】9.D 10.C11.65°12.(-3,5) 13.67314.解:(1)如图,作AM⊥x轴于点M.∵正三角形OAB的顶点B的坐标为(2,0),∴OA=OB=2,∠AOB=60°,∴OM=12OA =1,AM =3OM =3,∴A(1,3).(2)当AA′=4时,OO′=4,连结O′B,如图,∵OA=O′A=AB =2, ∴∠O′BO=90°. ∵OB=12OO′=2,∴O′B=3OB =23,∴点B′的坐标为(2+2,23), 即(4,23).(3)如图,将△OAB 沿O 到A 的方向平移n 个单位至△O′A′B′的位置,即AA′=n ,∴OO′=n.过点O′作x 轴的垂线,垂足为点P. 在△OO′P 中,∵∠O′PO=90°,∠OO′P=30°,OO′=n ,∴OP=12OO′=12n.∵平移后的B′点横坐标为2 019,O′B′=2, ∴12n +2=2 019, ∴n=4 034. 【培优训练】 15.B第三节 立体图形的三视图与表面展开图姓名:________ 班级:________ 用时:______分钟1.(2018·辽宁沈阳中考)如图是由五个相同的小立方块搭成的几何体,这个几何体的左视图是( )2.从一个边长为3 cm 的大立方体上挖去一个边长为1 cm 的小立方体,得到的几何体如图所示,则该几何体的左视图正确的是( )3.某几何体的主视图和左视图如图所示,则该几何体可能是( )A.长方体B.圆锥C.圆柱D.球4.如图是由若干个大小相同的正方体搭成的几何体的三视图,该几何体所用的正方体的个数是( )A.6 B.4 C.3 D.25.如图是某工件的三视图,则此工件的表面积为( )A.15πcm2B.51πcm2C.66πcm2D.24πcm26.若一个圆锥的侧面展开图是半径为18 cm,圆心角为240°的扇形,则这个圆锥的底面半径长是________cm.7.(2018·黑龙江齐齐哈尔中考)三棱柱的三视图如图所示,已知△EFG中,EF=8 cm,EG =12 cm,∠EFG=45°.则AB的长为____________.8.如图是一个圆柱的三视图,由图中数据计算此圆柱的侧面积为__________(结果保留π).9.一个直四棱柱的三视图如图所示,俯视图是一个菱形,求这个直四棱柱的表面积.10.由几个相同的边长为1的小立方块搭成的几何体从上面看到的视图如图,方格中的数字表示该位置的小立方块的个数.请在下面方格纸中分别画出这个几何体从正面看和从左面看到的视图.11.如图是将正方体切去一个角后形成的几何体,则该几何体的左视图为( )12.如图是某几何体的三视图,根据图中所标的数据求得该几何体的体积为( )A.236π B.136π C.132π D.120π13.小颖同学到学校领来n盒粉笔,整齐地摞在讲桌上,其三视图如图,则n的值是( )A.6 B.7 C.8 D.914.如图,上下底面为全等的正六边形礼盒,其主视图与左视图均由矩形构成,主视图中大矩形边长如图所示,左视图中包含两全等的矩形,如果用彩色胶带如图包扎礼盒,所需胶带长度至少为________________________.(若结果带根号则保留根号)15.一个几何体的主视图和俯视图如图所示,若这个几何体最多有m个小正方体组成,最少有n个小正方体组成,则m+n=________.16.已知一个几何体的三视图如图,请描述该几何体的形状,并根据图中标注的尺寸(单位:cm)求它的侧面积.17.某游乐园门口需要修建一个由正方体和圆柱组合而成的一个立体图形,已知正方体的边长与圆柱的直径及高相等,都是0.8 m.(1)请画出它的主视图、左视图、俯视图;(2)为了好看,需要在这立体图形表面刷一层油漆,已知油漆每平方米40元,那么一共需要花费多少元?(结果精确到0.1)18.如图1,2为同一长方体房间的示意图,图3为该长方体的表面展开图.(1)蜘蛛在顶点A′处.①苍蝇在顶点B处时,试在图1中画出蜘蛛为捉住苍蝇,沿墙面爬行的最近路线;②苍蝇在顶点C处时,图2中画出了蜘蛛捉住苍蝇的两条路线,往天花板ABCD爬行的最近路线A′GC和往墙面BB′C′C爬行的最近路线A′HC,试通过计算判断哪条路线最近.(2)在图3中,半径为10 dm的⊙M与D′C′相切,圆心M到边CC′的距离为15 dm.蜘蛛P 在线段AB上,苍蝇Q在⊙M的圆周上,线段PQ为蜘蛛爬行路线.若PQ与⊙M相切,试求PQ长度的范围.参考答案 【基础训练】1.D 2.C 3.C 4.A 5.D 6.127.4 2 cm 8.24π9.解:∵俯视图是菱形,∴底面菱形边长为 1.52+22=2.5(cm),面积为12×3×4=6(cm 2),则侧面积为2.5×4×8=80(cm 2),∴直四棱柱的表面积为92 cm 2.10.解:如图所示.【拔高训练】11.C 12.B 13.C14.(1203+90)cm 15.1616.解:这个几何体是底面为梯形的直四棱柱,侧面积=(3+6+4.5+ 4.52+(6-3)2)×9=243+27132(cm 2).17.解:(1)如图所示:(2)根据题意得出0.8×0.8×5+0.8π×0.8=(0.64π+3.2)(m2),40×(0.64π+3.2)≈208.4(元).答:一共需要花费208.4元.【培优训练】18.解:(1)①如图1,连结A′B,则线段A′B就是所求作的最近路线.②两种爬行路线如图2所示.由题意可得,Rt△A′C′C2中,路线A′HC2的长度为A′C′2+C′C22=702+302= 5 800 (dm),Rt△A′B′C1中,路线A′GC1的长度为A′B′2+B′C12=402+602= 5 200(dm).∵ 5 800> 5 200,∴路线A′GC1更近.(2)连结MQ,∵PQ为⊙M的切线,点Q为切点,∴MQ⊥PQ,∴在Rt△PQM中,有PQ2=PM2-QM2=PM2-100.如图3,当MP⊥AB时,MP最短,PQ取得最小值,此时MP=30+20=50(dm),∴PQ=PM2-QM2=502-102=206(dm);如图4,当点P与点A重合时,MP最长,PQ取得最大值,过点M作MN⊥AB,垂足为N,由题意可得PN=25 dm,MN=50 dm,∴Rt△PMN中,PM2=PN2+MN2=252+502,∴Rt△PQM中,PQ=PM2-QM2=252+502-102=55(dm).综上所述,PQ长度的范围是20 6 dm≤PQ≤55 dm.。
【鲁教版】2020中考数学一轮复习练习九(图形认识)
(图形的认识)命题方向:这部分内容波及的知识点多,包含初中阶段平面几何所有有关的观点、定理、定义,是几何学的基础,每年中考题的必考内容,题型涉及面广。
备考攻略:掌握这部分内容需熟记、理解各样图噶尔有关观点、定义,理解定理,特别是在解答文字表达没有给出图形的几何题时,要考虑图形是否独一,应画出所有切合条件的图形来,不然会丢解。
稳固练习:1.以下图,用量角器胸怀∠AOB,能够读出AOB的度数为()∠A.45°B.55°C.125°D.135°2.如图,直线AB,CD交于点O,射线OM均分∠AOC,若∠BOD=76°,则∠BOM等于()A.38°B.104°C.142°D.144°3.如图,直线l1,l2,l3交于一点,直线l4∥l1,若∠1=124°,∠2=88°,则∠3的度数为()(A.26°B.36°C.46°D.56°4.如图,直线a,b被直线c所截,a∥b,∠1=∠2,若∠3=40°,则∠4等于()A.40° B.50°C.70°D.80°5.下边是“经过已知直线外一点作这条直线的垂线”的尺规作图过程:已知:直线l和l外一点P.(如图1)求作:直线l的垂线,使它经过点P.作法:如图21)在直线l上任取两点A,B;2)分别以点A,B为圆心,AP,BP长为半径作弧,两弧订交于点Q;3)作直线PQ.因此直线PQ就是所求的垂线.请回答:该作图的依照是.6.阅读下边资料:在数学课上,老师提出以下问题:小芸的作法以下:老师说:“小芸的作法正确.”请回答:小芸的作图依照是.7.如图是某个几何体的三视图,该几何体是()A.圆锥B.三棱锥C.圆柱D.三棱柱8.如图是几何体的三视图,该几何体是()A.圆锥B.圆柱C.正三棱柱D.正三棱锥9.如图是某个几何体的三视图,该几何体是()A.长方体B.正方体C.圆柱D.三棱柱1091.若下列图是某几何体的表面睁开图,则这个几何体是.(11.如图,小军、小珠之间的距离为,他们在同一盏路灯下的影长分别为,,已知小军、小珠的身高分别为,,则路灯的高为m.。
山东省中考数学一轮复习图形与变换第24讲图形的变换课件
2.[2016·济南]如图,在6×6方格中有两个涂有阴影的图形M、N, 图1中的图形M平移后位置如图2所示,以下对图形M的平移方法叙述 正确的是( B )
A.向右平移2个单位,向下平移3个单位 B.向右平移1个单位,向下平移3个单位 C.向右平移1个单位,向下平移4个单位 D.向右平移2个单位,向下平移4个单位
思路:(1)分别作出点A、B、D、C向左平移1个单 位,再向上平移4个单位得到的对应点,顺次连接 即可;(2)分别作出点A、B、C沿着直线MN翻折后 得到的对应点,顺次连接即可,再根据勾股定理 可得D1A2的长度.
解题要领►解答这类问题,熟知图形平移不变性的性质和轴对称性质,抓住图 形中的关键点(图形的顶点、拐点、交点等)作出图形即可.
第8题图
第9题图
9.[2017·泰安,T24,3分]如图,∠BAC=30°,M为AC上一点, AM=2,点P是AB上的一动点,PQ⊥AC,垂足为点Q,则PM+PQ的
最小值为
.
命题点
平移、旋转
考情分析►平移和旋转是泰安中考的重要考点,几乎每年都考,有时单独考查,有 时与其他知识结合起来考查,一般是以选择题、填空题的形式出现.
A.90°-α
B.α
C.180°-α D.2α
10.[2018·台州]如图,把平面内一条数轴x绕原点O逆时针旋转角 θ(0°<θ<90°)得到另一条数轴y,x轴和y轴构成一个平面斜坐 标系.规定:过点P作y轴的平行线,交x轴于点A,过点P作x轴的平 行线,交y轴于点B,若点A在x轴上对应的实数为a,点B在y轴上对 应的实数为b,则称有序实数对(a,b)为点P的斜坐标,在某平面斜 坐标系中,已知θ=60°,点M的斜坐标为(3,2),点N与点M关于y 轴对称,则点N的斜坐标为 (-3,5) .
数学中考复习练习十(图形与变换)(无答案) 鲁教版
(图形与变换)命题方向:这部分知识包含了图的各种变换——平移、旋转、对称、相似及解直角三形的知识。
备考攻略:同样是历届中考的必考内容、题型有单一知识点的选择题、填空题,也有利用网格的图案设计题,及利用解直角三角形的实际问题与相似三角形的证明问题。
巩固练习:1.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是()(A.B.C. D.2.剪纸是我国传统的民间艺术,下列剪纸作品中,是轴对称图形的为()A.B. C.D.3.阅读下面材料:小伟遇到这样一个问题,如图1,在梯形ABCD中,AD∥BC,对角线AC,BD相交于点O.若梯形ABCD的面积为1,试求以AC,BD,AD+BC的长度为三边长的三角形的面积.小伟是这样思考的:要想解决这个问题,首先应想办法移动这些分散的线段,构造一个三角形,再计算其面积即可.他先后尝试了翻折,旋转,平移的方法,发现通过平移可以解决这个问题.他的方法是过点D作AC的平行线交BC的延长线于点E,得到的△BDE 即是以AC,BD,AD+BC的长度为三边长的三角形(如图2).参考小伟同学的思考问题的方法,解决下列问题:如图3,△ABC的三条中线分别为AD,BE,CF.(1)在图3中利用图形变换画出并指明以AD,BE,CF的长度为三边长的一个三角形(保留画图痕迹);(2)若△ABC的面积为1,则以AD,BE,CF的长度为三边长的三角形的面积等于.4.操作与探究:(1)对数轴上的点P进行如下操作:先把点P表示的数乘以,再把所得数对应的点向右平移1个单位,得到点P的对应点P′.点A,B在数轴上,对线段AB上的每个点进行上述操作后得到线段A′B′,其中点A,B的对应点分别为A′,B′.如图1,若点A表示的数是﹣3,则点A′表示的数是;若点B′表示的数是2,则点B表示的数是;已知线段AB上的点E经过上述操作后得到的对应点E′与点E重合,则点E表示的数是.(2)如图2,在平面直角坐标系xOy中,对正方形ABCD及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘以同一个实数a,将得到的点先向右平移m个单位,再向上平移n个单位(m>0,n>0),得到正方形A′B′C′D′及其内部的点,其中点A,B的对应点分别为A′,B′.已知正方形ABCD内部的一个点F经过上述操作后得到的对应点F′与点F重合,求点F的坐标.5.在△ABC中,BA=BC,∠BAC=α,M是AC的中点,P是线段BM上的动点,将线段PA 绕点P顺时针旋转2α得到线段PQ.(1)若α=60°且点P与点M重合(如图1),线段CQ的延长线交射线BM于点D,请补全图形,并写出∠CDB的度数;(2)在图2中,点P不与点B,M重合,线段CQ的延长线于射线BM交于点D,猜想∠CDB的大小(用含α的代数式表示),并加以证明;(3)对于适当大小的α,当点P在线段BM上运动到某一位置(不与点B,M重合)时,能使得线段CQ的延长线与射线BM交于点D,且PQ=QD,请直接写出α的范围.6.下列图形中,是中心对称图形,但不是轴对称图形的是()A.B.C.D.7.下列图形中,既是中心对称又是轴对称图形的是()A.等边三角形 B.平行四边形 C.梯形D.矩形8.阅读下面材料:小腾遇到这样一个问题:如图1,在△ABC中,点D在线段BC上,∠BAD=75°,∠CAD=30°,AD=2,BD=2DC,求AC的长.小腾发现,过点C作CE∥AB,交AD的延长线于点E,通过构造△ACE,经过推理和计算能够使问题得到解决(如图 2).请回答:∠ACE的度数为,AC的长为.参考小腾思考问题的方法,解决问题:如图 3,在四边形 ABCD中,∠BAC=90°,∠CAD=30°,∠ADC=75°,AC与BD交于点E,AE=2,BE=2ED,求BC的长.9.如图,在四边形ABCD中,AD∥BC,对角线AC,BD相交于点O,若AD=1,BC=3,则的值为()A.B.C.D.10.在某一时刻,测得一根高为1.8m的竹竿的影长为3m,同时测得一根旗杆的影长为25m,那么这根旗杆的高度为m.11.如图,为估算某河的宽度,在河对岸选定一个目标点A,在近岸取点B,C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A,E,D在同一条直线上.若测得BE=20m,CE=10m,CD=20m,则河的宽度AB等于()A.60m B.40m C.30m D.20m12.如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边DE=40cm,EF=20cm,测得边DF离地面的高度AC=1.5m,CD=8m,则树高AB= m.。
鲁教版初中数学八年级上册《图形变化的简单应用》同步练习
4.4 图形变化的简单应用
基础训练
1.已知:图A 、图B 分别是6×6正方形网格上的两个轴对称图形(阴影部分),其面积分别为A S 、B S (网格中最小的正方形面积为一个平方单位),请观察图形并解答下列问题.
(1)填空: A
B S S ∶的值是_________; (2)请在图
C 的网格上画出一个面积为8个平方单位的中心对称图形.
2.如图中的图案是由一个怎样的基本图形经过旋转、轴对称和平移得到的呢?
3.请你用基本图形经过旋转、平移和轴对称设计一个美丽的图案。
能力提升
1.在右图的方框中做出以O 为旋转中心旋转后的图形.
2.利用你所学过的图形变换的知识设计一个图案,
参考答案
基础训练 1.(1)9∶11;(2)略. 2.略. 3.略. 能力提升1.图略.2.略。
2020【鲁教版】最新版中考数学一轮复习 各知识点练习题分层设计五(分式部分)
(分式部分)A 级 基础题1.要使分式1x 有意义,x 的取值范围满足( )A .x =0B .x ≠0 C.x >0 D .x <02.使代数式x2x -1有意义的x 的取值范围是( )A .x ≥0B .x ≠12C .x ≥0且x ≠12 D .一切实数3.在括号内填入适当的代数式,是下列等式成立:(1)2ab = 2xa 2b 2 b (2)a 3-ab 2a -b 2=aa -b4.约分:56x 3yz 448x 5y 2z =____________; x 2-9x 2-2x -3=____________.5.已知a -ba +b =15,则ab =__________. 6.当x =______时,分式x 2-2x -3x -3的值为零.7.化简:x 2-1x +1÷x 2-2x +1x 2-x .8.先化简x 2x -1+11-x ,再选取一个你喜欢的数代入求值.9.先化简,再求值:x -2x 2-4-xx +2,其中x =2.10.化简:222mm m m ⎛⎫- ⎪+-⎝⎭÷m m 2-4=________________.B 级 中等题11.若分式x -1x -x -有意义,则x 应满足的条件是( )A .x ≠1B .x ≠2C .x ≠1且x ≠2D .以上结果都不对12.先化简,再求值:234211x x x +⎛⎫- ⎪--⎝⎭÷x +2x 2-2x +1.13.先化简,再求值.2212111x x x x ⎛⎫-++ ⎪+-⎝⎭÷x -1x +1,其中x =2.14.先化简,再求值:a -2a 2-1÷2111a a a -⎛⎫-- ⎪+⎝⎭,其中a 是方程x 2-x =6的根.C 级 拔尖题 15.先化简再求值:ab +ab 2-1+b -1b 2-2b +1,其中b -2+36a 2+b 2-12ab =0.选做题16.已知x 2-3x -1=0,求x 2+1x 2的值.。
鲁教版2020年中考数学模拟题(附答案)
…………内…………○…………装…………○…………订…………○…………线…………○………鲁教版2020年中考数学模拟题(附答案)题号 一 二 三 总分 得分评卷人 得分一、选择题1.下列二次根式中的最简二次根式是( )A .30B .12C .8D .122.如图,在平面直角坐标系中,点A 、B 均在函数ky x=(k >0,x >0)的图象上,⊙A 与x 轴相切,⊙B 与y 轴相切.若点B 的坐标为(1,6),⊙A 的半径是⊙B 的半径的2倍,则点A 的坐标为( )A .(2,2)B .(2,3)C .(3, 2)D .(4,32) 3.如图,是一个由若干个相同的小正方体组成的几何体的三视图,则组成这个几何体的小正方体的个数是 ( ) A.7个 B.8个 C.9个 D.10个4.实数a b ,在数轴上的位置如图所示,则下列各式正确的是 ( )A 、a b >B 、a b >-C 、a b <D 、a b -<- 5.如图,该几何体的左视图是( )A .B .C .D .6.如图,在矩形ABCD 中,AB=5,BC=7,点E 是AD 上一个动点,把△BAE 沿BE 向矩形内部折叠,当点A 的对应点A 1恰好落在∠BCD 的平分线上时,CA 1的长为( )A 、3或42B 、4或32C 、3或4D 、32或42 7.如图,下列水平放置的几何体中,俯视图是三角形的是( )A .B .C .D .8.如图,在△ABC 中,DE ∥BC ,分别交AB ,AC 于点D ,E .若AD =1,DB =2,则△ADE 的面积与△ABC 的面积的比等于( )A .12 B .14C .18D .199.下列图形是将正三角形按一定规律排列,则第4个图形中所有正三角形的个数有( )A .160B .161C .162D .16310.如图,在矩形ABCD 中,BC=8,AB=6,经过点B 和点D 的两个动圆均与AC 相切,且与AB 、BC 、AD 、DC 分别交于点G 、H 、E 、F ,则EF+GH 的最小值是( )A .6B .8C .9.6D .10主视图 左视图 俯视图…………外…………○…………装…………○…………订…………○…………线…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………内…………○…………装…………○…………订…………○…………线…………11.若实数a ,b (a ≠b )分别满足方程a 2﹣7a+2=0,b 2﹣7b+2=0,则b aa b+的值为( ). A .452 B .492 C .452或2 D .492或2 12.如图,PA 、PB 是⊙O 的切线,切点分别是A ,B ,如果∠P=60°,那么∠AOB 等于( )A .60°B .90°C .120°D .150第II 卷(非选择题)评卷人 得分二、填空题13.在Rt △ABC 中,∠C=90°,AC=6,BC=8,点E 是BC 边上的动点,连接AE ,过点E 作AE 的垂线交AB 边于点F ,则AF 的最小值为_______14.如图,在四边形ABCD 中,E 、F 分别是AB 、AD 的中点,若EF=4,BC=10,CD=6,则tanC=________15.某二次函数的图像的坐标(4,-1),且它的形状、开口方向与抛物线y=-x 2相同,则这个二次函数的解析式为________ 16.已知扇形AOB 的半径为4cm ,圆心角∠AOB 的度数为90°,若将此扇形围成一个圆锥的侧面,则围成的圆锥的底面半径为________cm17.若a 2-3b=5,则6b-2a 2+2017=________18.已知反比例函数的图像经过点(m,6)和(-2,3),则m 的值为________ 19.下面是一道确定点P 位置的尺规作图题的作图过程.如图,直线L 1与L 2相交于点O ,A ,B 是L 2上两点,点P 是直线L 1上的点,且∠APB =30°,请在图中作出符合条件的点P .作法:如图,(1)以AB 为边在L 2上方作等边△ABC ;(2)以C 为圆心,AB 长为半径作⊙C 交直线L 1于P 1,P 2两点. 则P 1、P 2就是所作出的符合条件的点P .请回答:该作图的依据是______________________________________________________. 20.在平面直角坐标系xOy 中,直线12y x =与双曲线22y x=的图象如图所示, 小明说:“满足12y y >的x 的取值范围是1x >.”你同意他的观点吗?答:______ .理由是______________.21.一个扇形的半径长为5,且圆心角为60°,则此扇形的弧长为___________. 22.如图,在△ABC 中,D 为AB 边上一点,DE ∥BC 交AC 于点E ,如果12AE EC =,DE =7,那么BC 的长为_________.评卷人 得分三、解答题23.在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,且点A (0,2),点C (-1,0),如图所示:抛物线y=2ax 2+ax-32经过点B .…………内…………○…………装…………○…………订…………○…………线…………○……… (1)写出点B 的坐标; (2)求抛物线的解析式;(3)若三角板ABC 从点C 开始以每秒1个单位长度的速度向x 轴正方向平移,求点A 落在抛物线上时所用的时间,并求三角板在平移过程扫过的面积;(4)在抛物线上是否还存在点P (点B 除外),使△ACP 仍然是以AC 为直角边的等腰直角三角形?若存在,求所有点P 的坐标;若不存在,请说明理由.24.如图,要在某林场东西方向的两地之间修一条公路MN ,已知C 点周围200米范围内为原始森林保护区,在MN 上的点A 处测得C 在A 的北偏东45°方向上,从A 向东走600米到达B 处,测得C 在点B 的北偏西60°方向上.(1)MN 是否穿过原始森林保护区?为什么?(参考数据:√3≈1.732)(2)若修路工程顺利进行,要使修路工程比原计划提前5天完成,需将原定的工作效率提高25%,则原计划完成这项工程需要多少天? 25.化简求值:a−b a+2b÷a 2−b 2a 2+4ab+4b2−1,其中a =3+√5,b =3−√5.26.在△ABN 中,∠B =90°,点M 是AB 上的动点(不与A ,B 两点重合),点C 是BN 延长线上的动点(不与点N 重合),且AM =BC ,CN =BM ,连接CM 与AN 交于点P . (1)在图1中依题意补全图形;(2)小伟通过观察、实验,提出猜想:在点M ,N 运动的过程中,始终有∠APM =45°.小伟把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的一种思路:要想解决这个问题,首先应想办法移动部分等线段构造全等三角形,证明线段相等,再构造平行四边形,证明线段相等,进而证明等腰直角三角形,出现45°的角,再通过平行四边形对边平行的性质,证明∠APM =45°. 他们的一种作法是:过点M 在AB 下方作MD ⊥AB 于点M ,并且使MD =CN .通过证明△AMD ≅△CBM ,得到AD =CM ,再连接DN ,证明四边形CMDN 是平行四边形,得到DN =CM ,进而证明△ADN 是等腰直角三角形,得到∠DNA =45°.又由四边形CMDN 是平行四边形,推得∠APM =45°.使问题得以解决. 请你参考上面同学的思路,用另一种方法证明∠APM =45°.参数答案1.A.【解析】1.试题解析:A 、符合最简二次根式的定义,故本选项正确;B 、原式=3C 、原式=2,被开方数含能开得尽方的因数,不是最简二次根式,故本选项错误;D 、被开方数含分母,不是最简二次根式,故本选项错误; 故选A.考点:最简二次根式. 2.C .【解析】2.试题解析:把B 的坐标为(1,6)代入反比例函数解析式得:k=6, 则函数的解析式是:y=6x, ∵B 的坐标为(1,6),⊙B 与y 轴相切, ∴⊙B 的半径是1, 则⊙A 是2, 把y=2代入y=6x得:x=3, 则A 的坐标是(3,2). 故选C .考点:1.切线的性质;2.反比例函数图象上点的坐标特征. 3.C【解析】3.解:综合三视图,第一行第1列有3个,第一行第2列有1个,第一行第3列有2个; 第二行第1列有1个,第二行第2列没有,第二行第3列有1个; 第三行第1列没有,第三行第2列没有,第三行第3列有1个; 一共有:3+1+2+1+1+1=9个,故选C . 4.C【解析】4.解:由数轴可得b a b a φφπ,且,00,故选C 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(图形与变换)
命题方向:这部分知识包含了图的各种变换——平移、旋转、对称、相似及解直角三形的知识。
备考攻略:同样是历届中考的必考内容、题型有单一知识点的选择题、填空题,也有利用网格的图案设计题,及利用解直角三角形的实际问题与相似三角形的证明问题。
巩固练习:
1.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是()(
A.B.C.D.
2.剪纸是我国传统的民间艺术,下列剪纸作品中,是轴对称图形的为()
A.B.C.D.
3.阅读下面材料:
小伟遇到这样一个问题,如图1,在梯形ABCD中,AD∥B C,对角线AC,BD相交于点O.若梯形ABCD 的面积为1,试求以AC,BD,AD+BC的长度为三边长的三角形的面积.
小伟是这样思考的:要想解决这个问题,首先应想办法移动这些分散的线段,构造一个三角形,再计算其面积即可.他先后尝试了翻折,旋转,平移的方法,发现通过平移可以解决这个问题.他的方法是过点D作AC的平行线交BC的延长线于点E,得到的△BDE即是以AC,BD,AD+BC的长度为三边长的三角形(如图2).
参考小伟同学的思考问题的方法,解决下列问题:
如图3,△ABC的三条中线分别为AD,BE,CF.
(1)在图3中利用图形变换画出并指明以AD,BE,CF的长度为三边长的一个三角形(保留画图痕迹);
(2)若△ABC的面积为1,则以AD,BE,CF的长度为三边长的三角形的面积等于.
4.操作与探究:
(1)对数轴上的点P进行如下操作:先把点P表示的数乘以,再把所得数对应的点向右平移1个单位,得到点P的对应点P′.
点A,B在数轴上,对线段AB上的每个点进行上述操作后得到线段A′B′,其中点A,B的对应点分别为A′,B′.如图1,若点A表示的数是﹣3,则点A′表示的数是;若点B′表示的数是2,则点B表示的数是;已知线段AB上的点E经过上述操作后得到的对应点E′与点E重合,则点E表示的数是.
(2)如图2,在平面直角坐标系xOy中,对正方形ABCD及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘以同一个实数a,将得到的点先向右平移m个单位,再向上平移n个单位(m>0,n>0),得到正方形A′B′C′D′及其内部的点,其中点A,B的对应点分别为A′,B′.已知正方形ABCD内部的一个点F经过上述操作后得到的对应点F′与点F重合,求点F的坐标.
5.在△ABC中,BA=BC,∠BAC=α,M是AC的中点,P是线段BM上的动点,将线段PA绕点P顺时针旋转2α得到线段PQ.
(1)若α=60°且点P与点M重合(如图1),线段CQ的延长线交射线BM于点D,请补全图形,并写出∠CDB的度数;
(2)在图2中,点P不与点B,M重合,线段CQ的延长线于射线BM交于点D,猜想∠CDB的大小(用含α的代数式表示),并加以证明;
(3)对于适当大小的α,当点P在线段BM上运动到某一位置(不与点B,M重合)时,能使得线
段CQ的延长线与射线BM交于点D,且PQ=QD,请直接写出α的范围.
6.下列图形中,是中心对称图形,但不是轴对称图形的是()
A.B.C.D.
7.下列图形中,既是中心对称又是轴对称图形的是()
A.等边三角形B.平行四边形C.梯形 D.矩形
8.阅读下面材料:小腾遇到这样一个问题:如图1,在△ABC中,点D在线段BC上,∠BAD=75°,∠CAD=30°,AD=2,BD=2DC,求AC的长.
小腾发现,过点C作CE∥AB,交AD的延长线于点E,通过构造△ACE,经过推理和计算能够使问题得到解决(如图 2).
请回答:∠ACE的度数为,AC的长为.
参考小腾思考问题的方法,解决问题:
如图 3,在四边形 ABCD中,∠BAC=90°,∠CAD=30°,∠ADC=75°,AC与BD交于点E,AE=2,BE=2ED,求BC的长.
9.如图,在四边形ABCD中,AD∥BC,对角线AC,BD相交于点O,若AD=1,BC=3,则的值为()
A.B.C.D.
10.在某一时刻,测得一根高为1.8m的竹竿的影长为3m,同时测得一根旗杆的影长为25m,那么这根旗杆的高度为m.
11.如图,为估算某河的宽度,在河对岸选定一个目标点A,在近岸取点B,C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A,E,D在同一条直线上.若测得BE=20m,CE=10m,CD=20m,则河的宽度AB等于()
A.60m B.40m C.30m D.20m
12.如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边DE=40cm,EF=20cm,测得边DF离地面的高度AC=1.5m,CD=8m,则树高AB= m.。