TLC2543-EP中文资料

合集下载

TLC2543 芯片资料

TLC2543 芯片资料

IMPORTANT NOTICETexas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER’S RISK.In order to minimize risks associated with the customer’s applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI’s publication of information regarding any third party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.Copyright © 1998, Texas Instruments Incorporated。

tlc2543中文资料

tlc2543中文资料

PACKAGING INFORMATIONOrderable Device Status(1)PackageType PackageDrawingPins PackageQtyEco Plan(2)Lead/Ball Finish MSL Peak Temp(3)5962-9688601QRA ACTIVE CDIP J201TBD A42N/A for Pkg Type TLC2543CDB ACTIVE SSOP DB2070Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLC2543CDBG4ACTIVE SSOP DB2070Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIM TLC2543CDBLE OBSOLETE SSOP DB20TBD Call TI Call TITLC2543CDBR ACTIVE SSOP DB202000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLC2543CDBRG4ACTIVE SSOP DB202000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLC2543CDW ACTIVE SOIC DW2025Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLC2543CDWG4ACTIVE SOIC DW2025Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLC2543CDWR ACTIVE SOIC DW202000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLC2543CDWRG4ACTIVE SOIC DW202000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLC2543CFN ACTIVE PLCC FN2046Green(RoHS&no Sb/Br)CU SN Level-1-260C-UNLIMTLC2543CFNG3ACTIVE PLCC FN2046Green(RoHS&no Sb/Br)CU SN Level-1-260C-UNLIMTLC2543CFNR ACTIVE PLCC FN201000Green(RoHS&no Sb/Br)CU SN Level-1-260C-UNLIMTLC2543CFNRG3ACTIVE PLCC FN201000Green(RoHS&no Sb/Br)CU SN Level-1-260C-UNLIMTLC2543CN ACTIVE PDIP N2020Pb-Free(RoHS)CU NIPDAU N/A for Pkg TypeTLC2543CNE4ACTIVE PDIP N2020Pb-Free(RoHS)CU NIPDAU N/A for Pkg TypeTLC2543IDB ACTIVE SSOP DB2070Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLC2543IDBG4ACTIVE SSOP DB2070Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLC2543IDBR ACTIVE SSOP DB202000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLC2543IDBRG4ACTIVE SSOP DB202000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLC2543IDW ACTIVE SOIC DW2025Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLC2543IDWG4ACTIVE SOIC DW2025Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLC2543IDWR ACTIVE SOIC DW202000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLC2543IDWRG4ACTIVE SOIC DW202000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLC2543IFN ACTIVE PLCC FN2046Green(RoHS&no Sb/Br)CU SN Level-1-260C-UNLIMTLC2543IFNG3ACTIVE PLCC FN2046Green(RoHS&CU SN Level-1-260C-UNLIMOrderable Device Status(1)PackageType PackageDrawingPins PackageQtyEco Plan(2)Lead/Ball Finish MSL Peak Temp(3)no Sb/Br)TLC2543IFNR OBSOLETE PLCC FN20TBD Call TI Call TITLC2543IN ACTIVE PDIP N2020Pb-Free(RoHS)CU NIPDAU N/A for Pkg TypeTLC2543INE4ACTIVE PDIP N2020Pb-Free(RoHS)CU NIPDAU N/A for Pkg Type TLC2543MJ ACTIVE CDIP J201TBD A42N/A for Pkg Type TLC2543MJB ACTIVE CDIP J201TBD A42N/A for Pkg Type (1)The marketing status values are defined as follows:ACTIVE:Product device recommended for new designs.LIFEBUY:TI has announced that the device will be discontinued,and a lifetime-buy period is in effect.NRND:Not recommended for new designs.Device is in production to support existing customers,but TI does not recommend using this part in a new design.PREVIEW:Device has been announced but is not in production.Samples may or may not be available.OBSOLETE:TI has discontinued the production of the device.(2)Eco Plan-The planned eco-friendly classification:Pb-Free(RoHS),Pb-Free(RoHS Exempt),or Green(RoHS&no Sb/Br)-please check /productcontent for the latest availability information and additional product content details.TBD:The Pb-Free/Green conversion plan has not been defined.Pb-Free(RoHS):TI's terms"Lead-Free"or"Pb-Free"mean semiconductor products that are compatible with the current RoHS requirements for all6substances,including the requirement that lead not exceed0.1%by weight in homogeneous materials.Where designed to be soldered at high temperatures,TI Pb-Free products are suitable for use in specified lead-free processes.Pb-Free(RoHS Exempt):This component has a RoHS exemption for either1)lead-based flip-chip solder bumps used between the die and package,or2)lead-based die adhesive used between the die and leadframe.The component is otherwise considered Pb-Free(RoHS compatible)as defined above.Green(RoHS&no Sb/Br):TI defines"Green"to mean Pb-Free(RoHS compatible),and free of Bromine(Br)and Antimony(Sb)based flame retardants(Br or Sb do not exceed0.1%by weight in homogeneous material)(3)MSL,Peak Temp.--The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications,and peak solder temperature.Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided.TI bases its knowledge and belief on information provided by third parties,and makes no representation or warranty as to the accuracy of such information.Efforts are underway to better integrate information from third parties.TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.TI and TI suppliers consider certain information to be proprietary,and thus CAS numbers and other limited information may not be available for release.In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s)at issue in this document sold by TI to Customer on an annual basis.OTHER QUALIFIED VERSIONS OF TLC2543,TLC2543M:•Automotive:TLC2543-Q1•Enhanced Product:TLC2543-EPNOTE:Qualified Version Definitions:•Automotive-Q100devices qualified for high-reliability automotive applications targeting zero defects•Enhanced Product-Supports Defense,Aerospace and Medical ApplicationsTAPE AND REEL INFORMATION*All dimensions are nominalDevicePackage Type Package Drawing Pins SPQReel Diameter (mm)Reel Width W1(mm)A0(mm)B0(mm)K0(mm)P1(mm)W (mm)Pin1Quadrant TLC2543CDBR SSOP DB 202000330.016.48.27.5 2.512.016.0Q1TLC2543IDBRSSOPDB202000330.016.48.27.52.512.016.0Q1*All dimensions are nominalDevice Package Type Package Drawing Pins SPQ Length(mm)Width(mm)Height(mm) TLC2543CDBR SSOP DB202000346.0346.033.0TLC2543IDBR SSOP DB202000346.0346.033.0IMPORTANT NOTICETexas Instruments Incorporated and its subsidiaries(TI)reserve the right to make corrections,modifications,enhancements,improvements, and other changes to its products and services at any time and to discontinue any product or service without notice.Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty.Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty.Except where mandated by government requirements,testing of all parameters of each product is not necessarily performed.TI assumes no liability for applications assistance or customer product design.Customers are responsible for their products and applications using TI components.To minimize the risks associated with customer products and applications,customers should provide adequate design and operating safeguards.TI does not warrant or represent that any license,either express or implied,is granted under any TI patent right,copyright,mask work right, or other TI intellectual property right relating to any combination,machine,or process in which TI products or services are rmation published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement e of such information may require a license from a third party under the patents or other intellectual property of the third party,or a license from TI under the patents or other intellectual property of TI.Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties,conditions,limitations,and notices.Reproduction of this information with alteration is an unfair and deceptive business practice.TI is not responsible or liable for such altered rmation of third parties may be subject to additional restrictions.Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice.TI is not responsible or liable for any such statements.TI products are not authorized for use in safety-critical applications(such as life support)where a failure of the TI product would reasonably be expected to cause severe personal injury or death,unless officers of the parties have executed an agreement specifically governing such use.Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications,and acknowledge and agree that they are solely responsible for all legal,regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications,notwithstanding any applications-related information or support that may be provided by TI.Further,Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or"enhanced plastic."Only products designated by TI as military-grade meet military specifications.Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk,and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS16949requirements.Buyers acknowledge and agree that,if they use any non-designated products in automotive applications,TI will not be responsible for any failure to meet such requirements.Following are URLs where you can obtain information on other Texas Instruments products and application solutions:Products ApplicationsAmplifiers AudioData Converters AutomotiveDLP®Products BroadbandDSP Digital ControlClocks and Timers MedicalInterface MilitaryLogic Optical NetworkingPower Mgmt SecurityMicrocontrollers TelephonyRFID Video&ImagingRF/IF and ZigBee®Solutions WirelessMailing Address:Texas Instruments,Post Office Box655303,Dallas,Texas75265Copyright©2009,Texas Instruments Incorporated。

TLC2543

TLC2543

IMPORTANT NOTICETexas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage (“Critical Applications”).TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.In order to minimize risks associated with the customer’s applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.Copyright © 1995, Texas Instruments Incorporated。

tlc2543课程设计

tlc2543课程设计

tlc2543课程设计一、课程目标知识目标:1. 学生能理解tlc2543芯片的基本原理和工作方式。

2. 学生能掌握tlc2543的引脚功能、内部结构及其在模拟信号处理中的应用。

3. 学生能运用已学知识,分析tlc2543与其他电子元件的连接方式和电路设计。

技能目标:1. 学生能运用所学知识,正确操作tlc2543进行模拟信号的转换。

2. 学生能通过实验和调试,掌握tlc2543的编程方法,实现信号的采集和处理。

3. 学生能结合实际问题,设计并搭建简单的基于tlc2543的模拟信号处理电路。

情感态度价值观目标:1. 学生能积极参与课程学习和实验操作,培养对电子技术和工程实践的兴趣。

2. 学生在团队合作中,学会相互尊重、沟通与协作,培养解决问题的能力和责任感。

3. 学生通过学习tlc2543的应用,认识到电子技术在实际生活中的重要性,激发创新意识。

本课程针对高年级电子技术相关专业学生,结合课程性质,强调理论与实践相结合,注重培养学生的实际操作能力和创新思维。

课程目标的设定,旨在帮助学生掌握tlc2543芯片相关知识,提高电子电路设计和编程能力,同时注重培养积极的情感态度和价值观。

通过具体的学习成果分解,教师可进行有效的教学设计和评估,确保课程目标的实现。

二、教学内容本章节教学内容围绕tlc2543芯片的原理与应用展开,主要包括以下部分:1. tlc2543芯片基本原理:介绍芯片的工作方式、转换原理以及其特点与应用领域。

- 教材章节:模拟电子技术基础,第五章“模数转换器”2. tlc2543引脚功能与内部结构:详细解析各引脚的功能、内部结构及其在电路中的作用。

- 教材章节:第五章“模数转换器”中的5.3节“tlc2543引脚功能及内部结构”3. tlc2543编程与操作:介绍芯片的编程方法、操作流程以及相关注意事项。

- 教材章节:第五章“模数转换器”中的5.4节“tlc2543编程与操作”4. tlc2543应用电路设计:分析tlc2543在实际电路中的应用,包括与其他电子元件的连接方式。

TLC2543IDWR;TLC2543CN;TLC2543IN;TLC2543CDB;TLC2543CDW;中文规格书,Datasheet资料

TLC2543IDWR;TLC2543CN;TLC2543IN;TLC2543CDB;TLC2543CDW;中文规格书,Datasheet资料

– 55°C to 125°C — — — TLC2543MJ — † Available in tape and reel and ordered as the TLC2543CDBLE, TLC2543IDBR, TLC2543CDWR, TLC2543IDWR, TLC2543CFNR, or TLC2543IFNR.
On products compliant to MIL-PRF-38535, all parameters are tested unless otherwise noted. On all other products, production processing does not necessarily include testing of all parameters.
18 15
2
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
/
ห้องสมุดไป่ตู้
TLC2543C, TLC2543I, TLC2543M 12-BIT ANALOG-TO-DIGITAL CONVERTERS WITH SERIAL CONTROL AND 11 ANALOG INPUTS
VCC EOC I/O CLOCK DATA INPUT DATA OUT CS REF + REF – AIN10 AIN9
FN PACKAGE (TOP VIEW)
description
The TLC2543C and TLC2543I are 12-bit, switchedcapacitor, successive-approximation, analog-todigital converters. Each device, with three control inputs [chip select (CS), the input-output clock, and the address input (DATA INPUT)], is designed for communication with the serial port of a host processor or peripheral through a serial 3-state output. The device allows high-speed data transfers from the host.

TLC2543

TLC2543

摘要:TLC2543是德州仪器公司生产的12位开关电容型逐次逼近模数转换器,它具有三个控制输入端,采用简单的3线SPI串行接口可方便地与微机进行连接,是12位数据采集系统的最佳选择器件之一。

本文介绍了该芯片的功能、时序,并给出了8051单片机的接口电路。

关键词:模数转换器; SPI串行接口; TLC25431. 概述A/D、D/A转换器是过程及仪器仪表、设备等检测与控制装置中应用比较广泛的器件。

随着大规模集成电路技术的发展,各种高精度、低功耗、可编程、低成本的A/D转换器不断推出,使得微机控制系统的电路更加简洁,可靠性更高。

TLC2543与外围电路的连线简单,三个控制输入端为CS(片选)、输入/输出时钟(I/O CLOCK)以及串行数据输入端(DATA INPUT)。

片内的14通道多路器可以选择11个输入中的任何一个或3个内部自测试电压中的一个,采样-保持是自动的,转换结束,EOC输出变高。

TLC2543的主要特性如下:●11个模拟输入通道;●66ksps的采样速率;●最大转换时间为10μs;●SPI串行接口;●线性度误差最大为±1LSB;●低供电电流(1mA典型值);●掉电模式电流为4μA。

2. TLC2543引脚功能与接口时序2.1 TLC2543引脚排列TLC2543的引脚排列如图1所示。

引脚功能说明如下:AIN0~AIN10:模拟输入端,由内部多路器选择。

对4.1MHz的I/O CLOCK,驱动源阻抗必须小于或等于50Ω;CS:片选端,CS由高到低变化将复位内部计数器,并控制和使能DATA OUT、DATA INPUT 和I/O CLOCK。

CS由低到高的变化将在一个设置时间内禁止DATA INPUT和I/O CLOCK;DATA INPUT:串行数据输入端,串行数据以MSB为前导并在I/O CLOCK的前4个上升沿移入4位地址,用来选择下一个要转换的模拟输入信号或测试电压,之后I/O CLOCK将余下的几位依次输入;DATA OUT:A/D转换结果三态输出端,在CS为高时,该引脚处于高阻状态;当CS为低时,该引脚由前一次转换结果的MSB值置成相应的逻辑电平;EOC:转换结束端。

TLC2543芯片手册_时序_转换原理

TLC2543芯片手册_时序_转换原理

A I N 2A I N 1 A I N 0 V C C E O CA I N 8 G N D A I N 9 A I N 10 R E F –Programmable MSB or LSB First Programmable Power DownProgrammable Output Data Length CMOS TechnologyApplication Report Available †FN PACKAGE (TOP VIEW)descriptionThe TLC2543C and TLC2543I are 12-bit, switched- capacitor, successive-approximation, analog-to- digital converters. Each device, with three control inputs [chip select (CS), the input-output clock, and AIN3 AIN4 AIN5 AIN6 AIN74 5 6 7 83 2 1 20 19 1817 16 15 149 10 11 12 13I/O CLOCK DATA INPUT DATA OUT CS REF +the address input (DATA INPUT)], is designed for communication with the serial port of a host processor or peripheral through a serial 3-state output. The device allows high-speed data transfers from the host.In addition to the high-speed converter and versatile control capability, the device has an on-chip 14-channelmultiplexer that can select any one of 11 inputs or any one of three internal self-test voltages. The sample-and-hold function is automatic. At the end of conversion, the end-of-conversion (EOC) output goes high to indicate that conversion is complete. The converter incorporated in the device features differential high-impedance reference inputs that facilitate ratiometric conversion, scaling, and isolation of analog circuitry from logic and supply noise. A switched-capacitor design allows low-error conversion over the full operating temperature range.The TLC2543C is characterized for operation from T A = 0︒C to 70︒C. The TLC2543I is characterized for operation from T A = – 40︒C to 85︒C. The TLC2543M is characterized for operation from T A = – 55︒C to 125︒C.Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.Based Data Acquisition Using the TLC2543 12-bit Serial-Out ADC (SLAA012)PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instrumentsstandard warranty. Production processing does not necessarily includetesting of all parameters.Copyright ⎡ 2001, Texas Instruments IncorporatedOn products compliant to MIL-PRF-38535, all parameters are tested unless otherwise noted. On all other products, productionprocessing does not necessarily include testing of all parameters.POST OFFICE BOX 655303∙DALLAS, TEXAS 752651TLC2543C, TLC2543I, TLC2543M12-BIT ANALOG-TO-DIGITAL CONVERTERSWITH SERIAL CONTROL AND 11 ANALOG INPUTSSLAS079F – DECEMBER 1993 – REVISED NOVEMBER 2001AVAILABLE OPTIONSTLC2543IFNR.functional block diagramREF + REF – 1413AIN0 AIN1 AIN2 AIN3 AIN4 AIN5 AIN6 AIN7 AIN8 AIN9 AIN101 2 3 4 5 6 7 8 9 11 1214-Channel Analog Multiplexer4Sample-and- Hold FunctionInput Address Register12-Bit Analog-to-Digital Converter (Switched Capacitors)12Output 12 Data Register12-to-1 Data Selector and Driver 16DATA OUT43Control Logic Self-Test Referenceand I/O CountersDATA17 19 EOCINPUTI/O CLOCKCS18 152POST OFFICE BOX 655303∙DALLAS, TEXAS 75265TAPACKAGE SMALL OUTLINE †† (DB) (DW)PLASTIC CHIPCARRIER † (FN) CERAMIC DIP(J) PLASTIC DIP(N) 0︒C to 70︒C TLC2543CDB TLC2543CDW TLC2543CFN — TLC2543CN –40︒C to 85︒C TLC2543IDB TLC2543IDWTLC2543IFN— TLC2543IN–55︒C to 125︒C— ——TLC2543MJ—TLC2543C,TLC2543I,TLC2543M12-BIT ANALOG-TO-DIGITAL CONVERTERS WITH SERIAL CONTROL AND11ANALOG INPUTSSLAS079F–DECEMBER1993–REVISED NOVEMBER2001 Terminal FunctionsPOST OFFICE BOX655303∙DALLAS,TEXAS752653TLC2543C,TLC2543I,TLC2543M12-BIT ANALOG-TO-DIGITAL CONVERTERSWITH SERIAL CONTROL AND11ANALOG INPUTSSLAS079F–DECEMBER1993–REVISED NOVEMBER2001absolute maximum ratings over operating free-air temperature range(unless otherwise noted)†Supply voltage range,V CC(see Note1).............................................–0.5V to6.5V Input voltage range,V I(any input)............................................–0.3V to V CC+0.3V Output voltage range,V O...................................................–0.3V to V CC+0.3V Positive reference voltage,V ref+......................................................V CC+0.1V Negative reference voltage,V ref–..........................................................–0.1V Peak input current,I I(any input)..........................................................±20mA Peak total input current,I I(all inputs)......................................................±30mA Operating free-air temperature range,T A:TLC2543C...................................0︒C to70︒CTLC2543I.................................–40︒C to85︒CTLC2543M...............................–55︒C to125︒C Storage temperature range,T stg...................................................–65︒C to150︒C Lead temperature1,6mm(1/16inch)from the case for10seconds............................260︒C †Stresses beyond those listed under“absolute maximum ratings”may cause permanent damage to the device.These are stress ratings only,and functional operation of the device at these or any other conditions beyond those indicated under“recommended operating conditions”is not implied.Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.NOTE1:All voltage values are with respect to the GND terminal with REF–and GND wired together(unless otherwise noted). recommended operating conditionsto REF–convert as all zeros(000000000000).3.To minimize errors caused by noise at the CS input,the internal circuitry waits for a setup time after CS before responding to controlinput signals.No attempt should be made to clock in an address until the minimum CS setup time has elapsed.4.This is the time required for the clock input signal to fall from VIHmin to VILmax or to rise from VILmax to VIHmin.In the vicinity ofnormal room temperature,the devices function with input clock transition time as slow as1∝s for remote data acquisition applicationswhere the sensor and the A/D converter are placed several feet away from the controlling microprocessor.4POST OFFICE BOX655303∙DALLAS,TEXAS75265TLC2543C, TLC2543I, TLC2543M12-BIT ANALOG-TO-DIGITAL CONVERTERSWITH SERIAL CONTROL AND 11 ANALOG INPUTSSLAS079F – DECEMBER 1993 – REVISED NOVEMBER 2001electrical characteristics over recommended operating free-air temperature range, V CC = V ref+ = 4.5 V to 5.5 V, f (I/O CLOCK) = 4.1 MHz (unless otherwise noted)All typical values are at VCC = 5 V, TA = 25︒C.electrical characteristics over recommended operating free-air temperature range, V CC = V ref+ = 4.5 V to 5.5 V, f (I/O CLOCK) = 4.1 MHz (unless otherwise noted) All typical values are at VCC = 5 V, TA = 25︒C.POST OFFICE BOX 655303 ∙ DALLAS, TEXAS 752655TLC2543C,TLC2543I,TLC2543M12-BIT ANALOG-TO-DIGITAL CONVERTERSWITH SERIAL CONTROL AND11ANALOG INPUTSSLAS079F–DECEMBER1993–REVISED NOVEMBER2001operating characteristics over recommended operating free-air temperature range,V CC=V ref+=4.5V to5.5V,f(I/O CLOCK)=4.1MHzNOTES: 2.Analog input voltages greater than that applied to REF+convert as all ones(111111111111),while input voltages less than that applied to REF–convert as all zeros(000000000000).5.Linearity error is the maximum deviation from the best straight line through the A/D transfer characteristics.6.Gain error is the difference between the actual midstep value and the nominal midstep value in the transfer diagram at the specifiedgain point after the offset error has been adjusted to zero.Offset error is the difference between the actual midstep value and thenominal midstep value at the offset point.7.Total unadjusted error comprises linearity,zero-scale,and full-scale errors.8.Both the input address and the output codes are expressed in positive logic.9.I/O CLOCK period=1/(I/O CLOCK frequency)(see Figure7).10.Any transitions of CS are recognized as valid only when the level is maintained for a setup time.CS must be taken low atδ5∝sof the tenth I/O CLOCK falling edge to ensure a conversion is aborted.Between5∝s and10∝s,the result is uncertain as to whetherthe conversion is aborted or the conversion results are valid.6POST OFFICE BOX655303∙DALLAS,TEXAS75265TLC2543C,TLC2543I,TLC2543M12-BIT ANALOG-TO-DIGITAL CONVERTERSWITH SERIAL CONTROL AND11ANALOG INPUTSSLAS079F–DECEMBER1993–REVISED NOVEMBER2001PARAMETER MEASUREMENT INFORMATION15VC1C110∝F–15VFigure1.Analog Input Buffer to Analog Inputs AIN0–AIN10RL=2.18k&EOCCL=RL=2.18k&DATA OUTCL=Figure2.Load CircuitsCStPZH,tPZL0.8V2VtPHZ,tPLZDATA INPUTDATAOUT2.4V0.4V90%10%I/O CLOCKFigure3.DATA OUT to Hi-Z Voltage Waveforms Figure4.DATA INPUT and I/O CLOCKVoltage WaveformsPOST OFFICE BOX655303∙DALLAS,TEXAS752657TLC2543C,TLC2543I,TLC2543M12-BIT ANALOG-TO-DIGITAL CONVERTERSWITH SERIAL CONTROLAND11ANALOG INPUTSSLAS079F–DECEMBER1993–REVISED NOVEMBER2001PARAMETER MEASUREMENT INFORMATIONCSI/O CLOCKNOTE A:To ensure full conversion accuracy,it is recommended that no input signal changeoccurs while a conversion is ongoing.Figure5.CS and I/O CLOCK Voltage Waveformstt(I/O)tt(I/O)I/O CLOCK2V0.8V2V0.8V0.8VI/O CLOCK Periodtd(I/O-DATA)tvDATA OUT2.4V0.4V2.4V0.4Vtr(bus),tf(bus)Figure6.I/O CLOCK and DATA OUT Voltage WaveformsI/O CLOCKEOCFigure7.I/O CLOCK and EOC Voltage WaveformsEOCDATA OUTFigure8.EOC and DATA OUT Voltage Waveforms8POST OFFICE BOX655303 DALLAS,TEXAS75265TLC2543C,TLC2543I,TLC2543M12-BIT ANALOG-TO-DIGITAL CONVERTERSWITH SERIAL CONTROL AND11ANALOG INPUTSSLAS079F–DECEMBER1993–REVISED NOVEMBER2001PARAMETER MEASUREMENT INFORMATIONCS(see Note A)I/OCLOCK1234567811121Access Cycle B Sample Cycle BDATAOUTA11A10A9A8A7A6A5A4A1A0Previous Conversion DataMSBLSB Hi-Z StateB11DATA INPUTEOCB7B6B5B4MSBLSBB3B2B1B0C7Shift in New Multiplexer Address,Simultaneously Shift Out PreviousConversion Valuet(conv)A/D ConversionInitialize Interval InitializeNOTE A:To minimize errors caused by noise at CS,the internal circuitry waits for a setup time after CS before responding to control input signals.Therefore,no attempt should be made to clock in an address until the minimum CS setup time has elapsed.Figure9.Timing for12-Clock Transfer Using CS With MSB FirstCS(see Note A)I/OCLOCK1234567811121Access Cycle B Sample Cycle BDATAOUTA11A10A9A8A7A6A5A4A1A0Low Level B11DATA INPUT MSBPrevious Conversion DataLSBEOCB7B6B5B4MSBLSBB3B2B1B0C7Shift in New Multiplexer Address,Simultaneously Shift Out PreviousConversion Valuet(conv)A/D ConversionInitialize Interval InitializeNOTE A:To minimize errors caused by noise at CS,the internal circuitry waits for a setup time after CS before responding to control input signals.Therefore,no attempt should be made to clock in an address until the minimum CS setup time has elapsed.Figure10.Timing for12-Clock Transfer Not Using CS With MSB FirstPOST OFFICE BOX655303∙DALLAS,TEXAS752659TLC2543C,TLC2543I,TLC2543M12-BIT ANALOG-TO-DIGITAL CONVERTERSWITH SERIAL CONTROL AND11ANALOG INPUTSSLAS079F–DECEMBER1993–REVISED NOVEMBER2001PARAMETER MEASUREMENT INFORMATIONCS(see Note A)I/O CLOCK123456781Access Cycle B Sample Cycle BDATA OUT A7A6A5A4A3A2A1A0Previous Conversion DataMSBLSB Hi-ZB7DATA INPUTEOCB7B6B5B4MSBLSBB3B2B1B0C7Shift in New Multiplexer Address,Simultaneously Shift Out PreviousConversion Valuet(conv)A/D ConversionInitialize Interval InitializeNOTE A:To minimize errors caused by noise at CS,the internal circuitry waits for a setup time after CS before responding to control input signals.Therefore,no attempt should be made to clock in an address until the minimum CS setup time has elapsed.Figure11.Timing for8-Clock Transfer Using CS With MSB FirstCS(see Note A)I/O CLOCK123456781Access Cycle B Sample Cycle BDATA OUT A7A6A5A4A3A2A1A0Low Level B7DATA INPUT MSBPrevious Conversion DataLSBEOCB7B6B5B4MSBLSBB3B2B1B0C7 Shift in New Multiplexer Address,t(conv)InitializeSimultaneously Shift Out PreviousConversion Value A/D ConversionIntervalInitializeNOTE A:To minimize errors caused by noise at CS,the internal circuitry waits for a setup time after CS before responding to control input signals.Therefore,no attempt should be made to clock in an address until the minimum CS setup time has elapsed.Figure12.Timing for8-Clock Transfer Not Using CS With MSB First10POST OFFICE BOX655303∙DALLAS,TEXAS75265TLC2543C,TLC2543I,TLC2543M12-BIT ANALOG-TO-DIGITAL CONVERTERSWITH SERIAL CONTROL AND11ANALOG INPUTSSLAS079F–DECEMBER1993–REVISED NOVEMBER2001PARAMETER MEASUREMENT INFORMATIONCS(see Note A)I/OCLOCK1234567815161Access Cycle B Sample Cycle BDATAOUTA15A14A13A12A11A10A9A8A1A0Previous Conversion DataMSBLSB Hi-Z StateB15DATA INPUTEOCB7B6B5B4MSBLSBB3B2B1B0C7Shift in New Multiplexer Address,Simultaneously Shift Out PreviousConversion Valuet(conv)A/D ConversionInitializeIntervalInitializeNOTE A:To minimize errors caused by noise at CS,the internal circuitry waits for a setup time after CS before responding to control input signals.Therefore,no attempt should be made to clock in an address until the minimum CS setup time has elapsed.Figure13.Timing for16-Clock Transfer Using CS With MSB FirstCS(see Note A)I/OCLOCK1234567815161Access Cycle B Sample Cycle BDATAOUTA15A14A13A12A11A10A9A8A1A0Previous Conversion DataMSBLSBLow Level B15DATAINPUTEOCB7B6B5B4MSBLSBB3B2B1B0C7InitializeShift in New Multiplexer Address,Simultaneously Shift Out PreviousConversion Valuet(conv)A/D ConversionIntervalNOTE A:To minimize errors caused by noise at CS,the internal circuitry waits for a setup time after CS before responding to control input signals.Therefore,no attempt should be made to clock in an address until the minimum CS setup time has elapsed.Figure14.Timing for16-Clock Transfer Not Using CS With MSB FirstPOST OFFICE BOX655303∙DALLAS,TEXA S7526511TLC2543C,TLC2543I,TLC2543M12-BIT ANALOG-TO-DIGITAL CONVERTERSWITH SERIAL CONTROL AND11ANALOG INPUTSSLAS079F–DECEMBER1993–REVISED NOVEMBER2001PRINCIPLES OF OPERATIONInitially,with chip select(CS)high,I/O CLOCK and DATA INPUT are disabled and DATA OUT is in the high-impedance state.CS going low begins the conversion sequence by enabling I/O CLOCK and DATA INPUT and removes DATA OUT from the high-impedance state.The input data is an8-bit data stream consisting of a4-bit analog channel address(D7–D4),a2-bit data length select(D3–D2),an output MSB or LSB first bit(D1),and a unipolar or bipolar output select bit(D0)that are applied to DATA INPUT.The I/O CLOCK sequence applied to the I/O CLOCK terminal transfers this data to the input data register.During this transfer,the I/O CLOCK sequence also shifts the previous conversion result from the output data register to DATA OUT.I/O CLOCK receives the input sequence of8,12,or16clock cycles long depending on the data-length selection in the input data register.Sampling of the analog input begins on the fourth falling edge of the input I/O CLOCK sequence and is held after the last falling edge of the I/O CLOCK sequence.The last falling edge of the I/O CLOCK sequence also takes EOC low and begins the conversion.converter operationThe operation of the converter is organized as a succession of two distinct cycles:1)the I/O cycle and2)the actual conversion cycle.I/O cycleThe I/O cycle is defined by the externally provided I/O CLOCK and lasts8,12,or16clock periods,depending on the selected output data length.During the I/O cycle,the following two operations take place simultaneously.An8-bit data stream consisting of address and control information is provided to DATA INPUT.This data is shifted into the device on the rising edge of the first eight I/O CLOCKs.DATA INPUT is ignored after the first eight clocks during12-or16-clock I/O transfers.The data output,with a length of8,12,or16bits,is provided serially on DATA OUT.When CS is held low,the first output data bit occurs on the rising edge of EOC.When CS is negated between conversions,the first output data bit occurs on the falling edge of CS.This data is the result of the previous conversion period,and after the first output data bit,each succeeding bit is clocked out on the falling edge of each succeeding I/O CLOCK. conversion cycleThe conversion cycle is transparent to the user,and it is controlled by an internal clock synchronized to I/O CLOCK.During the conversion period,the device performs a successive-approximation conversion on the analog input voltage.The EOC output goes low at the start of the conversion cycle and goes high when conversion is complete and the output data register is latched.A conversion cycle is started only after the I/O cycle is completed,which minimizes the influence of external digital noise on the accuracy of the conversion.12POST OFFICE BOX655303 DALLAS,TEXAS75265TLC2543C,TLC2543I,TLC2543M12-BIT ANALOG-TO-DIGITAL CONVERTERSWITH SERIAL CONTROL AND11ANALOG INPUTSSLAS079F–DECEMBER1993–REVISED NOVEMBER2001PRINCIPLES OF OPERATIONpower up and initializationAfter power up,CS must be taken from high to low to begin an I/O cycle.EOC is initially high,and the input dataregister is set to all zeroes.The contents of the output data register are random,and the first conversion resultshould be ignored.T o initialize during operation,CS is high and is then returned low to begin the next I/Ocycle.The first conversion after the device has returned from the power-down state may not read accuratelydue to internal device settling.Table1.Operational TerminologyExample:In the12-bit mode,the result of the current conversion cycle is a12-bit serial-data stream clocked out duringthe next I/O cycle.The current I/O cycle must be exactly12bits long to maintain synchronization,evenwhen this corrupts the output data from the previous conversion.The current conversion is begunimmediately after the twelfth falling edge of the current I/O cycle.POST OFFICE BOX655303 DALLAS,TEXAS7526513TLC2543C,TLC2543I,TLC2543M12-BIT ANALOG-TO-DIGITAL CONVERTERSWITH SERIAL CONTROL AND11ANALOG INPUTSSLAS079F–DECEMBER1993–REVISED NOVEMBER2001PRINCIPLES OF OPERATIONdata inputThe data input is internally connected to an8-bit serial-input address and control register.The register defines the operation of the converter and the output data length.The host provides the data word with the MSB first.Each data bit is clocked in on the rising edge of the I/O CLOCK sequence(see T able2for the data input-register format).Table2.Input-Register FormatINPUT DATA BYTEFUNCTION SELECT Select input channelD7(MSB)ADDRESS BITS L1L0LSBF BIPD6D5D4D3D2D1D0(LSB)AIN0 AIN1 AIN2 AIN3 AIN4 AIN5 AIN6 AIN7 AIN8 AIN9 AIN10011111111111111111Select test voltage(Vref+–Vref–)/2 Vref–Vref+11111111Software power down1110 Output data length8bits12bits16bitsOutput data formatMSB firstLSB first(LSBF)X†1111Unipolar(binary)0Bipolar(BIP)2s complement1†X represents a do not care condition.data input address bitsThe four MSBs(D7–D4)of the data register address one of the11input channels,a reference-test voltage, or the power-down mode.The address bits affect the current conversion,which is the conversion that immediately follows the current I/O cycle.The reference voltage is nominally equal to V ref+–V ref–.14POST OFFICE BOX655303 DALLAS,TEXAS75265找电子元器件商城上万联芯城,万联芯城专为国内中小生产研发企业提供电子元器件一站式配单服务,广受生产商及工程师客户青睐,万联芯城多年来秉承“以良心做好良芯”的服务理念,为客户带来原装优质价格优势的电子元器件产品,满足客户物料需求,解决客户采购烦恼。

TLC2543 中文资料

TLC2543 中文资料

TLC2543 中文资料TLC2543是TI公司的12位串行模数转换器,使用开关电容逐次逼近技术完成A/D转换过程。

由于是串行输入结构,能够节省51系列单片机I/O资源;且价格适中,分辨率较高,因此在仪器仪表中有较为广泛的应用。

2 TLC254 ...TLC2543是TI公司的12位串行模数转换器,使用开关电容逐次逼近技术完成A/D 转换过程。

由于是串行输入结构,能够节省51系列单片机I/O资源;且价格适中,分辨率较高,因此在仪器仪表中有较为广泛的应用。

2 TLC2543的特点(1)12位分辩率A/D转换器;(2)在工作温度范围内10μs转换时间;(3)11个模拟输入通道;(4)3路内置自测试方式;(5)采样率为66kbps;(6)线性误差±1LSBmax;(7)有转换结束输出EOC;(8)具有单、双极性输出;(9)可编程的MSB或LSB前导;(10)可编程输出数据长度。

3TLC2543的引脚图(管脚图)及说明TLC2543有两种封装形式:DB、DW或N封装以及FN封装,这两种封装的引脚排列如图1,引脚说明见表1。

表1 TLC2543引脚说明引脚号名称I/O 说明1~9,11,12 AIN0~AIN10 I 模拟量输入端。

11路输入信号由内部多路器选通。

对于4.1MHz的I/OCLOCK,驱动源阻抗必须小于或等于50Ω,而且用60pF电容来限制模拟输入电压的斜率15 I 片选端。

在端由高变低时,内部计数器复位。

由低变高时,在设定时间内禁止DATAINPUT和I/O CLOCK17 DATAINPUT I 串行数据输入端。

由4位的串行地址输入来选择模拟量输入通道16 DATA OUT O A/D转换结果的三态串行输出端。

为高时处于高阻抗状态,为低时处于激活状态19 EOC O 转换结束端。

在最后的I/OCLOCK下降沿之后,EOC从高电平变为低电平并保持到转换完成和数据准备传输为止10 GND 地。

关于TLC2543的总结

关于TLC2543的总结

关于TLC2543的一些问题TLC2543是我调的第四个模块,严格意义上说第三个,因为A/D与D/A是相互配合使用的,在原理上有很多相同的地方。

比如逐次逼近式的A/D转换芯片,内部就存在一个D/A转换器。

总之二者在原理上有相通的地方,下面是我在调试芯片过程中遇到的一些问题:1、下面是它的管脚图以及结构框图:图1、TLC2543NC管脚图图2、2543的结构框图2、它有0~10共11个输入端口,也就是有11个通道,这11个通道是由DA TA IN的高四位决定的,而DA TA IN的低四位决定了是采用8位、12位还是16位数据输出格式,以及输出是单极性输出还是双极性输出,详见表1.需要注意的是这里的DATA IN并不是用于转换的输入数据,而是对输入通道,及一些相关格式的选择数据,相当于命令数据。

DATA OUT是一个串行的输出端,将输入的模拟量转换为数字量后,一位一位输出出来。

转换结束的信号是由EOC决定的,当它为低时表示转换结束,为高时表示正在转换,这里需要注意的是,现在转换的信号,并须在下一次有效输出信号来临时,才被输出;而当前输出的数据世上一次操作转换的结果,所以要输出当前的转换结果,至少要执行两次有效输出,才能得到正确结果。

表1、2543的输入数据功能表3、下面是2543在使用时的两种不同模式,一种是使用~CS端进行控制,一种是不使用。

很显然,第二种,2543时刻都被选通,时刻都在准备进行数据的转换,这样必然会有一定的功耗,所以如果能合理地设计~CS的选通状态,就可以减少电路的功耗。

同样的,还有以8位数据及16位数据格式输出,原理及时序图都与12位的相同,只有输出结果的位数不同,当然,相应的精度也就不同。

可根据具体需要,进行设置。

图3、采用12位输出数据并使用~CS时的序图图4、采用12位输出数据并不使用~CS时的序图。

TL2543

TL2543

图3.5TLC2543芯片引脚图图3.6内部结构图3.6 TLC2543芯片引脚及内部结构TLC2543是德州仪器公司生产的12位开关电容型逐次逼近模数转换器,最大转换时间10us,11个模拟输入通道,3路内置自测试方式,采样率为66KSPS,线性误差±1LSBmax,有转换结束输出EOC,具有单极、双极性输出,可编程的MSB或LSB前导,可编程输出数据长度。

它具有三个控制输入端,采用简单三线SPI串行接口可方便的与微机进行连接,图3.5和图3.6分别是TLC2543的引脚排列图和内部结构图。

表3.2是TLC2543的引脚功能说明。

3.7 TLC2543的工作方式和输入通道的选择TLC2543是一个多通道和多工作方式的模数转换器件。

图3.5为其芯片引脚图,图3.6是它的内部结构图。

其工作方式和输入通道的选择是通过向TLC2543的控制寄存器写入一个八位的控制字来实现的。

这个八位控制字由四个部分组成:D7D6D5D4选择输入通道,D3D2选择输出数据长度,D1选择输出数据顺序,D0选择转换结果的极性。

八位控制字的各位的含义如表3.3所示。

主机以MSB为前导方式将控制字写入TLC2543的控制寄存器,每个数据位都是在CLOCK序列的上升沿被写入控制器。

表3.2引脚功能说明3.7.1 TLC2543的读写时序当片选信号/CS为高电平时,CLOCK和DATA-IN被禁止、DATA-OUT为高阻状态,以便SPI总线上的其它器件让出总线。

在片选信号/CS的下降沿,A/D转换结果的第一位数据出现在DATA-OUT引脚上,A/D转换结果的其他数据位在时钟信号CLOCK的下降沿被串行输出到DATA-OUT。

在片选信号/CS下降以后,时钟信号CLOCK的前八个上升沿将八位控制字从DATA_IN引脚串行输入到TLC2543的控制寄存器。

在片选信号/CS下降以后,经历8个(12个或16个)时钟信号完成对A/D转换器的一次读写。

TLC2543中文资料_数据手册_参数

TLC2543中文资料_数据手册_参数
பைடு நூலகம்
万联芯城专注电子元器件配单服务,只售原装现货库存,万联芯城 电子元器件全国供应,专为终端生产,研发企业提供现货物料, 价格优势明显,BOM配单整单采购可享优惠价,提交BOM表报价 ,最快可当天发货,万联芯城电子元器件配单服务可以为客户节 省采购成本,满足客户物料需求,丰富的电子元器件供应链体系 已为全国多家终端企业服务,点击进入万联芯城。
合格的汽车ApplicationsD 12位分辨率A / D ConverterD 10-µs转换时间在OperatingTemperatureD 11模拟输入ChannelsD三内建自测ModesD固 有取样保持的FunctionD线性误差。±1 LSB MaxD片上TLC2543系统ClockD转换末尾OutputD单极或双极输出操作(签署二进制对1/2 theApplied参考电压)D可编程MSB和LSB FirstD可编程电源DownD可编程输出数据LengthD CMOS TechnologyD申请报告可用‡ descriptionThe TLC2543 12位,开关电容,逐次逼近,数模转换器。每台设备有三个控制输入(芯片选择(CS)、输入-输出时钟和地址输入(数据 输入)),通过串行三态输出与主机处理器或外围设备的串口通信。该设备允许从主机高速传输数据。除了高速转换器和多用途控制能 力,该设备还有一个芯片上的14通道多路复用器,可以选择11个输入中的任意一个或3个内部自检电压中的任意一个。这个功能是自动 的。在转换结束时,转换结束(EOC)输出变高,表示转换已经完成。TLC2543集成在器件中的转换器具有不同的高阻抗参考输入,便于 比值转换、缩放和模拟电路与逻辑和电源噪声隔离。开关电容设计允许在整个工作温度范围内的低误差转换。订货信息工作原理首先, 芯片选择(CS)高,I/O时钟和数据输入被禁用,TLC2543数据输出处于高阻抗状态。CS低电平通过启用I/O时钟和数据输入开始转换序 列,并从高阻抗状态中删除数据。输入数据为8位数据流,包括4位模拟信道地址(D7−D4)、2位数据纵向选择(D3−D2)、输出MSB或LSB 第一个位(D1)和应用于数据输入的单极或双极输出选择位(D0)。TLC2543应用于I/O时钟终端的I/O时钟序列将此数据传输到输入数据寄 存器。在这个传输过程中,I/O时钟序列还将之前的转换结果从输出数据寄存器转移到数据输出。I/O时钟接收8、12或16个时钟周期长 的输入序列,这取决于输入数据寄存器中的数据长度选择。TLC2543模拟输入的采样从输入I/O时钟序列的第四个下降沿开始,并在I/O 时钟序列的最后一个下降沿之后进行。I/O时钟序列的最后一个下降沿也将EOC降低并开始转换。转换器的操作转换器的操作被组织成 两个不同的周期的序列:1)I/O周期和2)实际的转换周期。I/O周期I/O周期由外部提供的I/O时钟定义,持续8、12或16个时钟周期,取决于 所选输出数据的长度。在I/O周期中,同时执行以下两个操作。一个由地址和控制信息组成的8位数据流被提供给数据输入。这些数据被 转移到前八个I/O时钟上升边缘的设备中。在12或16个时钟的I/O传输过程中,第一个时钟后的数据输入将被忽略。数据输出(长度为 8、12或16位)是在数据输出时串行提供的。当CS值较低时,第一个输出数据位出现在EOC上升沿。当CS在两次转换之间被否定时,第 一个outputdata位出现在CS的下降边缘。该数据是前一个转换周期的结果,在第一个输出数据位之后,每个后续的位都被锁定在每个后 续I/O时钟的下降边缘。转换周期转换周期对用户是透明的,它由一个内部时钟同步toI/O时钟控制。在转换期间,该装置对模拟输入电 压进行逐次近似转换。EOC输出在转换周期开始时较低,在转换完成并锁定输出数据寄存器时较高。转换周期只有在I/Ocycle完成后才 开始,这样可以将外部数字噪声对转换精度的影响降到最低。

我的TLC2543学习笔记——基于msp430g2553单片机

我的TLC2543学习笔记——基于msp430g2553单片机

我的TLC2543学习笔记——基于msp430g2553单⽚机还是贴不了图⽚我的TLC2543学习笔记Created on: 2012-9-8Author: zhang bin学习笔记for msp430g2553redesigned by zhang bin2012-09-08versions:12_09_01All Rights ReservedTLC2543具有4线制串⾏接⼝,分别为⽚选端(CS),串⾏时钟输⼊端(I/O CLOCK),串⾏数据输⼊端(DATA IN)和串⾏数据输出端(DATA OUT)(转换结束脚EOC可以不接)。

它可以直接与SPI器件进⾏连接,不需要其他外部逻辑。

同时,它还在⾼达4MHz的串⾏速率下与主机进⾏通信。

TLC2543的特点及引脚TLC2543是TI的12 bit串⾏A/D转换器,11个模拟输⼊通道。

使⽤开关电容逐次逼近技术完成,A/D转换过程.由于是串⾏输⼊结构,能够MCU的I/O资源.其特点有:1)12 bit分辨率A/D转换器;2)在⼯作温度范围内10us转换时间;3)11个模拟输⼊通道;4)3路内置⾃测试⽅式;5)采样率为66 kb/s;6)线性误差+1LSB(max);7)有转换结束(EOC)输出;8)具有单、双极性输出;9)可编程的MSB或LSB前导;10)可编程的输出数据长度.��� 12-Bit-Resolution A/D Converter��� 10-µs Conversion Time Over OperatingTemperature��� 11 Analog Input Channels��� 3 Built-In Self-Test Modes��� Inherent Sample-and-Hold Function��� Linearity Error . . . ±1 LSB Max��� On-Chip System Clock��� End-of-Conversion Output��� Unipolar or Bipolar Output Operation(Signed Binary With Respect to 1/2 theApplied Voltage Reference)��� Programmable MSB or LSB First��� Programmable Power Down��� Programmable Output Data Length��� CMOS Technology��� Application Report Available我⽤的tlc2543是直插的,引脚图如下:各引脚的详细说明如下:引脚号名称I/O说明1~9,11,12AIN0~AIN10I模拟量输⼊端。

TLC2543

TLC2543

TLC2543在仪器仪表中的应用摘要介绍TI公司的TLC2543的特性,与51系列单片机的接口以及在仪器仪表中的应用。

关键词串行A/D应用1引言TLC2543是TI公司的12位串行模数转换器,使用开关电容逐次逼近技术完成A/D转换过程。

由于是串行输入结构,能够节省51系列单片机I/O资源;且价格适中,分辨率较高,因此在仪器仪表中有较为广泛的应用。

2TLC2543的特点(1)12位分辩率A/D转换器;(2)在工作温度范围内10μs转换时间;(3)11个模拟输入通道;(4)3路内置自测试方式;(5)采样率为66kbps;(6)线性误差±1LSBmax;(7)有转换结束输出EOC;(8)具有单、双极性输出;(9)可编程的MSB或LSB前导;(10)可编程输出数据长度。

3TLC2543的引脚排列及说明TLC2543有两种封装形式:DB、DW或N封装以及FN封装,这两种封装的引脚排列如图1,引脚说明见表1。

图1TLC2543的封装表1TLC2543引脚说明4接口时序可以用四种传输方法使TLC2543得到全12位分辩率,每次转换和数据传递可以使用12或16个时钟周期。

一个片选()脉冲要插到每次转换的开始处,或是在转换时序的开始处变化一次后保持为低,直到时序结束。

图2显示每次转换和数据传递使用16个时钟周期和在每次传递周期之间插入的时序,图3显示每次转换和数据传递使用16个时钟周期,仅在每次转换序列开始处插入一次时序。

图216时钟传送时序图(使用,MSB在前)图316时钟传送时序图(不使用,MSB在前)5TLC2543在智能仪器仪表中的应用TLC2543是12位分辩率,与MAX186在功能上基本相同,但价格比MAX186低得多,因此TLC2543在便携式数据记录仪、医用仪器、电力检测仪表中具有广泛的应用。

下面主要讲述TLC2543在电力监控显示屏中的应用。

在电厂和变电站中,电网中的电压和电流由于多种原因常常处于波动状态,为了给工作人员提供有效数据,并在超值范围内采取有效措施,监测电网中电压和电流值是非常必要的。

TLC2543及其接口电路

TLC2543及其接口电路

TLC2543在仪器仪表中的应用摘要介绍TI公司的TLC2543的特性,与51系列单片机的接口以及在仪器仪表中的应用。

关键词串行A/D应用1引言TLC2543是TI公司的12位串行模数转换器,使用开关电容逐次逼近技术完成A/D转换过程。

由于是串行输入结构,能够节省51系列单片机I/O资源;且价格适中,分辨率较高,因此在仪器仪表中有较为广泛的应用。

2TLC2543的特点(1)12位分辩率A/D转换器;(2)在工作温度范围内10μs转换时间;(3)11个模拟输入通道;(4)3路内置自测试方式;(5)采样率为66kbps;(6)线性误差±1LSBmax;(7)有转换结束输出EOC;(8)具有单、双极性输出;(9)可编程的MSB或LSB前导;(10)可编程输出数据长度。

3TLC2543的引脚排列及说明TLC2543有两种封装形式:DB、DW或N封装以及FN封装,这两种封装的引脚排列如图1,引脚说明见表1。

图1TLC2543的封装表1TLC2543引脚说明4接口时序可以用四种传输方法使TLC2543得到全12位分辩率,每次转换和数据传递可以使用12或16个时钟周期。

一个片选()脉冲要插到每次转换的开始处,或是在转换时序的开始处变化一次后保持为低,直到时序结束。

图2显示每次转换和数据传递使用16个时钟周期和在每次传递周期之间插入的时序,图3显示每次转换和数据传递使用16个时钟周期,仅在每次转换序列开始处插入一次时序。

图216时钟传送时序图(使用,MSB在前)图316时钟传送时序图(不使用,MSB在前)5TLC2543在智能仪器仪表中的应用TLC2543是12位分辩率,与MAX186在功能上基本相同,但价格比MAX186低得多,因此TLC2543在便携式数据记录仪、医用仪器、电力检测仪表中具有广泛的应用。

下面主要讲述TLC2543在电力监控显示屏中的应用。

在电厂和变电站中,电网中的电压和电流由于多种原因常常处于波动状态,为了给工作人员提供有效数据,并在超值范围内采取有效措施,监测电网中电压和电流值是非常必要的。

TLC2543中文数据手册

TLC2543中文数据手册

TLC2543使用手册一、简要说明:TLC2543是一款8位、10位、12位为一体的可选输出位数的11通道串行转换芯片。

每一路转换时间为10us。

外部输入信号为:DATA input ;_CS;AD_IO_CLK;Analog input;四种信号;输出为:EOC转换结束信号,DATA output信号。

工作原理为:_CS由高变为低时候,允许DATA input;AD_IO_CLK;Analog input信号输入,DATA out 信号输出;由低到高禁止DATA input;AD_IO_CLK;信号输入。

当忽略ADC转换启动的CS时候,数据的输出是在CS的下降沿,既是将片选的时候,而考虑到CS时候,第一个输出数据发生在EOC变为高的时候的上升沿。

注意:初始化时候,必须将CS由高拉低才能进行数据输出或者是数据输入。

也就是说,当一次转换完成后,进行下一次或者是下一个通道的转换,需要将CS由低拉高,为下一次转换做好准备,当进行下一个转换时候,进行CS 拉低,DATA input输入或者DATA out输出(忽略CS转换作用时候)。

信号解释:DATA input:4位串行地址输入,用来选择模拟输入通道功能或者测试引脚;高位在前,在每一个AD_IO_CLK的上升沿输入ADC的寄存器。

由八位组成:前四位:D7:D4用作选择模拟输入通道,D3:D2用作选择数据长度,D1是选择输出高低位顺序的,D0选择是选择输出极性(单双极性)。

DA TA INPUT的表含义DATA OUT:当_CS为高时DATA out输出为高阻抗,当CS有效时,驱动转换结果,并在AD_IO_CLK的下降沿按位顺序输出。

EOC:ADC的EOC在DATA input输入的最后一个AD_IO_CLK时,由高变为低,并保持到转换结束和数据准备输出结束时候变为高。

AD_IO_CLK:输入和输出时钟,主要完成以下功能:A、在IO_CLK的前八个时钟的上升沿将DATA input的八位数据输入数据寄存器中。

12位TLC2543模数转换总结

12位TLC2543模数转换总结
Lcd_wcd(1,0x30+bai);
Lcd_wcd(1,0x2e);
Lcd_wcd(1,0x30+shi);
Lcd_wcd(1,0x30+ge);
Lcd_wcd(1,0x30+xiao);
/*for(i=0;i<SUM;i++)
{
temp1+=redad(0x01);//选择通道1,并读取AD转换的数
GND
地。GND是内部电路的地回路端。除另有说明外,所有电压测量都相对GND而言
18
I/O CLOCK
I
输入/输出时钟端。I/OCLOCK接收串行输入信号并完成以下四个功能:(1)在I/O CLOCK的前8个上升沿,8位输入数据存入输入数据寄存器。(2)在I/OCLOCK的第4个下降沿,被选通的模拟输入电压开始向电容器充电,直到I/OCLOCK的最后一个下降沿为止。(3)将前一次转换数据的其余11位输出到DATA OUT端,在I/OCLOCK的下降沿时数据开始变化。(4)I/OCLOCK的最后一个下降沿,将转换的控制信号传送到内部状态控制位
//uchar code dis1[]={"采集电压:000 v"};
/*************延时**************/
void delay(uint z)
{//一毫秒
uint y;
for(;z>0;z--)
for(y=110;y>0;y--) ;
}
void delay_us(uchar n)//微秒
shi=x/1000%10;
ge=x/100%10;
xiao=x/10%10;
}
/****************主函数****************/

TLC2543资料c语言

TLC2543资料c语言
举例说明:设采集第6通道、输出数据为12位、高位先送出、输出数据的格式为二进制,则控制字为:0110 0000,用十六进制表示即为60H,本文基于此格式说明转换过程。
2.2TLC2543的内部寄存器
从编程角度看,TLC2543内部寄存器有输入数据寄存器与输出数据寄存器。输入数据寄存器存放从DATA INPUT端移入的控制字。输出数据寄存器存放转换好的数据,以供从DATA OUT端移出。
(4)控制字输入引脚
DATA TNPUT,17脚:控制字输入端,选择通道及输出数据格式的控制字由此输入。
(5)转换数据输出引脚
DATA OUT,16脚:A/D转换结果输出的3态串行输出端。
2TLC2543的编程要点
2.1控制字的格式
控制字为从DATA INPUT端串行输入TLC2543芯片内部的8位数据,它告诉TLC2543要转换的模拟量通道、转换后的输出数据长度、输出数据的格式。其中高4位(D7~D4)决定通道号,对于0通道至10通道,该4位分别为0000、0001、…、1010,该4位为其它数字时的功能,用于检测校正,本文不作具体介绍。低4位决定输出数据长度及格式,其中D3、D2决定输出数据长度,TLC2543的输出数据长度有8位、12位、16位,但由于TLC2543为12位A/D转换芯片,经过分析可以看出,8位、16位输出对TLC2543的应用意义不大,宜定在12位输出,D3、D2两位为00即可。D1决定输出数据是高位先送出,还是低位先送出,若为高位先送出,该位为0,反之为1。D0决定输出数据是单极性(二进制)还是双极性(2的补码),若为单极性,该位为0,反之为1。
关键词:A/D转换;TLC2543芯片;51系列单片机;接口技术
中图法分类号:TP334.7文献识别码:B

TLC2543引脚、功能及时序

TLC2543引脚、功能及时序

TLC2543引脚、功能及时序一、模块采用TI公司的TLC2543 12位串行A/D转换器,使用开关电容逐次逼近技术完成A/D 转换过程。

由于是串行输入结构,能够节省51 系列单片机I/O 资源,且价格适中。

其特点有:(1)12位分辨率A/D转换器;(2)在工作温度范围内10 ys转换时间;( 3) 11 个模拟输入通道;( 4) 3 路内置自测试方式;( 5)采样率为66kbps ;( 6)线性误差+1LSB (max)(7)有转换结束(EOC)输出;( 8)具有单、双极性输出;( 9)可编程的MSB 或LSB 前导;( 10)可编程的输出数据长度。

二、TLC2543 的引脚排列如图所示。

1~9、11、12 —— AIN0〜AIN10为模拟输入端;15 ——CS 为片选端;17——DIN 为串行数据输入端;(控制字输入端,用于选择转换及输出数据格式) 16——DOUT 为A/D 转换结果的三态串行输出端;( A/D 转换结果的输出端。

)19 ——EOC 为转换结束端;18——CLK 为I/O 时钟;(控制输入输出的时钟,由外部输入。

)14 —— REF+为正基准电压端;13 ―― REF-为负基准电压端;20——VCC 为电源;10 ―― GND 为地。

三、TLC2543的使用方法3. 1控制字的格式控制字为从DATAINPUT 端串行输入的8位数据,它规定了 TLC2543要转换的 模拟量通道、转换后的输出数据长度、输出数据的格式。

高4位(D7〜D4)决定通道号,对于0通道至10通道,该4位分别为0000〜1010H ,当为1011〜1101时,用于对TLC2543的自检,分别测试(VREF + + VREF— )/2、VREF ―、VREF + 的值,当为 1110 时,TLC2543 进入休眠状态。

低4位决定输出数据长度及格式,D3、D2决定输出数据长度,01表示输出数据长度为8位,11表示输出数 据长度为16位,其他为12位。

TLC2543串行AD转换器内部原理

TLC2543串行AD转换器内部原理

TLC2543串行A/D转换器模块采用TI公司的TLC2543 12位串行A/D转换器,使用开关电容逐次逼近技术完成A/D转换过程。

由于是串行输入结构,能够节省51系列单片机I/O资源,且价格适中。

其特点有:(1)12位分辨率A/D转换器;(2)在工作温度范围内10μs转换时间;(3)11个模拟输入通道;(4)3路内置自测试方式;(5)采样率为66kbps;(6)线性误差+1LSB(max)(7)有转换结束(EOC)输出;(8)具有单、双极性输出;(9)可编程的MSB或LSB前导;(10)可编程的输出数据长度。

TLC2543的引脚排列如图1所示。

图1中AIN0~AIN10为模拟输入端;为片选端;DIN 为串行数据输入端;DOUT为A/D转换结果的三态串行输出端;EOC为转换结束端;CLK为I/O时钟;REF+为正基准电压端;REF-为负基准电压端;V CC为电源;GND为地TLC2543的使用方法2.1 控制字的格式控制字为从DATAINPUT端串行输入的8位数据,它规定了TLC2543要转换的模拟量通道、转换后的输出数据长度、输出数据的格式。

其中高4位(D7~D4)决定通道号,对于0通道至10通道,该4位分别为0000~1010H,当为1011~1101时,用于对TLC2543的自检,分别测试(V REF++V REF-)/2、V REF-、V REF+的值,当为1110时,TLC2543进入休眠状态。

低4位决定输出数据长度及格式,其中D3、D2决定输出数据长度,01表示输出数据长度为8位,11表示输出数据长度为16位,其他为12位。

D1决定输出数据是高位先送出,还是低位先送出,为0表示高位先送出。

D0决定输出数据是单极性(二进制)还是双极性(2的补码),若为单极性,该位为0,反之为1。

2.2 转换过程上电后,片选CS必须从高到低,才能开始一次工作周期,此时EOC为高,输入数据寄存器被置为0,输出数据寄存器的内容是随机的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

FEATURES(TOP VIEW)DW PACKAGEDESCRIPTION/ORDERING INFORMATIONWITH SERIAL CONTROL AND11ANALOG INPUTSSGLS125A–JULY2002–REVISED NOVEMBER2006•Controlled Baseline•Programmable Power Down –One Assembly/Test Site,One Fabrication•Programmable Output Data Length Site•CMOS Technology•Extended Temperature Performance of–40°C•Application Report Available(2) to125°C(TLC2543Q)and–55°C to125°C(TLC2543M)•Enhanced Diminishing Manufacturing Sources(DMS)Support•Enhanced Product Change Notification•Qualification Pedigree(1)•12-Bit-Resolution Analog-to-Digital Converter(ADC)•10-µs Conversion Time Over OperatingTemperature•11Analog Input Channels•Three Built-In Self-Test Modes•Inherent Sample-and-Hold Function•Linearity Error...±1LSB Max•On-Chip System Clock•End-of-Conversion(EOC)Output•Unipolar or Bipolar Output Operation(SignedBinary With Respect to1/2the AppliedVoltage Reference)•Programmable Most Significant Bit(MSB)orLeast Significant Bit(LSB)First(1)Component qualification in accordance with JEDEC andindustry standards to ensure reliable operation over anextended temperature range.This includes,but is not limitedto,Highly Accelerated Stress Test(HAST)or biased85/85,temperature cycle,autoclave or unbiased HAST,electromigration,bond intermetallic life,and mold compoundlife.Such qualification testing should not be viewed asjustifying use of this component beyond specified(2)Microcontroller Based Data Acquisition Using the TLC2543 performance and environmental limits.12-bit Serial-Out ADC(SLAA012)The TLC2543is a12-bit,switched-capacitor,successive-approximation,analog-to-digital converter(ADC).This device,with three control inputs[chip select(CS),input-output clock(I/O CLOCK),and address input(DATA INPUT)],is designed for communication with the serial port of a host processor or peripheral through a serial 3-state output.The device allows high-speed data transfers from the host.In addition to the high-speed converter and versatile control capability,the device has an on-chip14-channel multiplexer that can select any1of11inputs or any1of3internal self-test voltages.The sample-and-hold function is automatic.At the end of conversion,the end-of-conversion(EOC)output goes high to indicate that conversion is complete.The converter incorporated in the device features differential high-impedance reference inputs that facilitate ratiometric conversion,scaling,and isolation of analog circuitry from logic and supply noise.A switched-capacitor design allows low-error conversion over the full operating temperature range.Please be aware that an important notice concerning availability,standard warranty,and use in critical applications of TexasInstruments semiconductor products and disclaimers thereto appears at the end of this data sheet.PRODUCTION DATA information is current as of publication date.Copyright©2002–2006,Texas Instruments Incorporated Products conform to specifications per the terms of the TexasInstruments standard warranty.Production processing does notnecessarily include testing of all parameters.DATA OUTDATA INPUT CSEOCAIN0AIN1AIN2AIN3AIN4AIN5AIN6AIN7AIN8AIN9AIN10WITH SERIAL CONTROL AND 11ANALOG INPUTSSGLS125A–JULY 2002–REVISED NOVEMBER 2006ORDERING INFORMATIONT APACKAGE (1)ORDERABLE PART NUMBER TOP-SIDE MARKING –40°C to 125°C SOP –DW Tape and reel TLC2543QDWREP TLC2543QEP -55°C to 125°C SSOP -DBTape and ReelTLC2543MDBREPTLC2543MEP(1)Package drawings,standard packing quantities,thermal data,symbolization,and PCB design guidelines are available at /sc/package.FUNCTIONAL BLOCK DIAGRAM2Submit Documentation FeedbackWITH SERIAL CONTROL AND11ANALOG INPUTSSGLS125A–JULY2002–REVISED NOVEMBER2006 TERMINAL FUNCTIONSTERMINALI/O DESCRIPTIONNAME NO.AIN01AIN12AIN23AIN34AIN45Analog input.These11analog-signal inputs are internally multiplexed.The driving sourceAIN56I impedance should be less than or equal to50Ωfor4.1-MHz I/O CLOCK operation,and be capable AIN67of slewing the analog input voltage into a capacitance of60pF.AIN78AIN89AIN911AIN1012Chip select.A high-to-low transition on CS resets the internal counters and controls and enablesCS15I DATA OUT,DATA INPUT,and I/O CLOCK.A low-to-high transition disables DATA INPUT and I/OCLOCK within a setup time.Serial-data input.A4-bit serial address selects the desired analog input or test voltage to beconverted next.The serial data is presented with the most significant bit(MSB)first and is shifted in DATA INPUT17Ion the first four rising edges of I/O CLOCK.After the four address bits are read into the addressregister,I/O CLOCK clocks the remaining bits in order.The3-state serial output for the A/D conversion result.DATA OUT is in the high-impedance statewhen CS is high and active when CS is low.With a valid CS,DATA OUT is removed from thehigh-impedance state and is driven to the logic level corresponding to the most significant bit/least DATA OUT16Osignificant bit(MSB/LSB)value of the previous conversion result.The next falling edge of I/OCLOCK drives DATA OUT to the logic level corresponding to the next MSB/LSB,and the remainingbits are shifted out in order.End of conversion.EOC goes from a high to a low logic level after the falling edge of the last I/O EOC19OCLOCK and remains low until the conversion is complete and the data is ready for transfer.Ground.GND is the ground return terminal for the internal circuitry.Unless otherwise noted,allGND10voltage measurements are with respect to GND.Input/output clock.I/O CLOCK receives the serial input and performs the following four functions:•It clocks the eight input data bits into the input data register on the first eight rising edges of I/OCLOCK with the multiplexer address available after the fourth rising edge.•On the fourth falling edge of I/O CLOCK,the analog input voltage on the selected multiplexer inputbegins charging the capacitor array and continues to do so until the last falling edge of the I/OI/O CLOCK18ICLOCK.•It shifts the11remaining bits of the previous conversion data out on DATA OUT.Data changes onthe falling edge of I/O CLOCK.•It transfers control of the conversion to the internal state controller on the falling edge of the lastI/O CLOCK.Positive reference voltage.The upper reference voltage value(nominally V CC)is applied to REF+. REF+14I The maximum input voltage range is determined by the difference between the voltage applied tothis terminal and the voltage applied to the REF–terminal.Negative reference voltage.The lower reference voltage value(nominally ground)is applied toREF–13IREF–.V CC20Positive supply voltage3Submit Documentation FeedbackAbsolute Maximum Ratings (1)Recommended Operating ConditionsWITH SERIAL CONTROL AND 11ANALOG INPUTSSGLS125A–JULY 2002–REVISED NOVEMBER 2006over operating free-air temperature range (unless otherwise noted)MINMAX UNIT V CC Supply voltage range (2)–0.5 6.5V V CC +V I Input voltage range (any input)–0.3V 0.3V CC +V O Output voltage range –0.3V 0.3V CC +V ref+Positive reference voltage V 0.1V ref–Negative reference voltage –0.1V I I Peak input current (any input)±20mA I I Peak total input current (all inputs)±30mA TLC2543Q –40125T A Operating free-air temperature range °C TLC2543M-55125T stg Storage temperature range–65150°C Lead temperature 1,6mm (1/16in)from the case for 10s260°C(1)Stresses beyond those listed under "absolute maximum ratings"may cause permanent damage to the device.These are stress ratings only,and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions"is not implied.Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.(2)All voltage values are with respect to the GND terminal with REF–and GND wired together (unless otherwise noted).MINNOMMAX UNIT V CC Supply voltage4.55 5.5V V ref+Positive reference voltage (1)V CCV V ref–Negative reference voltage (1)0V V ref+–V ref–Differential reference voltage (1) 2.5V CCV CC +0.1V Analog input voltage (1)0V CC V V IH High-level control input voltage V CC =4.5V to 5.5V 2V V IL Low-level control input voltage V CC =4.5V to 5.5V0.8V Clock frequency at I/O CLOCK0 4.1MHz t su(A)Setup time,address bits at DATA INPUT before I/O CLOCK ↑(see Figure 4)100ns t h(A)Hold time,address bits after I/O CLOCK ↑(see Figure 4)0ns t h(CS)Hold time,CS low after last I/O CLOCK ↓(see Figure 5)0ns t su(CS)Setup time,CS low before clocking in first address bit (2)(see Figure 5) 1.425µs t wH(I/O)Pulse duration,I/O CLOCK high 120ns t wL(I/O)Pulse duration,I/O CLOCK low120ns t t(I/O)Transition time,I/O CLOCK high to low (3)(see Figure 6)1µs t t(CS)Transition time,DATA INPUT and CS 10µs TLC2543Q –40125T A Operating free-air temperature°CTLC2543M-55125(1)Analog input voltages greater than that applied to REF+convert as all ones (111111111111),while input voltages less than that applied to REF–convert as all zeros (000000000000).(2)To minimize errors caused by noise at the CS input,the internal circuitry waits for a setup time after CS ↓before responding to control input signals.No attempt should be made to clock in an address until the minimum CS setup time has elapsed.(3)This is the time required for the clock input signal to fall from V IH min to V IL max or to rise from V IL max to V IH min.In the vicinity of normal room temperature,the devices function with input clock transition time as slow as 1µs for remote data acquisition applications where the sensor and the ADC are placed several feet away from the controlling microprocessor.4Submit Documentation FeedbackElectrical Characteristics WITH SERIAL CONTROL AND11ANALOG INPUTSSGLS125A–JULY2002–REVISED NOVEMBER2006over recommended operating free-air temperature range,VCC =Vref+=4.5V to5.5V,f(I/O CLOCK)=4.1MHz(unless otherwise noted)PARAMETER TEST CONDITIONS MIN TYP(1)MAX UNITV CC=4.5V,I OH=–1.6mA 2.4V OH High-level output voltage VV CC=4.5V to5.5V,I OH=–20µA V CC–0.1V CC=4.5V,I OL=1.6mA0.4V OL Low-level output voltage VV CC=4.5V to5.5V,I OL=20µA0.1V O=V CC,CS at V CC1 2.5 High-impedance off-stateI OZµAoutput current VO=0,CS at V CC1–2.5I IH High-level input current V I=V CC110µAI IL Low-level input current V I=01–10µAI CC Operating supply current CS at0V1 2.5mAFor all digital inputs,I CC(PD)Power-down current425µA0≤V I≤0.5V or V I≥V CC–0.5VSelected channel at V CC,Unselected channel at0V10 Selected channelµA leakage current Selected channel at0V,Unselected channel at VCC–10Maximum static analogV ref+=V CC,V ref–=GND1 2.5µA reference current into REF+Analog inputs3060 InputC i pFcapacitance Control inputs515(1)All typical values are at V CC=5V,T A=25°C.5Submit Documentation FeedbackOperating CharacteristicsWITH SERIAL CONTROL AND 11ANALOG INPUTSSGLS125A–JULY 2002–REVISED NOVEMBER 2006over recommended operating free-air temperature range,V CC =V ref+=4.5V to 5.5V,f (I/OCLOCK)=4.1MHzPARAMETERTEST CONDITIONSMIN TYP (1)MAX UNIT E L Linearity error (2)See Figure 2±1LSB E D Differential linearity error See Figure 2±1LSB E O Offset error (3)See Figure 2(4)±1.5LSB E G Gain error (3)See Figure 2(4)±1LSB E TTotal unadjusted error (5)±1.75LSBDATA INPUT =10112048Self-test output code (6)(see Table 3)DATA INPUT =11000DATA INPUT =11014095t (conv)Conversion timeSee Figure 9through Figure 14810µs 10+total Total cycle timeI/O CLOCK t cSee Figure 9through Figure 14µs (access,sample,and conversion)(7)periods +t d(I/O-EOC)I/O t acqChannel acquisition time (sample)(7)See Figure 9through Figure 14412CLOCK periods Valid time,t vDATA OUT remains valid after I/O See Figure 610nsCLOCK ↓Delay time,t d(I/O-DATA)See Figure 6150ns I/O CLOCK ↓to DATA OUT valid Delay time,t d(I/O-EOC)See Figure 7 1.52.2µs last I/O CLOCK ↓to EOC ↓Delay time,t d(EOC-DATA)See Figure 8100ns EOC ↑to DATA OUT (MSB/LSB)Enable time,t PZH ,t PZL See Figure 30.7 1.3µs CS ↓to DATA OUT (MSB/LSB driven)Disable time,t PHZ ,t PLZ See Figure 370150ns CS ↑to DATA OUT (high impedance)t r(EOC)Rise time,EOC See Figure 81550ns t f(EOC)Fall time,EOC See Figure 71550ns t r(bus)Rise time,data bus See Figure 61550ns t f(bus)Fall time,data busSee Figure 61550ns Delay time,last I/O CLOCK ↓to CS ↓to t d(I/O-CS)5µsabort conversion (8)(1)All typical values are at T A =25°C.(2)Linearity error is the maximum deviation from the best straight line through the A/D transfer characteristics.(3)Gain error is the difference between the actual midstep value and the nominal midstep value in the transfer diagram at the specified gain point after the offset error has been adjusted to zero.Offset error is the difference between the actual midstep value and the nominal midstep value at the offset point.(4)Analog input voltages greater than that applied to REF+convert as all ones (111111111111),while input voltages less than that applied to REF–convert as all zeros (000000000000).(5)Total unadjusted error comprises linearity,zero-scale,and full-scale errors.(6)Both the input address and the output codes are expressed in positive logic.(7)I/O CLOCK period =1/(I/O CLOCK frequency)(see Figure 7)(8)Any transitions of CS are recognized as valid only when the level is maintained for a setup time.CS must be taken low at ≤5µs of the tenth I/O CLOCK falling edge to ensure a conversion is aborted.Between 5µs and 10µs,the result is uncertain as to whether the conversion is aborted or the conversion results are valid.6Submit Documentation FeedbackPARAMETER MEASUREMENT INFORMATIONC110 µF−15 VV C110 µFLOCATIONU1C1C2C3DESCRIPTIONOP2710-µF 35-V tantalum capacitor0.1-µF ceramic NPO SMD capacitor 470-pF porcelain Hi-Q SMD capacitorPART NUMBER— —AVX 12105C104KA105 or equivalentJohanson 201S420471JG4L or equivalentEOCC L V R L = 2.18 kΩC L V R L = 2.18 k ΩCS DATA OUTt I/O CLOCKWITH SERIAL CONTROL AND 11ANALOG INPUTSSGLS125A–JULY 2002–REVISED NOVEMBER 2006Figure 1.Analog Input Buffer to Analog Inputs AIN0–AIN10Figure 2.Load CircuitsFigure 3.DATA OUT to Hi-Z Voltage WaveformsFigure 4.DATA INPUT and I/O CLOCKVoltage Waveforms7Submit Documentation FeedbackCSI/O CLOCKI/O CLOCKDATA OUTt t EOCDATA OUTWITH SERIAL CONTROL AND 11ANALOG INPUTSSGLS125A–JULY 2002–REVISED NOVEMBER 2006A.To ensure full conversion accuracy,it is recommended that no input signal change occurs while a conversion is ongoing.Figure 5.CS and I/O CLOCK Voltage WaveformsFigure 6.I/O CLOCK and DATA OUT Voltage WaveformsFigure 7.I/O CLOCK and EOC Voltage WaveformsFigure 8.EOC and DATA OUT Voltage Waveforms8Submit Documentation FeedbackWITH SERIAL CONTROL AND 11ANALOG INPUTSSGLS125A–JULY 2002–REVISED NOVEMBER 2006A.To minimize errors caused by noise at CS,the internal circuitry waits for a setup time after CS ↓before responding to control input signals.Therefore,no attempt should be made to clock in an address until the minimum CS setup time has elapsed.Figure 9.Timing for 12-Clock Transfer Using CS With MSB FirstA.To minimize errors caused by noise at CS,the internal circuitry waits for a setup time after CS ↓before responding to control input signals.Therefore,no attempt should be made to clock in an address until the minimum CS setup time has elapsed.Figure 10.Timing for 12-Clock Transfer Not Using CS With MSB First9Submit Documentation FeedbackI/O CLOCKDATA OUT DATA INPUTCSEOCWITH SERIAL CONTROL AND 11ANALOG INPUTSSGLS125A–JULY 2002–REVISED NOVEMBER 2006A.To minimize errors caused by noise at CS,the internal circuitry waits for a setup time after CS ↓before responding to control input signals.Therefore,no attempt should be made to clock in an address until the minimum CS setup time has elapsed.Figure 11.Timing for 8-Clock Transfer Using CS With MSB FirstA.To minimize errors caused by noise at CS,the internal circuitry waits for a setup time after CS ↓before responding to control input signals.Therefore,no attempt should be made to clock in an address until the minimum CS setup time has elapsed.Figure 12.Timing for 8-Clock Transfer Not Using CS With MSB First10Submit Documentation FeedbackTLC2543-EP12-BIT ANALOG-TO-DIGITAL CONVERTERWITH SERIAL CONTROL AND 11ANALOG INPUTSSGLS125A–JULY 2002–REVISED NOVEMBER 2006A.To minimize errors caused by noise at CS,the internal circuitry waits for a setup time after CS ↓before responding to control input signals.Therefore,no attempt should be made to clock in an address until the minimum CS setup time has elapsed.Figure 13.Timing for 16-Clock Transfer Using CS With MSB FirstA.To minimize errors caused by noise at CS,the internal circuitry waits for a setup time after CS ↓before responding to control input signals.Therefore,no attempt should be made to clock in an address until the minimum CS setup time has elapsed.Figure 14.Timing for 16-Clock Transfer Not Using CS With MSB First11Submit Documentation FeedbackPRINCIPLES OF OPERATIONConverter OperationI/O CycleConversion CycleTLC2543-EP12-BIT ANALOG-TO-DIGITAL CONVERTERWITH SERIAL CONTROL AND 11ANALOG INPUTSSGLS125A–JULY 2002–REVISED NOVEMBER 2006Initially,with chip select (CS)high,I/O CLOCK and DATA INPUT are disabled and DATA OUT is in the high-impedance state.CS going low begins the conversion sequence by enabling I/O CLOCK and DATA INPUT and removes DATA OUT from the high-impedance state.The input data is an 8-bit data stream consisting of a 4-bit analog channel address (D7–D4),a 2-bit data length select (D3–D2),an output MSB or LSB first bit (D1),and a unipolar or bipolar output select bit (D0)that are applied to DATA INPUT.The I/O CLOCK sequence applied to the I/O CLOCK terminal transfers this data to the input data register.During this transfer,the I/O CLOCK sequence also shifts the previous conversion result from the output data register to DATA OUT.I/O CLOCK receives the input sequence of 8,12,or 16clock cycles long,depending on the data-length selection in the input data register.Sampling of the analog input begins on the fourth falling edge of the input I/O CLOCK sequence and is held after the last falling edge of the I/O CLOCK sequence.The last falling edge of the I/O CLOCK sequence also takes EOC low and begins the conversion.The operation of the converter is organized as a succession of two distinct cycles:the I/O cycle and the actual conversion cycle.The I/O cycle is defined by the externally provided I/O CLOCK and lasts 8,12,or 16clock periods,depending on the selected output data length.During the I/O cycle,the following two operations take place simultaneously:•An 8-bit data stream consisting of address and control information is provided to DATA INPUT.This data is shifted into the device on the rising edge of the first eight I/O CLOCKs.DATA INPUT is ignored after the first eight clocks during 12-or 16-clock I/O transfers.•The data output,with a length of 8,12,or 16bits,is provided serially on DATA OUT.When CS is held low,the first output data bit occurs on the rising edge of EOC.When CS is negated between conversions,the first output data bit occurs on the falling edge of CS.This data is the result of the previous conversion period,and after the first output data bit,each succeeding bit is clocked out on the falling edge of each succeeding I/O CLOCK.The conversion cycle is transparent to the user,and it is controlled by an internal clock synchronized to I/O CLOCK.During the conversion period,the device performs a successive-approximation conversion on the analog input voltage.The EOC output goes low at the start of the conversion cycle and goes high when conversion is complete and the output data register is latched.A conversion cycle is started only after the I/O cycle is completed,which minimizes the influence of external digital noise on the accuracy of the conversion.12Submit Documentation FeedbackPower Up and InitializationTLC2543-EP12-BIT ANALOG-TO-DIGITAL CONVERTER WITH SERIAL CONTROL AND11ANALOG INPUTSSGLS125A–JULY2002–REVISED NOVEMBER2006 PRINCIPLES OF OPERATION(continued)After power up,CS must be taken from high to low to begin an I/O cycle.EOC is initially high,and the input data register is set to all zeroes.The contents of the output data register are random,and the first conversion result should be ignored.To initialize during operation,CS is taken high and is then returned low to begin the next I/O cycle.The first conversion after the device has returned from the power-down state may not read accurately due to internal device settling.Table1.Operational TerminologyEntire I/O CLOCK sequence that transfers address and control data into the data register and Current(N)I/O cycleclocks the digital result from the previous conversion from DATA OUTThe conversion cycle starts immediately after the current I/O cycle.The end of the current I/O Current(N)conversion cycle cycle is the last clock falling edge in the I/O CLOCK sequence.The current conversion resultis loaded into the output register when conversion is complete.Current(N)conversion result The current conversion result is serially shifted out on the next I/O cycle.Previous(N–1)conversion cycle Conversion cycle just prior to the current I/O cycleNext(N+1)I/O cycle I/O period that follows the current conversion cycleExample:In the12-bit mode,the result of the current conversion cycle is a12-bit serial-data stream clocked out during the next I/O cycle.The current I/O cycle must be exactly12bits long to maintain synchronization,even when this corrupts the output data from the previous conversion.The current conversion is begun immediately after the twelfth falling edge of the current I/O cycle.13Submit Documentation FeedbackData InputData Input Address BitsTLC2543-EP12-BIT ANALOG-TO-DIGITAL CONVERTERWITH SERIAL CONTROL AND 11ANALOG INPUTSSGLS125A–JULY 2002–REVISED NOVEMBER 2006The data input is internally connected to an 8-bit serial-input address and control register.The register defines the operation of the converter and the output data length.The host provides the data word with the MSB first.Each data bit is clocked in on the rising edge of the I/O CLOCK sequence (see Table 2for the data input-register format).Table 2.Input-Register FormatINPUT DATA BYTEADDRESS BITS L1L0LSBF BIP FUNCTION SELECTD7D0D6D5D4D3D2D1(MSB)(LSB)Select input channelAIN00000AIN10001AIN20010AIN30011AIN40100AIN50101AIN60110AIN70111AIN81000AIN91001AIN1011Select test voltage(V ref+–V ref–)/21011V ref–1100V ref+1101Software power down 111Output data length8bits 0112bits X (1)016bits 11Output data formatMSB first 0LSB first (LSBF)1Unipolar (binary)0Bipolar (BIP)2s complement 1(1)The four MSBs (D7–D4)of the data register address one of the 11input channels,a reference-test voltage,or the power-down mode.The address bits affect the current conversion,which is the conversion that immediately follows the current I/O cycle.The reference voltage is nominally equal to V ref+–V ref–.The four MSBs (D7–D4)of the data register address 1of the 11input channels,a reference-test voltage,or the power-down mode.The address bits affect the current conversion,which is the conversion that immediately follows the current I/O cycle.The reference voltage is nominally equal to V ref+–V ref–.14Submit Documentation FeedbackData Output LengthSampling PeriodData Register,LSB FirstTLC2543-EP 12-BIT ANALOG-TO-DIGITAL CONVERTER WITH SERIAL CONTROL AND11ANALOG INPUTSSGLS125A–JULY2002–REVISED NOVEMBER2006The next two bits(D3and D2)of the data register select the output data length.The data-length selection is valid for the current I/O cycle(the cycle in which the data is read).The data-length selection,being valid for the current I/O cycle,allows device start-up without losing I/O synchronization.A data length of8,12,or16bits can be selected.Since the converter has12-bit resolution,a data length of12bits is suggested.With D3and D2set to00or10,the device is in the12-bit data-length mode and the result of the current conversion is output as a12-bit serial data stream during the next I/O cycle.The current I/O cycle must be exactly12bits long for proper synchronization,even when this means corrupting the output data from a previous conversion.The current conversion is started immediately after the twelfth falling edge of the current I/O cycle. With bits D3and D2set to11,the16-bit data-length mode is selected,which allows convenient communication with16-bit serial interfaces.In the16-bit mode,the result of the current conversion is output as a16-bit serial data stream during the next I/O cycle with the four LSBs always reset to0(pad bits).The current I/O cycle must be exactly16bits long to maintain synchronization even when this means corrupting the output data from the previous conversion.The current conversion is started immediately after the sixteenth falling edge of the current I/O cycle.With bits D3and D2set to01,the8-bit data-length mode is selected,which allows fast communication with8-bit serial interfaces.In the8-bit mode,the result of the current conversion is output as an8-bit serial data stream during the next I/O cycle.The current I/O cycle must be exactly eight bits long to maintain synchronization,even when this means corrupting the output data from the previous conversion.The four LSBs of the conversion result are truncated and discarded.The current conversion is started immediately after the eighth falling edge of the current I/O cycle.Since D3and D2take effect on the current I/O cycle when the data length is programmed,there can be a conflict with the previous cycle when the data-word length is changed from one cycle to the next.This may occur when the data format is selected to be LSB first,since at the time the data length change becomes effective(six rising edges of I/O CLOCK),the previous conversion result has already started shifting out.In actual operation,when different data lengths are required within an application and the data length is changed between two conversions,no more than one conversion result can be corrupted and only when it is shifted out in LSB-first format.During the sampling period,one of the analog inputs is internally connected to the capacitor array of the converter to store the analog input signal.The converter starts sampling the selected input immediately after the four address bits have been clocked into the input data register.Sampling starts on the fourth falling edge of I/O CLOCK.The converter remains in the sampling mode until the eighth,twelfth,or sixteenth falling edge of the I/O CLOCK depending on the data-length selection.After the EOC delay time from the last I/O CLOCK falling edge, the EOC output goes low indicating that the sampling period is over and the conversion period has begun.After EOC goes low,the analog input can be changed without affecting the conversion result.Since the delay from the falling edge of the last I/O CLOCK to EOC low is fixed,time-varying analog input signals can be digitized at a fixed rate without introducing systematic harmonic distortion or noise due to timing uncertainty.After the8-bit data stream has been clocked in,DATA INPUT should be held at a fixed digital level until EOC goes high(indicating that the conversion is complete)to maximize the sampling accuracy and minimize the influence of external digital noise.D1in the input data register(LSB first)controls the direction of the output binary data transfer.When D1is reset to0,the conversion result is shifted out MSB first.When set to1,the data is shifted out LSB first.Selection of MSB first or LSB first always affects the next I/O cycle and not the current I/O cycle.When changing from one data direction to another,the current I/O cycle is never disrupted.15Submit Documentation Feedback。

相关文档
最新文档