二阶系统阶跃响应实验报告
二阶系统阶跃响应实验报告
实验一 二阶系统阶跃响应一、 实验目的(1)研究二阶系统的两个重要参数:阻尼比ξ和无阻尼自振角频率ωn 对系统动 态性能的影响。
(2)学会根据模拟电路,确定系统传递函数。
二、实验容二阶系统模拟电路图如图2-1 所示。
系统特征方程为T 2s 2+KTs+1=0,其中T=RC ,K=R0/R1。
根据二阶系统的标准 形式可知,ξ=K/2,通过调整K 可使ξ获得期望值。
三、 预习要求(1) 分别计算出T=0.5,ξ= 0.25,0.5,0.75 时,系统阶跃响应的超调量σP 和过渡过程时间tS 。
)1(p 2e ζζπσ--=, ζT3t s ≈代入公式得:T=0.5,ξ= 0.25,σp =44.43% , t s =6s ; T=0.5,ξ= 0.5,σp =16.3% , t s =3s ; T=0.5,ξ= 0.75,σp =2.84% , t s =2s ;(2) 分别计算出ξ= 0.25,T=0.2,0.5,1.0 时,系统阶跃响应的超调量σP 和过渡过程时间tS 。
ξ= 0.25,T=0.2,σp =44.43% , t s =2.4s ; ξ= 0.25,T=0.5,σp =44.43% , t s =6s ; ξ= 0.25,T=1.0,σp =44.43% , t s =12s ;四、 实验步骤(1) 通过改变K ,使ξ获得0,0.25,0.5,0.75,1.0 等值,在输入端加同样幅值的阶跃信号,观察过渡过程曲线,记下超调量σP 和过渡过程时间tS ,将实验值和理论值进行比较。
(2)当ξ=0.25 时,令T=0.2 秒,0.5 秒,1.0 秒(T=RC,改变两个C),分别测出超调量σP 和过渡过程tS,比较三条阶跃响应曲线的异同。
五、实验数据记录与处理:阶跃响应曲线图见后面附图。
原始数据记录:理论值与实际值比较:(2)ξ=0.25对比理论值和测量值,可以看出测量值基本和理论值相符,绝对误差较小,但是有的数据绝对误差比较大,比如T=0.5,ξ=0.75时,超调量的相对误差为30%左右。
实验二 二阶系统阶跃响应_2
实验二二阶系统阶跃响应一、实验目的(1)了解典型二阶系统模拟电路的构成方法及二级闭环系统的传递函数标准式。
(2)研究二阶闭环系统的结构参数--无阻尼振荡频率ωn、阻尼比ζ对过渡过程的影响。
(3)掌握欠阻尼二阶闭环系统在阶跃信号输入时的动态性能指标Mp、tp、ts的计算。
观察和分析二阶闭环系统的欠阻尼, 临界阻尼, 过阻尼的瞬态响应曲线, 及在阶跃信号输入时的动态性能指标Mp、tp、ts值, 并与理论计算值对比。
二、实验设备(1)XMN-2型学习机;(2)CAE-USE辅助实验系统(3)万用表(4)计算机三、实验内容本实验用于观察和分析二阶系统瞬态响应的稳定性。
二阶闭环系统模拟电路如图2-1所示, 它由两个积分环节(OP1和OP2)及其反馈回路构成。
图2-1 二阶闭环系统模拟电路图OP1和OP2为两个积分环节, 传递函数为(时间常数)。
二阶闭环系统等效结构图如图2-2所示。
图2-2 二阶闭环系统等效结构图四、该二阶系统的自然振荡角频率为, 阻尼为。
五、实验步骤(1)调整Rf=40K, 使K=0.4(即ζ=0.2);取R=1M, C=0.47μ, 使T=0.47秒(ωn=1/0.47), 加入阶跃输入信号x(t)=1V, 记录阶跃响应曲线①;(2)保持ζ=0.2不变, 阶跃信号不变, 取R=1M, C=1.47μ, 使T=1.47秒(ωn=1/1.47), 记录阶跃响应曲线②;(3)保持ζ=0.2不变, 阶跃信号不变, 取R=1M, C=1μ, 使T=1秒(ωn=1/1), 记录阶跃响应曲线③;保持ωn=1/0.1不变、阶跃扰动不变, 调整Rf=200K, 使K=2(即ζ=1), 记录阶跃响应曲线④;保持ωn=1/0.1不变、阶跃扰动不变, 调整Rf=300K, 使K=3(即ζ=1.5), 记录阶跃响应曲线⑤。
六、数据采集及处理七、实验报告1、推导模拟电路的闭环传递函数Y(s)/X(s)?确定R、C.Rf、Ri与自然振荡角频率和阻尼比之间的关系。
二阶系统的阶跃响应实验报告
二阶系统的阶跃响应实验报告实验报告:二阶系统的阶跃响应实验目的:本次实验的目的是研究二阶系统的阶跃响应,并对实验结果进行分析与讨论,以理解二阶系统在控制工程领域中的应用。
实验原理:二阶系统是指具有二阶特性的系统,即在系统受到激励信号后,系统的响应随时间的变化呈现出一定的规律。
在此实验中,我们将研究二阶系统的阶跃响应,其中阶跃信号指输入信号由零值跳变到一个恒定的值(或者说幅度无限大),通常用单位阶跃函数u(t)表示,即u(t)=1(t≥0),而二阶系统响应的公式可表示为:y(t) = K(1- e^(-ξωnt)cos(ωdt+φ))其中,K为系统的增益,ξ为阻尼比,ωn为自然频率,ωd为阻尼振荡频率,φ为相位角。
实验步骤:1. 确定实验装置的参数,并将之记录下来,包括:二阶系统的增益K、阻尼比ξ、自然频率ωn,以及阶跃信号的幅值u0等。
2. 将二阶系统的输入信号设置为阶跃信号u(t),并将输出信号y(t)记录下来,同时进行数据采集和记录。
3. 根据数据得出实验结果,并利用软件对实验数据进行处理和分析,包括波形比较、响应曲线分析和幅值与相位移测量等。
实验结果:在此次实验中,我们得到了如下的实验参数:增益K = 1.5V阻尼比ξ = 0.1自然频率ωn = 2π x 10Hz阶跃信号幅值u0 = 2V根据实验数据,我们得到了如下的响应曲线:图1 二阶系统的阶跃响应曲线通过对响应曲线的分析和处理,我们发现:1. 二阶系统的阶跃响应具有一定的超调和振荡特性,表明系统的稳定性较差,需要进行进一步的优化和调整。
2. 阻尼比ξ的大小与系统的响应有着密切的关系,通常应根据系统的具体情况进行合理的选择和调整,以达到最佳的控制效果。
3. 自然频率ωn的大小与系统的响应速度有关,通常应根据实际控制要求进行选择和调整,以达到最佳的控制效果。
结论:本次实验研究了二阶系统的阶跃响应,并对实验结果进行分析和讨论。
通过对实验数据的处理和比较,我们发现阻尼比ξ和自然频率ωn是影响系统响应特性的关键因素,应根据实际控制要求进行合理的选择和调整。
自动控制原理实验二阶系统的阶跃响应
自动控制原理实验二阶系统的阶跃响应一、实验目的通过实验观察和分析阶跃响应曲线,了解二阶系统的动态特性,掌握用MATLAB仿真二阶系统阶跃响应曲线的绘制方法,提高对二阶系统动态性能指标的计算与分析能力。
二、实验原理1.二阶系统的传递函数形式为:G(s)=K/[(s+a)(s+b)]其中,K为系统增益,a、b为系统的两个特征根。
特征根的实部决定了系统的稳定性,实部小于零时系统稳定。
2.阶跃响应的拉氏变换表达式为:Y(s)=G(s)/s3.阶跃响应的逆拉氏变换表达式为:y(t)=L^-1{Y(s)}其中,L^-1表示拉氏逆变换。
三、实验内容1.搭建二阶系统,调整增益和特征根,使系统稳定,并记录实际的参数数值。
2.使用MATLAB绘制二阶系统的阶跃响应曲线,并与实际曲线进行对比分析。
四、实验步骤1.搭建二阶系统,调整增益和特征根,使系统稳定。
根据实验要求,选择适当的数字电路元件组合,如电容、电感、电阻等,在实际电路中搭建二阶系统。
2.连接模拟输入信号。
在搭建的二阶系统的输入端接入一个阶跃信号发生器。
3.连接模拟输出信号。
在搭建的二阶系统的输出端接入一个示波器,用于实时观察系统的输出信号。
4.调整增益和特征根。
通过适当调整二阶系统的增益和特征根,使系统达到稳定状态。
记录实际调整参数的数值。
5.使用MATLAB进行仿真绘制。
根据实际搭建的二阶系统参数,利用MATLAB软件进行仿真,绘制出二阶系统的阶跃响应曲线。
6.对比分析实际曲线与仿真曲线。
通过对比分析实际曲线与仿真曲线的差异,分析二阶系统的动态特性。
五、实验结果与分析1.实际曲线的绘制结果。
根据实际参数的输入,记录实际曲线的绘制结果,并描述其特点。
2.仿真曲线的绘制结果。
利用MATLAB软件进行仿真,绘制出仿真曲线,并与实际曲线进行对比分析。
3.实际曲线与仿真曲线的对比分析。
通过对比实际曲线与仿真曲线的差异,分析二阶系统的动态特性,并讨论影响因素。
六、实验讨论与结论1.实验过程中遇到的问题。
二阶系统的阶跃响应实验报告
二阶系统的阶跃响应实验报告实验名称:二阶系统的阶跃响应实验报告实验目的:1. 了解二阶系统的阶跃响应特性,掌握二阶系统的调节方法。
2. 学习使用计算机实验仿真软件,分析控制系统的特性和设计计算机系统的参数。
3. 进一步了解数字控制的基本原理和实现方法。
实验原理:二阶系统指的是包含两个振动元件的控制系统,例如质量弹簧阻尼系统、旋转系统等。
通过向系统输入一个单位阶跃信号,可以使系统达到稳态。
在达到稳态后,可以观察到系统的响应特性,例如响应时间、超调量等。
二阶系统的阶跃响应有三种情况,分别为欠阻尼、临界阻尼和过阻尼。
欠阻尼的二阶系统的响应曲线会出现振荡,超调量较大;临界阻尼的二阶系统响应曲线的超调量最小,但响应时间较长;过阻尼的二阶系统响应曲线是退化的,没有振荡。
在实验中,我们使用计算机模拟二阶系统,并通过输入一个单位阶跃信号,观察系统的响应特性。
具体操作步骤如下:1. 在仿真软件中建立一个二阶系统,可以让仿真软件自动生成一个简单的二阶系统。
2. 将系统设置为单位阶跃信号输入,运行仿真,观察系统的响应特性。
3. 记录系统的超调量、响应时间以及稳态误差等参数。
4. 在仿真软件中改变系统的参数,例如增加阻尼系数,观察系统的响应变化。
实验器材:1. 计算机2. 仿真软件实验步骤:1. 打开计算机,并运行仿真软件。
2. 在仿真软件中建立一个二阶系统,并设置其为单位阶跃信号输入。
3. 运行仿真,并记录系统的响应特性,包括超调量、响应时间以及稳态误差等参数。
4. 在仿真软件中改变系统的参数,例如增加阻尼系数,观察系统的响应变化,并记录变化后的参数。
5. 分析实验结果,并总结出二阶系统的阶跃响应特性。
实验结果:在实验中,我们使用了仿真软件模拟了一个简单的二阶系统,并进行了阶跃响应实验。
通过实验,我们观察到了系统的响应特性,并记录了系统的超调量、响应时间以及稳态误差等参数。
我们对比了欠阻尼、临界阻尼和过阻尼三种情况下的响应特性,发现欠阻尼时会出现较大的超调量,临界阻尼时超调量最小,但响应时间较长,过阻尼时响应曲线是退化的,没有振荡。
《自动控制》一二阶典型环节阶跃响应实验分析报告
《自动控制》一二阶典型环节阶跃响应实验分析报告一、实验目的本实验旨在通过实际的一二阶典型环节阶跃响应实验,掌握自动控制理论中的基本概念和方法,并能够分析系统的动态响应特性。
二、实验原理1.一阶惯性环节:一阶惯性环节是工程实际中常见的系统模型,其传递函数为G(s)=K/(Ts+1),其中K为传递函数的增益,T为时间常数。
2.二阶惯性环节:二阶惯性环节是另一类常见的系统模型,其传递函数为G(s)=K/((Ts+1)(αTs+1)),其中K为传递函数的增益,T为时间常数,α为阻尼系数。
3.阶跃响应:阶跃响应是指给定一个单位阶跃输入,观察系统的输出过程。
根据系统的阶数不同,其响应形式也不同。
实验仪器:电动力控制实验台,控制箱,计算机等。
三、实验步骤1.将实验台上的一阶惯性环节模型接入控制箱和计算机,并调整增益和时间常数的初始值。
2.发送一个单位阶跃信号给控制器,观察实验台上的输出响应,并记录时间和输出值。
3.根据记录的数据,绘制一阶惯性环节的阶跃响应图像。
4.类似地,将实验台上的二阶惯性环节模型接入控制箱和计算机,并调整增益、时间常数和阻尼系数的初始值。
5.发送一个单位阶跃信号给控制器,观察实验台上的输出响应,并记录时间和输出值。
6.根据记录的数据,绘制二阶惯性环节的阶跃响应图像。
四、实验结果与分析1.一阶惯性环节的阶跃响应图像如下:(在此插入阶跃响应图像)根据图像可以看出,随着时间的增加,输出逐渐趋于稳定。
根据实验数据,可以计算出一阶惯性环节的增益K和时间常数T的估计值。
2.二阶惯性环节的阶跃响应图像如下:(在此插入阶跃响应图像)根据图像可以看出,相较于一阶惯性环节,二阶惯性环节的响应特性更加复杂。
根据实验数据,可以计算出二阶惯性环节的增益K、时间常数T和阻尼系数α的估计值。
五、实验结论通过本实验,我们成功地进行了一二阶典型环节阶跃响应实验,并获得了实际的响应数据。
通过对实验数据的分析,我们得到了一阶惯性环节和二阶惯性环节的估计参数值。
二阶系统的阶跃响应-10页精选文档
实验一 一、二阶系统的阶跃响应 实验报告___系__专业___班级 学号___姓名___成绩___指导教师__一、实验目的1、学习实验系统的使用方法。
2、学习构成一阶系统(惯性环节)、二阶系统的模拟电路,分别推导其传递函数。
了解电路参数对环节特性的影响。
3、研究一阶系统的时间常数T 对系统动态性能的影响。
4、研究二阶系统的特征参数,阻尼比ξ和无阻尼自然频率n ω对系统动态性能的影响。
二、实验仪器1、EL-AT-II 型自动控制系统实验箱一台2、计算机一台三、实验内容(一) 构成下述一阶系统(惯性环节)的模拟电路,并测量其阶跃响应。
惯性环节的模拟电路及其传递函数如图1-1。
(二)构成下述二阶系统的模拟电路,并测量其阶跃响应。
典型二阶系统的闭环传递函数为()2222nn n s s s ωζωωϕ++=(1) 其中ζ和n ω对系统的动态品质有决定的影响。
构成图1-2典型二阶系统的模拟电路,并测量其阶跃响应:图1-1 一阶系统模拟电路图R1R2电路的结构图如图1-3系统闭环传递函数为式中 T=RC ,K=R2/R1。
比较(1)、(2)二式,可得 n ω=1/T=1/RCξ=K/2=R2/2R1 (3)由(3)式可知,改变比值R2/R1,可以改变二阶系统的阻尼比。
改变RC 值可以改变无阻尼自然频率n ω。
今取R1=200K ,R2=0K Ω,50K Ω,100K Ω和200K Ω,可得实验所需的阻尼比。
电阻R 取100K Ω,电容C 分别取1f μ和0.1f μ,可得两个无阻尼自然频率n ω。
操作步骤:1. 启动计算机,在桌面双击图标[自动控制实验系统]运行软件。
2. 测试计算机与实验箱的通信是否正常,通信正常继续。
如果信不正常查找原因使通信正常后才能可以继续进行实验。
3. 连接被测量典型环节的模拟电路(图1-1)。
电路的输入U1接A/D 、D/A卡的DA1输出,电路的输出U2接A/D 、D/A 卡的AD1输入。
(整理)二阶系统的阶跃响应.
实验一 一、二阶系统的阶跃响应 实验报告___系__专业___班级 学号___姓名___成绩___指导教师__一、实验目的1、学习实验系统的使用方法。
2、学习构成一阶系统(惯性环节)、二阶系统的模拟电路,分别推导其传递函数。
了解电路参数对环节特性的影响。
3、研究一阶系统的时间常数T 对系统动态性能的影响。
4、研究二阶系统的特征参数,阻尼比ξ和无阻尼自然频率n ω对系统动态性能的影响。
二、实验仪器1、EL-AT-II 型自动控制系统实验箱一台2、计算机一台三、实验内容(一) 构成下述一阶系统(惯性环节)的模拟电路,并测量其阶跃响应。
惯性环节的模拟电路及其传递函数如图1-1。
(二)构成下述二阶系统的模拟电路,并测量其阶跃响应。
典型二阶系统的闭环传递函数为 ()2222nn n s s s ωζωωϕ++=(1) 其中ζ和n ω对系统的动态品质有决定的影响。
图1-1 一阶系统模拟电路图R1R2构成图1-2典型二阶系统的模拟电路,并测量其阶跃响应:电路的结构图如图1-3系统闭环传递函数为()()()()222/1//11/2TS T K s T s U S U s ++==ϕ 式中 T=RC ,K=R2/R1。
比较(1)、(2)二式,可得 n ω=1/T=1/RCξ=K/2=R2/2R1 (3)由(3)式可知,改变比值R2/R1,可以改变二阶系统的阻尼比。
改变RC 值可以改变无阻尼自然频率n ω。
今取R1=200K ,R2=0K Ω,50K Ω,100K Ω和200K Ω,可得实验所需的阻尼比。
图1-2 二阶系统模拟电路图图1-3 二阶系统结构图R2电阻R取100KΩ,电容C分别取1fμ和0.1fμ,可得两个无阻尼自然频率ω。
n 操作步骤:1.启动计算机,在桌面双击图标[自动控制实验系统]运行软件。
2.测试计算机与实验箱的通信是否正常,通信正常继续。
如果信不正常查找原因使通信正常后才能可以继续进行实验。
实验二二阶系统阶跃响应
实验二二阶系统阶跃响应一、实验目的1. 研究二阶系统的特征参数,阻尼比ζ和无阻尼自然频率ωn对系统动态性能的影响,定量分析ζ和ωn与最大超调量σp和调节时间ts之间的关系。
2. 进一步学习实验系统的使用。
3. 学会根据系统的阶跃响应曲线确定传递函数。
4. 学习用MATLAB仿真软件对实验内容中的电路进行仿真。
二、实验原理典型二阶闭环系统的单位阶跃响应分为四种情况:1〕欠阻尼二阶系统如图1所示,由稳态和瞬态两部分组成:稳态部分等于1,瞬态部分是振荡衰减的过程,振荡角频率为阻尼振荡角频率,其值由阻尼比ζ和自然振荡角频率ωn决定。
〔1〕性能指标:: 单位阶跃响应C(t)进人±5%(有时也取±2%)误差带,并且不再超出该误差带的调节时间tS最小时间。
超调量σ% ;单位阶跃响应中最大超出量与稳态值之比。
单位阶跃响应C(t)超过稳态值到达第一个峰值所需要的时间。
峰值时间tP :结构参数ξ:直接影响单位阶跃响应性能。
〔2〕平稳性:阻尼比ξ越小,平稳性越差长,ξ过大时,系统响应迟钝,〔3〕快速性:ξ过小时因振荡强烈,衰减缓慢,调节时间tS调节时间t也长,快速性差。
ξ=调节时间最短,快速性最好。
ξ=时超调量σ%<5%,平稳性也S好,故称ξ=为最正确阻尼比。
2〕临界阻尼二阶系统〔即ξ=1〕系统有两个相同的负实根,临界阻尼二阶系统单位阶跃响应是无超调的,无振荡单调上升的,不存在稳态误差。
3〕无阻尼二阶系统〔ξ=0时〕 此时系统有两个纯虚根。
4〕过阻尼二阶系统〔ξ>1〕时此时系统有两个不相等的负实根,过阻尼二阶系统的单位阶跃响应无振荡无超调无稳态误差,上升速度由小加大有一拐点。
三、 实验内容1. 搭建模拟电路典型二阶系统的闭环传递函数为:其中,ζ 和ωn 对系统的动态品质有决定的影响。
搭建典型二阶系统的模拟电路,并测量其阶跃响应:二阶系统模拟电路图其结构图为:系统闭环传递函数为:式中, T=RC ,K=R2/R1。
二阶系统的阶跃响应
二阶系统的阶跃响应一.实验目的1、学习实验系统的使用方法。
2、学习构成一阶系统(惯性环节)、二阶系统的模拟电路,分别推导其传递函数。
了解电路参数对环节特性的影响。
3、研究一阶系统的时间常数T对系统动态性能的影响。
4、研究二阶系统的特征参数,阻尼比ξ和无阻尼自然频率nω对系统动态性能的影响。
二.实验内容1.搭建各种典型环节的模拟电路,观测并记录各种典型环节的阶跃响应曲线。
2.调节模拟电路参数,研究参数变化对典型环节阶跃响应的影响。
3.运行Matlab软件中的simulink仿真功能,完成各典型环节阶跃特性的软件仿真研究,并与理论计算的结果作比较。
三.实验步骤1. 典型环节的simulink仿真分析在实验中观测实验结果时,只要运行Matlab,利用Matlab软件中的simulink仿真功能,以及Matlab编程功能,可以完成常见的控制系统典型环节动态响应。
研究特征参量ζ和nω对二阶系统性能的影响标准二阶系统的闭环传递函数为:2222)()(n n n s s s R s C ωζωω++=二阶系统的单位阶跃响应在不同的特征参量下有不同的响应曲线。
典型二阶系统的结构图如图所示。
不难求得其闭环传递函数为2222)()()(n n n B s s R s Y s G ωζωω++==其特征根方程为222n n s ωζω++=0 方程的特征根: 222n n s ωζω++=0))(()1)(1(2121=--=++s s s s T s T s 式中, ζ称为阻尼比; n ω称为无阻尼自然振荡角频率(一般为固有的)。
当ζ为不同值时,所对应的单位阶跃响应有不同的形式。
当ζ=0.1时的仿真结果当ζ=0.3真结果当ζ=1时的结果当ζ=2时的仿真结果三.实验总结结论:二阶系统的阻尼比ξ决定了其振荡特性ζ< 0 时,阶跃响应发散,系统不稳定;ζ≥ 1 时,无振荡、无超调,过渡过程长;0<ζ<1时,有振荡,ξ愈小,振荡愈严重,但响应愈快;ζ= 0时,出现等幅振荡。
(整理)自动控制原理实验-二阶系统阶跃响应及性能分析
bbb{2}='\fontsize{16}\fontname{宋体}超调量';
bbb{3}='\fontsize{6} ';
bbb{4}='\fontsize{14}\it\sigma_\rho%=16.3%';
text(1.15,0.90,bbb,'color','b','HorizontalAlignment','Center')
与阻尼系数、自然频率的关系,再由对系统的阶跃响应的瞬态性能
指标要求,求出参数K1、a,再用step()画出即可。
代码:a=63.2;b=[1,3.5p=roots(b);
s=0:0.01:5;
step(sys,s);grid
xlabel('s')
ylabel('y(s)')
实验中心201311月10机电年级专姓名学号实验课程名称自动控制原理成绩实验项目名称二阶系统阶跃响应及性能分析指导教师一实验目的二实验内容三使用仪器材料四实验过程原始记录程序数据图表计算等五实验结果及总结一实验目的掌握控制系统时域响应曲线的绘制方法
广州大学学生实验报告
开课学院及实验室:实验中心2013年11月10日
格式1:step (sys) [Y,X,T]=step(sys)
格式2:step (sys,t) [Y,X]=step(sys,t)
格式3:step (sys,iu) [Y,X,T]=step(sys,iu)
格式4:step (sys,iu,t) [Y,X]=step(sys,iu,t)
自控原理实验二阶系统的阶跃响应
二阶系统的阶跃响应一、实验目的1. 通过实验了解参数ζ(阻尼比)、n ω(阻尼自然频率)的变化对二阶系统动态性能的影响;2. 掌握二阶系统动态性能的测试方法。
二、实验内容1. 观测二阶系统的阻尼比分别在0<ζ<1,ζ=1和ζ>1三种情况下的单位阶跃响应曲线;2. 调节二阶系统的开环增益K ,使系统的阻尼比21=ζ,测量此时系统的超调量p δ、调节时间t s (Δ= ±0.05);3. ζ为一定时,观测系统在不同n ω时的响应曲线。
三、实验原理1. 二阶系统的瞬态响应用二阶常微分方程描述的系统,称为二阶系统,其标准形式的闭环传递函数为2222)()(nn n S S S R S C ωζωω++= (2-1)闭环特征方程:0222=++n n S ωζω其解 122,1-±-=ζωζωn n S ,针对不同的ζ值,特征根会出现下列三种情况: 1)0<ζ<1(欠阻尼),22,11ζωζω-±-=n n j S此时,系统的单位阶跃响应呈振荡衰减形式,其曲线如图2-1的(a)所示。
它的数学表达式为:)(111)(2βωζζω+--=-t Sin e t C d t n式中21ζωω-=n d ,ζζβ211-=-tg。
2)1=ζ(临界阻尼)n S ω-=2,1此时,系统的单位阶跃响应是一条单调上升的指数曲线,如图2-1中的(b)所示。
3)1>ζ(过阻尼),122,1-±-=ζωζωn n S此时系统有二个相异实根,它的单位阶跃响应曲线如图2-1的(c)所示。
(a) 欠阻尼(0<ζ<1) (b)临界阻尼(1=ζ) (c)过阻尼(1>ζ)图2-1 二阶系统的动态响应曲线虽然当ζ=1或ζ>1时,系统的阶跃响应无超调产生,但这种响应的动态过程太缓慢,故控制工程上常采用欠阻尼的二阶系统,一般取ζ=0.6~0.7,此时系统的动态响应过程不仅快速,而且超调量也小。
实验二 二阶系统的阶跃响应
实验二 二阶系统的阶跃响应
一、实验目的
1、研究二阶系统的阻尼比ξ和无阻尼自然频率n ω对系统动态
性能的影响。
2、定量分析ξ和n ω与最大超调量p M 和调节时间s t 之间的关系。
学会根据二阶系统阶跃响应曲线确定传递函数的方法。
二、实验内容
1、构成图示典型二阶系统的模拟电路
根据电路图画出系统框图,并计算系统的传递函数。
调节电路中电阻和电容值,即改变ξ和n ω的值,观察系统的阶跃响应。
要求:n ω不变时,改变ξ,观察、记录并分析其阶跃响应曲线;ξ不变时,改变n ω,观察、记录并分析其阶跃响应曲线。
参考调节方式:
1)取C=1μF ,调节R 1的值(如20K 、50K 、100K 、200K 、250K ),即可改变阻尼比ξ。
2)取R 1=100K ,改变电容C 的值,即可改变n ω。
记录不同参数时的单位阶跃响应,测量出其超调量和调整时间,并与理论值进行比较。
2、用MATLAB 进行仿真实验
根据实验电路图画出的系统框图,利用MATLAB 软件中的
Simulink环境,搭建系统框图,进行仿真实验,观察不同阻尼比和 时的阶跃响应曲线。
不同
n
也可尝试用MATLAB编程进行实验。
编程的方法可参考教材第3章第13节的内容。
三、实验报告要求
1、预习报告写出实验电路图对应的系统框图,求出传递函数,明确电路参数与系统参数之间的关系,计算出要求的理论值。
2、实验报告记录各实验结果,并进行分析。
3、实验中存在的问题分析、讨论或建议。
自动控制实验报告二-二阶系统阶跃响应
自动控制实验报告二-二阶系统阶跃响应
本实验以三角波输入作为扰动源,考察了二阶系统的阶跃响应。
本实验共分为准备和实验两部分,具体过程如下:
1. 准备:
(1)准备理论分析
根据二阶系统的理论分析,比例的系统的输出响应可以用“先过斜坡,后弹跳”的曲线来描述。
当输入为阶跃信号时,最终的输出也应随之发生阶跃。
(2)安装系统设备
系统的设备由负反馈比例控制器与多功能电路板组成,本实验采用比例控制实现,用一个三角波发生器后装置来产生三角波控制信号。
2. 实验:
(1)稳态响应
调整三角波周期参数,使系统实现稳态响应,测量得出输出与输入的闭环增益值,满足系统的稳态要求;
(2)阶跃响应
设定参数使得系统实现阶跃响应,测量得出系统的时间常数值以及输出响应与输入阶跃幅度之比,画图分析出输出在某一个阶跃时刻趋近系统的稳态响应值时所需的时间。
以上就是本次实验的概况。
本实验将三角波应用于二阶系统,进行阶跃响应实验,尝试测量、分析系统阶跃响应的指标,可见本实验对对比例系统的指标的测量及系统性能的分析有很大的意义。
阶跃反应实验报告
一、实验目的1. 研究二阶系统的特征参数(阻尼比和无阻尼自然频率)对系统动态性能的影响。
2. 定量分析最大超调量(Mp)和调节时间(t)之间的关系。
3. 掌握二阶控制系统的电路模拟方法及其动态性能指标的测试技术。
4. 加深对线性系统稳定性的理解,即稳定性只与其结构和参数有关,而与外作用无关。
5. 学习利用MATLAB仿真分析二阶控制系统的阶跃响应。
二、实验原理二阶系统是控制系统中常见的一种类型,其动态性能主要取决于阻尼比(ζ)和无阻尼自然频率(ωn)。
阶跃响应是指系统在输入端突然施加一个阶跃信号时,系统输出信号随时间变化的规律。
通过分析阶跃响应,可以评估系统的动态性能,如超调量、调节时间等。
三、实验设备1. 自动控制系统实验箱一台2. 计算机一台3. Matlab 6.5编程软件四、实验步骤1. 搭建实验电路:根据实验要求,搭建一个二阶系统的模拟电路,并连接好实验设备。
2. 设置参数:利用Matlab软件设置二阶系统的阻尼比和无阻尼自然频率,并观察阶跃响应曲线。
3. 分析动态性能指标:根据阶跃响应曲线,计算最大超调量(Mp)和调节时间(t)。
4. 改变参数,观察影响:逐步改变阻尼比和无阻尼自然频率,观察系统动态性能的变化,并记录实验数据。
五、实验结果与分析1. 阻尼比对动态性能的影响:当阻尼比ζ=0时,系统处于过冲状态,超调量较大;随着阻尼比的增大,超调量逐渐减小,系统趋于稳定。
当ζ=1时,系统处于临界稳定状态,超调量为0。
当ζ>1时,系统处于欠阻尼状态,超调量减小,但调节时间增加。
2. 无阻尼自然频率对动态性能的影响:当无阻尼自然频率ωn增大时,系统的响应速度加快,超调量减小,调节时间缩短。
3. 最大超调量与调节时间的关系:随着阻尼比的增大,最大超调量逐渐减小,调节时间逐渐增加。
两者之间存在一定的平衡关系。
六、结论通过本次实验,我们掌握了二阶系统的阶跃响应特性,以及阻尼比和无阻尼自然频率对系统动态性能的影响。
阶跃响应实验报告
阶跃响应实验报告阶跃响应实验报告引言:阶跃响应实验是一种常见的控制系统实验,通过对系统施加一个阶跃输入信号,观察系统的输出响应,以了解系统的动态特性和稳定性。
本实验旨在通过对一个二阶惯性系统的阶跃响应进行分析,探讨系统的阶跃响应特性。
实验原理:阶跃响应是指系统在输入信号发生突变时,输出信号的响应情况。
在本实验中,我们将通过施加一个单位阶跃信号作为输入,观察系统的输出响应。
实验装置:本实验采用了一个二阶惯性系统,系统由一个质量为m的物体和一个弹簧-阻尼器系统组成。
输入信号通过一个电子信号发生器施加给系统,输出信号经过一个传感器进行测量,并通过示波器进行显示。
实验步骤:1. 将实验装置搭建好并连接好电源。
2. 调节电子信号发生器的参数,使其输出一个单位阶跃信号。
3. 将传感器连接到系统的输出端,并将示波器与传感器连接。
4. 开始记录示波器上的波形,并观察系统的响应情况。
5. 根据实验结果,分析系统的阶跃响应特性。
实验结果:在实验过程中,我们观察到系统的输出信号在单位阶跃信号施加后瞬间发生变化,并逐渐趋于稳定。
通过示波器上的波形图,我们可以看到系统的阶跃响应曲线呈现出一定的延迟和超调现象。
延迟是指系统响应的时间滞后于输入信号的变化,而超调则是指系统响应的幅度超过了输入信号的幅度。
实验分析:根据实验结果,我们可以得出以下结论:1. 系统的延迟时间是系统响应时间和输入信号变化时间之间的差值。
延迟时间的大小与系统的惯性和动态特性有关。
在本实验中,由于系统是一个二阶惯性系统,所以延迟时间相对较小。
2. 系统的超调量是系统响应的最大幅度与输入信号幅度之间的差值。
超调量的大小取决于系统的阻尼比和共振频率。
在本实验中,由于系统的阻尼比较小,所以超调现象较为明显。
3. 系统的稳定性是指系统在输入信号发生变化后,输出信号是否能够趋于稳定。
通过观察实验结果,我们可以得出系统是稳定的,因为输出信号在一段时间后趋于稳定。
实验总结:通过本次阶跃响应实验,我们对控制系统的动态特性和稳定性有了一定的了解。
--二阶系统的阶跃响应实验报告
--二阶系统的阶跃响应实验报告D实验二 二阶系统的阶跃响应实验报告1.实验的目的和要求1)掌握二阶控制系统的电路模拟方法及其动态性能指标的测试技术;2)定量分析二阶控制系统的阻尼比ξ和无阻尼自然频率nω对系统动态性能的影响;3)加深理解“线性系统的稳定性只与其结构和参数有关,而与外作用无关”的性质;4)了解与学习二阶控制系统及其阶跃响应的MATLAB 仿真。
2.实验内容1)分析典型二阶系统2222)(nn ns s s G ωξωω++=的ξ(ξ取值为0、0.25、0.5、1、1.2……)和nω(nω取值10、100……)变化时,对系统阶跃响应的影响。
2)典型二阶系统,若0.707ξ=,110ns ω-=,确定系统单位阶跃响应的特征量%σ、r t 和st 。
3.需用的仪器计算机、Matlab6.5编程软件 4.实验步骤1)利用MATLAB 分析nω=10时ξ变化对系统单位阶跃响应的影响。
观察并记录响应曲线,根据实验结果分析ξ变化对系统单位阶跃响应的影响。
2)利用MATLAB 分析ξ=0时nω变化对系统单位阶跃响应的影响。
观察并记录响应曲线,根据实验结果分析nω变化对系统单位阶跃响应的影响。
3)利用MATLAB 计算特征量%σ、r t 和st 。
5.教学方式讲授与指导相结合 6.考核要求以实验报告和实际操作能力为依据 7.实验记录及分析1)程序:图形:总结:当0<ξ<1时,系统为欠阻尼系统,可以看出此时幅正弦振荡函数,它的振幅随时间的增加而减小。
当ξ=0时,系统为无阻尼系统,可以看出此时图幅振荡。
当ξ=1时,系统为临界系统,可以看出此时图形上升,无振荡无超调。
当ξ>1时,系统为过阻尼系统,可以看出此时单无振荡无超调。
更可以由上图可以看出ξ<1时,二级系统的单位应函数的过渡过程为衰减,并且随着阻尼ξ的减小,其振荡特性表现的越加激烈时达到等幅振荡。
ξ=1和ξ>1时,二阶系统的过渡过程具有单调上升的从过渡过程的持续时间来看,在无振荡单调上升的曲线中,以ξ=1的过渡最短。
二阶系统阶跃响应实验报告
二阶系统阶跃响应实验报告实验报告:二阶系统阶跃响应一、实验目的1.了解二阶系统的阶跃响应特点;2.掌握二阶系统阶跃响应的测量方法;3.理解参数对二阶系统阶跃响应的影响。
二、实验原理二阶系统是指一个包含两个能量存储元件(电容、电感)的系统。
其传递函数可以表示为:Ts(s)G(s)=--------------(s^2 + 2ζωns + ωn^2)其中,Ts(s)为控制信号输入,G(s)为系统传递函数,ζ为阻尼比,ωn为自然频率。
当输入为单位阶跃信号时,输出的响应称为系统的阶跃响应,其数学表达式为:y(t)=-----------τ^2[1-e^(-t/τ)-t/τ*e^(-t/τ)]其中,τ为系统的时间常数,τ=1/ωn式中ωn为自然频率。
实验步骤1.搭建二阶电路系统,并接入信号发生器和示波器。
2.调节信号发生器产生单位阶跃信号,并将信号接入二阶电路系统中。
3.调节示波器进行观测,并记录输出信号的波形。
4.根据记录的波形数据,计算系统的时间常数τ、阻尼比ζ和自然频率ωn。
5.改变二阶电路系统中的参数(如电感或电容值),重新进行实验并记录数据。
6.分析不同参数对二阶系统阶跃响应的影响。
四、实验结果实验数据如下表所示:电感值(L),电容值(C),时间常数τ,斜率(t/τ),阻尼比ζ,自然频率ωn------,-------,------,-------,-----,-------L1,C1,τ1,t1/τ1,ζ1,ωn1L2,C2,τ2,t2/τ2,ζ2,ωn2L3,C3,τ3,t3/τ3,ζ3,ωn3(插入阶跃响应图像)五、实验分析根据实验结果的波形数据,计算得到不同参数下的时间常数τ、阻尼比ζ和自然频率ωn,并填入上表。
通过对比不同参数下阶跃响应的图像,可以得出以下结论:1.时间常数τ:时间常数τ代表系统响应到达稳态所需的时间。
一般来说,时间常数越小,系统的响应速度越快。
根据实验数据的对比可以发现,当电感或电容值增加时,时间常数τ也相应增大,表示系统的响应速度减慢。
二阶系统阶跃响应实验报告
实验二、二阶系统阶跃响应一、实验目的1.研究二阶系统的特征参数,阻尼比ζ和无阻尼自然频率ωn对系统动态性能的影响。
定量分析ζ和ωn与最大超调量Mp和调节时间t S之间的关系。
2.进一步学习实验系统的使用方法3.学会根据系统阶跃响应曲线确定传递函数。
二、实验设备1.EL-AT-II型自动控制系统实验箱一台2.计算机一台三、实验原理1.模拟实验的基本原理:控制系统模拟实验采用复合网络法来模拟各种典型环节,即利用运算放大器不同的输入网络和反馈网络模拟各种典型环节,然后按照给定系统的结构图将这些模拟环节连接起来,便得到了相应的模拟系统。
再将输入信号加到模拟系统的输入端,并利用计算机等测量仪器,测量系统的输出,便可得到系统的动态响应曲线及性能指标。
若改变系统的参数,还可进一步分析研究参数对系统性能的影响。
2. 域性能指标的测量方法:超调量Ó%:1)启动计算机,在桌面双击图标 [自动控制实验系统] 运行软件。
2) 检查USB线是否连接好,在实验项目下拉框中选中任实验,点击按钮,出现参数设置对话框设置好参数按确定按钮,此时如无警告对话框出现表示通信正常,如出现警告表示通信不正常,找出原因使通信正常后才可以继续进行实验。
3)连接被测量典型环节的模拟电路。
电路的输入U1接A/D、D/A卡的DA1输出,电路的输出U2接A/D、D/A卡的AD1输入,将两个积分电容连在模拟开关上。
检查无误后接通电源。
4)在实验项目的下拉列表中选择实验二[二阶系统阶跃响应] 。
5)鼠标单击按钮,弹出实验课题参数设置对话框。
在参数设置对话框中设置相应的实验参数后鼠标单击确认等待屏幕的显示区显示实验结果6)利用软件上的游标测量响应曲线上的最大值和稳态值,代入下式算出超调量:Y MAX - Y∞Ó%=——————×100%Y∞T P与T P:利用软件的游标测量水平方向上从零到达最大值与从零到达95%稳态值所需的时间值,便可得到T P与T P。
自控实验报告-二阶系统的阶跃响应-精品
实验二 二阶系统的阶跃响应一、实验目的1、学习二阶系统阶跃响应曲线实验测试方法。
2、研究二阶系统的特征参数,阻尼比ζ和无阻尼自然频率ωn 对系统动态性能的影响。
定性分析 ζ 和ωn 与最大超调量和调节时间t S 之间的关系。
3、研究线性系统的开环比例系数K 对稳定性的影响。
4、研究线性系统的时间常数T 对稳定性的影响。
5、进一步学习实验系统的使用方法6、学会根据系统阶跃响应曲线确定传递函数。
二、实验仪器XMN-2型自动控制系统实验箱一台,CAE-PCI 软件,万用表,计算机一台三、实验原理典型二阶系统的闭环传递函数为ω2nϕ(S )=s 2+2ζωn s +ω2n其中 ζ 和ωn 对系统的动态品质有决定的影响。
构成下图的典型二阶系统的模拟电路,并测量其阶跃响应,电路的结构图如图:系统开环传递函数为:22()2n n G s s s ωζω=+ 闭环传递函数为:222()()1()2n n n G s s G s s s ωζωωΦ==+++式中 T=RC,K=R2/R1ωn=1/T=1/RCζ=K/2=R2/2R1可知,改变比值R2/R1,可以改变二阶系统的阻尼比。
改变RC值可以改变无阻尼自然频率ωn。
四、实验步骤1.连接被测量典型环节的模拟电路,检查无误后接通电源。
2.启动计算机,在桌面双击图标 [自动控制实验系统] 运行软件。
3.取不同的R和C,输入阶跃信号,测量不同的ζ和ω时系统的阶跃响应。
4.测量二阶系统的实验数据如下:Rf R C K阻尼系数T Wn Wn22qwn 5000010000000.000000470.50.250.47 2.12766 4.526935 1.06383 5000010000000.000001470.50.25 1.470.6802720.462770.340136 5000010000000.0000010.50.251110.5 10000010000000.00000110.51111 20000010000000.0000012111121 仿真结果如下:实验结果:2 仿真结果如下:实验结果:3 仿真结果如下:实验结果:4仿真结果如下:实验结果:5仿真结果如下:实验结果:实验分析:经过对比前三个图,可知在阻尼系数不变的情况下,自然频率n越小,上升时间越大,调节时间越长,而超调量不变;对比后面的三个图,可知在自然频率不变的情况下,阻尼比越小,上升时间越短,调节时间越长,超调量越大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一 二阶系统阶跃响应
一、 实验目的
(1)研究二阶系统的两个重要参数:阻尼比ξ和无阻尼自振角频率ωn 对系统动 态性能的影响。
(2)学会根据模拟电路,确定系统传递函数。
二、实验内容
二阶系统模拟电路图如图2-1 所示。
系统特征方程为T 2s 2+KTs+1=0,其中T=RC ,K=R0/R1。
根据二阶系统的标准 形式可知,ξ=K/2,通过调整K 可使ξ获得期望值。
三、 预习要求
(1) 分别计算出T=0.5,ξ= 0.25,0.5,0.75 时,系统阶跃响应的超调量σP 和过渡过程时间
tS 。
)
1(
p 2
e ζζπσ--=, ζ
T
3t s ≈
代入公式得:
T=0.5,ξ= 0.25,σp =44.43% , t s =6s ; T=0.5,ξ= 0.5,σp =16.3% , t s =3s ; T=0.5,ξ= 0.75,σp =2.84% , t s =2s ;
(2) 分别计算出ξ= 0.25,T=0.2,0.5,1.0 时,系统阶跃响应的超调量σP 和过渡
过程时间tS 。
ξ= 0.25,T=0.2,σp =44.43% , t s =2.4s ; ξ= 0.25,T=0.5,σp =44.43% , t s =6s ;
ξ= 0.25,T=1.0,σp=44.43% ,t s=12s;
四、实验步骤
(1)通过改变K,使ξ获得0,0.25,0.5,0.75,1.0 等值,在输入端加同样幅值的阶跃信号,观察过渡过程曲线,记下超调量σP 和过渡过程时间tS,将实验值和理论值进行比较。
(2)当ξ=0.25 时,令T=0.2 秒,0.5 秒,1.0 秒(T=RC,改变两个C),分别测出超调量σP 和过渡过程tS,比较三条阶跃响应曲线的异同。
五、实验数据记录与处理:
阶跃响应曲线图见后面附图。
原始数据记录:
理论值与实际值比较:
(1)T=0.5
对误差比较大,比如T=0.5,ξ=0.75时,超调量的相对误差为30%左右。
造成误差的原因主要有以下几个方面:
(1)由于R0是认为调整的阻值,存在测量和调整误差,且不能精确地保证ξ的大小等于要求的数值;
(2)在预习计算中我们使用了简化的公式,例如过渡时间大约为3~4T/ξ,这并不是一个精确的数值,且为了计算方便取3T/ξ作统一计算;
(3)实际采样点的个数也可能造成一定误差,如果采样点过少,误差相对会大。
六、实验总结
通过本次实验,我们从图形上直观的二阶系统的两个参数对系统动态性能的影响,巩固了理论知识。
其次我们了解了一个简单的系统是如何用电路方式实现的,如何根据一个模拟电路确定系统的传递函数。
附图:
(1)T=0.5时:
ξ=0
ξ=0.25
ξ=0.5
ξ=0.75
ξ=1.0
(2)ξ=0.25时T=0.2s
T=0.5s
T=1.0
如有侵权请联系告知删除,感谢你们的配合!如有侵权请联系告知删除,感谢你们的配合!。