《一次函数与正比例函数》word教案 (公开课获奖)2022北师版 (2)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4.2一次函数与正比例函数 教学设计

一、学生起点分析

在七年级下期学生已经探索了变量之间关系,在此基础上,本章前一节继续通过对变量关系的考察,让学生初步体会函数的概念,能判断两变量之间的关系是否可看作函数。本节课进一步研究其中最简单的一种函数——一次函数.由于有前面内容的铺垫,学生已经会建立变量之间的关系,可能有部分学生表述上还不太规范,在教学中,教师要注意纠正学生的一些错误习惯,如将解析式写成1,1x y x y +=-=-等,培养学生良好的书写习惯.

本节课教学目标分析是:

(1)理解一次函数和正比例函数的概念; (2)能根据所给条件写出简单的一次函数表达式.

(3)经历一般规律的探索过程,发展学生的抽象思维能力;

(4)经历从实际问题中得到函数关系式这一过程,发展学生的数学应用能力.

(5)体验生活中的数学的应用价值,感受数学与人类生活的密切联系,激发学生学数学、用数学的兴趣.

(6)在探索过程中体验成功的喜悦,树立学习的自信心. 本节课教学重点是:

理解一次函数和正比例函数的概念. 本节课教学难点是:

能根据所给条件写出简单的一次函数表达式,发展学生的抽象思维能力.

第一环节:复习引入

内容:复习上节课学习的函数,教师提出问题:

(1)什么是函数?

(2)函数有哪些表示方式?

(3)在现实生活中有许多问题都可以归结为函数问题,大家能不能举一些例子呢?

意图:为了激发学生的求知欲望,吸引同学们的注意力,这里采用了“复习旧知识,诱导新内容”的引入方法.问题(1)(2)复习上节课的内容,问题(3)是让学生把所学知识运用于实际生活,提高学生的运用意识.

效果:

问题(1)(2)学生都能快而准的回答,问题(3)是在一个开放的环境中回答,学生不能很准确的表述出来,可让学生互相补充,也可教师进行补充、完善.通过学生亲身经历了感受函数在生活中的运用过程,初步形成数学建模的思想,感受成功的喜悦,充分体现了本节课的情感、态度目标.

若课堂气氛比较沉闷,也可由教师先举例,让学生来列函数表达式,激发学生的学习激情,再让学生举例:(如可补充如下习题)

①假设某学生骑自行车的速度为10km/h,则他骑自行车用的时间t(h)和所走过的路程s 之间的关系是什么?

②上网费用是2元/小时,则上网t(小时),费用y(元)的关系式是什么?

第二环节:新课讲述

内容:

例1 某弹簧的自然长度为3cm,在弹簧限度内,所挂物体的质量x每增加1kg,弹簧长度y 增加0.5cm.

(1)计算所挂物体的质量分别为1kg、2kg、3kg、4kg、5kg时的弹簧长度,并填入下表:

x/kg 0 1 2 3 4 5 y/cm

(2)你能写出x与y之间的关系式吗?

y x.

答案 (1) 3、3.5、4、4.5、5、5.5 ;(2) 30.5

例2 某辆汽车油箱有汽油100L,汽车每行驶50km耗油9L.

(1)完成下表:

汽车行驶路程x/km 0 50 100 150 200 300

油箱剩余汽油量y/L

(2)你能写出x与y之间的关系式吗?

(3)汽车行驶的路程x可以无限增大吗?有没有一个取值范围?剩余油量y呢?

答案 (1) 100、91、82、73、64、46;

y x;

(2) x与y之间的关系式为1000.18

(3) 汽车行驶路程x不可能无限增大,因为汽油只有100L,每行驶50km耗油9L,行驶560km后,油箱就没有油了,所以x不会超过560k m.y代表油箱剩余油量,所以y应该小于100但不能小于零.

通过观察、探索、总结,归纳出一次函数与正比例函数的概念:

一般地,若两个变量x,y间的关系式可以表示成y kx b(,k b为常数,k≠0)的形式,

b时,则y是x的正比例则称y是x的一次函数(x是自变量,y为因变量).特别地,当0

函数.

意图:从生动有趣的问题情景(弹簧的长度、汽车油箱中的余油量)出发,通过对一般规律的探索过程,从实际问题中抽象出一次函数和正比例函数的概念.

效果:

从两个具体问题的函数表达式出发,互相讨论,教师在教学上恰当地设疑立障,引导学生大胆猜想,勇于探索,鼓励学生积极思维,总结出一次函数的定义,提高学生的分析问题、解决问题、总结归纳的能力.

主要从函数解析式这一角度去研究一次函数,这是学生第一次正式接触函数的表达式,教学中可根据学生状况多加一些例子,让学生逐步学会从函数表达式去认识函数,进一步掌握一次函数的定义.

第四环节:知识提高

内容:

例 3 写出下列各题中x与y之间的关系式,并判断:y是否为x的一次函数?是否为正比例函数?

(1)汽车以60千米/时的速度匀速行驶,行驶路程y(千米)与行驶时间x(时)之间的关系;

(2)圆的面积y(厘米2)与它的半径x(厘米)之间的关系;

(3)一棵树现在高50厘米,每个月长高2厘米,x个月后这棵树的高度为y(厘米),则y 与x的关系.

y x,y是x的一次函数,也是x的正比例函数;

答案: (1)由路程=速度×时间,得60

y x,y不是x的一次函数,也不是x的正比例函数;

(2)由圆的面积公式,得2

y x,y是x

(3)这棵树每月长高2厘米,x个月长高了2x厘米,因而5020

的一次函数,但不是x的正比例函数.

例4 某地区电话的月租费为25元,在此基础上,可免费打50次市话(每次3分钟),超过50次后,每次0.2元.

(1)写出每月电话费y(元)与通话次数x(x>50)的函数关系式;

(2)求出月通话150次的电话费;

相关文档
最新文档