27.3 第2课时 平面直角坐标系中的位似(2)
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y
4 C
2 C'' A'' -4 -2 O
-2
B'' -4
B
画法二:如右图所示
B'
2 A' 4 C''
解:将四边形OABC各顶点 的坐标都乘 2 ;在平面直角
3
坐标系中描点O(0,0), A''(-4,0),
Ax
B'' (-2,-4),C(2,-2),用线段顺次
连接O,A'',B'',C''.
练一练 如图,小朋在坐标系中以A为位似中心画了两 个位似的直角三角形,可不小心把E点弄脏了, 则E点坐标为( A )
A.(4,-3) C.(4,-4)
B.(4,-2) D.(4,-6)
典例精析 例1:在平面直角坐标系中,四边形OABC的顶点坐标分别为
O(0,0),A(6,0),B(3,6),C(-3,3).以原点O为位似中心,画
做一做 将图中的△ABC做下列变换,画出相应的图形,指
出三个顶点的坐标所发生的变化. (1)沿y轴正向平移3个单位长度; (2)关于x轴对称; (3)以C为位似中心,将△ABC放大2倍; (4)以C为中心,将△ABC顺时针旋转180°.
当堂练习
1.将平面直角坐标系中某个图形的各点坐标做 如下变化,其中属于位似变换的是( C ) A.将各点的纵坐标乘以2,横坐标不变 B.将各点的横坐标除以2,纵坐标不变 C.将各点的横坐标、纵坐标都乘以2 D.将各点的纵坐标减去2,横坐标加上2
x
-6
标的变化.
-8
把AB缩小后A,B的对应点为A ' ( 2 ,1 ),B' ( 2 , 0 );A"(- 2,- 1 ),B"( - 2 , 0 ).
y
2.如图,△ABC三个
8
顶点坐标分别为A(2,
6 A'
C'
3),B(2,1),C(6,
4A
2 B' C
2),以点O为位似中
-12 -10 -8 -6 -4 -2 O
B 2
4
6
8 910 12 x
心,相似比为2,将 △ABC放大,观察对 C"
B" -2 -4
A" -6
应顶点坐标的变化.
-8
把△ABC放大后A,B,C的对应点为
A '( 4 , 6 ),B ' ( 4 ,2 ),C ' ( 12 , 4 );
A" (-4 ,-6),B" (-4 ,-2),C" (-12 ,-4 ).
第二十七章
九年级数学下(RJ) 教学课件
相似
27.3 位 似
第2课时 平面直角坐标系中的位似
导入新课
讲授新课
当堂练习
课堂小结
学习目标
1.理解平面直角坐标系中,位似图形对应点的坐标之间的联系. 2.能够熟练准确地利用坐标变化将一个图形放大与缩小;
(重点、难点)
导入新课
问题引入
问题:将图(1)的图形如何变换得到图(2)?
y
y
O
x
(1)
O
x
(2)
讲授新课
一 平面直角坐标系中的位似变换
合作探究
y
1.如图,在平面直角坐标系
8 6
中,有两点 A(6,3),B
4
A
(6,0).以原点O为位似
B" 2 A'
B
中心,相似比为 1 ,把线段
3
AB缩小,观察对应点之间坐
-8 -6 -4 -2 O B'2 4 6 8 A" -2 -4
2.如图所示,某学习小组在讨论 “变化的鱼” 时,知道大鱼与小鱼是位似图形,则小鱼上 的点(a,b)对应大鱼上的点( A )
A.(-2a,-2b) C.(-2b,-2a)
B.(-a,-2b) D.(-2a,-b)
B"
3. 如图,△ABC三个顶点坐标
8
6
分别为A(2,-2),B(4,
C"
-5),C(5,-2),以原
问题1. 在平面直角坐标系中,以原点为位似中心作一 个图形的位似图形可以作几个?
问题2. 所作位似图形与原图形在原点的同侧,那么对 应顶点的坐标的比与其相似比是何关系?如果所作位似 图形与原图形在原点的异侧呢?
问题3. 如何在平面直角坐标系中,以原点为位似中心, 画一个图形的位似图形?
归纳
1.在平面直角坐标系中,以原点为位似中心作一个图形的 位似图形可以作两个. 2.当位似图形在原点同侧时,其对应顶点的坐标的比为k; 当位似图形在原点两侧时,其对应顶点的坐标的比为-k. 3.当k>1时,图形扩大为原来的k倍;当0<k<1时,图形 缩小为原来的k倍.
出四边形OABC的位似图形,使它与四边形OABC的相似是2:3.
yB
画法一:如右图所示,
解:将四边形OABC各顶
点的坐标都乘 2 ;在平
3
面直角坐标系中描点
4 C
2 C'
-4 -2 O
B' 2 A' 4 A x
O(0,0), A'(4,0),B'(2,4)
-2
C(-2,-2),用线段顺次连接
-4
O,Aཞ 4
2
-12 -10-9-8 -6 -4
点O为位似中心,将这个三角
-2 O 2
-2 A
4
6
C
8 9 101112
形放大为原来的2倍.
-4 A'
C'
-6
B
-8
解:
B'
A'( 4 ,- 4 ),B ' ( 8 , - 10 ),C ' ( 10 ,-4 ),
A" (- 4 , 4 ),B" (- 8 , 10 ),C" (-10 ,4 ).
做一做
如图,四边形ABCD的坐标分别为A(-6,6),B(-8,
2),C(-4,0),D(-2,4),画出它的一个以原点O
为位似中心,相似比为 1 的位似图形.
2
y
8
A
6
B
B'A' DD24'
-8
-6 -4
C
-2 C'
-2
2 4 6 8x
-4
-6
-8
二 平面直角坐标系中的图形变换
至此,我们已经学习了四种变换:平移、轴对 称、旋转和位似,你能说出它们之间的异同吗?在 下图所示的图案中,你能找到这些变换吗?
平面直角坐标系 中的图形变换
课后作业
见本课时练习
4.如图,正方形ABCD和正方形OEFG中, 点A和点F的坐 标分别为 (3,2),(-1,-1),则两个正方形的位似中 心的坐标是_(_1_,__0_)_或__(-__5_,__-__2_)__.
O
x
课堂小结
坐标变化规律
平面直角坐标系 中的位似变换
平面直角坐标 系中的位似
平面直角坐标系中 的位似图形的画法