2023学年人教版数学八年级上册压轴题专题精选汇编( 全等三角形)原卷版
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2023学年人教版数学八年级上册压轴题专题精选汇编
全等三角形
考试时间:120分钟试卷满分:100分
姓名:__________ 班级:__________考号:__________
题号一二三总分
得分
评卷人得分
一.选择题(共10小题,满分20分,每小题2分)
1.(2分)如图,在△ABC中,AB>AC,AD是△ABC的角平分线,点E在AC上,过点E作EF⊥BC于点F,延长CB至点G,使BG=2FC,连接EG交AB于点H,EP平分∠GEC,交AD的延长线于点P,连接PH,PB,PG,若∠C=∠EGC+∠BAC,则下列结论:
①∠APE=∠AHE;②PE=HE;③AB=GE;④S△P AB=S△PGE.
其中正确的有()
A.①②③B.①②③④C.①②D.①③④
2.(2分)如图,在Rt△ABC中,∠ABC=90°,以AC为边,作△ACD,满足AD=AC,E为BC上一点,连接AE,∠CAD=2∠BAE,连接DE,下列结论中:①∠ADE=∠ACB;②AC⊥DE;③∠AEB=∠AED;
④DE=CE+2BE.其中正确的有()
A.①②③B.③④C.①④D.①③④
3.(2分)如图,Rt△ACB中,∠ACB=90°,△ABC的角平分线AD、BE相交于点P,过P作PF⊥AD交BC的延长线于点F,交AC于点H,则下列结论:①∠APB=135°;②BF=BA;③PH=PD;④连接CP,CP平分∠ACB.其中正确的是()
A.1个B.2个C.3个D.4个
4.(2分)如图,在△ABC和△ADE中,∠CAB=∠DAE=36°,AB=AC,AD=AE.连接CD,连接BE并延长交AC,AD于点F,G.若BE恰好平分∠ABC,则下列结论错误的是()
A.∠ADC=∠AEB B.CD∥AB C.DE=GE D.CD=BE
5.(2分)如图,已知AB∥CD,AB+CD=BC,点G为AD的中点,GM⊥CD于点M,GN⊥BC于点N,连接AG、BG.张宇同学根据已知条件给出了以下几个结论:①∠BGC=90°;②GM=GN;③BG平分∠ABC;④CG平分∠BCD.其中正确的个数有()
A.1个B.2个C.3个D.4个
6.(2分)如图,在Rt△ABC中,∠A=90°,M为BC的中点,H为AB上一点,过点C作CG∥AB,交HM 的延长线于点G,若AC=8,AB=6,则四边形ACGH周长的最小值是()
A.24B.22C.20D.18
7.(2分)习题课上,张老师和同学们一起探究一个问题:“如图,在△ABC中,D、E分别是AC、AB上的点,BD与CE相交于点O,OB=OC,添加下列哪个条件能判定△ABC是等腰三角形?”请你判断正确的条件应为()
A.AE=BE B.BE=CD C.∠BEO=∠CDO D.∠BEO=∠BOE
8.(2分)如图,在△ABC中,AB=AC,点D是OABC外一点,连接AD、BD、CD,且BD交AC于点O,在BD上取一点E,使得AE=AD,∠EAD=∠BAC,若∠ABC=62°,则∠BDC的度数为()
A.56°B.60°C.62°D.64°
9.(2分)在如图所示的3×3网格中,△ABC是格点三角形(即顶点恰好是网格线的交点),则与△ABC有
一条公共边且全等(不含△ABC)的所有格点三角形的个数是()
A.4个B.3个C.2个D.1个
10.(2分)如图,在Rt△ABC中,∠CBA=90°,∠CAB的角平分线AP和∠MCB的平分线CF相交于点D,AD交CB于点P,CF交AB的延长线于点F,过点D作DE⊥CF交CB的延长线于点G,交AB的延长线于点E,连接CE并延长交FG于点H,则下列结论:①∠CDA=45°;②AF﹣CG=CA;③DE=DC;
④CF=2CD+EG;其中正确的有()
A.②③B.②④C.①②③④D.①③④
评卷人得分
二.填空题(共10小题,满分20分,每小题2分)
11.(2分)已知:如图,△ABC中,E在BC上,D在BA上,过E作EF⊥AB于F,∠B=∠1+∠2,AE=CD,BF=,则AD的长为.
12.(2分)如图,在△ABC中,AB=BC,BE、CF分别是AC、AB边上的高,在BE上取点D,使BD=CA,在射线CF上取点G,使CG=BA,连接AD、AG,若∠DAE=38°,∠EBC=20°,则∠GAB=°.
13.(2分)如图,在△ABC中,AB=AC,D为BC上的一点,∠BAD=28°,在AD的右侧作△ADE,使得AE=AD,∠DAE=∠BAC,连接CE,DE,DE交AC于点O,若CE∥AB,则∠DOC的度数为.
14.(2分)如图,已知四边形ABCD中,AB=10cm,BC=8cm,CD=12cm,∠B=∠C,点E为AB的中点.如果点P在线段BC上以3cm/s的速度沿B﹣C﹣B运动,同时,点Q在线段CD上由C点向D点运动.当点Q的运动速度为cm/s时,能够使△BPE与△CQP全等.
15.(2分)如图,在Rt△ABC中,∠C=90°,两锐角的角平分线交于点P,点E、F分别在边BC、AC上,且都不与点C重合,若∠EPF=45°,连接EF,当AC=6,BC=8,AB=10时,则△CEF的周长为.
16.(2分)如图,在Rt△ABC中,∠ACB=90°,BD平分∠ABC,E是AB上一点,且AE=AD,连接DE,过E作EF⊥BD,垂足为F,延长EF交BC于点G.现给出以下结论:①EF=FG;②CD=DE;③∠BEG =∠BDC;④∠DEF=45°.其中正确的是.(写出所有正确结论的序号)
17.(2分)如图,在△ABC中,∠ACB=90°,BE⊥CE于点E,AD⊥CE于点D,请你添加一个条件,使△BEC≌△CDA(填一个即可).
18.(2分)如图,E是△ABC的边AC的中点,过点C作CF∥AB,过点E作直线DF交AB于D,交CF 于F,若AB=9,CF=6.5,则BD的长为.
19.(2分)如图,在正方形方格中,各正方形的顶点叫做格点,三个顶点都在格点上的三角形称为格点三角形.图中△ABC是格点三角形,请你找出方格中所有与△ABC全等,且以A为顶点的格点三角形.这样的三角形共有个(△ABC除外).
20.(2分)如图,Rt△ABC中,∠C=90°,AC=8cm,BC=15cm,AB=17cm,∠CAB与∠CBA的角平分线相交于点O,过点O作OD⊥AB,垂足为点D,则线段OD的长为cm.
评卷人得分
三.解答题(共8小题,满分60分)
21.(8分)综合与探究
如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,CE的延长线交BD于点F.(1)求证:△ACE≌△ABD.
(2)若∠BAC=∠DAE=50°,请直接写出∠BFC的度数.
(3)过点A作AH⊥BD于点H,求证:EF+DH=HF.
22.(8分)在△ABC中,点D、E分别在AB、AC边上,设BE与CD相交于点F.(1)如图①,设∠A=60°,BE、CD分别平分∠ABC、∠ACB,证明:DF=EF.
(2)如图②,设BE⊥AC,CD⊥AB,点G在CD的延长线上,连接AG、AF;若∠G=∠6,BD=CD,证明:GD=DF.
23.(6分)如图①:△ABC中,AC=BC,延长AC到E,过点E作EF⊥AB交AB的延长线于点F,延长CB到G,过点G作GH⊥AB交AB的延长线于H,且EF=GH.
(1)求证:△AEF≌△BGH;
(2)如图②,连接EG与FH相交于点D,若AB=4,求DH的长.
24.(8分)在Rt△ABC中,∠ABC=90°,点D是CB延长线上一点,点E是线段AB上一点,连接DE.AC =DE,BC=BE.
(1)求证:AB=BD;
(2)BF平分∠ABC交AC于点F,点G是线段FB延长线上一点,连接DG,点H是线段DG上一点,连接AH交BD于点K,连接KG.当KB平分∠AKG时,求证:AK=DG+KG.
25.(9分)在直线m上依次取互不重合的三个点D,A,E,在直线m上方有AB=AC,且满足∠BDA=∠AEC=∠BAC=α.
(1)如图1,当α=90°时,猜想线段DE,BD,CE之间的数量关系是;
(2)如图2,当0<α<180时,问题(1)中结论是否仍然成立?如成立,请你给出证明;若不成立,请说明理由;
(3)拓展与应用:如图3,当α=120°时,点F为∠BAC平分线上的一点,且AB=AF,分别连接FB,FD,FE,FC,试判断△DEF的形状,并说明理由.
26.(6分)如图,线段AB上两点C,D,AC=BD,∠A=∠B,AE=BF,连结DE并延长至点M,连结CF并延长至点N,DE、CF交于点P,MN∥AB.
求证:△PMN是等腰三角形.
27.(6分)如图,△AOB≌△COD,OD与AB交于点G,OB与CD交于点E.
(1)∠AOD与∠COB的数量关系是:∠AOD∠COB;
(2)求证:△AOG≌△COE;
(3)若OA=OB,当A,O,C三点共线时,恰好OB⊥CD,则此时∠AOB=°.
28.(9分)如图,在△ABC中,AC=BC,∠ACB=90°,点D为△ABC内一点,且BD=AD.(1)求证:CD⊥AB;
(2)∠CAD=15°,E为AD延长线上的一点,且CE=CA.
①求证:DE平分∠BDC;
②若点M在DE上,且DC=DM,请判断ME、BD的数量关系,并给出证明;
③若N为直线AE上一点,且△CEN为等腰三角形,直接写出∠CNE的度数.。