乌海实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

乌海实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析
班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1、(2分)对于实数x,我们规定[x]表示不大于x的最大整数,如[4]=4,[ ]=1,[-2.5]=-3.现对82
进行如下操作:这样对82只需进行3次操作后变为1,类似地,对121只需进行多少次操作后变为1()
A. 1
B. 2
C. 3
D. 4
【答案】C
【考点】估算无理数的大小
【解析】【解答】解:
∴对121只需进行3次操作后变为1,
故答案为:C
【分析】[x]表示不大于x的最大整数,依据题目中提供的操作进行计算即可。

2、(2分)若方程组的解为x,y,且x+y>0,则k的取值范围是()
A. k>4
B. k>﹣4
C. k<4
D. k<﹣4
【答案】B
【考点】解二元一次方程组,解一元一次不等式
【解析】【解答】解:两式相加得:4x+4y=k+4
∵x+y>0
∴4x+4y=4(x+y)>0
即k+4>0
k>﹣4
故答案为:B.
【分析】先观察x,y的系数,系数之和都是4,所以两式相加得x+y=(k+4)÷4,再让k+4>0,解得k>﹣4
3、(2分)已知= - ,其中A,B为常数,则4A-B的值为()
A. 13
B. 9
C. 7
D. 5
【答案】A
【考点】代数式求值,解二元一次方程组,解分式方程
【解析】【解答】解:

解之:
∴4A-B=4×-=13
故答案为:A
【分析】先将等式的右边通分化简,再根据分子中的对应项系数相等,建立关于A、B的方程组,求出A、B 的值,再求出4A-B的值即可。

4、(2分)下列语句叙述正确的有()
①如果两个角有公共顶点且没有公共边,那么这两个角是对顶角;②如果两个角相等,那么这两个角是对顶角;
③连接两点的线段长度叫做两点间的距离;④直线外一点到这条直线的垂线段叫做这点到直线的距离.
A.0个
B.1个
C.2个
D.3个
【答案】B
【考点】两点间的距离,对顶角、邻补角,点到直线的距离
【解析】【解答】解:①如果两个角有公共顶点且没有公共边,那么这两个角是对顶角,错误;
②如果两个角相等,那么这两个角是对顶角,错误;
③连接两点的线段长度叫做两点间的距离,正确;
④直线外一点到这条直线的垂线段叫做这点到直线的距离,错误;
综上所述:正确的有1个.
故答案为:B.
【分析】对顶角定义:有一个共同的顶点且一边是另一边的反向延长线,由此可知①和②均错误;
两点间的距离:连接两点的线段长度,由此可知③正确;
点到直线的距离:直线外一点到这条直线的垂线段的长度叫做这点到直线的距离,由此可知④错误.
5、(2分)所有和数轴上的点组成一一对应的数组成()
A. 整数
B. 有理数
C. 无理数
D. 实数
【答案】D
【考点】实数在数轴上的表示
【解析】【解答】解:∵实数与数轴上的点成一一对应。

故答案为:D
【分析】根据实数与数轴上的点成一一对应,即可得出答案。

6、(2分)2.﹣的绝对值是(),的算术平方根是().
A. - ;
B. ;-
C. - ;-
D. ;
【答案】D
【考点】算术平方根,实数的绝对值
【解析】【解答】解:﹣的绝对值是,的算术平方根是
【分析】根据绝对值的意义,一个负数的绝对值等于它的相反数,得出-的绝对值;再根据算数平方根的定义,,从而得出的算数平方根是。

7、(2分)如图,Rt△ABC沿直角边BC所在的直线向右平移得到△DEF,下列结论中错误的是().
A. △ABC与△DEF能够重合
B. ∠DEF=90°
C. AC=DF
D. EC=CF
【答案】D
【考点】平移的性质
【解析】【解答】解:由平移的特征,平移前后的两个图形的形状与大小都没有发生变化,故A,B,C均成立,所以只有D符合题意.
故答案为:D
【分析】因为平移后的图形与原图形形状大小都不变,对应边相等,对应角相等,所以只有D不正确.
8、(2分)观察下面图案,在A、B、C、D四幅图案中,能通过图案(如图所示)的平移得到的是()
A. B. C. D.
【答案】C
【考点】平移的性质
【解析】【解答】解:将题图所示的图案平移后,可以得到的图案是C选项.故答案为:C.
【分析】根据平移的性质,结合图形,对各选项逐一分析判断即可。

9、(2分)不等式的解集是()
A.
B.
C.
D.
【答案】A
【考点】解一元一次不等式
【解析】【解答】解:,去分母得3x-2(x-1)≤6,解得,,故答案为:A.
【分析】根据以下步骤进行计算:(1)两边同乘以各分母的最小公倍数去分母;(2)去括号(不要漏乘);(3)移项、合并同类项;(4)系数化为1(注意不等号的方向),
10、(2分)某校对全体学生进行体育达标检测,七、八、九三个年级共有800名学生,达标情况如表所示.则下列三位学生的说法中正确的是()
甲:“七年级的达标率最低”;
乙:“八年级的达标人数最少”;
丙:“九年级的达标率最高”
A. 甲和乙
B. 乙和丙
C. 甲和丙
D. 甲乙丙
【答案】C
【考点】扇形统计图,条形统计图
【解析】【解答】解:由扇形统计图可以看出:八年级共有学生800×33%=264人;
七年级的达标率为×100%=87.8%;
九年级的达标率为×100%=97.9%;
八年级的达标率为.
则九年级的达标率最高.则甲、丙的说法是正确的.
故答案为:C
【分析】先根据扇形统计图计算八年级的学生人数,然后计算三个年级的达标率即可确定结论.
11、(2分)把不等式x+1≤-1的解集在数轴上表示出来,下列正确的是()
A. B.
C. D.
【答案】D
【考点】在数轴上表示不等式(组)的解集,解一元一次不等式
【解析】【解答】移项并合并得,x≤-2,
故此不等式的解集为:x≤-2,
在数轴上表示为:
故答案为:D.
【分析】先求出此不等式的解集,再将解集再数轴上表示出来。

12、(2分)实数a在数轴上对应的点如图所示,则a,﹣a,1的大小关系正确的是()
A. a<﹣a<1
B. ﹣a<a<1
C. 1<﹣a<a
D. a<1<﹣a 【答案】D
【考点】实数在数轴上的表示,实数大小的比较
【解析】【解答】解:由数轴上a的位置可知a<0,|a|>1;
设a=﹣2,则﹣a=2,
∵﹣2<1<2
∴a<1<﹣a,
故答案为:D.
【分析】由数轴得:a<0,且大于1;所以,>1>a.又因为a<0,所以=-a.所以最终选D
二、填空题
13、(1分)方程3x+2y=12的非负整数解有________个.
【答案】3
【考点】二元一次方程的解
【解析】【解答】解:由题意可知:

解得:0≤x≤4,
∵x是非负整数,
∴x=0,1,2,3,4
此时y=6,,3,,0
∵y也是非负整数,
∴方程3x+2y=12的非负整数解有3个,
故答案为:3
【分析】将方程3x+2y=12 变形可得y=,再根据题意可得x0,,,解不等式组即可
求解。

14、(1分)如图,∠BAC=90°,AD⊥BC,垂足为D,则点C到直线AB的距离是线段________的长度.
【答案】CA
【考点】点到直线的距离
【解析】【解答】解:∵∠BAC=90°
∴CA⊥AB
∴点C到直线AB的距离是线段AC的长度。

故答案为:CA
【分析】根据已知可得出CA⊥AB,再根据点到直线的距离的定义,即可得出答案。

15、(1分)如图,放置在水平操场上的篮球架的横梁EF始终平行于AB,EF与上拉杆CF形成的∠F=150°,主柱AD垂直于地面,通过调整CF和后拉杆BC的位置来调整篮筐的高度。

当∠CDB=35°时,点
H,D,B在同一直线上,则∠H的度数是________.
【答案】115°
【考点】平行线的性质,三角形的外角性质
【解析】【解答】解:延长AD与GH的延长线相交于点M,交EF的延长线的延长线于点N,
∵GH∥AB∥EF,
∴∠M=∠A=∠FNA=90°,
∵∠EFC=∠FND+∠FDN,
∴∠FDN=∠EFC-∠FND=150°-90°=60°,
∵∠CDB=35°,∴∠FDH=35°,
∴∠HDN=∠FDN-∠FDH=25°
∴∠GHD=∠M+∠HDM=115°
故答案为:115°。

【分析】延长AD与GH的延长线相交于点M,交EF的延长线的延长线于点N,根据平行线的性质及垂直的定义得出∠M=∠A=∠FNA=90°,根据三角形外角的定理得出∠FDN=∠EFC-∠FND=150°-90°=60°,根据对顶角相等及角的和差得出∠HDN=∠FDN-∠FDH=25°,再根据三角形的外角定理得出∠GHD=∠M+∠HDM=115°。

16、(1分)如图,已知,如果,那么= ________ .
【答案】
【考点】对顶角、邻补角,平行线的性质
【解析】【解答】解:如图
∵∠1+∠2=180°,∠1=75°
∴∠2=180°-75°=105°
∵CD∥BE
∴∠2=∠B=105°
故答案为:105°
【分析】根据邻补角的定义求出∠2的度数,再根据平行线的性质,即可求得结果。

17、(1分)如图,在铁路旁边有一村庄,现要建一火车站,为了使该村人乘火车方便(即距离最短),请你在铁路旁选一点来建火车站(位置已选好),说明理由:________.
【答案】垂线段最短
【考点】垂线段最短
【解析】【解答】解:依题可得:
垂线段最短.
故答案为:垂线段最短.
【分析】根据垂线的性质:从直线外一点到这条直线上各点所连的线段中,垂线段最短.
18、(1分)已知:关于x,y的方程组的解为负数,则m的取值范围________.
【答案】m<-
【考点】解二元一次方程组,一元一次不等式组的应用
【解析】【解答】解:由得m<-故答案为:.
【分析】先解滚阿玉x,y的二元一次方程组,再利用解为负数可列出关于m的一元一次不等式组,解不等式
组即可求得m的取值范围.
三、解答题
19、(5分)如图,直线AB、CD相交于O,射线OE把∠BOD分成两个角,若已知∠BOE= ∠AOC,
∠EOD=36°,求∠AOC的度数.
【答案】解:∵∠AOC=∠BOD是对顶角,
∴∠BOD=∠AOC,
∵∠BOE=∠AOC,∠EOD=36º,
∴∠EOD=2∠BOE=36º,
∴∠EOD=18º,
∴∠AOC=∠BOE=18º+36º=54º.
【考点】角的运算,对顶角、邻补角
【解析】【分析】根据对顶角相等可知∠BOD=∠AOC,再由∠BOE= ∠AOC知∠EOD=∠BOD,代入数据求得∠BOD,再求得∠AOC。

20、(10分)如图,宏达蔬菜基地内有一块长为216m,宽为108m的长方形土地,三条宽均为xm的田间小路把它分成面积相等的六块,分别种植西红柿、黄瓜、辣椒、芸豆、韭菜、茄子.
(1)求每块种植蔬菜的长方形的面积.(用含x的多项式表示)
(2)当x=1.6m时,求每块种植蔬菜的长方形的面积.(精确到0.01m2)
【答案】(1)解:每块种植蔬菜的长方形的面积= (216﹣2x)(108﹣x)=3888﹣72x+x2,
答:每块种植蔬菜的长方形的面积(3888﹣72x+x2)m2.
(2)解:把x=1.6代入上式得到,
3888﹣72x+x2=3888﹣72×1.6+×1.62≈3773.65m2.
【考点】代数式求值,平移的性质
【解析】【分析】(1)把三条路平移到矩形的一边,求出六块总面积,即可解决问题.
(2)把x=1.6代入(1)中的式子可求得.
21、(5分)已知方程,小王正确解得x=3.小李由于粗心,把b看作6,解得x=5.试求a、b的值.
【答案】解:依题可得:

解得:,
∴a=1,b=8.
【考点】二元一次方程组的解,解二元一次方程组
【解析】【分析】根据题意可得一个关于a和b的二元一次方程组,解之即可.
22、(5分)解方程组
【答案】解:有①得x+2(2x+3y-4z)=12④
将③整体代入④得x=2
将x=2代入②、③得
得13y=-13故y=-1
将y=-1代入⑤得z=-1
所以原方程组的解为
【考点】三元一次方程组解法及应用
【解析】【分析】整体代入法是代入法的一种,它类似于换元法.实质上,为了解一次方程组,用代人消元法和加减消元法是完全可以胜任的.如本例我们不用整体代人,而直接用①-③×2,同样可得到x=2.
23、(10分)如图,已知MN∥PQ,B在MN上,C在PQ上,A在B的左侧,D在C的右侧,DE平分∠ADC,BE平分∠ABC,直线DE,BE交于点E,∠CBN=120°.
(1)若∠ADQ=110°,求∠BED的度数;
(2)将线段AD沿DC方向平移,使得点D在点C的左侧,其他条件不变,若∠ADQ=n°,求∠BED的度数(用含n的代数式表示)
【答案】(1)解:如图1中,延长DE交MN于H.
∵∠ADQ=110°,ED平分∠ADP,
∴∠PDH= ∠PDA=35°,
∵PQ∥MN,
∴∠EHB=∠PDH=35°,
∵∠CBN=120°,EB平分∠ABC,
∴∠EBH= ∠ABC=30°,
∴∠BED=∠EHB+∠EBH=65°
(2)解:有3种情形,如图2中,当点E在直线MN与直线PQ之间时.延长DE交MN于H.
∵PQ∥MN,
∴∠QDH=∠DHA= n,
∴∠BED=∠EHB+∠EBH=180°﹣(n)°+30°=210°﹣(n)°,
当点E在直线MN的下方时,如图3中,设DE交MN于H.
∵∠HBA=∠ABP=30°,∠ADH=∠CDH=(n)°,
又∵∠DHB=∠HBE+∠HEB,
∴∠BED=(n)°﹣30°,
当点E在PQ上方时,如图4中,设PQ交BE于H.同法可得∠BED=30°﹣(n)°.
综上所述,∠BED=210°﹣(n)°或(n)°﹣30°或30°﹣(n)°
【考点】角的平分线,平行线的性质
【解析】【分析】(1)延长DE交MN于H.利用平行线的性质和角平分线的定义可得∠BED=∠EHB+∠EBH,即可解决问题;
(2)分3种情形讨论:点E在直线MN与直线PQ之间,点E在直线MN的下方,点E在PQ上方,再根据平行线的性质可解决问题.
24、(5分)已知一个正数的两个平方根分别是a和2a-9,求a的值,并求这个正数.
【答案】解:∵一个正数有两个平方根,且互为相反数,
∴a+2a-9=0,
解得:a=3,
将a=3带入a和2a-9,
得到3和-3,
32=9,
∴这个正数是9
【考点】平方根
【解析】【分析】根据平方根的意义:一个正数有两个平方根,且互为相反数,从而得出关于a的方程,求解得出a的值,从而得出这个数的两个平方根,进一步得出这个正数。

25、(5分)在同一平面内,直线l的同侧有A、B、C三点,如果AB∥l,BC∥l,那么A、B、C三点是否在同一直线上?为什么?
【答案】解:A、B、C三点在同一直线上,理由:过直线外一点有且只有一条直线与已知直线平行
【考点】平行公理及推论
【解析】【分析】根据平行公理解答.
26、(10分)如图,△ABC中,点E在边BA上,AD⊥BC,EF⊥BC,垂足分别是D,F,∠1=∠2.
(1)DG与BA平行吗?为什么?
(2)若∠B=51°,∠C=54°,求∠CGD的度数.
【答案】(1)解:平行,
理由如下:∵EF⊥BC,AD⊥BC,
∴∠BFE=∠BDA=90°,
∴EF∥AD,
∴∠2=∠3,
∵∠1=∠2,
∴∠1=∠3,
∴DG∥AB;
(2)解:∵DG∥AB,
∴∠CDG=∠B=51°,
∵∠C+∠CDG+∠CGD=180°,
∴∠CGD=180°﹣51°﹣54°=75°
【考点】平行线的判定与性质
【解析】【分析】(1)由EF⊥BC,AD⊥BC,根据平行线的判定定理可得EF∥AD,可得∠2=∠3,再由已知可得∠1=∠3,由平行线的判定定理证明;
(2)根据平行线的性质得到∠CDG=∠B=51°,根据三角形内角和定理计算即可.。

相关文档
最新文档