第4课时相似三角形的判定定理3教学设计

合集下载

九年级数学《相似三角形的判定(3)》教案

九年级数学《相似三角形的判定(3)》教案

《相似三角形(3)》教学设计教学评价评价量规:随堂提问、动手实践、操作演练、练习反馈;评价策略:坚持“及时评价与激励评价相结合,定量化评价与定性化评价相统一”的原则,最大限度地做到面向全体学生,充分关注学生的个性差异,将学生自评、生生互评和教师概括引领、激励式点评有机结合,既有即兴评价,又有概要性评价;既有学生的自评,又有师生、生生之间的互评,力求在评价中帮助学生认识自我、建立自信,使其逐步养成独立思考、自主探索、合作交流的学习习惯。

教学流程活动流程活动内容及目的活动一创设情境,导入新课(3——5分钟)学生借助已有的知识和经验感知和体会数学的应用价值。

活动二演示操作,形成假设(10——15分钟)探究实践,总结发现自己观察到的结论。

并加以推理证明。

活动三验证假设,获得定论(10——15分钟)将自己发现的结论加以证明。

类比活动2探究结论,运用所学勾股定理加以证明。

活动四运用新知,解决问题(3——5分钟)应用所学知识来解决实际问题活动五回顾总结,推荐作业(3——5分钟)通过归纳、作业,巩固自己所学知识,形成技能技巧。

教学程序问题与情境师生互动媒体使用与设计意图活动1:创设情境导入新课问题:(1)我们已学习过哪些判定三角形相似的方法?(2)如图,△ABC中,点D在AB上,如果AC2=AD•AB,那么△ACD与△ABC相似吗?说说你的理由.(3)观察两副三角尺,同样角度的两个三角尺的三个内角有什么关系?这两个三角形相似吗?如果两个三角形有两组对应角相等,它们相似吗?——引出课题.教师通过提出问题,引导学生复习学过的知识,在此基础上激发学生学习新知的欲望。

学生思考回答,同时教师将学生的回答整理板书到黑板上。

本次活动教师应重点关注:学生能否熟练回答三角形相似的判定定理,相似三角形的判定方法和性质是否熟练。

用已学的知识能否顺利完成练习。

【媒体使用】播放图片,依次出示相关内容。

【设计意图】复习旧知,承前启后;通过本环节的复习和情景创设,让学生达到复习旧知,为新课做好铺垫的目的。

数学相似三角形的判定定理3(1)教学设计word版

数学相似三角形的判定定理3(1)教学设计word版

第4课时 相似三角形的判定定理301 基础题知识点 三边成比例的两个三角形相似1.将一个三角形的各边都缩小12后,得到的三角形与原三角形(A) A .一定相似 B .一定不相似C .不一定相似D .不能判断是否相似2.甲三角形的三边分别为1,2,5,乙三角形的三边分别为5,10,5,则甲乙两个三角形(A)A .一定相似B .一定不相似C .不一定相似D .无法判断是否相似3.已知△ABC 的三边长分别为6 cm 、7.5 cm 、9 cm ,△DEF 的一边长为4 cm ,要使这两个三角形相似,则△DEF 的另两边长可以是(C)A .2 cm ,3 cmB .4 cm ,5 cmC .5 cm ,6 cmD .6 cm ,7 cm4.如图,两个三角形的关系是相似(填“相似”或“不相似”),理由是三边成比例的两个三角形相似.5.若△ABC 各边分别为AB =10 cm ,BC =8 cm ,AC =6 cm ,△DEF 的两边为DE =5 cm ,EF =4 cm ,则当DF =3cm 时,△ABC ∽△DEF.6.△ABC 和△A′B′C′符合下列条件,判断△ABC 与△A′B′C′是否相似.BC =2,AC =3,AB =4;B′C′=2,A′C′=3,A′B′=2.解:在△ABC 中,AB>AC>BC ,在△A′B′C′中,A′B′>A′C′>B′C′,BC B′C′=22=2,AC A′C′=33=3,AB A′B′=42=2. ∴BC B′C′≠AB A′B′≠AC A′C′. ∴△ABC 与△A′B′C′不相似.7.如图所示,根据所给条件,判断△ABC 和△DBE 是否相似,并说明理由.解:△ABC ∽△DBE.理由如下:∵AC DE =36=12,BC BE =48=12,AB DB =510=12, ∴AC DE =BC BE =AB DB. ∴△ABC ∽△DBE.02 中档题8.下列能使△ABC 和△DEF 相似的条件是(C)A .AB =c ,AC =b ,BC =a ,DE =a ,EF =b ,DF = cB .AB =1,AC =1.5,BC =2,DE =12,EF =8,DF =1C .AB =3,AC =4,BC =6,DE =12,EF =8,DF =6D .AB =2,AC =3,BC =5,DE =6,EF =3,DF =39.如图,若A 、B 、C 、P 、Q 、甲、乙、丙、丁都是方格纸中的格点,为使△ABC ∽△PQR ,则点R 应是甲、乙、丙、丁四点中的(C)A .甲B .乙C .丙D .丁10.(东营中考)如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形的三条边长分别是3、4及x ,那么x 的值(B)A .只有1个B .可以有2个C .可以有3个D .有无数个11.如图,△ABC 中,点D 、E 、F 分别是AB 、BC 、AC 的中点,求证:△ABC ∽△EFD.证明:∵DE 、EF 、DF 是△ABC 的中位线,∴DE AC =EF AB =DF BC =12. ∴△ABC ∽△EFD.12.如图,正方形网格中每个小正方形的边长为1,△ABC 和△EDF 的顶点都在网格的格点上.(1)求证:△ABC ∽△EDF ;(2)求∠BAC 的度数.解:(1)证明:∵DE =2,DF =12+32=10,EF =2,AB =12+22=5,AC =12+32=10,BC =5,∴AB DE =AC EF =BC DF =102. ∴△ABC ∽△EDF.(2)∵△ABC ∽△EDF ,∴∠BAC =∠DEF.∵∠DEF =90°+45°=135°,∴∠BAC =135°.13.已知一个三角形框架的三边长分别为3米、4米、5米,现要做一个与其相似的三角形框架,已有一根长为2米的木条,问其他两根木条可选多长?共有多少种不同选法?解:(1)若2米的木条为最短边,设其他两根木条的长分别为x m 和y m ,则32=4x =5y ,解得x =83,y =103. (2)若2米的木条为第二长的边,设其他两根木条的长分别为x m 和y m ,则3 x=42=5y,解得x=32,y=52.(3)若2米的木条为最长边,设其他两根木条长分别为x m和y m,则3 x=4y=52,解得x=65,y=85.03综合题14.(菏泽中考)如图,在边长为1的小正方形组成的网格中,△ABC和△DEF的顶点都在格点上,P1,P2,P3,P4,P5是△DEF边上的5个格点,请按要求完成下列各题:(1)试证明△ABC是直角三角形;(2)判断△ABC和△DEF是否相似,并说明理由;(3)画一个三角形,使它的三个顶点为P1、P2、P3、P4、P5中的3个格点,并且与△ABC相似.解:(1)证明:根据勾股定理,得AB=25,AC=5,BC=5,∴AB2+AC2=BC2.∴△ABC为直角三角形.(2)△ABC和△DEF相似.理由:根据勾股定理,得AB=25,AC=5,BC=5,DE=42,DF=22,EF=210.∵ABDE=ACDF=BCEF=104,∴△ABC∽△DEF.(3)如图,△P2P4P5即为所求.。

第4课时 相似三角形的判定(3) 公开课一等奖课件

第4课时 相似三角形的判定(3) 公开课一等奖课件
27.2 相似三角形 27.2.1 相似三角形的判定 第4课时 相似三角形的判定(3)
知识与技能 使学生了解三角形相似的判定方法4及直角三角形相似定 理的证明方法并会运用. 过程与方法 1.类比证明三角形全等的方法(AAS,ASA,HL),继续渗 透和培养学生对类比思想的认识和理解. 2.通过了解定理的证明方法培养和提高学生利用已学知 识证明新命题的能力. 情感、态度与价值观 通过学习培养学生类比的意识,了解由特殊到一般的唯物 辩证法的观点.
班主任: 我觉得何旋今天取得这样的成绩, 我觉得,很重要的是,何旋是土生土长的北京 二中的学生,二中的教育理念是综合培养学生 的素质和能力。我觉得何旋,她取得今天这么 好的成绩,一个来源于她的扎实的学习上的基 础,还有一个非常重要的,我觉得特别想提的, 何旋是一个特别充满自信,充满阳光的这样一 个女孩子。在我印象当中,何旋是一个最爱笑 的,而且她的笑特别感染人的。所以我觉得她 很阳光,而且充满自信,这是她突出的这样一 个特点。所以我觉得,这是她今天取得好成绩 当中,心理素质非常好,是非常重要的。
青 春 风 采
高考总分:
692分(含20分加分) 语文131分 数学145分 英语141分 文综255分
毕业学校:北京二中 报考高校: 北京大学光华管理学 院 北京市文科状元 阳光女孩--何旋
来自北京二中,高考成绩672分,还有20 分加分。“何旋给人最深的印象就是她 的笑声,远远的就能听见她的笑声。” 班主任吴京梅说,何旋是个阳光女孩。 “她是学校的摄影记者,非常外向,如 果加上20分的加分,她的成绩应该是 692。”吴老师说,何旋考出好成绩的秘 诀是心态好。“她很自信,也很有爱心。 考试结束后,她还问我怎么给边远地区 的学校捐书”。
三、练习新知 1.如图,锐角△ABC 的边 AB,AC 上的高 CE,BF 相交于点 D,请写 出图中的两对相似三角形.

第4课时 相似三角形的判定定理3

第4课时 相似三角形的判定定理3

第4课时 相似三角形的判定定理31.了解三角形相似的判定定理3的探索及证明过程.2.掌握并能应用该定理进行相关的计算或证明.(重难点)阅读教材P 83~84,自学“动脑筋”“例7”“例8”,掌握相似三角形的判定定理3.(一)知识探究三边________________的两个三角形相似.(二)自学反馈下列是两位同学运用相似三角形的定义判定两个三角形是否相似,你认为他们的说法是否正确?为什么?并写出你的解答.判断如图所示的两个三角形是否相似,简单说明理由.甲同学:这两个三角形的三个内角虽然分别相等,但是它们的边的比不相等,AC IJ ≠AB HJ ≠BC HI,所以它们不相似.乙同学:这两个三角形的三个内角分别相等,对应边之比也相等,所以它们相似.活动1 小组讨论例1 如图,在Rt △ABC 和Rt △A ′B ′C ′中,∠C =90°,∠C ′=90°,AB A′B′=AC A′C′.求证:Rt △ABC ∽Rt △A ′B ′C ′.证明:设AB A′B′=AC A′C′=k ,则AB =kA′B′,AC =kA′C′. 由勾股定理,得BC =AB 2-AC 2,B ′C ′=A′B′2-A′C′2,∴BC B′C′=AB 2-AC 2B ′C ′=k 2·A ′B ′2-k 2·A ′C ′2B ′C ′=k·B′C′B′C′=k. ∴AB A′B′=AC A′C′=BC B′C′. ∴Rt △ABC ∽Rt △A ′B ′C ′(三边成比例的两个三角形相似).已知两边成比例,一般寻找第三边是否也成比例或夹角是否相等,可类比全等三角形中找对应边和对应角的方法.例2 判断图中的两个三角形是否相似,并说明理由.解:在△ABC 中,AB>BC>CA ,在△DEF 中,DE>EF>FD.∵DE AB =2.44=0.6,EF BC =2.13.5=0.6,FD CA =1.83=0.6, ∴DE AB =EF BC =FD CA . ∴△DEF ∽△ABC.活动2 跟踪训练1.顺次连接三角形各边中点所得的三角形与原三角形的相似比是________.2.△ABC 的三边长为2,10,2,△DEF 的两边为1和5,如果△ABC ∽△DEF ,则△DEF 的第三边长为________.3.如图,△ABC 三边长分别为AB =3 cm ,BC =3.5 cm ,CA =2.5 cm ;△DEF 三边长分别为DE =3.6 cm ,EF =4.2 cm ,FD =3 cm .△ABC 与△DEF 是否相似?为什么?活动3 课堂小结1.三边成比例的两个三角形相似.2.根据题目已知条件,如何寻找证明边成比例的条件.【预习导学】知识探究成比例自学反馈略.【合作探究】活动2 跟踪训练1.1∶2 2.2 3.△ABC ∽△DEF.理由:∵AB DE =33.6=56,BC EF =3.54.2=56,CA FD =2.53=56,∴AB DE =BC EF=CA FD .∴△ABC ∽△DEF.。

九年级数学上册《相似三角形的判定定理3》教案、教学设计

九年级数学上册《相似三角形的判定定理3》教案、教学设计
5.预习下一节课的内容,提前了解相似三角形的其他判定方法,为后续学习打下基础。
作业要求:
1.学生应独立完成作业,诚实守信,不得抄袭。
2.注意作业书写的规范性和整洁性,养成良好的学习习惯。
3.家长应关注学生的学习情况,协助学生按时完成作业,并对学生的学习给予鼓励和支持。
作业批改与反馈:
1.教师应及时批改作业,了解学生的学习情况,对存在的问题进行针对性辅导。
2.选取生活中的一个相似三角形的例子,画图并解释其相似关系,将所学知识应用到实际情境中,增强学生的几何直观。
3.小组合作完成一道综合性的几何证明题,要求运用相似三角形的判定定理3解决问题。通过合作交流,培养学生的团队协作能力和几何逻辑思维。
4.尝试研究相似三角形判定定理3在解决面积问题中的应用,并撰写一篇小论文,内容包括定理的应用方法、解题步骤和实际例题。
九年级数学上册《相似三角形的判定定理3》教案、教学设计
一、教学目标
(一)知识与技能
1.掌握相似三角形的判定定理3,即两边成比例且夹角相等的两个三角形相似。
2.熟练运用相似三角形的判定定理3解决实际问题,提高解决问题的能力。
3.能够运用相似三角形的性质,解决与比例相关的问题,如线段比例、面积比例等。
4.掌握相似三角形的判定方法,形成严密的逻辑推理能力,为后续学习打基础。
(三)学生小组讨论
1.将学生分成若干小组,每组讨论以下问题:
a.相似三角形的判定定理3的具体内容是什么?
b.如何运用判定定理3解决实际问题?
c.判定定理3在实际生活中的应用例子。
2.各小组汇报讨论成果,分享解题思路和经验。
3.教师点评各小组的表现,给予鼓励和指导。
(四)课堂练习
1.设计不同难度的习题,让学生独立完成,巩固所学知识。

数学教案-相似三角形的判定数学教学教案5篇

数学教案-相似三角形的判定数学教学教案5篇

相似三角形的判定数学教学教案5篇两角对应相等,两个三角形相似。

两边对应成比例且夹角相等,两个三角形相似。

三边对应成比例,两个三角形相似。

三边对应平行,两个三角形相似。

斜边与直角边对应成比例,两个直角三角形相似。

都是三角形相似的判定。

下面是小编为大家整理的相似三角形的判定数学教学教案5篇,希望大家能有所收获!相似三角形的判定数学教学教案1教学目标(一)教学知识点1.掌握相似三角形的定义、表示法,并能根据定义判断两个三角形是否相似.2.能根据相似比进行计算.(二)能力训练要求1.能根据定义判断两个三角形是否相似,训练学生的判断能力.2.能根据相似比求长度和角度,培养学生的运用能力.(三)情感与价值观要求通过与相似多边形有关概念的类比,渗透类比的教学思想,并领会特殊与一般的关系.教学重点相似三角形的定义及运用.教学难点根据定义求线段长或角的度数.教学方法类比讨论法教具准备投影片三张第一张(记作§4.5 A)第二张(记作§4.5 B)第三张(记作§4.5 C)教学过程Ⅰ.创设问题情境,引入新课[师]上节课我们学习了相似多边形的定义及记法.现在请大家回忆一下.[生]对应角相等,对应边成比例的两个多边形叫做相似多边形.相似多边形对应边的比叫做相似比.[师]很好.请问相似多边形指的是哪些多边形呢?[生]只要边数相同,满足对应角相等、对应边成比例的多边形都包括.比如相似三角形,相似五边形等.[师]由此看来,相似三角形是相似多边形的一种.今天,我们就来研究相似三角形.相似三角形的判定数学教学教案2一、教学目标1.使学生了解判定定理1及直角三角形相似定理的证明方法并会应用,掌握例2的结论.2.继续渗透和培养学生对类比数学思想的认识和理解.3.通过了解定理的证明方法,培养和提高学生利用已学知识证明新命题的能力.4.通过学习,了解由特殊到一般的唯物辩证法的观点.二、教学设计类比学习,探讨发现三、重点及难点1.教学重点:是判定定理l及直角三角形相似定理的应用,以及例2的结论.2.教学难点:是了解判定定理1的证题方法与思路.四、课时安排1课时五、教具学具准备多媒体、常用画图工具、六、教学步骤[复习提问]1.什么叫相似三角形?什么叫相似比?2.叙述预备定理.由预备定理的题所构成的三角形是哪两种情况.[讲解新课]我们知道,用相似三角形的定义可以判定两个三角形相似,但涉及的条件较多,需要有三对对应角相等,三条对应边的比也都相等,显然用起来很不方便.那么从本节课开始我们来研究能不能用较少的几个条件就能判定三角形相似呢?上节课讲的预备定理实际上就是一个判定三角形相似的方法,现在再来学习几种三角形相似的判定方法.我们已经知道,全等三角形是相似三角形当相似比为1时的特殊情况,判定两个三角形全等的三个公理和判定两个三角形相似的三个定理之间有内在的联系,不同处仅在于前者是后者相似比等于1的情况,教学时可先指出全等三角形与相似三角形之间的关系,然后引导学生自己用类比的方法找出新的命题,如:问:判定两个三角形全等的方法有哪几种?答:SAS、ASA(AAS)、SSS、HL.问:全等三角形判定中的“对应角相等”及“对应边相等”的语句,用到三角形相似的判定中应如何说?答:“对应角相等”不变,“对应边相等”说成“对应边成比例”.问:我们知道,一条边是写不出比的,那么你能否由“ASA”或“AAS”,采用类比的方法,引出一个关于三角形相似判定的新的命题呢?答:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.强调:(1)学生在回答中,如出现问题,教师要予以启发、引导、纠正.(2)用类比方法找出的新命题一定要加以证明.如图5-53,在ⅠABC和Ⅰ 中,,.问:ⅠABC和Ⅰ 是否相似?分析:可采用问答式以启发学生了解证明方法.问:我们现在已经学习了哪几个判定三角形相似的方法?答:①三角形的定义,②上一节学习的预备定理.问:根据本命题条件,探讨时应采用哪种方法?为什么?答:预备定理,因为用定义条件明显不够.问:采用预备定理,必须构造出怎样的图形?答:或.问:应如何添加辅助线,才能构造出上一问的图形?此问学生回答如有困难,教师可领学生共同探讨,注意告诉学生作辅助线一定要合理.(1)在ⅠABC边AB(或延长线)上,截取,过D作DEⅠBC交AC于E.“作相似.证全等”.(2)在ⅠABC边AB(或延长线上)上,截取,在边AC(或延长线上)截取AE= ,连结DE,“作全等,证相似”.(教师向学生解释清楚“或延长线”的情况)虽然定理的证明不作要求,但通过刚才的分析让学生了解定理的证明思路与方法,这样有利于培养和提高学生利用已学知识证明新命题的能力.判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.简单说成:两角对应相等,两三角形相似.,,Ⅰ .例1 已知和中,,,.求证:Ⅰ .此例题是判定定理的直拉应用,应使学生熟练掌握.例2 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似.已知:如图5-54,在中,CD是斜边上的高.求证:Ⅰ Ⅰ .该例题很重要,它一方面可以起到巩固、掌握判定定理1的作用;另一方面它的应用很广泛,并且可以直接用它判定直角三角形相似,教材上排了黑体字,所以可以当作定理直接使用.即ⅠⅠⅠⅠ.[小结]1判定定理1的引出及证明思路与方法的分析,要求学生掌握两种辅助线作法的思路.2.判定定理1的应用以及记住例2的结论并会应用.七、布置作业教材P238中A组3、4.相似三角形的判定数学教学教案31、教学引入照顾到了到多数的同学,培养了学生的动手测量和计算能力。

《相似三角形判定定理的证明》 教学设计

《相似三角形判定定理的证明》 教学设计

《相似三角形判定定理的证明》教学设计一、教学目标1、知识与技能目标学生能够理解相似三角形判定定理的内容。

掌握相似三角形判定定理的证明方法,提高逻辑推理能力。

2、过程与方法目标通过探究相似三角形判定定理的证明过程,培养学生的观察、分析和解决问题的能力。

经历“猜想验证证明”的数学探究过程,体会数学思维的严谨性。

3、情感态度与价值观目标激发学生对数学的兴趣,培养学生勇于探索、创新的精神。

在合作学习中,增强学生的团队意识和交流能力。

二、教学重难点1、教学重点相似三角形判定定理的证明思路和方法。

2、教学难点如何引导学生构建证明的思路,运用已有的知识进行推理和论证。

三、教学方法讲授法、探究法、讨论法相结合四、教学过程1、复习引入回顾相似三角形的定义和性质。

提问:如何判断两个三角形相似呢?引导学生思考并回忆相似三角形的判定方法(如两角分别相等的两个三角形相似)。

2、提出猜想展示几组相似三角形的图片,让学生观察并猜想相似三角形的判定条件。

引导学生提出猜想:比如三边成比例的两个三角形相似;两边成比例且夹角相等的两个三角形相似等。

3、探究证明以“两角分别相等的两个三角形相似”为例,引导学生分析证明思路。

提问:如何构建两个角分别相等的条件?可以通过作平行线等方法。

让学生分组讨论,尝试写出证明过程。

对于“三边成比例的两个三角形相似”,先引导学生思考如何将三边的比例关系转化为线段的等量关系。

提示学生可以通过构建全等三角形来进行证明。

对于“两边成比例且夹角相等的两个三角形相似”,让学生思考如何利用已有的知识和方法进行证明。

4、证明展示与讲解选取几组学生代表,展示他们的证明过程,并进行讲解。

针对学生证明过程中出现的问题和不足,进行纠正和补充。

5、总结归纳总结相似三角形判定定理的证明方法和思路。

强调证明过程中需要注意的逻辑严谨性和规范性。

6、课堂练习布置一些相关的练习题,让学生巩固所学知识。

巡视学生的练习情况,及时给予指导和帮助。

4.4.3相似三角形的判定定理3教案

4.4.3相似三角形的判定定理3教案
2.提供更多实际情境题目,让学生在解决问题的过程中加深对定理的理解和应用。
3.增加课堂互动,鼓励学生提问和分享解题思路,以提高他们的逻辑思维和表达能力。
4.对于学习困难的学生,制定个性化的辅导计划,确保他们能够跟上课程进度。
-针对难点,教师应采用以下教学方法:
-使用动态几何软件或实物模型,帮助学生直观感受相似三角形的形成过程。
-设计阶梯式问题,引导学生逐步理解判定定理3的每个要素。
-通过小组讨论和同伴互助,让学生在互动中解决难点问题。
-提供多层次的练习题,让学生在不同的难度级别上反复练习,逐步突破难点。
四、教学流程
(一)导入新课(用时5分钟)
然而,我也意识到教学过程中存在的一些不足。例如,对于一些理解能力较弱的学生,我可能需要提供更多的个别辅导和额外的练习机会。此外,我也应该考虑引入更多的直观教具或多媒体资源,来帮助那些对几何图形感知能力较弱的学生。
在未来的教学中,我计划在以下几个方面进行改进:
1.强化学生对定理条件的记忆,通过反复练习和复习,确保他们能够熟练掌握。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“相似三角形判定定理3在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
-着重讲解如何从给定的信息中识别出符合判定定理3的条件,并运用这一条件判断三角形是否相似。
-通过典型例题和练习题,强化学生对定理3的记忆和应用能力。
-举例:给定三角形ABC和三角形DEF,如果∠A=∠D,∠B=∠E,且AB/DE=AC/DF,则证明三角形ABC与三角形DEF相似。

湘教版九年级上册教学设计3.4 相似三角形的判定与性质

湘教版九年级上册教学设计3.4 相似三角形的判定与性质

湘教版九年级上册教学设计3.4相似三角形的判定与性质一. 教材分析湘教版九年级上册的教学设计3.4主要讲述了相似三角形的判定与性质。

这一部分内容是初中数学的重要知识点,也是学生进一步学习高中数学的基础。

本节课的内容包括相似三角形的定义、判定方法和性质。

教材通过丰富的例题和练习题,帮助学生理解和掌握相似三角形的判定与性质,提高他们的数学思维能力和解决问题的能力。

二. 学情分析九年级的学生已经学习过三角形的性质和判定,对三角形的概念有一定的了解。

但是,他们对相似三角形的定义和判定方法可能还不够清晰,需要通过实例和练习来加深理解。

此外,学生可能对相似三角形的性质的推导和应用有一定的困难,需要教师的引导和启发。

三. 教学目标1.知识与技能:使学生理解和掌握相似三角形的定义、判定方法和性质,能够运用相似三角形的性质解决实际问题。

2.过程与方法:通过观察、操作、推理等数学活动,培养学生的空间想象能力和逻辑思维能力。

3.情感态度价值观:激发学生对数学的兴趣和好奇心,培养他们的合作意识和解决问题的能力。

四. 教学重难点1.重点:相似三角形的定义、判定方法和性质。

2.难点:相似三角形的性质的推导和应用。

五. 教学方法1.情境教学法:通过生活中的实际问题,引发学生对相似三角形的兴趣和好奇心。

2.引导发现法:教师引导学生观察、操作和推理,发现相似三角形的判定方法和性质。

3.合作学习法:学生分组讨论和合作,共同解决问题,培养他们的合作意识和解决问题的能力。

六. 教学准备1.教师准备:教材、教学PPT、实例和练习题。

2.学生准备:笔记本、尺子、圆规等学习工具。

七. 教学过程1.导入(5分钟)教师通过展示一些实际问题,如建筑设计中相似三角形的应用,引发学生对相似三角形的兴趣和好奇心。

引导学生思考:什么是相似三角形?为什么相似三角形在实际问题中如此重要?2.呈现(10分钟)教师通过PPT呈现相似三角形的定义、判定方法和性质。

湘教版数学九年级上册3.4.1《相似三角的判定》(第4课时)说课稿

湘教版数学九年级上册3.4.1《相似三角的判定》(第4课时)说课稿

湘教版数学九年级上册3.4.1《相似三角的判定》(第4课时)说课稿一. 教材分析湘教版数学九年级上册3.4.1《相似三角形的判定》是本册教材中的重要内容,它为学生提供了判断两个三角形相似的方法,并进一步学习了相似三角形的性质。

本节课的内容是在学生已经掌握了三角形的基本知识以及全等三角形的基础上进行的,为后续学习相似三角形的应用打下基础。

本节课的主要内容包括:相似三角形的定义、相似三角形的判定方法以及相似三角形的性质。

其中,相似三角形的定义是本节课的核心内容,学生需要理解并掌握两个三角形对应角度相等、对应边成比例的概念。

相似三角形的判定方法是本节课的重点内容,学生需要学会运用AA、SSS、SAS三种方法判定两个三角形相似。

相似三角形的性质是本节课的难点内容,学生需要理解并掌握相似三角形的对应边成比例、对应角相等的性质。

二. 学情分析九年级的学生已经具备了一定的数学基础,对三角形的基本知识有了初步了解,具备了一定的逻辑思维能力。

但是,学生在学习本节课时,仍存在以下困难:1.学生对相似三角形的定义理解不够深入,容易与全等三角形混淆。

2.学生对相似三角形的判定方法掌握不牢固,特别是在实际应用中,无法灵活运用。

3.学生对相似三角形的性质理解不透彻,无法运用性质解决实际问题。

三. 说教学目标1.知识与技能目标:学生能理解相似三角形的定义,掌握相似三角形的判定方法,理解相似三角形的性质。

2.过程与方法目标:学生通过观察、操作、交流等活动,培养直观思维能力和推理能力。

3.情感态度与价值观目标:学生体会数学与现实生活的联系,增强学习数学的兴趣和信心。

四. 说教学重难点1.教学重点:相似三角形的定义,相似三角形的判定方法,相似三角形的性质。

2.教学难点:相似三角形的性质的理解和应用。

五. 说教学方法与手段1.教学方法:采用问题驱动法、案例分析法、合作交流法等,引导学生主动探究,提高学生的问题解决能力。

2.教学手段:利用多媒体课件、几何画板等软件,直观展示相似三角形的判定过程,增强学生的直观感受。

九年级数学上册《相似三角形判定定理三》教案、教学设计

九年级数学上册《相似三角形判定定理三》教案、教学设计
4.教师结合教材,详细讲解相似三角形判定定理三的证明过程,让学生理解并掌握定理的原理。
(三)学生小组讨论
1.教师将学生分成小组,每组发放一张含有相似三角形的图形,要求学生在规定时间内找出图形中的相似三角形,并说明判定依据。
2.小组讨论过程中,教师巡回指导,解答学生的疑问,引导学生运用相似三角形判定定理三进行判断。
-在复杂图形中,找出相似三角形并运用定理进行判定。
-将相似三角形的性质与实际问题的解决相结合,培养学生的解决问题能力。
(二)教学设想
1.导入设计
-通过展示生活中的相似三角形实例,如建筑物的立面图、桥梁的形状等,引出相似三角形判定定理三的学习。
-利用多媒体动画,形象直观地呈现相似三角形的形成过程,激发学生的学习兴趣。
5.预习作业:预习下一节课要学习的相似三角形的其他性质和判定方法,为课堂学习做好准备。
作业要求:
1.请同学们认真完成作业,保持字迹工整,步骤清晰,便于教师批改和辅导。
2.遇到问题时,鼓励同学们积极思考、查阅资料或与同学、老师讨论,培养解决问题的能力。
3.作业完成后,请同学们认真检查,确保解答正确,并对解题过程进行总结和反思。
四、教学内容与过程
(一)导入新课
1.教师出示准备好的图片,如建筑物的立面图、桥梁的形状等,引导学生观察并提问:“同学们,你们在生活中见过这样的图形吗?它们之间有什么共同特征?”
2.学生回答后,教师总结:“这些图形都是三角形,而且它们都是相似的。今天我们就来学习相似三角形的判定定理三,探讨如何判断两个三角形是否相似。”
九年级数学上册《相似三角形判定定理三》教案、教学设计
一、教学目标
(一)知识与技能
1.使学生掌握相似三角形判定定理三的内容,即两边对应成比例且夹角相等的两个三角形相似。

4_4探索相似三角形的条件(三)教学设计

4_4探索相似三角形的条件(三)教学设计

第四章图形的相似4.探索三角形相似的条件(三)一、学生知识状况分析学生在七年级已学习过三角形的基础知识,掌握了基本的概念;在本章前面几节课中,又学习了成比例线段,相似多边形,相似三角形,并理解了它们的概念。

学生在上两节课学习的基础上,进一步探索相似三角形的条件(三边成比例的两个三角形相似),已经有一定的探索经验;所以,本课时对学生来说,难度不是很大,关键是老师要用准确的方法,启发学生实行探索,做到师生互动,教师参加学生讨论并充分调动学生的学习积极性。

使学生能充分的理解和掌握三角形的相似的判定方法,并能结合本节知识点,实行一些问题的解决,以巩固所学知识的使用。

二、教学任务分析在复习上一节课所学的判定方法的基础上进一步学习三角形相似的条件,增加“三边对应成比例的两个三角形相似”判定定理,并对所学的各种三角形相似的判定方法实行梳理;使学生能掌握和综合利用相似三角形的判定条件来判定两个三角形的相似,让学生结合实际再次体会数学中的几何图形在生活中广泛存有并起到重要的作用;在教学中再辅以适量的练习使学生对所学的知识加深印象和增加解决问题的水平。

教学目标:1、知识与技能:(1)掌握三角形相似的判定方法3。

(2)会用相似三角形的判定方法3来判断、证明及计算。

2、过程与方法:以问题的形式引入,创设一个有利于学生动手和探究的情景,师生互动,从而达到掌握相似三角形判定的方法的目的。

3、情感与价值观要求:(1)通过探索相似三角形的判定方法3,表达数学活动充满着探索性和创造性.(2)通过对判定方法的探索,发展学生思维的灵活性,进一步培养逻辑推理水平。

教学重点掌握相似三角形的判定定理:“三边成比例的两个三角形相似” 。

教学难点判定方法的推导及使用三、教学过程分析本节课设计了五个教学环节:第一环节:情景引入、合作探讨;第二环节:交流展示、揭示新知;第三环节:应用新知、练习提升;第四环节:梳理知识、自我升华;第五环节:课堂小结。

相似三角形的判定第4课时相似三角形的判定教案

相似三角形的判定第4课时相似三角形的判定教案
图3-4-60
2.如图3-4-61,现用一个交叉卡钳(两条尺长AC和BD相等,OC=OD)量内孔直径AB.若OC∶OA=1∶2,如果测量得CD=10cm,那么AB=2×10=20(cm).你知道这是为什么吗?
图3-4-61
从生活中的实际问题入手,激发了学生的求知欲和好奇心,激起了学生对探究活动的兴趣.
图3-4-66
及时获知学生对所学知识的掌握情况,使每个学生都能有所收获、有所提高.
例4如图3-4-67,正方形ABCD中,E为AB的中点,BF= BC,那么图中与△ADE相似的三角形有几个?选择其中的一组写出证明过程.
图3-4-67
活动
四:
课堂
总结
反思
【当堂训练】
1.教材P82练习中的T1,T2.
2.教材P89习题3.4中的T3.
活动
二:
实践
探究
交流新知
【探究】相似三角形的判定定理2
(1)画△ABC与△A′B′C′,使∠A=∠A′, = ,设法比较∠B与∠B′的大小(或∠C与∠C′).△ABC和△A′B′C′相似吗?
(2)画△ABC与△A′B′C′,使∠B=∠B′, = ,设法比较∠A与∠A′的大小(或∠C与∠C′).△ABC和△A′B′C′相似吗?
问题解决
掌握相似三角形的判定定理,并能运用判定定理进行有关证明和计算,发展应用意识.
情感态度
培养学生积极思考、动手、观察的能力,使学生感悟几何知识在生活中的价值.
教学重点
掌握相似三角形的判定定理:“两边对应成比例且夹角相等的两个三角形相似”.
教学难点
相似三角形判定定理在实际问题中的灵活运用.
授课类型
③[师生互动反思]
______________________________________________________________________________________________

27.2.1 第4课时 相似三角形的判定定理3

27.2.1  第4课时   相似三角形的判定定理3

利用两角判定三角形相似
直角三角形相似的判定
THANKS
则AB=kA'B',AC=kA'C'
由勾股定理得



Rt△ABC∽ Rt△A'B'C'.
1.在 Rt△ABC 和 Rt△A′B′C′ 中,∠C=∠C′=90°,依据下列各组条件判定这两个三角形是否相似.(1) ∠A=35°,∠B′=55°: ;(2) AC=3,BC=4,A′C′=6,B′C′=8: ;(3) AB=10,AC=8,A′B′=25,B′C′=15: .
符号语言:
归纳:
例1 如图,Rt△ABC中,∠C=90°,AB=10,AC=8.E是AC上一点,AE=5,ED⊥AB,垂足为D,求AD的长.
解:∵ ED⊥AB, ∴ ∠EDA=90°. 又∠C=90 °, ∠A=∠A, ∴△AED∽△ABC. ∴
在△ABC 与△A'B'C'中,如果满足∠B=∠B',∠C=∠C',那么能否判定这两个三角形相似?
猜想:△ABC∽△A'B'C'
问题1: 度量 AB,BC,AC,A′B′,B′C′,A′C′ 的长,并计算出它们的比值. 你有什么发现?
一、两角分别相等的两个三角形相似
探究
与同伴合作,一人画 △ABC,另一人画 △A′B′C′,使∠A=∠A′=40°,∠B=∠B′=55°,探究下列问题:
第二十七章 相 似
27.2.1 相似三角形的判定
第4课时 两角分别相等的两个三角形相似
27.2 相似三角形
1. 探索两角分别相等的两个三角形相似的判定定理.2. 掌握利用两角来判定两个三角形相似的方法,并能进行相关计算. (重点、难点)3. 掌握判定两个直角三角形相似的方法,并能进行相关计算.

相似三角形的判定数学教学教案(优秀6篇)

相似三角形的判定数学教学教案(优秀6篇)

相似三角形的判定数学教学教案(优秀6篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、策划方案、合同协议、条据文书、竞聘演讲、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, planning plans, contract agreements, documentary evidence, competitive speeches, insights, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!相似三角形的判定数学教学教案(优秀6篇)学习可以这样来看,它是一个潜移默化、厚积薄发的过程。

初中数学初三数学上册《相似三角形的判定》教案、教学设计

初中数学初三数学上册《相似三角形的判定》教案、教学设计
(五)总结归纳
1.引导学生回顾本节课所学内容,总结相似三角形的判定方法和性质。
2.教师进行补充和强调,帮助学生构建完整的知识体系。
3.提醒学生课后进行复习,布置适量的课后作业,巩固课堂所学知识。
五、作业布置
1.基础作业:完成课本相应练习题,巩固相似三角形的判定方法和性质。要求学生在完成作业时,注意理解题目要求,规范解题过程,提高解题效率。
作业布置注意事项:
1.作业量要适中,避免过多增加学生的负担。
2.作业难度要适中,既要保证基础知识的巩固,又要激发学生的学习兴趣。
3.作业形式要多样化,注重培养学生的自主学习、合作交流和创新思维能力。
4.教师要及时批改作业,给予反馈,指导学生改进学习方法,提高学习效果。
2.提问:“同学们,你们在生活中还见到过哪些相似的三角形?它们之间有什么共同特征?”通过这个问题,激发学生的好奇心,为学习相似三角形的判定方法做好铺垫。
3.引导学生回顾全等三角形的判定方法,为新课的学习打下基础。
(二)讲授新知
1.结合课本,讲解相似三角形的定义,让学生理解相似三角形的含义。
2.通过几何画板演示,让学生直观地观察相似三角形的性质,如对应角相等、对应边成比例等。
3.讲解相似三角形的判定方法,如AA、SAS、SSS等,结合具体例子进行分析,让学生理解并掌握这些方法。
4.针对不同判定方法,设计相应的例题,引导学生运用所学知识解决问题。
(三)学生小组讨论
1.将学生分成若干小组,每组讨论一个相似三角形的判定方法,并给出实际例子。
2.各小组派代表进行汇报,分享本组讨论成果,其他小组可进行补充和提问。
6.作业:布置适量的课后作业,巩固课堂所学知识。
7.课后反思:教师对课堂教学效果进行反思,针对学生的掌握情况,调整教学方法,提高教学质量。

相似三角形判定三教案

相似三角形判定三教案

教学内容:相似三角形的判定三教学目标:1.掌握相似三角形判定定理3;(重点)2.经历相似三角形判定定理3探究和推导过程.(难点)3.会用相似三角形判定定理解决相关数学问题。

教学重点:掌握相似三角形判定定理3;难点:相似三角形判定定理3探究和推导过程。

教学过程:一、复习巩固问题1我们学习过哪些判定三角形相似的方法?问题2在三角形ABC和三角形DEF中,∠B=∠E,AB=4,BC=3,DE=8,EF=6,那么这两个三角形是否相似?理由。

二、新课导入我们学习过判定三角形全等的SSS方法,能不能通过三边来判断两个三角形相似?(一)、动手实践作图要求:1、在练习本画一个三条边长分别为AB=10,AC=8,BC=4的△ABC和三条边长分别为A´B´=5,B´C´=2,A´C´=4的△A´B´C´。

2、观察两个三角形大小相同吗?形状呢?3、用量角器分别测量出三角形三个内角的度数,它们分别相等吗?(二)、推理论证已知:?(猜想)求证:?证明:在△ABC的边AB(或延长线)上截取AD=A′B′,过点D作DE∥BC交AC于点E.∴AD:AB=AE:AC.∵∠A=∠A′,∴△ADE∽△ABC.又A′B′:AB=B′C′:BC=C′A′:CA,∵AD=A′B′,∴AD:AB=A′B′:AB.∴DE:BC=B′C′:BC,EA:CA=C′A′:CA.因此DE=B′C′,EA=C′A′.∴△ADE≌△A′B′C′,∴△A′B′C′∽△ABC.(三)归纳总结如果一个三角形的三条边和另一个三角形的三条边对应成比例,那么这两个三角形相似.(四)例题学习(五)课堂练习判断下列三角形相似吗?1、AB=10cm,BC=5cm,AC=15cm,A´B´=16cm,B´C´=8cm,A´C´=24cm2、∠A=80°,∠C=60°,∠A´=80°,∠B´=40°3、∠A=40°,AB=8,AC=15,∠A´=40°,A´B´=16,A´C´=30.(六)巩固提升2.根据下列条件,判断△ABC与△A´B´C´是否相似,并说明理由:∠A=120°,AB=3cm,AC=6cm,∠A´=120°,A´B´=6cm,A´C´=12cm.3.如图,AE与BD相较于点C,AB=4,BC=2,AC=3,DC=6,CE=4,试求:(1)△ABC 和△DEC 是否相似?为什么?(2)求DE 的长。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第4课时相似三角形的判定定理 3
1.理解并掌握相似三角形的判定定理 3.
(重点,难点)
2.相似三角形的判定定理3的相关应用.
(重点,难点)
一、情境导入
观察下列几组图形,探究其中规律.
试判断与△ABC相似的三角形.
二、合作探究
探究点一:相似三角形的判定定理 3
根据下列条件,判断△ABC与
△DEF是否相似,并说明理由.
(1)AB=6cm,BC=8cm,AC=10cm,
DE=18cm,EF=24cm,DF=30cm;
(2)AB=4cm,BC=6cm,AC=8cm,
DE=12cm,EF=18cm,DF=21cm.
解析:已知两个三角形三边边长,只需
证三边是否成比例,即可判断是否相似.
解:(1)∵AB
DE

6cm
18cm

1
3

BC
EF

8cm
24cm

1 3,
AC
DF

10cm
30cm

1
3

AB
DE

BC
EF

AC
DF

∴△ABC∽△DEF.
(2)∵AB
DE

4cm
12cm

1
3

BC
EF

6cm
18cm

1
3

AC DF =
8cm
21cm
,∴
AB
DE

BC
EF

AC
DF
,∴△ABC与
△DEF不相似.
方法总结:判定两个三角形是否相似,可以根据已知条件,首先要找准对应边,可以把两个三角形的边按从小到大排列,再看是否符合三角形相似的判定定理3即可.
探究点二:相似三角形的判定定理3的应用
【类型一】利用相似三角形的判定定理
3求值
如图所示,已知
AB
BD

BC
BE

CA
ED
,则∠ABD=∠W.
解析:∵
AB
BD

BC
BE

CA
ED
,∴△ABC∽△DBE,∴∠ABC=∠DBE,而∠ABC=∠ABD+∠DBC,∠DBE=∠DBC +∠CBE,∴∠ABD=∠CBE,故填CBE.
方法总结:解答此题时要注意对应边与对应角,根据三组对应边成比例得出相似,再通过转化得到结果.
【类型二】利用相似三角形的判定定理
3证明相似
如图所示,在正方形ABCD中,P 是BC边上的点,且BP=3PC,Q是CD的中点.求证:△ADQ∽△QCP.
解析:先设参数,求出各边,证明三边
成比例,即可证△ADQ∽△QCP.
证明:设正方形ABCD的边长为4a.∵P 是BC边上的点,且BP=3PC,∴PC=a,∵Q是CD的中点,∴QC=QD=2a,AQ=
25a,QP=5a,而QC
AD

2a
4a

1
2

QP
AQ

5a
25a
=1
2,CP
DQ
=a
2a
=1
2
,即QC
AD
=QP
AQ
=CP
DQ

∴△ADQ∽△QCP.
方法总结:在确定对应关系时,要注意最长边对应最长边,最短边对应最短边.本题也可以利用相似三角形的判定定理2证明.
三、板书设计
相似三角形的判定定理3:三边对应成比例的两个三角形相似
本次教学过程完成了对相似三角形判
定定理的教学,在课程引入时,应注重引导学生就所学知识进行回顾归纳,并系统的回顾相关知识点,形成完整的知识架构,进一
步锻炼学生的归纳总结能力,培养良好的逻辑思维能力.。

相关文档
最新文档