高中物理第5章磁场与回旋加速器5.6洛伦兹力与现代科技学业分层测评沪科版选修3-1
2019_2020版高中物理第5章磁场与回旋加速器5.6洛伦兹力与现代科技讲义精练(含解析)沪科版选修3_1
5.6 洛伦兹力与现代科技[学科素养与目标要求]物理观念:1.掌握带电粒子在匀强磁场中运动的规律.2.知道质谱仪、回旋加速器的构造和工作原理.科学思维:1.会分析带电粒子在匀强磁场中的圆周运动问题.2.会利用相关规律解决质谱仪、回旋加速器问题.一、回旋加速器图1是回旋加速器的构造图.图1回旋加速器中磁场和电场分别起什么作用?对交流电源的周期有什么要求?带电粒子获得的最大动能由哪些因素决定?答案 磁场的作用是使带电粒子回旋,电场的作用是使带电粒子加速.交流电源的周期应等于带电粒子在磁场中运动的周期.粒子的最大动能决定于磁感应强度B 和D 形盒的半径R .当带电粒子速度最大时,其运动半径也最大,即r m =mv m Bq ,再由动能定理得:E km =q 2B 2r2m 2m,所以要提高带电粒子获得的最大动能,应尽可能增大磁感应强度B 和D 形盒的半径r m . [要点总结]1.回旋加速器的工作原理:(1)回旋加速器采用多次加速的办法:用磁场控制带电粒子做圆周运动的轨道、用电场对带电粒子进行加速. (2)电场的特点及作用特点:两个D 形盒之间的窄缝区域存在周期性变化的电场. 作用:带电粒子经过该窄缝时被加速. (3)磁场的特点及作用特点:D 形盒处于与盒面垂直的匀强磁场中.作用:带电粒子在洛伦兹力作用下做匀速圆周运动,从而改变运动方向,半个周期后再次进入电场.2.回旋加速器中交流电源的周期等于带电粒子在磁场中运动的周期,一个周期内粒子被加速两次.3.带电粒子获得的最大动能E km =q 2B 2r 22m,决定于D 形盒的半径r 和磁感应强度B ,与加速次数无关,与加速电压U 的大小无关(填“有关”或“无关”).例1 回旋加速器是用来加速一群带电粒子使它们获得很大动能的仪器,其核心部分是两个D 形金属扁盒,两盒分别和一高频交流电源两极相接,以便在盒内的狭缝中形成匀强电场,使粒子每次穿过狭缝时都得到加速,两盒放在磁感应强度为B 的匀强磁场中,磁场方向垂直于盒底面,粒子源置于盒的圆心附近,若粒子源射出的粒子电荷量为q 、质量为m ,粒子最大回旋半径为R max .求:(1)粒子在盒内做何种运动; (2)所加交变电流频率及粒子角速度; (3)粒子离开加速器时的最大速度及最大动能. 答案 (1)匀速圆周运动 (2)qB 2πm qBm(3)qBR max m q 2B 2R 2max 2m解析 (1)带电粒子在盒内做匀速圆周运动,每次加速之后半径变大.(2)粒子在电场中运动时间极短,因此高频交变电流频率要等于粒子回旋频率,由qvB =m v 2R ,v =2πR T 得,T =2πm qB ,故频率f =1T =qB 2πm ,角速度ω=2πf =qBm. (3)由牛顿第二定律知mv2max R max=qBv max则v max =qBR maxm最大动能E kmax =12mv max 2=q 2B 2R 2max 2m二、质谱仪阅读教材,总结质谱仪的构造和各部分的作用,并简述质谱仪的工作原理.答案 质谱仪主要由以下几部分组成:离子源、加速电场U 1、速度选择器(U 2,B 1)、偏转磁场B 2及照相底片.工作原理:离子在加速电场中被加速:qU 1=12mv 2在速度选择器中匀速通过:q U 2d=qvB 1 在偏转磁场中做圆周运动:r =mv qB 2由此可求得离子的质量:m =qB 22r22U 1通过前两式也可求得离子的比荷:q m =U222B 21d 2U 1.[要点总结]1.用途:测量带电粒子的质量和分析同位素的重要工具.2.运动过程:(如图2所示)图2①带电粒子经过电压为U 的加速电场加速,qU =12mv 2①.②带电粒子进入速度选择器,设电场强度为E ,磁感应强度为B 1,满足qE =qvB 1,即v =EB 1的粒子匀速直线通过.③垂直进入磁感应强度为B 的匀强磁场中,做匀速圆周运动,r =mv qB②,由①②式得r =2mqUqB,打在底片上的位置距S 3的距离L =2qB2mqU .3.分析判断:根据带电粒子在磁场中做圆周运动的半径大小,就可以判断带电粒子比荷的大小,如果测出半径且已知电荷量,就可求出带电粒子的质量.例2 现代质谱仪可用来分析比质子重很多倍的离子,其示意图如图3所示,其中加速电压恒定.质子在入口处从静止开始被加速电场加速,经匀强磁场偏转后从出口离开磁场.若某种一价正离子在入口处从静止开始被同一加速电场加速,为使它经匀强磁场偏转后仍从同一出口离开磁场,需将磁感应强度增加到原来的12倍.此离子和质子的质量的比值为( )图3A.11B.12C.121D.144 答案 D解析 设质子的质量和电荷量分别为m 1、q 1,一价正离子的质量和电荷量分别为m 2、q 2.对于任意带正电粒子,在加速电场中,由动能定理得qU =12mv 2-0,得v =2qUm① 在磁场中qvB =m v 2r②由①②式联立得m =B 2r 2q2U,由题意知,两种粒子在磁场中做匀速圆周运动的半径r 相同,加速电压U 不变,其中B 2=12B 1,q 1=q 2,可得m 2m 1=B22B21=144,故选项D 正确.例3 (2018·全国卷Ⅲ)如图4,从离子源产生的甲、乙两种离子,由静止经加速电压U 加速后在纸面内水平向右运动,自M 点垂直于磁场边界射入匀强磁场,磁场方向垂直于纸面向里,磁场左边界竖直.已知甲种离子射入磁场的速度大小为v 1,并在磁场边界的N 点射出;乙种离子在MN 的中点射出;MN 长为l .不计重力影响和离子间的相互作用.求:图4(1)磁场的磁感应强度大小; (2)甲、乙两种离子的比荷之比. 答案 (1)4Ulv 1(2)1∶4解析 (1)设甲种离子所带电荷量为q 1、质量为m 1,在磁场中做匀速圆周运动的半径为R 1,磁场的磁感应强度大小为B ,由动能定理有q 1U =12m 1v 12①由洛伦兹力公式和牛顿第二定律有q 1v 1B =m 1v 21R 1②由几何关系知 2R 1=l ③由①②③式得 B =4U lv 1④(2)设乙种离子所带电荷量为q 2、质量为m 2,射入磁场的速度为v 2,在磁场中做匀速圆周运动的半径为R 2.同理有q 2U =12m 2v 22⑤ q 2v 2B =m 2v22R 2⑥由题给条件有 2R 2=l2⑦由①②③⑤⑥⑦式得,甲、乙两种离子的比荷之比为q 1m 1∶q 2m 2=1∶4 学科素养 例3这道高考题是质谱仪知识的应用,主要考查带电粒子在电场中的加速、在匀强磁场中的圆周运动及其相关的知识点,意在考查考生灵活运用相关知识解决实际问题的能力,体现了“科学思维”的学科素养.1.(回旋加速器)(多选)(2018·“商丘九校”上学期期中)回旋加速器是加速带电粒子的装置,其核心部分是分别与高频交变电流两极相连接的两个D 形金属盒,在两盒间的狭缝中形成的周期性变化的匀强电场,使粒子在通过狭缝时都能得到加速,两D 形金属盒处于垂直于盒底面的匀强磁场中,如图5所示,设匀强磁场的磁感应强度为B ,D 形金属盒的半径为R ,狭缝间的距离为d ,匀强电场间的加速电压为U ,要增大带电粒子(电荷量为q 、质量为m ,不计重力)射出时的动能,则下列方法中可行的是( )图5A.增大匀强电场间的加速电压B.减小狭缝间的距离C.增大磁场的磁感应强度D.增大D 形金属盒的半径 答案 CD解析 由qvB =m v 2R ,解得v =qBR m .则粒子射出时的动能E k =12mv 2=q 2B 2R22m,知动能与加速电压无关,与狭缝间的距离无关,与磁感应强度大小和D 形盒的半径有关,增大磁感应强度和D 形盒的半径,可以增加粒子的最大动能,故C 、D 正确,A 、B 错误.2.(回旋加速器)用回旋加速器分别加速α粒子和质子时,若磁场相同,则加在两个D 形盒间的交变电压的频率之比为( ) A.1∶1 B.1∶3 C.2∶1 D.1∶2 答案 D解析 带电粒子在磁场中运动,洛伦兹力提供向心力,由牛顿第二定律得qvB =m v 2r,又v =2πr T ,所以在磁场中运动的周期T =2πm qB ,因此质子和α粒子在磁场中运动的周期之比为T 质T α=m 质q 质·q αm α=12,因为在回旋加速器中,加速电场的变化周期与粒子在磁场中运动的周期相等,故 加在两个D 形盒间的交变电压的频率之比为f αf 质=T 质T α=12,所以选D. 3.(质谱仪)质谱仪是测带电粒子质量和分析同位素的一种仪器,它的工作原理是带电粒子(不计重力)经同一电场加速后垂直进入同一匀强磁场做圆周运动,然后利用相关规律计算出带电粒子的质量.其工作原理如图6所示,虚线为某粒子的运动轨迹,由图可知( )图6A.此粒子带负电B.下极板S 2比上极板S 1电势高C.若只增大加速电压U ,则半径r 变大D.若只增大入射粒子的质量,则半径r 变小 答案 C解析 由题图结合左手定则可知,该粒子带正电,故A 错误;粒子经过电场要加速,因粒子带正电,所以下极板S 2比上极板S 1电势低,故B 错误;根据动能定理得qU =12mv 2,由qvB =m v 2r得,r =2mUqB 2,若只增大加速电压U ,由上式可知,半径r 变大,故C 正确;若只增大入射粒子的质量,由上式可知,半径也变大,故D 错误.考点一 回旋加速器1.(多选)一个用于加速质子的回旋加速器,其核心部分如图1所示,D 形盒半径为R ,垂直D 形盒底面的匀强磁场的磁感应强度为B ,两盒分别与交流电源相连.设质子的质量为m 、电荷量为q ,则下列说法正确的是( )图1A.D 形盒之间交变电场的周期为2πmqBB.质子被加速后的最大速度随B 、R 的增大而增大C.质子被加速后的最大速度随加速电压的增大而增大D.质子离开加速器时的最大动能与R 成正比 答案 AB解析 D 形盒之间交变电场的周期等于质子在磁场中运动的周期,A 对;由r =mvqB得:当r =R 时,质子有最大速度v m =qBRm,即B 、R 越大,v m 越大,v m 与加速电压无关,B 对,C 错;质子离开加速器时的最大动能E km =12mv m 2=q 2B 2R22m,故D 错.2.两个相同的回旋加速器,分别接在加速电压U 1和U 2的高频电源上,且U 1>U 2,两个相同的带电粒子分别从这两个加速器的中心由静止开始运动,设两个粒子在加速器中运动的时间分别为t 1和t 2,获得的最大动能分别为E k1和E k2,则( ) A.t 1<t 2,E k1>E k2B.t 1=t 2,E k1<E k2C.t 1<t 2,E k1=E k2D.t 1>t 2,E k1=E k2答案 C解析 粒子在磁场中做匀速圆周运动,由R =mv qB ,E km =12mv 2可知,粒子获得的最大动能只与磁感应强度和D 形盒的半径有关,所以E k1=E k2;设粒子在加速器中绕行的圈数为n ,则E k =nqU ,由以上关系可知n 与加速电压U 成反比,由于U 1>U 2,则n 1<n 2,而t =nT ,T 相同,所以t 1<t 2,故C 正确,A 、B 、D 错误.3.(多选)(2018·宜兴市高二期中)如图2所示,回旋加速器D 形盒的半径为R ,所加磁场的磁感应强度为B ,用来加速质量为m 、电荷量为q 的质子(11H),质子从下盒的质子源由静止出发,回旋加速后,由A 孔射出,则下列说法正确的是( )图2A.回旋加速器加速完质子在不改变所加交变电压和磁场的情况下,不可以直接对氦核(42He)进行加速B.只增大交变电压U ,则质子在加速器中获得的最大动能将变大C.回旋加速器所加交变电压的频率为Bq2πmD.加速器可以对质子进行无限加速 答案 AC解析 在加速粒子的过程中,电场的变化周期与粒子在磁场中运动的周期相等.由T =2πmBq知,氦核42He 在回旋加速器中运动的频率是质子的12,不改变B 和f ,该回旋加速器不能用于加速氦核粒子,A 正确;根据qvB =m v 2R 得,粒子的最大速度v =qBRm,即质子有最大速度,不能被无限加速,质子获得的最大动能E km =12mv 2=q 2B 2R22m ,最大动能与加速电压的大小无关,B 、D 错误;粒子在回旋加速器磁场中运动的频率和高频交流电的频率相等,由T =2πm Bq 知f =1T =Bq2πm ,C正确.4.如图3甲所示是用来加速带电粒子的回旋加速器的示意图,其核心部分是两个D 形金属盒,在加速带电粒子时,两金属盒置于匀强磁场中,两盒分别与高频电源相连.带电粒子在磁场中运动的动能E k 随时间t 的变化规律如图乙所示.忽略带电粒子在电场中的加速时间,则下列判断中正确的是( )图3A.在E k -t 图像中应有t 4-t 3<t 3-t 2<t 2-t 1B.加速电压越大,粒子最后获得的动能就越大C.粒子加速次数越多,粒子最大动能一定越大D.要想粒子获得的最大动能增大,可增加D 形盒的面积 答案 D解析 带电粒子在匀强磁场中做匀速圆周运动的周期与速度大小无关,因此在E k -t 图中应有t 4-t 3=t 3-t 2=t 2-t 1,A 错误;由粒子做圆周运动的半径r =mv qB =2mE k qB 可知E k =q 2B 2r 22m,即粒子获得的最大动能决定于D 形盒的半径和匀强磁场的磁感应强度,与加速电压和加速次数无关,当轨道半径r 与D 形盒半径R 相等时就不再继续加速,故B 、C 错误,D 正确.5.(多选)质谱仪的构造原理如图4所示,从粒子源S 出来时的粒子速度很小,可以看作初速度为零,粒子经过电场加速后进入有界的垂直纸面向里的匀强磁场区域,并沿着半圆周运动而达到照相底片上的P 点,测得P 点到入口的距离为x ,则以下说法正确的是( )图4A.粒子一定带正电B.粒子一定带负电C.x 越大,则粒子的质量与电荷量之比一定越大D.x 越大,则粒子的质量与电荷量之比一定越小 答案 AC解析 根据粒子的运动方向和洛伦兹力方向,由左手定则知粒子带正电,故A 正确,B 错误.根据半径公式r =mv qB 知,x =2r =2mv qB ,又qU =12mv 2,联立解得x =8mUqB 2,知x 越大,质量与电荷量的比值越大,故C 正确,D 错误. 考点二 质谱仪6.(2018·临沂市高二上学期期末)质谱仪是一种测定带电粒子质量或分析同位素的重要设备,它的构造原理图如图5所示.离子源S 产生的各种不同正离子束(速度可视为零),经MN 间的加速电压U 加速后从小孔S 1垂直于磁感线进入匀强磁场,运动半周后到达照相底片上的P 点.设P 到S 1的距离为x ,则( )图5A.若离子束是同位素,则x 越大对应的离子质量越小B.若离子束是同位素,则x 越大对应的离子质量越大C.只要x 相同,对应的离子质量一定相同D.只要x 相同,对应的离子的电荷量一定相等 答案 B解析 粒子在加速电场中做加速运动,由动能定理得:qU =12mv 2,解得:v =2qUm.粒子在磁场中做匀速圆周运动,洛伦兹力提供向心力,由牛顿第二定律得:qvB =mv 2r ,解得:r =mv qB =1B2Umq,所以:x =2r =2B2Umq;若离子束是同位素,则q 相同而m 不同,x 越大对应的离子质量越大,故A 错误,B 正确.由x =2B2Umq可知,只要x 相同,对应的离子的比荷一定相等,离子质量和电荷量不一定相等,故C 、D 错误.7.质谱仪是测量带电粒子的质量和分析同位素的重要工具.如图6所示为质谱仪的原理示意图,现利用质谱仪对氢元素进行测量.让氢元素三种同位素的离子流从容器A 下方的小孔S 无初速度飘入电势差为U 的加速电场.加速后垂直进入磁感应强度为B 的匀强磁场中.氢的三种同位素最后打在照相底片D 上,形成a 、b 、c 三条“质谱线”.则下列判断正确的是( )图6A.进入磁场时速度从大到小排列的顺序是氕、氘、氚B.进入磁场时动能从大到小排列的顺序是氕、氘、氚C.在磁场中运动时间由大到小排列的顺序是氕、氘、氚D.a 、b 、c 三条“质谱线”依次排列的顺序是氕、氘、氚答案 A解析 氢元素的三种同位素离子均带正电,电荷量大小均为e ,经过加速电场,由动能定理有:eU =E k =12mv 2,故进入磁场中的动能相同,B 项错误;且质量越大的离子速度越小,A 项正确;三种离子进入磁场后,洛伦兹力充当向心力,evB =m v 2R ,解得:R =mv eB =2meU eB,可见,质量越大的离子做圆周运动的半径越大,D 项错误;在磁场中运动时间均为半个周期,t =12T =πm eB,可见离子质量越大运动时间越长,C 项错误.。
物理沪科版选修3-1第5章磁场与回旋加速器单元测试含解析
本章测评(分值:100分时间:90分钟)一、选择题(共12小题,每题4分,共48分)1下列四个实验现象中,不能表明电流能产生磁场的是()A.甲图中,导线通电后磁针发生偏转B.乙图中,通电导线在磁场中受到力的作用C.丙图中,当电流方向相同时,导线相互靠近D.丁图中,当电流方向相反时,导线相互远离2关于磁场和磁感线的描述,下列说法中正确的是() A.磁感线从永久磁铁的N极发出指向S极,并在S极终止B.任何磁场的磁感线都不会相交C.磁感线可以用来表示磁场的强弱和方向D.磁感线就是磁场中碎铁屑排列成的曲线3关于磁感应强度的概念,下列说法中正确的是( )A.由磁感应强度的定义式B=F/(IL)可知,磁感应强度与磁场力成正比,与电流和导线长度的乘积成反比B.一小段通电导线在空间某处不受磁场力的作用,那么该处的磁感应强度一定为零C.一小段通电导线放在磁感应强度为零的位置上,它受到的磁场力一定等于零D.磁场中某处的磁感应强度的方向,跟电流在该处所受磁场力的方向相同4从太阳或其他星体上放射出的宇宙射线中含有大量的高能带电粒子,这些高能粒子流到达地球会对地球上的生命带来危害,但是由于地球周围存在磁场,地磁场能改变宇宙射线中带电粒子的运动方向,对地球上的生命起到保护作用,如图所示。
那么()A.地磁场对宇宙射线的阻挡作用各处相同B.地磁场对垂直射向地球表面的宇宙射线的阻挡作用在南、北两极最强,赤道附近最弱C.地磁场对垂直射向地球表面的宇宙射线的阻挡作用在南、北两极最弱,赤道附近最强D.地磁场会使沿地球赤道平面内射来的宇宙射线中的带电粒子向两极偏转5软铁棒放在永磁体的旁边能被磁化,这是由于( )A.在永磁体磁场作用下,软铁棒中形成了分子电流B.在永磁体磁场作用下,软铁棒中的分子电流消失了C.在永磁体磁场作用下,软铁棒中分子电流的取向变得大致相同D.在永磁体磁场作用下,软铁棒中分子电流的取向变得更加杂乱无章6如图所示,一束质量、速度和电荷量不同的正离子垂直地射入匀强磁场和匀强电场正交的区域里,结果发现有些离子保持原来的运动方向,未发生任何偏转。
【测控指导】高二物理沪科版选修3-1优化作业:5.6 洛伦兹力与现代科技 Word版含解析[ 高考]
第5章磁场与回旋加速器5.6 洛伦兹力与现代科技一、选择题1.1930年劳伦斯制成了世界上第一台回旋加速器,其原理如图所示,这台加速器由两个铜质D 形盒D1、D2构成,其间留有空隙,下列说法中正确的是( )。
A.离子由加速器的中心附近进入加速器B.离子由加速器的边缘进入加速器C.离子从磁场中获得能量D.离子从电场中获得能量解析:回旋加速器的两个D形盒间隙分布有周期性变化的电场,不断地给带电粒子加速使其获得能量;而D形盒处分布有恒定不变的磁场,具有一定速度的带电粒子在D形盒内受到磁场的洛伦兹力提供的向心力而做圆周运动;洛伦兹力不做功,故不能使离子获得能量,C项错误;离子源在回旋加速器的中心附近,B项错误。
所以正确选项为A、D。
答案:AD2.如图是质谱仪的工作原理示意图。
带电粒子被加速电场加速后,进入速度选择器。
速度选择器内磁感应强度为B的匀强磁场和电场强度为E的匀强电场相互正交。
平板S上有可让粒子通过的狭缝P和记录粒子位置的胶片A1A2。
平板S下方有强度为B0的匀强磁场。
下列表述中正确的是( )。
A.质谱仪是分析同位素的精密仪器B.速度选择器中的磁场方向垂直纸面向外C.能通过狭缝P的带电粒子的速率等于EBD.粒子打在胶片上的位置越靠近狭缝P,粒子的比荷越小解析:由加速电场可见带电粒子所受电场力向下,即粒子带正电,在速度选择器中,电场力水平向右,洛伦兹力水平向左,因此速度选择器中磁场方向垂直纸面向外,选项B正确;经过速度选择器时满足qE=qvB,可知能通过狭缝P的带电粒子的速率等于EB,选项C正确;带电粒子进入磁场做匀速圆周运动,则有R=mvqB ,可见当v相同时,R∝mq,所以可以用来区分同位素,且R越大,比荷就越小,选项D错误。
答案:ABC3.长方体金属块放在匀强磁场中,有电流通过金属块,如图所示,则下列说法中正确的是( )。
A.金属块上、下表面电势相等B.金属块上表面电势高于下表面电势C.金属块上表面电势低于下表面电势D.无法比较两表面的电势高低解析:电流方向向右,则电子运动方向向左,根据左手定则,电子受到的洛伦兹力方向向上,因此上表面电势低于下表面电势,选项C正确。
高中物理 第五章 磁场与回旋加速器 5.6 洛伦兹力与现代科技 回旋加速器素材 沪科版选修31
回旋加速器教学目的使学生知道回旋加速器的基本结构,理解它的工作原理;并通过教学,进一步激发学生的学习兴趣,培养他们运用物理知识分析和解决实际问题的能力.教学过程师:在现代物理学中,为了研究物质的微观结构,人们往往利用能量很高的带电粒子作为“炮弹”,去轰击各种原子核,以观察它们的变化规律.为了大量地产生高能粒子,就要用到一种叫做加速器的实验设备.同学们一定听说过北京正负电子对撞机吧,它就是我国于1989年初投入运行的第一台高能粒子加速器,它能使正负电子束流的能量分别达到28亿电子伏.加速器究竟是怎样产生高能带电粒子的呢?这就是今天要学习的课题.让我们都以探索者的身份,从已有的基础知识出发,一起去寻求问题的答案吧.[由加速器的重要应用以及我国科技新成就导出课题,可以激发学生的求知欲望;要求学生以探索者的身份进入角色,旨在将他们推上学习的主体地位.]师:先请哪位同学回答:用什么方法可以加速带电粒子?生:利用电场可使带电粒子加速.师:(板画图1)根据图示条件,带电粒子加速后可获得多大能量?生:E k=mv2/2=qU师:回答正确.由此看来,要获得高能量的带电粒子,就必须尽量提高加速电压.但我们知道,实际能达到的电压值总是有限的,不可能太高,因而用这种方法加速粒子,获得的能量也不够大,只能达到几十万至几兆电子伏.请同学们想一想,如何突破电压限制,使带电粒子获得更大的能量呢?[疑问是思维的源头,问题是探索的中心.教学中及时、巧妙地存疑设问,是教师主导作用的重要体现.]甲生:我想是否可以再加几个电场,让带电粒子逐一通过它们.(教师根据学生回答,在图1上改画成图2)师:大家认为这种设想有道理吗?乙生:我认为有道理.这样一来,每个电场的电压就不必很高.尽管带电粒子每次加速得到的能量不是很大,但最后的总能量却可达到E k=nqU,只要增加电场的数目n,就可使粒子获得足够大的能量.师:说得对.采用多个电场,使带电粒子实现多级加速,这确是突破电压限制的好方法.同学们能提出这样富有创见的设想,十分可贵,但是,我们再仔细推敲一下它的可行性:按图2所示的方案,真能实现多级加速吗?(学生陷入沉思.顷刻,有部分同学恍然大悟)丙生:这个方案不可能获得高能量的带电粒子!师:你发现什么问题了吗?丙生:从图上可以看出,在相邻两级加速电场的中间,还夹着一个反向电场,当带电粒子通过它们时,将会受到阻碍作用.师:丙同学考虑问题很全面,他不但看到了加速电场这有利的一面,同时还注意到了存在减速电场这不利的一面.那么我们能否“兴利除弊”,设法把加速极板外侧的减速电场消除呢?生:……师:(进一步启发)请大家联系已学的知识:要防止外界电场的干扰,可采用什么措施?生:采用静电屏蔽.师:对.我们可用金属圆筒代替原来的极板.(在图2上改画成图3)这样,既可以在金属圆筒的间隙处形成加速电场,又使得圆筒内部的场强为零,从而消除了减速电场的不利影响.师:再让我们讨论一下电源.为了简化装置,我们可用一个公用电源来提供各级的加速电压.(在图3上改画成图4).如果我们要加速一带正电的粒子,若电源的极性保持恒定(始终为A正B负),你认为这个粒子能够“一路顺风”,不断加速吗?生:不可能.因为,按这样的极性,带电粒子在第一级电场中能得到加速,但到了下一级就会减速.粒子从加速电场得到的能量,将在减速电场中丧失贻尽.师:说得很对.我们有什么方法可解决这个矛盾吗?生:如果能及时地改变电源的极性,就可以解决了.师:好主意!你能对照图4具体说明一下这“及时”的含义吗?生:设开始时电源极性为A正B负,带正电粒子在第一级电场中加速,当它穿过第一只圆筒即将进入第二级电场时,电源极性应立即变为A负B正,使粒子又能继续加速.同理,当它穿过第二只圆筒刚要进入第三级电场时,电源又及时地改变极性,……以后也是如此.师:分析正确.可见,为了实现带电粒子的多级加速,应该采用交变电源;并且,电源极性的变化还必须与粒子的运动配合默契,步调一致,即要满足同步条件,这是确保加速器正常工作的关键所在.那么,如何做到这一点呢?如果使交变电源以恒定的频率交替改变极性,能够满足同步条件吗?甲生:不能满足.因为带电粒子加速之后的速度越来越大,若金属圆筒的长度相等,则它每次穿越的时间就会越来越短.如要保证同步,电源频率应该越来越高才行.师:谁还有不同的见解吗?乙生:我认为当电源频率恒定时,也有可能满足同步条件,只要使得金属圆筒的长度随着粒子速度的增大而相应地加长就行了.师:甲、乙两位同学的意见可谓异曲同工,都有可能满足同步条件.在具体实施时,人们一般采用的是后一种方案.很明显,实施这种方案的关键,在于合理地设计金属圆筒的长度.那么,各圆筒长之间究竟应符合怎样的关系才行呢?这个问题稍许复杂一点,但只要运用我们所学的有关知识,也是不难解决的.有兴趣的同学在课后可以继续讨论,去完成这项设计任务.[教学内容的安排应有弹性,注意留有余地,以贯彻“因材施教”的原则.]师:通过以上的探索和研究,我们实际上已经勾画出一台加速器的雏形了.“麻雀虽小,五脏俱全”,它包含着一般加速器应具备的几个基本要素.下面,就请同学们一起来小结.(根据学生回答,归纳并板书,关键字眼以彩笔突出.)①利用电场加速带电粒子;②通过多级加速获得高能粒子;③将加速电场以外的区域静电屏蔽;④采用交变电源提供加速电压;⑤电场交替变化与带电粒子运动应满足同步条件.[此段小结很有必要.它不仅可将前段探究活动的成果及时整理、提炼、充实和完善学生的认知结构,同时,也为接着学习回旋加速器奠定了基础,从而起到了承前启后的作用.] 师:刚才讨论的这类加速器,人们通常称之为直线加速器.例如北京正负电子对撞机的注入器部分,就是一个全长200多米的直线加速器.这类加速器固然有其优点,但它的设备一字儿排开,往往显得拖沓冗长.于是,我们自然会想:能否寻找一种既可使带电粒子实现多级加速,又不必增加设备长度的方法呢?生:……(思考、议论)师:(自言自语)如果只用一个电场,带电粒子经过加速后还会再次返回,那就好了.……用什么方法能使粒子自动返回呢?……生:(豁然开朗)外加磁场!利用带电粒子在匀强磁场中作圆周运动的特点,可使它重返电场,再次加速.师:好,这确是个巧妙的构想,说不定它还会导致一种新型加速器的延生呢!(学主情绪亢奋,信心骤增)[学习上的探究活动,同样需要有情绪力量的投入.为此,教师讲课不妨带些“情感色彩”,以利于渲染教学氛围,激活学习动因.]师:下面就让我们按着这条思路,来具体分析一下工作原理.(板画图5)设位于加速电场中心的粒子源发出一个带正电粒子,以速率v0垂直进入匀强磁场中.如果它在电场和磁场的协同配合下,不断地得到加速,你能大致画出粒子的运动轨迹来吗?请每位同学都动手试试.要边画图,边思考,并注意联系前面归纳出的几条结论.(教师巡视,对有困难的学生予以指导.多数学生完成之后,抽一人在图5上板画,得图6所示轨迹.)师:同学们都已把带电粒子的运动轨迹画出来了.接下去,请大家思考几个问题.第一,从画出轨迹看,它是条半径越来越大的螺旋线,这是什么缘故?生:根据带电粒子在匀强磁场中运动的半径公式R=mv/Bq,随着粒子不断加速,它的速度越来越大,因此,半径也相应增大.师:对.再看第二个问题:为使带电粒子不断得到加速,提供加速电压的电源应符合怎样的要求?生:要采用交变电源,并且,还必须使电源极性的变化与粒子的运动保持同步.师:你能对照图6,再具体说明一下吗?生:带正电粒子以速度v0进入磁场,当它运动半周后到达A1时,电源极性应是“A正A′负”,粒子被电场加速,速率从v0增加到v1.为“A负A′正”,使粒子再次加速,速率从v1增加到v2……以后的情形就以此类推.师:回答正确.从刚才的分析可以看出,电场的作用是使粒子加速,磁场的作用则使粒子回旋,两者的分工非常明确,同时,它们又配合得十分默契:电源交替变化一周,粒子被加速两次,并恰好回旋一周,这正是确保加速器正常运行的同步条件.(板书如下)师:还有第三个问题:随着粒子不断加速它的速度和半径都在不断增大,为了满足同步条件,电源的频率也要相应变化吗?生:不需变化,因为带电粒子在匀强磁场中的运动周期T=2πm/Bq,它与速度无关.师:说得对.对于给定的带电粒子,它在一定的匀强磁场中运动的周期是恒定的.有了这一条,我们就可免却随时调整电源频率以求同步的麻烦了.从而为最终实施我们的上述构想,提供了极大的便利.早在1932年,美国物理学家劳仑斯正是沿着与我们相仿的巧妙思路.发明了回旋加速器,从而使人类在获得具有较高能量的粒子方面迈进了一大步.为此,劳仑斯荣获了诺贝尔物理学奖.〔学生再次体验到成功的喜悦,似乎他们也分享到了其中的一份.〕师:下面让我们来看回旋加速器的基本结构.(出示挂图)从图上可以看出,回旋加速器主要由下列几部分组成(板书):D形盒、强电磁铁、交变电源、粒子源、引出装置等.其中,两个空心的D形金属盒是它的核心部分.同学们能说明它的作用吗?(让学生自学课本,然后回答)甲生:这两个D形盒就是两个电极,可在它们的缝间形成加速电场.师:谁还有补充吗?乙生:它还起到静电屏蔽的作用.使带电粒子在金属盒内只受磁场力作用,从而做匀速圆周运动.师:书上还提到一个细节:“两个D形盒之间留一个窄缝,……”想一下,为什么要留窄的缝?宽些就不成吗?丙生:……丁生:如果缝很宽,粒子穿越电场所用的时间就不容忽略.而这个时间是要随粒子运动速度的增加而变化的,从而使得粒子回旋一周所需的时间也将随之变化,这就会破坏同步条件.如果是窄缝,粒子在电场中运动的时间可以不计,就可避免不同步的麻烦了.师:说得很对.看来同学们对回旋加速器的原理和结构己有了一定的理解.在此基础上,请大家再讨论一个问题:假如由你来设计一台回旋加速器,要求能使带电粒子获得更高的能量,你打算采用哪些措施?[提出这种设计性问题的目的,在于深化学生思维,活化物理知识,使学习活动跨上更高的台阶.]甲生:可以提高电源的电压.由公式Ek=qU可知,电压值大了,粒子获得能量也大.乙生:还可以加大D形盒的半径.使带电粒子有更大的回旋余地,随着加速次数的增多,粒子具有的能量也就大.丙生:也可以增加磁感应强度.根据公式R=mv/Bq,对应于一定的速度,B值越大,粒子的回旋半径B就越小,这样它在D形盒内就可以兜更多的圈,从而获得更大的能量.师:对于上面几位同学的意见,大家有没有补充或不同的看法?丁生;我认为甲同学的说法不对.因为提高了电源的电压后,尽管可以使粒子每次加速获得的能量增大,但相应的回旋半径也要增大,这又会使得加速次数减少,最后粒子的总能量不见得就大.师:同学们能发表不同的见解,这很好.究竟谁是谁非呢?我们还可以进一步分析:在回旋加速器的最大半径和磁场都确定的条件下,带/2=B2R2q2/2m.这就告诉我们,对于给定的带电粒子来说,它能获得的最高能量与D形电极半径的平方成正比,与磁感应强度的平方成正比,而与加速电压无直接的关系.讲到这里,有的同学可能会想,如果尽量增强回旋加速器的磁场或加大D形盒半径,我们不就可以使带电粒子获得任意高的能量了吗?但实际并非如此.例如:用这种经典的回旋加速器来加速粒子,最高能量只能达到20兆电子伏.这是因为当粒子的速率大到接近光速时,按照相对论原理,粒子的质量将随速率增大而明显地增加,从而使粒子的回旋周期也随之变化,这就破坏了加速器的同步条件.为了获得更高能量的带电粒子,人们又继续寻找新的途径.例如,设法使交变电源的变化周期始终与粒子的回旋周期保持一致,于是就出现了同步回旋加速器.除此之外,人们还设计制造出多种其它的新型加速器.目前世界上最大的加速器已能使质子达到10000亿电子伏以上的能量.我国在高能粒子研究方面发展很快,并取得了多项世界瞩目的成就.希望同学们树立志向,奋发学习,将来把祖国的科学技术推向世界的最前沿!教案说明一、关于课题选定.回旋加速器作为一种高科技的实验设备,学生往往对其怀有浓厚的学习兴趣,如能有意识地让学生到当今科学的前沿“圣地”去涉足一番,哪怕是十分粗浅,也将会有助于他们开阔视野,培养志趣.同时,回旋加速器又是洛仑兹力应用的著名实例,藉此机会,可使学生对电磁学的有关知识作一次较广泛的复习和运用.因此,本课题虽属选学内容,但在学生条件许可的情况下,仍然值得一学.二、关于教材处理.本节课的教材组织及教学流程,可用以下图式表示:这里值得说明的问题是:在顺序上,把直线加速器提在前,而将回旋加速器置于后,这样是否有悖史实?在内容上,回旋加速器是课题的中心,但却要化相当篇幅去讨论直线加速器,这样会否喧宾夺主?教学过程应该是有序的,这就必须牢牢把握两条脉胳:一是教材知识的内在联系,二是学生认识的发展规律.为此,教师应能驾驭教材,对教学内容作一番必要的剪辑或加工,这也是一种教学艺术的再创造.本节教案作如上的安排,正是为了体现这种有序性.从知识的内在联系看,直线加速器与回旋加速器的工作原理有着诸多相同之处,因此可将前者作为后者的铺垫.在理解直线加速器原理的基础上,一旦突破“磁场回旋”这个拐点,回旋加速器的得出就是水到渠成的了.再从学生的认知规律看,他们对直线加速器的理解,一般要比回旋加速器来得容易,于是可把前者当作后者的桥梁.学生在解剖直线加速器这只“麻雀”的过程中,发现了加速器所应具备的若干重要条件,并经过他们自己的总结、整理,建立起来相应的认知结构.以此为依托,有关回旋加速器的内容就可以通过与结构中的有关知识互相作用,实现同化,从而顺利达成知识的迁移.三、关于教法设计.这类课题如果沿用“讲解原理,介绍结构”的传统教法,很可能造成教师呆板地讲、学生被动地听的局面.学生所获得的也只是些静态的知识(现成结论),而那些蕴含于研究过程中的动态知识(科学方法等),却得不到应有的开发.这实在是教学上的重大失策.本课试图改变这种状况,按照“教师为主导,学生为主体,过程为主线”的教学设想,采取了引导探究的教学方法.即把教材内容有机地划分成若干个探究阶段,并辅之以一系列环环相扣的问题,铺设成一条通往知识高峰的阶梯,并力求拓展课题的探究过程,尽量扩大学生的活动空间.在整个过程中,既有学生的积极参与、拾级攀登,又有教师的点拨引导、及时调控.通过师生双边的信息交流,不断地将教学活动引向深入,使学生在获取新知的同时,还亲身经验到科学研究的思想方法,进一步培养了他们的能力。
高中物理第5章磁场与回旋加速器6洛伦兹力与现代科技沪科31沪科3
12/9/2021
第九页,共四十页。
2.带电粒子的最终能量 当带电粒子的速度最大时,其运动半径也最大,由 r=mqBv得 v =qmBr,若 D 形盒半径为 R,则带电粒子的最终动能 Em= q2B2R2
2m . 可见,要提高带电粒子的最终能量,应尽可能增大磁感应强 度 B 和 D 形盒的半径 R.
12/9/2021
第三十一页,共四十页。
3.临界状态不唯一形成多解:带电粒子在洛伦兹力作用下飞 越有界磁场时,由于粒子运动轨迹是圆弧状,因此,它可能 穿过去了,也可能转过 180°从入射面边界反向飞出,如图 丙所示,于是形成了多解.
12/9/2021
第三十二页,共四十页。
4.运动的往复性形成多解:带电粒子在部分是电场、部分是 磁场的空间运动时,运动往往具有往复性,从而形成多解, 如图丁所示.
(2)B1d
2eU1 m
1 (3)B2
12/9/2021
第二十五页,共四十页。
2U1m e
解答此类问题要做到: (1)对带电粒子进行正确的受力分析和运动过程分析; (2)选取合适的规律,建立方程求解.
12/9/2021
第二十六页,共四十页。
2.(多选)质谱仪是一种测定带 电粒子质量和分析同位素的重要工具,它的构 造原理如图所示.离子源 S 可以发出各种不同 的正离子束,离子从 S 出来时速度很小,可以认为是静止的. 离子经过加速电场加速后垂直进入有界匀强磁场(图中实线 框所示),并沿着半圆周运动到达照相底片上的 P 点,测得 P 点到入口处 S1 的距离为 x.下列说法中正确的是( )
设进入加速电场的带电粒子的初速度为 0,电荷量为+q、质
量为 m,两极板之间的电压为 U,由动能定理得 qU=12mv2.
高中物理 第5章 磁场与回旋加速器 5.3 探究电流周围的
探究电流周围的磁场(建议用时:45分钟)[学业达标]1. (2016·临汾高二检测)如图535所示,把一条导线平行地放在磁针的上方附近,当导线中有电流通过时,磁针会发生偏转.发现这个实验现象的物理学家是( )图535A.牛顿B.爱因斯坦C.奥斯特D.居里夫人【解析】发现电流能使小磁针偏转的物理学家是奥斯特.故C正确.【答案】 C2.(多选)通有恒定电流的长直螺线管,下列说法中正确的是( )A.该螺线管内部是匀强磁场B.该螺线管外部是匀强磁场C.放在螺线管内部的小磁针静止时,小磁针N极指向螺线管的N极D.放在螺线管外部中点处的小磁针静止时,小磁针N极指向螺线管的N极【解析】长直螺线管内部中间部分是匀强磁场,在磁场中小磁针的N极指向就是该处磁场的方向.【答案】AC3. (2016·内江高二检测)如图536所示为一通电螺线管,a、b、c是通电螺线管内、外的三点,则三点中磁感线最密处为( )图536A.a处B.b处C.c处D.无法判断【解析】通电螺线管的磁场类似于条形磁铁的磁场,内部最强,两端外侧稍弱,外部的中间部分最弱.【答案】 A4.闭合开关S后,小磁针静止时N极指向如图537所示,那么图中电源的正极( )图537A.一定在a端B.一定在b端C.在a端或b端均可D.无法确定【解析】磁铁外面的磁感线分布与通电螺线管相似,由安培定则即可判断电源的正极在a端.【答案】 A5.直线电流周围的磁场,其磁感线分布和方向用下列哪个图来表示最合适( )【解析】由安培定则可判断A、C错误;直线电流周围的磁感线的分布,由近及远,由密逐渐变疏,而不是等距的同心圆,B错误,D正确.【答案】 D6.如图538所示为磁场作用力演示仪中的赫姆霍兹线圈,当在线圈中心处挂上一个小磁针,且与线圈在同一平面内,则当赫姆霍兹线圈中通以如图所示方向的电流时( )【导学号:37930062】图538A.小磁针N极向里转B.小磁针N极向外转C.小磁针在纸面内向左摆动D.小磁针在纸面内向右摆动【解析】由安培定则可判断小磁针所在处电流的磁场方向向里,而小磁针N极的受力方向与磁场方向相同,故小磁针N极向里转,S极向外转,故选A.【答案】 A7.如图539所示,两根长直通电导线互相平行,电流方向相同.它们的截面处于一个等边三角形ABC的A和B处,且A、B两点处于同一水平面上.两通电导线在C处的磁场的磁感应强度的值都是B,则C处磁场的总磁感应强度的大小和方向是( )图539A.B竖直向上B.B水平向右C.3B水平向右D.3B竖直向上【解析】由安培定则可判断出A和B在C处的磁场分别垂直于AC和BC连线,如图所示.由矢量叠加原理可求出C处磁场的总磁感应强度的大小为3B,方向水平向右.【答案】 C8.在图5310中,分别给出了其中的电流方向或磁场中某处小磁针N极的指向,请画出对应的磁感线(标上方向)或电流的方向.图5310【解析】根据安培定则,各图中电流方向和磁感线方向判定如图所示.【答案】见解析[能力提升]9.如图5311所示,将通电线圈悬挂在磁铁N极附近,磁铁处于水平位置并和线圈在同一平面内,且磁铁的轴线经过线圈圆心,线圈将( )图5311A.转动同时靠近磁铁B.转动同时离开磁铁C.不转动,只靠近磁铁D.不转动,只离开磁铁【解析】把环形电流等效成一个小磁针,由安培定则知,此小磁针的N极向里S极向外.条形磁铁的N极吸引小磁针的S极排斥N极,故线圈将发生转动同时靠近磁铁.从上面观察的俯视图如图所示.答案为A.【答案】 A10. (多选)(2015·上海静安区高二检测)如图5312所示,回形针系在细线下端被磁铁吸引,下列说法正确的是( )图5312A.回形针下端为N极B.回形针两端出现感应电荷C.现用点燃的火柴对回形针加热,过一会儿发现回形针不被磁铁吸引了,原因是回形针加热后,分子电流排列无序了D.用点燃的火柴对回形针加热,回形针不被磁铁吸引,原因是回形针加热后,分子电流消失了【解析】回形针被磁化后的磁场方向与条形磁铁磁场方向一致,故回形针的下端为N 极,A对,B错.对回形针加热,回形针磁性消失是因为分子电流排列无序了,故C对,D 错.【答案】AC11.在纸面上有一个等边三角形ABC,在B、C顶点处是通有相同电流的两根长直导线,导线垂直于纸面放置,电流方向如图5313所示,每根通电导线在三角形的A点产生的磁感应强度大小为B,则三角形A点的磁感应强度大小为________,方向为________.若C点处的电流方向反向,则A点处的磁感应强度大小为________,方向为________. 【导学号:37930063】图5313【解析】 如图所示,由安培定则知B 处导线在A 点的磁感应强度方向水平偏下30°,C 处导线在A 点的磁感应强度方向水平偏上30°,由平行四边形定则可以求得合磁感应强度沿水平方向向右,大小为B 1=2B cos 30°=3B . 当C 处的电流反向时,如图所示.由平行四边形定则可知合磁感应强度的方向沿竖直向下方向,大小等于B . 【答案】3B 水平向右 B 竖直向下12.三根平行长直导线,分别垂直地通过一等腰直角三角形的三个顶点,如图5314所示.现在使每条通电导线在斜边中点处所产生的磁感应强度大小均为B ,则该处实际磁感应强度的大小如何?方向如何?图5314【解析】 根据安培定则,I 1和I 3在O 点处产生的磁感应强度的方向相同,大小均为B ,合成大小为2B ,I 2在O 点产生的磁感应强度与它们垂直,如图所示.由大小均为B 可知,O 点处实际磁感应强度的大小B 0=B2+B 2=5B .设B 0与斜边夹角为α,则:tan α=2BB=2.所以α=arctan 2,即为B 0的方向. 【答案】 5B 方向与斜边夹角为arctan 2。
高中物理(沪科版选修3-1)学业分层测评:第5章 洛伦兹力与现代科技 含答案
(建议用时:45分钟)[学业达标]1.(多选)如图5612为一“滤速器”装置的示意图.a、b为水平放置的平行金属板,一束具有各种不同速率的电子沿水平方向经小孔O进入a、b两板之间.为了选取具有某种特定速率的电子,可在a、b间加上电压,并沿垂直于纸面的方向加一匀强磁场,使所选电子仍能够沿水平直线OO′运动,由O′射出,不计重力作用.可能达到上述目的的办法是( )图5612A.使a板电势高于b板,磁场方向垂直纸面向里B.使a板电势低于b板,磁场方向垂直纸面向里C.使a板电势高于b板,磁场方向垂直纸面向外D.使a板电势低于b板,磁场方向垂直纸面向外【解析】要使电子沿直线OO′运动,则电子在竖直方向所受电场力和洛伦兹力平衡,若a板电势高于b板,则电子所受电场力方向竖直向上,其所受洛伦兹力方向必向下,由左手定则可判定磁场方向垂直纸面向里,故A选项正确.同理可判断D选项正确.【答案】AD2.(多选)利用霍尔效应制作的霍尔元件,广泛应用于测量和自动控制等领域.如图5613是霍尔元件的工作原理示意图,磁感应强度B垂直于霍尔元件的工作面向下,通入图示方向的电流I,C、D两侧面会形成电势差UCD,下列说法中正确的是( )【导学号:29682098】图5613A.电势差UCD仅与材料有关B.若霍尔元件的载流子是自由电子,则电势差UCD<0C.仅增大磁感应强度时,电势差UCD变大D.在测定地球赤道上方的地磁场强弱时,元件的工作面应保持水平【解析】电势差UCD与磁感应强度B、材料有关,选项A错误;若霍尔元件的载流子是自由电子,由左手定则可知,电子向C侧面偏转,则电势差UCD<0,选项B正确;仅增大磁感应强度时,电势差UCD 变大,选项C正确;在测定地球赤道上方的地磁场强弱时,元件的工作面应保持竖直且东西放置,选项D错误.【答案】BC3.(多选)用回旋加速器来加速质子,为了使质子获得的动能增加为原来的4倍,原则上可以采用下列哪几种方法( )A.将其磁感应强度增大为原来的2倍B.将其磁感应强度增大为原来的4倍C.将D形盒的半径增大为原来的2倍D.将D形盒的半径增大为原来的4倍【解析】粒子在回旋加速器中旋转的最大半径等于D形盒的半径R,由R=得粒子最大动能Ek=mv2=,欲使最大动能为原来的4倍,可将B或R增大为原来的2倍,故A、C正确.【答案】AC4.(多选)图5614是质谱仪的工作原理示意图.带电粒子被加速电场加速后,进入速度选择器.速度选择器内相互正交的匀强磁场和匀强电场的强度分别为B和E.平板S上有可让粒子通过的狭缝P和记录粒子位置的胶片A1A2.平板S下方有强度为B0的匀强磁场.下列表述正确的是( )图5614A.质谱仪是分析同位素的重要工具B.速度选择器中的磁场方向垂直纸面向外C.能通过狭缝P的带电粒子的速率等于E/BD.粒子打在胶片上的位置越靠近狭缝P,粒子的荷质比越小【解析】因同位素原子的化学性质完全相同,所以无法用化学方法进行分析,质谱仪是分析同位素的重要工具,A正确.在速度选择器中,带电粒子所受电场力和洛伦兹力在粒子沿直线运动时应等大反向,结合左手定则可知B正确.再由qE=qvB有v=E/B,C正确.在匀强磁场B0中R=,所以=,D错误.【答案】ABC5.如图5615所示是质谱仪示意图,它可以测定单个离子的质量,图中离子源S产生带电荷量为q的离子,经电压为U的电场加速后垂直射入磁感应强度为B的匀强磁场中,沿半圆轨道运动到记录它的照相底片P上,测得它在P上位置与A处水平距离为d,则该离子的质量m大小为( )图5615A. B.qB2d24UC. D.qB2d2U【解析】粒子经过加速电场过程中由动能定理得qU=mv2.在匀强磁场中粒子做圆周运动的半径为,则有=.联立以上两式解得m=.【答案】A6.(多选)在如图所示的匀强电场和匀强磁场共存的区域内(不计重力),电子可能沿水平方向向右做直线运动的是( )【解析】若电子水平向右运动,在A图中电场力水平向左,洛伦兹力竖直向下,故不可能;在B图中,电场力水平向左,洛伦兹力为零,故电子可能水平向右做匀减速直线运动;在C图中电场力竖直向上,洛伦兹力竖直向下,当二者大小相等时,电子向右做匀速直线运动;在D图中电场力竖直向上,洛伦兹力竖直向上,故电子不可能做水平向右的直线运动,因此只有选项B、C正确.【答案】BC7.如图5616所示,一带电小球在一正交电场、磁场区域里做匀速圆周运动,电场方向竖直向下,磁场方向垂直纸面向里,则下列说法正确的是( )【导学号:29682099】图5616A.小球一定带正电B.小球一定带负电C.小球的绕行方向为逆时针D.改变小球速度的大小,小球将不做圆周运动【解析】带电小球在正交电场、磁场区域里做匀速圆周运动,必然有向上的电场力与重力平衡,洛伦兹力提供向心力,所以小球带负电,且沿顺时针方向运动,改变小球速度的大小,小球依然是洛伦兹力提供向心力且能够做圆周运动,B正确,A、C、D错误.【答案】B8.(多选)如图5617所示,在真空中匀强电场的方向竖直向下,匀强磁场方向垂直于纸面向里,3个油滴a、b、c带有等量同种电荷,其中a静止,b向右匀速运动,c向左匀速运动.比较它们重力的关系,正确的是( )图5617A.Ga最大B.Gb最小C.Gc最大D.Gb最大【解析】由a静止可以判定它不受洛伦兹力作用,它所受力的重力与电场力平衡,如图所示,由电场力方向向上可知,a一定带负电,因3个油滴带有同种电荷,所以b、c也一定带等量的负电,所受电场力相同,大小都为F=qE,由于b、c在磁场中做匀速运动,它们还受到洛伦兹力作用,受力如图所示,由平衡条件得Ga=qE,Gb=qE-F1,Gc=qE+F2,所以有Gc>Ga>Gb,故B、C正确.【答案】BC[能力提升]9.(多选)方向如图5618所示匀强电场(场强为E)和匀强磁场(磁感应强度为B)共存的场区,一电子沿垂直电场线和磁感线方向以速度v0射入场区,则( )图5618A.若v0>,电子沿轨迹Ⅰ运动,出场区时速度v>v0B.若v0>,电子沿轨迹Ⅱ运动,出场区时速度v<v0C.若v0<,电子沿轨迹Ⅰ运动,出场区时速度v>v0D.若v0<,电子沿轨迹Ⅱ运动,出场区时速度v<v0【解析】当qv0B=qE,即v=时,电子沿直线运动,当v0>,即洛伦兹力大于静电力,因而轨迹向下偏转,静电力做负功,动能减小,出场区时速度v<v0,B正确、A错误;v0<,即洛伦兹力小于静电力,电子向上偏,静电力做正功,速度v>v0,D错误、C正确.【答案】BC10.(多选)北半球某处,地磁场水平分量B1=0.8×10-4 T,竖直分量B2=0.5×10-4 T,海水向北流动,海洋工作者测量海水的流速时,将两极板插入此海水中,保持两极板正对且垂线沿东西方向,两极板相距d=20 m,如图5619所示,与两极板相连的电压表(可看作是理想电压表)示数为U=0.2 mV,则( )图5619A.西侧极板电势高,东侧极板电势低B.西侧极板电势低,东侧极板电势高C.海水的流速大小为0.125 m/sD.海水的流速大小为0.2 m/s【解析】由于海水向北流动,地磁场有竖直向下的分量,由左手定则可知,正电荷偏向西侧极板,负电荷偏向东侧极板,即西侧极板电势高,东侧极板电势低,故选项A正确;对于流过两极板间的带电粒子有:qvB2=q,即v== m/s=0.2 m/s,故选项D正确.【答案】AD11.在x轴上方有匀强电场,场强为E,在x轴下方有匀强磁场,磁感应强度为B,方向如图5620所示.在x轴上有一点M,离O点距离为l,现有一带电量为+q的粒子,从静止开始释放后能经过M 点,求如果此粒子在y轴上静止释放,其坐标应满足什么关系?(重力忽略不计)【导学号:29682100】图5620【解析】要使带电粒子从静止释放后能运动到M点,必须把粒子放在电场中A点先加速才行,当粒子经加速后以速度v进入磁场,在磁场中只受洛伦兹力作用而做匀速圆周运动,运动半周后到达B 点,再做减速运动,上升到与A点等高处,再返回做加速运动,到B 点后又以速度v进入磁场做圆周运动,半径与前者相同,以后重复前面的运动,从图中可以看出,要想经过M点,OM距离应为直径的整数倍,即满足2R·n==l.2R·n=l ①R=②Eq·y=mv2 ③联立①②③可得:y=(n=1、2、3、…)【答案】y=(n=1、2、3、…)12.如图5621所示,在空间中存在垂直纸面向里的匀强磁场,其竖直边界AB、CD的宽度为d,在边界AB左侧是竖直向下、场强为E的匀强电场,现有质量为m、带电量为+q的粒子(不计重力)从P点以大小为v0的水平初速度射入电场,随后与边界AB成45°射入磁场.若粒子能垂直CD边界飞出磁场,穿过小孔进入如图所示两竖直平行金属板间的匀强电场中减速至零且碰不到正极板.图5621(1)请画出上述过程中粒子的运动轨迹,并求出粒子进入磁场时的速度大小v;(2)求匀强磁场的磁感应强度B;(3)求金属板间的电压U的最小值.【解析】(1)轨迹如图所示v==v0.(2)粒子在匀强磁场中做匀速圆周运动设其轨道半径为R,由几何关系可知R==dqvB=m,解得B=.。
高中物理第5章磁场与回旋加速器5探究洛伦兹力沪科31沪科3
12/13/2021
第二十八页,共四十二页。
在研究带电粒子在匀强磁场中做匀速圆周运动的规律时,着 重把握“一找圆心,二找半径 R=mBqv,三找周期 T=2qπBm或 时间”的方法.
12/13/2021
第二十九页,共四十二页。
(如图),即φ=α=2θ=ωt.
(2)相对的弦切角(θ)相等,与相邻的弦切角(θ′)互补,即 θ+θ′ =180°.
12/13/2021
第二十四页,共四十二页。
3.运动时间的确定 粒子在磁场中运动一周的时间为 T,当粒子运动的圆弧所对 应的圆心角为 α 时,其运动时间可由下式表示:t=36α0°T 或t=2απT.
如图所示,匀强磁场的磁感应强度均为 B,带电粒子 的速率均为 v、带电荷量均为 q.试求出图中带电粒子所受洛 伦兹力的大小,并说明洛伦兹力的方向.
12/13/2021
第十四页,共四十二页。
[思路点拨] 解答本题时应把握以下两点: (1)应用 f=qvBsin θ 求 f 大小时,明确 θ 的意义. (2)应用左手定则判定 f 方向时明确电荷的电性.
12/13/2021
第十五页,共四十二页。
[解析] 甲:因 v⊥B,所以 f=qvB,方向与 v 垂直斜向上. 乙:v 与 B 的夹角为 30°,f=qvBsin 30°=12qvB,方向垂直 纸面向里. 丙:由于 v 与 B 平行,所以电荷不受洛伦兹力,f=0. 丁:v 与 B 垂直,f=qvB,方向与 v 垂直斜向上. [答案] 见解析
2.有一圆形边界的匀强磁场区域,一束质子 流以不同的速率,由圆周上的同一点沿半径方向射入磁场, 质子在磁场中( ) A.路程长的运动时间长 B.速率小的运动时间短 C.偏转角度大的运动时间长 D.运动的时间有可能无限长
(新)高中物理第5章磁场与回旋加速器5_6洛伦兹力与现代科技学案沪科版选修3-12
5.6 洛伦兹力与现代科技1.回旋加速器的原理使带电粒子(例如电子、质子、α粒子等)获得高能量的设备就是加速器。
回旋加速器:它由两个正对的D 形扁盒组成,两D 形扁盒之间有一个狭缝,置于真空中,两狭缝间加高频交流电压。
垂直于D 形盒平面加匀强磁场。
D 形金属扁盒屏蔽了外电场,确保盒内带电粒子在匀强磁场中做匀速圆周运动。
预习交流1同一种带电粒子以不同的速度垂直磁场边界、垂直磁感线射入匀强磁场中,其运动轨迹如图所示,则可知:(1)带电粒子进入磁场的速度值有几个? (2)这些速度的大小关系为________。
(3)三束粒子从O 点出发分别到达1、2、3点所用时间关系为__________。
答案:(1)同一种带电粒子进入同一磁场,速度不同使轨道半径不同,故带电粒子进入磁场的速度值有三个。
(2)r 1<r 2<r 3,由r =mv Bq,得v 1<v 2<v 3。
(3)周期T 1=T 2=T 3,轨迹均为半圆,所用时间为半个周期,故时间关系为t 1=t 2=t 3。
2.质谱仪是一种分析各化学元素的同位素和测量带电粒子质量的精密仪器。
预习交流2如图所示,空间有磁感应强度为B 、方向垂直纸面向里的匀强磁场,一束电子流以速度v 从水平方向射入,为了使电子流经过磁场时不偏转(不计重力),则在磁场区域内必须同时存在一个匀强电场,这个电场的场强的大小和方向应是。
A .B /v ,竖直向上 B .B /v ,方向水平向左C .Bv ,竖直向下D .Bv ,竖直向上 答案:C一、回旋加速器在现代物理学中,人们为探索原子核内部的构造,需要用能量很高的带电粒子去轰击原子核。
美国物理学家劳伦斯于1932年发明了回旋加速器,巧妙地利用较低的高频电源对粒子多次加速使之获得巨大能量。
那么回旋回速器的工作原理是什么呢?答案:利用电场对带电粒子的加速作用和磁场对运动电荷的偏转作用来获得高能粒子,这些过程在回旋加速器的核心部件——两个D 形盒和其间的窄缝内完成,如图所示。
【重点资料】2019高中物理 第5章 磁场与回旋加速器 5.6 洛伦兹力与现代科技学案 沪科版选修3-1
5.6 洛伦兹力与现代科技[知识梳理]一、回旋加速器1.构造图及特点(如图561所示)图561回旋加速器的核心部件是两个D 形盒,它们之间接交流电源,整个装置处在与D 形盒底面垂直的匀强磁场中.2.工作原理 (1)加速条件交流电的周期必须跟带电粒子做圆周运动的周期相等,即T =2πmBq.(2)加速特点粒子每经过一次加速,其轨道半径就大一些(如图562所示),但由T =2πm Bq知,粒子做圆周运动的周期不变.图562二、质谱仪 1.原理图及特点如图563所示,S 1与S 2之间为加速电场;S 2与S 3之间的装置叫速度选择器,它要求E 与B 1垂直且E 方向向右时,B 1垂直纸面向外(若E 反向,B 1也必须反向);S 3下方为偏转磁场.图5632.工作原理 (1)加速带电粒子进入加速电场后被加速,由动能定理有qU =12mv 2.(2)速度选择通过调节E 和B 1的大小,使速度v =E B 1的粒子进入B 2区. (3)偏转R =mv qB 2⇒q m =v RB 2=2E B 1B 2L. 3.应用常用来测定带电粒子的比荷(也叫荷质比)和分析同位素等.[基础自测]1.思考判断(正确的打“√”,错误的打“×”.)(1)回旋加速器交流电的周期等于带电粒子圆周运动周期的一半.(×) (2)回旋加速器的加速电压越大,带电粒子获得的最大动能越大.(×)(3)利用回旋加速器加速带电粒子,要提高加速粒子的最终能量,应尽可能增大磁感应强度B 和D 形盒的半径R .(√)(4)比荷不同的带电粒子通过速度选择器的速度不同.(×)(5)电量相同而质量不同的带电粒子,以相同的速度进入匀强磁场后,将沿着相同的半径做圆周运动.(×)(6)利用质谱仪可以检测化学物质或核物质中的同位素和不同成分.(√) 【提示】(1)× 交流电周期和粒子圆周运动周期应相等. (2)× 带电粒子获得的最大动能与电压无关.(4)× 速度选择器只选择一定速度的粒子通过. (5)× 粒子做圆周运动的半径与质量有关.2. (多选)1930年劳伦斯制成了世界上第一台回旋加速器,其原理如图564所示.这台加速器由两个铜质D 形盒D 1、D 2构成,其间留有空隙,下列说法正确的是( )图564A .离子由加速器的中心附近进入加速器B .离子由加速器的边缘进入加速器C .离子从磁场中获得能量D .离子从电场中获得能量AD [回旋加速器对离子加速时,离子是由加速器的中心附近进入加速器的,故选项A 正确,选项B 错误;离子在磁场中运动时,洛伦兹力不做功,所以离子的能量不变,故选项C 错误;D 形盒D 1、D 2之间存在交变电场,当离子通过交变电场时,电场力对离子做正功,离子的能量增加,所以离子的能量是从电场中获得的,故选项D 正确.]3.如图565所示,一个质量为m 、电荷量为e 的粒子从容器A 下方的小孔S ,无初速度地飘入电势差为U 的加速电场,然后垂直进入磁感应强度为B 的匀强磁场中,最后打在照相底片M 上.下列说法正确的是( )【导学号:69682291】图565A .粒子进入磁场时的速率v =eU m B .粒子在磁场中运动的时间t =2πmeBC .粒子在磁场中运动的轨道半径r =1B 2mU eD .若容器A 中的粒子有初速度,则粒子仍将打在照相底片上的同一位置C [在加速电场中由动能定理得eU =12mv 2,所以粒子进入磁场时的速度v =2eUm,A 错误;由evB =m v 2r 得粒子的半径r =mv eB =1B2mUe ,C 正确;粒子在磁场中运动了半个周期t =T 2=πmeB,B 错误;若容器A 中的粒子有初速度,则粒子在磁场中做匀速圆周运动的半径发生变化,不能打在底片上的同一位置,D 错误.][合 作 探 究·攻 重 难]1(1)带电粒子在两D 形盒中回旋周期等于两盒狭缝之间高频电场的变化周期,与带电粒子的速度无关.(2)将带电粒子在两盒狭缝之间的运动首尾连起来是一个初速度为零的匀加速直线运动. (3)带电粒子每加速一次,回旋半径就增大一次,第一次qU =12mv 21,第二次2qU =12mv 22,第三次3qU =12mv 23,…,v 1∶v 2∶v 3=1∶2∶3∶….因r =mvqB,所以各半径之比为1∶2∶3∶….2.最大动能(1)由r =mvqB得,当带电粒子的速度最大时,其运动半径也最大,若D 形盒半径为R ,则带电粒子的最终动能为E km =q 2B 2R 22m.(2)要提高加速粒子的最终能量,应尽可能增大磁感应强度B 和D 形盒的半径R . 3.粒子被加速次数的计算粒子在回旋加速器盒中被加速的次数n =E kmqU(U 是加速电压的大小),一个周期加速两次. 4.粒子在回旋加速器中运动的时间在电场中运动的时间为t 1,缝的宽度为d ,则nd =v 2t 1,则t 1=2ndv ,在磁场中运动的时间为t 2=n 2T =n πmqB(n 是粒子被加速次数),总时间为t =t 1+t 2,因为t 1≪t 2,一般认为在盒内的时间近似等于t 2.用如图566所示的回旋加速器来加速质子,为了使质子获得的最大动能增加为原来的4倍,不能采用的方法是( )图566A .将其磁感应强度增大为原来的2倍B .将D 形金属盒的半径增大为原来的2倍C .将两D 形金属盒间的加速电压增大为原来的4倍 D .质子被加速后的最大速度不可能超过2πfR思路点拨:①由粒子圆周运动推导出最大动能的表达式. ②从动能的表达式分析最大动能由哪些因素决定.C [带电粒子从D 形盒中射出时的动能E km =12mv 2m ①带电粒子在磁场中做匀速圆周运动,则圆周半径R =mv mBq② 由①②可得E km =R 2q 2B 22m.显然,带电粒子的q 、m 是一定的,则E km ∝R 2B 2,即E km 与磁场的磁感应强度B 和D 形金属盒的半径R 的乘积的平方成正比,与加速电场的电压无关,故A 、B 正确,C 错误;粒子运动的最大半径等于D 形盒半径,有v =2πRT=2πRf ,故D 正确.]分析回旋加速器应注意的问题(1)洛伦兹力永不做功,磁场的作用是让带电粒子“转圈圈”,电场的作用是加速带电粒子. (2)两D 形盒狭缝所加的是与带电粒子做匀速圆周运动周期相同的交流电,且粒子每次过狭缝时均为加速电压.(3)若将粒子在电场中的运动合起来看,可等效为匀加速直线运动,末速度由R =mvqB得到,加速度由a =qU dm 得到(d 为两D 形盒间距),则t 1=v a =BdRU.[针对训练]1.1930年劳伦斯制成了世界上第一台回旋加速器,其原理如567图所示,这台加速器由两个铜质D 形盒D 1、D 2构成,其间留有空隙,下列说法错误的是( )图567A .带电粒子由加速器的中心附近进入加速器B .带电粒子由加速器的边缘进入加速器C .电场使带电粒子加速,磁场使带电粒子旋转D .带电粒子从D 形盒射出时的动能与加速电场的电压无关B [由回旋加速器的加速原理知,被加速粒子只能由加速器的中心附近进入加速器,从边缘离开加速器,故A 正确,B 错误;由于在磁场中洛伦兹力不做功,而粒子通过电场时有qU =12mv 2,所以粒子是从电场中获得能量,故C 正确;当粒子离开回旋加速器时,半径最大,动能最大,根据半径公式r =mv Bq 知,v =Bqr m ,则粒子的最大动能E k =12mv 2=B 2q 2r22m,与加速电场的电压无关,故D 正确.]2. (多选)回旋加速器是加速带电粒子的装置,其核心部分是分别与高频交流电极相连接的两个D 形金属盒,两盒间的狭缝中形成的周期性变化的电场,使粒子在通过狭缝时都能得到加速,两D 形金属盒处于垂直于盒底的匀强磁场中,如图568所示,要增大带电粒子射出时的动能,则下列说法中正确的是( )【导学号:69682292】图568A .增大匀强电场间的加速电压B .增大磁场的磁感应强度C .增加周期性变化的电场的频率D .增大D 形金属盒的半径BD [粒子最后射出时的旋转半径为D 形盒的最大半径R ,R =mv qB ,E k =12mv 2=q 2B 2R22m.可见,要增大粒子的动能,应增大磁感应强度B 和增大D 形盒的半径R ,故正确答案为B 、D.]1.最后在磁场中偏转.图5692.加速:带电粒子经加速电场加速,获得动能12mv 2=qU ,故v =2qUm.3.速度选择器:电场力和洛伦兹力平衡,粒子做匀速直线运动,有qE =qvB 1,故v =E B 1.4.偏转:带电粒子垂直进入匀强磁场,其轨道半径r =mvqB 2=2mUqB 22,可得粒子质量m =qB 22r22U.不同质量的粒子其半径不同,即磁场可以将同电量而不同质量的同位素分开.如图5610所示,两平行金属板间距为d ,电势差为U ,板间电场可视为匀强电场;金属板下方有一磁感应强度为B 的匀强磁场.带电量为+q 、质量为m 的粒子,由静止开始从正极板出发,经电场加速后射出,并进入磁场做匀速圆周运动.忽略重力的影响,求:图5610(1)匀强电场的电场强度E 的大小; (2)粒子从电场射出时速度v 的大小; (3)粒子在磁场中做匀速圆周运动的半径R .思路点拨:①粒子在电场中加速时可以根据动能定理求出末速度. ②粒子在磁场中偏转时洛伦兹力提供向心力. 【解析】 (1)匀强电场的电场强度E =U d. (2)根据动能定理得qU =12mv 2解得v =2qUm.(3)根据洛伦兹力提供向心力得qvB =m v 2R解得R =mv qB =1B2mUq.【答案】 (1)U d(2)2qU m (3)1B 2mU q质谱仪问题的分析技巧(1)分清粒子运动过程的三个阶段. (2)在加速阶段应用动能定理. (3)在速度选择器中应用平衡条件.(4)在偏转阶段应用洛伦兹力提供向心力的规律.[针对训练]3. (多选)质谱仪是一种测定带电粒子质量和分析同位素的重要工具,它的构造原理如图5611所示.离子源S 可以发出各种不同的正离子束,离子从S 出来时速度很小,可以认为是静止的.离子经过加速电场加速后垂直进入有界匀强磁场(图中实线框所示),并沿着半圆周运动到达照相底片上的P 点,测得P 点到入口处S 1的距离为x .下列说法中正确的是( )【导学号:69682293】图5611A .若离子束是同位素,则x 越大,离子的质量越大B .若离子束是同位素,则x 越大,离子的质量越小C .只要x 相同,则离子的质量一定相同D .只要x 相同,则离子的比荷一定相同AD [加速电场中,由qU =12mv 2得,离子出电场时速度v =2qUm.在偏转磁场中,离子做圆周运动的半径r =x2,又由qvB =mv 2r ,得m =B 2qr 22U =qB 2x 28U.若离子束是同位素,即q 相等,则x 越大,离子的质量m 越大,A 正确;由上式可得q m =8UB 2x 2,所以只要x 相同,则离子的比荷一定相同,故D正确.]1(1)复合场:电场、磁场、重力场共存,或其中某两场共存.(2)组合场:电场与磁场各位于一定的区域内,并不重叠,或在同一区域,电场、磁场分时间段或分区域交替出现.2.运动情况分类(1)静止或匀速直线运动当带电粒子在复合场中所受合外力为零时,将处于静止状态或匀速直线运动状态.(2)匀速圆周运动当带电粒子所受的重力与电场力大小相等、方向相反时,带电粒子在洛伦兹力的作用下,在垂直于匀强磁场的平面内做匀速圆周运动.(3)较复杂的曲线运动当带电粒子所受合外力的大小和方向均变化,且与初速度方向不在同一条直线上时,粒子做非匀变速曲线运动,这时粒子的运动轨迹既不是圆弧,也不是抛物线.(4)分阶段运动带电粒子可能依次通过几个情况不同的复合场区域,其运动情况随区域发生变化,其运动过程由几种不同的运动阶段组成.如图5612所示,区域Ⅰ内有与水平方向成45°角的匀强电场E1,区域宽度为d1,区域Ⅱ内有正交的有界匀强磁场B和匀强电场E2,区域宽度为d2,磁场方向垂直纸面向里,电场方向竖直向下.一质量为m、带电荷量为q的微粒在区域Ⅰ左边界的P点,由静止释放后水平向右做直线运动,进入区域Ⅱ后做匀速圆周运动,从区域Ⅱ右边界上的Q点穿出,其速度方向改变了60°,重力加速度为g,求:图5612(1)区域Ⅰ和区域Ⅱ内匀强电场的电场强度E1、E2的大小;(2)区域Ⅱ内匀强磁场的磁感应强度B的大小;(3)微粒从P运动到Q的时间.思路点拨:①微粒在区域Ⅰ做直线运动,则电场力在竖直方向的分力与重力平衡.②微粒在区域Ⅱ内做匀速圆周运动,则重力与电场力平衡,洛伦兹力提供向心力. 【解析】 (1)微粒在区域Ⅰ内水平向右做直线运动,则在竖直方向上有qE 1sin 45°=mg解得E 1=2mgq微粒在区域Ⅱ内做匀速圆周运动,则在竖直方向上有mg =qE 2 解得E 2=mg q.(2)设微粒在区域Ⅰ内水平向右做直线运动时加速度为a ,离开区域Ⅰ时速度为v ,在区域Ⅱ内做匀速圆周运动的轨道半径为R ,则a =qE 1cos 45°m=g v 2=2ad 1(或qE 1cos 45°×d 1=12mv 2) R sin 60°=d 2 qvB =m v 2R解得B =m qd 23gd 12. (3)微粒在区域Ⅰ内做匀加速运动,t 1=2d 1g在区域Ⅱ内做匀速圆周运动的圆心角为60°,则T =2πmBqt 2=T 6=πd 2323gd 1解得t =t 1+t 2=2d 1g +πd 2323gd 1.【答案】 见解析复合场问题的解题方法画出粒子运动轨迹,灵活选择不同的运动规律.(1)当带电粒子在复合场中做匀速直线运动时,根据受力平衡列方程求解.(2)当带电粒子在复合场中做匀速圆周运动时,应用牛顿运动定律结合圆周运动规律求解. (3)当带电粒子做复杂曲线运动时,一般用动能定理或能量守恒定律求解. (4)对于临界问题,注意挖掘隐含的条件.[针对训练]4.如图5613所示,在xOy 平面内,匀强电场的方向沿x 轴正向,匀强磁场的方向垂直于xOy 平面向里.一电子在xOy 平面内运动时,速度方向保持不变.则电子的运动方向沿( )图5613A .x 轴正向B .x 轴负向C .y 轴正向D .y 轴负向C [电子受电场力方向一定水平向左,所以需要受向右的洛伦兹力才能做匀速运动,根据左手定则进行判断可得电子应沿y 轴正向运动.]5.质量为m ,带电荷量为q 的微粒,以速度v 与水平方向成45°角进入匀强电场和匀强磁场同时存在的空间,如图5614所示,微粒在电场、磁场、重力场的共同作用下做匀速直线运动,求:图5614(1)电场强度的大小,该带电粒子带何种电荷; (2)磁感应强度的大小.【导学号:69682294】【解析】 (1)微粒做匀速直线运动,所受合力必为零,微粒受重力mg ,电场力qE ,洛伦兹力qvB ,由此可知,微粒带正电,受力如图所示,qE =mg ,则电场强度E =mg q.(2)由于合力为零,则qvB =2mg , 所以B =2mgqv.【答案】 (1)mg q正电荷 (2)2mgqv[当 堂 达 标·固 双 基]1.(多选)如图5615所示,在图中虚线区域内,存在有电场强度为E 的匀强电场和磁感应强度为B 的匀强磁场.已知从左方以速度v 0水平射入一带电的粒子,且该带电粒子保持速度v 0匀速穿过该区域,不计带电粒子的重力,则在这区域中的匀强电场E 和匀强磁场B 的方向正确的是( )图5615A .E 竖直向下,B 垂直纸面向里 B .E 竖直向下,B 垂直纸面向外C .E 竖直向上,B 垂直纸面向外D .E 竖直向上,B 垂直纸面向里AC [设粒子带正电,若E 竖直向下,则带电粒子所受的电场力竖直向下,由平衡条件可知洛伦兹力竖直向上.根据左手定则判断得知磁场垂直于纸面向里,故A 对,B 错;若E 竖直向上,带电粒子所受的电场力竖直向上,洛伦兹力竖直向下,根据左手定则判断得知磁场垂直于纸面向外,故C 对,D 错.]2.如图5616所示,一个静止的质量为m ,带电量为+q 的带电粒子(不计重力),经电压U 加速后垂直进入磁感应强度为B 的匀强磁场中,粒子打至P 点,设OP =x ,能正确反映x 与U 之间函数关系的x U 图像的是( )【导学号:69682295】图5616B [电场加速qU =12mv 2,带电粒子在匀强磁场中做匀速圆周运动qvB =m v2r ,x =2r ,所以有x=2B 2mUq,B 正确.]3.回旋加速器是用来加速一群带电粒子使它们获得很大动能的仪器,其核心部分是两个D 形金属扁盒,两盒分别和一高频交流电源两极相接,以使在盒间的窄缝中形成匀强电场,使粒子每穿过狭缝都得到加速,两盒放在匀强磁场中,磁感应强度为B ,磁场方向垂直于盒底面,离子源置于盒的圆心附近,若离子源射出的离子电荷量为q ,质量为m ,离子最大回旋半径为R ,其运动轨迹如图5617所示.问:图5617(1)盒内有无电场? (2)离子在盒内做何种运动?(3)所加交流电频率应是多大,离子角速度为多大? (4)离子离开加速器时速度为多大,最大动能为多少?【解析】 (1)扁形盒由金属导体制成,扁形盒可屏蔽外电场,盒内只有磁场而无电场. (2)离子在盒内做匀速圆周运动,每次加速之后半径变大.(3)离子在电场中运动时间极短,因此高频交流电压频率要等于离子回旋频率f =qB2πm ,角速度ω=2πf =qBm.(4)离子最大回旋半径为R ,由牛顿第二定律得qv m B =mv 2m R ,其最大速度为v m =qBRm,故最大动能E km =12mv 2m =q 2B 2R22m.【答案】 (1)见解析 (2)匀速圆周运动 (3)qB 2πm qB m(4)qBR m q 2B 2R 22m。
高中物理第5章磁场与回旋加速器5.6洛伦兹力与现代科技学案沪科版选修3_1
5.6 洛伦兹力与现代科技1.回旋加速器的原理使带电粒子(例如电子、质子、α粒子等)获得高能量的设备就是加速器。
回旋加速器:它由两个正对的D 形扁盒组成,两D 形扁盒之间有一个狭缝,置于真空中,两狭缝间加高频交流电压。
垂直于D 形盒平面加匀强磁场。
D 形金属扁盒屏蔽了外电场,确保盒内带电粒子在匀强磁场中做匀速圆周运动。
预习交流1同一种带电粒子以不同的速度垂直磁场边界、垂直磁感线射入匀强磁场中,其运动轨迹如图所示,则可知:(1)带电粒子进入磁场的速度值有几个? (2)这些速度的大小关系为________。
(3)三束粒子从O 点出发分别到达1、2、3点所用时间关系为__________。
答案:(1)同一种带电粒子进入同一磁场,速度不同使轨道半径不同,故带电粒子进入磁场的速度值有三个。
(2)r 1<r 2<r 3,由r =mv Bq,得v 1<v 2<v 3。
(3)周期T 1=T 2=T 3,轨迹均为半圆,所用时间为半个周期,故时间关系为t 1=t 2=t 3。
2.质谱仪是一种分析各化学元素的同位素和测量带电粒子质量的精密仪器。
预习交流2如图所示,空间有磁感应强度为B 、方向垂直纸面向里的匀强磁场,一束电子流以速度v 从水平方向射入,为了使电子流经过磁场时不偏转(不计重力),则在磁场区域内必须同时存在一个匀强电场,这个电场的场强的大小和方向应是 。
A .B /v ,竖直向上 B .B /v ,方向水平向左C .Bv ,竖直向下D .Bv ,竖直向上 答案:C一、回旋加速器在现代物理学中,人们为探索原子核内部的构造,需要用能量很高的带电粒子去轰击原子核。
美国物理学家劳伦斯于1932年发明了回旋加速器,巧妙地利用较低的高频电源对粒子多次加速使之获得巨大能量。
那么回旋回速器的工作原理是什么呢?答案:利用电场对带电粒子的加速作用和磁场对运动电荷的偏转作用来获得高能粒子,这些过程在回旋加速器的核心部件——两个D 形盒和其间的窄缝内完成,如图所示。
推荐2018-2019学年高中物理 第5章 磁场与回旋加速器 5.6 洛伦兹力与现代科技学案 沪科版选修3-1
5.6 洛伦兹力与现代科技[知识梳理]一、回旋加速器1.构造图及特点(如图561所示)图561回旋加速器的核心部件是两个D 形盒,它们之间接交流电源,整个装置处在与D 形盒底面垂直的匀强磁场中.2.工作原理(1)加速条件交流电的周期必须跟带电粒子做圆周运动的周期相等,即T =2πm Bq. (2)加速特点粒子每经过一次加速,其轨道半径就大一些(如图562所示),但由T =2πm Bq知,粒子做圆周运动的周期不变.图562二、质谱仪1.原理图及特点如图563所示,S 1与S 2之间为加速电场;S 2与S 3之间的装置叫速度选择器,它要求E 与B 1垂直且E 方向向右时,B 1垂直纸面向外(若E 反向,B 1也必须反向);S 3下方为偏转磁场.图5632.工作原理(1)加速带电粒子进入加速电场后被加速,由动能定理有qU =12mv 2. (2)速度选择通过调节E 和B 1的大小,使速度v =E B 1的粒子进入B 2区.(3)偏转 R =mv qB 2⇒q m =v RB 2=2E B 1B 2L. 3.应用 常用来测定带电粒子的比荷(也叫荷质比)和分析同位素等.[基础自测]1.思考判断(正确的打“√”,错误的打“×”.)(1)回旋加速器交流电的周期等于带电粒子圆周运动周期的一半.(×)(2)回旋加速器的加速电压越大,带电粒子获得的最大动能越大.(×)(3)利用回旋加速器加速带电粒子,要提高加速粒子的最终能量,应尽可能增大磁感应强度B 和D 形盒的半径R .(√)(4)比荷不同的带电粒子通过速度选择器的速度不同.(×)(5)电量相同而质量不同的带电粒子,以相同的速度进入匀强磁场后,将沿着相同的半径做圆周运动.(×)(6)利用质谱仪可以检测化学物质或核物质中的同位素和不同成分.(√)【提示】(1)× 交流电周期和粒子圆周运动周期应相等.(2)× 带电粒子获得的最大动能与电压无关.。
高中物理 第5章 磁场与 回旋加速器综合检测 沪科版选
第5章磁场与回旋加速器(分值:100分时间:60分钟)一、选择题(本大题共7个小题,每小题6分.共42分.每小题至少有一个答案是正确的,把正确答案的字母填在题后的括号内.)1.(2012·海口一中高二检测)月球表面周围没有空气,它对物体的引力仅为地球上的1/6,月球表面没有磁场,根据这些特征,在月球上,图中的四种情况能够做到的是( )【解析】既然月球表面没有磁场,那么在月球上就不能用指南针定向,所以A错误;月球表面周围没有空气,所以无法使用电风扇吹风,而声音的传播需要介质,所以B、C均不对,只有选项D正确.【答案】 D2.在匀强磁场中某处P放一个长度为L=20 cm,通电电流I=0.5 A的直导线,测得它受到的最大磁场力F=1.0 N,其方向竖直向上,现将该通电导线从磁场撤走,则P处磁感应强度为( )A.零B.10 T,方向竖直向上C.0.1 T,方向竖直向下D.10 T,方向肯定不沿竖直向上的方向【解析】由B=FIL ,得B=10.5×0.2T=10 T.因为B的方向与F的方向垂直,所以B的方向不会沿竖直向上的方向.【答案】 D3.(2012·烟台高二检测)如图1所示,a、b两金属环同圆心同平面水平放置,当a中通以图示方向电流时,b环中磁通量方向是( )图1A.向上B.向下C.向左D.0【解析】a环形成的磁场方向为内部向上,环外向下,被b环包围的磁通量则为向上、向下磁通量的代数和,而向上的磁感线条数比向下的磁感线条数多,故总磁通量为向上,A 正确.【答案】 A4.如图所示,通电导线均置于匀强磁场中,其中导线受安培力作用的是( )【解析】只有当通电导线和磁场平行时,才不受安培力的作用,如A、C图中的导线,而D中导线与磁场垂直,B中导线与磁场方向夹角为60°,因此都受安培力的作用,故正确选项为B、D.【答案】BD5.(2012·宁德高二质检)如图2所示,在x轴上方存在着垂直于纸面向里、磁感应强度为B的匀强磁场.一个不计重力的带电粒子从坐标原点O处以速度v进入磁场,粒子进入磁场时的速度方向垂直于磁场且与x轴正方向成120°角.若粒子穿过y轴正半轴后在磁场中到x轴的最大距离为a,则该粒子的比荷和所带电荷的正负是( )图2A.3v2aB,正电荷 B.v2aB,正电荷C.3v2aB,负电荷 D.v2aB,负电荷【解析】 粒子能穿过y 轴的正半轴,所以该粒子带负电荷,其运动轨迹如图所示,A 点到x 轴的距离最大,为R +12R =a ,R =mv qB ,得q m =3v2aB,故C 正确.【答案】 C6.如图3所示,表面粗糙的斜面固定于地面上,并处于方向垂直纸面向外、强度为B 的匀强磁场中.质量为m 、带电荷量为+Q 的小滑块从斜面顶端由静止下滑.在滑块下滑的过程中,下列判断正确的是( )图3A .滑块受到的摩擦力不变B .滑块到达地面时的动能与B 的大小无关C .滑块受到的洛伦兹力方向垂直斜面向下D .B 很大时,滑块可能静止于斜面上【解析】 据左手定则可知,滑块受到垂直斜面向下的洛伦兹力,C 对.随着滑块速度的变化,洛伦兹力大小变化,它对斜面的压力大小发生变化,故滑块受到的摩擦力大小变化,A 错.B 越大,滑块受到的洛伦兹力越大,受到的摩擦力也越大,摩擦力做功越多,据动能定理,滑块到达地面时的动能就越小,B 错.由于开始滑块不受洛伦兹力时就能下滑,故B 再大,滑块也不可能静止在斜面上.【答案】 C7.如图4所示,一个带正电荷的小球沿水平光滑绝缘的桌面向右运动,飞离桌上边缘A ,最后落到地板上.设有磁场时飞行时间为t 1,水平射程为x 1,着地速度大小为v 1;若撤去磁场,其余条件不变时,小球飞行时间为t 2,水平射程为x 2,着地速度大小为v 2,则下列结论不正确的是( )图4A .x 1>x 2B .t 1>t 2C .v 1>v 2D .v 1和v 2大小相同【解析】 本题考查带电粒子在磁场中的运动情况.小球离开桌面具有水平速度,无磁场时做平抛运动,水平射程x 2=v 0t 2,下落高度h =12gt 22;有磁场时小球除受重力外还受到洛伦兹力的作用,而洛伦兹力始终与速度方向垂直,因此小球在水平方向具有加速度,在水平方向将做变加速运动,而竖直方向加速度a =mg -Fm(F 为洛伦兹力在竖直方向的分量),即a <g ,因此下落h 高度用的时间t 1>t 2,B 选项正确;水平方向的位移x 1>x 2,A 选项正确;又因为洛伦兹力不做功,只有重力做功,能量守恒,所以v 1=v 2,D 选项正确;只有C 选项错误.【答案】 C二、非选择题(本题共5个小题,共58分.计算题要有必要的文字说明和解题步骤,有数值计算的要注明单位.)8.(8分)正方形导线框abcd ,匝数为10匝,边长为20 cm ,在磁感应强度为0.2 T 的匀强磁场中围绕与B 方向垂直的转轴匀速转动,转速为120 r/min ,当线框从平行于磁场位置开始转过90°时,线圈中磁通量的变化量是________Wb.【解析】 Φ1=BS =0.2×0.2×0.2 Wb=0.008 WbΦ2=BS ′=0.2×0=0ΔΦ=Φ1-Φ2=0.008 Wb. 【答案】 0.0089.(8分)如图5所示,在x 轴的上方(y ≥0)存在着垂直于纸面向外的匀强磁场,磁感应强度为B .在原点O 有一个离子源向x 轴上方的各个方向发射出质量为m 、电荷量为q 的正离子,速度都为v ,对那些在xy 平面内运动的离子,在磁场中可能到达的最大距离x =________,y =________.图5【解析】 经分析可知沿y 轴正方向射入的粒子.在x 轴上到达的距离最大即2R =2 mv qB.同理沿x 轴负方向射入的粒子到达y 轴的距离最大,即2R =2mvqB.【答案】2mv qB 2mv qB10.(12分)(2013·福建师大附中期末)如图6所示,在磁感应强度B =1 T 的匀强磁场中,用两根细线悬挂长L =10 cm 、质量m =5 g 的金属杆.在金属杆中通以稳恒电流,使悬线受的拉力为零.图6(1)求金属杆中电流的大小和方向;(2)若每根悬线所受的拉力为0.1 N,求金属杆中的电流的大小和方向(g=10 m/s2).【解析】(1)因为悬线受的拉力为零,所受安培力方向向上F安=BIL=mg,解得:I=0.5 A,方向水平向右.(2)金属导线在重力mg、悬线拉力2F和安培力BIL的作用下平衡,所以有:mg+BIL=2F,解得:I=1.5 A 方向水平向左.【答案】(1)0.5 A 方向水平向右(2)1.5 A 方向水平向左11.(14分)如图7所示,在第一象限有一匀强电场,场强大小为E,方向与y轴平行;在x轴下方有一匀强磁场,磁场方向与纸面垂直.一质量为m、电荷量为-q(q>0)的粒子以平行于x轴的速度从y轴上的P点处射入电场,在x轴上的Q点处进入磁场,并从坐标原点O离开磁场.粒子在磁场中的运动轨迹与y轴交于M点.已知OP=l,OQ=23l.不计重力,求:图7(1)M点与坐标原点O间的距离;(2)粒子从P点运动到M点所用的时间.【解析】(1)带电粒子在电场中做类平抛运动,在y轴负方向上做初速度为零的匀加速运动,设加速度的大小为a;在x轴正方向上做匀速直线运动,设速度为v0;粒子从P点运动到Q 点所用的时间为t 1,进入磁场时速度方向与x 轴正方向的夹角为θ,则a =qE m① t 1= 2y 0a② v 0=x 0t 1③其中x 0=23l ,y 0=l ,又有 tan θ=at 1v 0④联立②③④式,得θ=30°⑤因为M 、O 、Q 点在圆周上,∠MOQ =90°,所以MQ 为直径.从图中的几何关系可知,R =23l ⑥ MO =6l ⑦(2)设粒子在磁场中运动的速度为v ,从Q 到M 点运动的时间为t 2,则有v =v 0cos θ⑧ t 2=πR v⑨带电粒子自P 点出发到M 点所用的时间t 为t =t 1+t 2⑩联立①②③⑤⑥⑧⑨⑩式,并代入数据得t =(32π+1) 2ml qE【答案】 (1)6l (2)(32π+1) 2mlqE12.(16分)(2013·福州一中高二期末)如图8,xOy 在竖直平面内,x 轴下方有匀强电场和匀强磁场.电场强度为E 、方向竖直向下.磁感应强度为B 、方向垂直纸面向里.将一个带电小球从y 轴上P (0,h )点以初速度v 0竖直向下抛出.小球穿过x 轴后,恰好做匀速圆周运动.不计空气阻力,已知重力加速度为g .图8(1)判断小球带正电还是负电; (2)求小球做圆周运动的半径;(3)求小球从P 点出发,到第二次经过x 轴所用的时间.【解析】 (1)小球穿过x 轴后恰好做匀速圆周运动 有qE =mg ,故小球带负电.(2)设小球经过O 点时的速度为v ,从P 到O ,v 2=v 20+2gh 从O 到A ,根据牛顿第二定律qvB =m v 2r ,求出r =E v 20+2gh gB.(3)从P 到O ,小球第一次经过x 轴,所用时间为t 1,v =v 0+gt 1从O 到A ,小球第二次经过x 轴,所用时间为t 2T =2πr v =2πm qB ,t 2=T 2=πE gB求出t =t 1+t 2=v 20+2gh -v 0g +πE gB .【答案】 (1)负电 (2)E v 20+2ghgB(3)v 20+2gh -v 0g +πE gB。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
洛伦兹力与现代科技(建议用时:45分钟)[学业达标]1.(多选)如图5612为一“滤速器”装置的示意图.a、b为水平放置的平行金属板,一束具有各种不同速率的电子沿水平方向经小孔O进入a、b两板之间.为了选取具有某种特定速率的电子,可在a、b间加上电压,并沿垂直于纸面的方向加一匀强磁场,使所选电子仍能够沿水平直线OO′运动,由O′射出,不计重力作用.可能达到上述目的的办法是( )图5612A.使a板电势高于b板,磁场方向垂直纸面向里B.使a板电势低于b板,磁场方向垂直纸面向里C.使a板电势高于b板,磁场方向垂直纸面向外D.使a板电势低于b板,磁场方向垂直纸面向外【解析】要使电子沿直线OO′运动,则电子在竖直方向所受电场力和洛伦兹力平衡,若a板电势高于b板,则电子所受电场力方向竖直向上,其所受洛伦兹力方向必向下,由左手定则可判定磁场方向垂直纸面向里,故A选项正确.同理可判断D选项正确.【答案】AD2.图5613为云室中某粒子穿过铅板P前后的轨迹.室中匀强磁场的方向与轨迹所在平面垂直(图中垂直于纸面向里),由此可知此粒子( )图5613A.一定带负电B.可能带负电也可能带正电C.可能是从上而下穿过该铅板D.一定是从下而上穿过该铅板【解析】穿过铅板后要损失机械能,即速度减小,因此半径要减小,由此判断粒子从下往上穿过.由轨迹偏转方向易知此粒子带正电.【答案】 D3.(多选)(2016·杭州高二检测)用回旋加速器来加速质子,为了使质子获得的动能增加为原来的4倍,原则上可以采用下列哪几种方法( )A .将其磁感应强度增大为原来的2倍B .将其磁感应强度增大为原来的4倍C .将D 形盒的半径增大为原来的2倍 D .将D 形盒的半径增大为原来的4倍【解析】 粒子在回旋加速器中旋转的最大半径等于D 形盒的半径R ,由R =mvqB得粒子最大动能E k =12mv 2=B 2q 2R22m ,欲使最大动能为原来的4倍,可将B 或R 增大为原来的2倍,故A 、C 正确.【答案】 AC4.(多选)(2016·临高高二检测)图5614是质谱仪的工作原理示意图.带电粒子被加速电场加速后,进入速度选择器.速度选择器内相互正交的匀强磁场和匀强电场的强度分别为B 和E .平板S 上有可让粒子通过的狭缝P 和记录粒子位置的胶片A 1A 2.平板S 下方有强度为B 0的匀强磁场.下列表述正确的是( )图5614A .质谱仪是分析同位素的重要工具B .速度选择器中的磁场方向垂直纸面向外C .能通过狭缝P 的带电粒子的速率等于E /BD .粒子打在胶片上的位置越靠近狭缝P ,粒子的荷质比越小【解析】 因同位素原子的化学性质完全相同,所以无法用化学方法进行分析,质谱仪是分析同位素的重要工具,A 正确.在速度选择器中,带电粒子所受电场力和洛伦兹力在粒子沿直线运动时应等大反向,结合左手定则可知B 正确.再由qE =qvB 有v =E /B ,C 正确.在匀强磁场B 0中R =mv qB 0,所以q m =vB 0R,D 错误. 【答案】 ABC5.如图5615所示是质谱仪示意图,它可以测定单个离子的质量,图中离子源S 产生带电荷量为q 的离子,经电压为U 的电场加速后垂直射入磁感应强度为B 的匀强磁场中,沿半圆轨道运动到记录它的照相底片P 上,测得它在P 上位置与A 处水平距离为d ,则该离子的质量m 大小为( )图5615A.qB 2d 28UB.qB 2d 24UC.qB 2d 22UD.qB 2d 2U【解析】 粒子经过加速电场过程中由动能定理得qU =12mv 2.在匀强磁场中粒子做圆周运动的半径为d2,则有d 2=mv Bq .联立以上两式解得m =qB 2d 28U.【答案】 A6.(多选)在如图所示的匀强电场和匀强磁场共存的区域内(不计重力),电子可能沿水平方向向右做直线运动的是( )【解析】 若电子水平向右运动,在A 图中电场力水平向左,洛伦兹力竖直向下,故不可能;在B 图中,电场力水平向左,洛伦兹力为零,故电子可能水平向右做匀减速直线运动;在C 图中电场力竖直向上,洛伦兹力竖直向下,当二者大小相等时,电子向右做匀速直线运动;在D 图中电场力竖直向上,洛伦兹力竖直向上,故电子不可能做水平向右的直线运动,因此只有选项B 、C 正确.【答案】 BC7.如图5616所示,一带电小球在一正交电场、磁场区域里做匀速圆周运动,电场方向竖直向下,磁场方向垂直纸面向里,则下列说法正确的是( )【导学号:37930072】图5616A .小球一定带正电B.小球一定带负电C.小球的绕行方向为逆时针D.改变小球速度的大小,小球将不做圆周运动【解析】带电小球在正交电场、磁场区域里做匀速圆周运动,必然有向上的电场力与重力平衡,洛伦兹力提供向心力,所以小球带负电,且沿顺时针方向运动,改变小球速度的大小,小球依然是洛伦兹力提供向心力且能够做圆周运动,B正确,A、C、D错误.【答案】 B8.(多选)如图5617所示,在真空中匀强电场的方向竖直向下,匀强磁场方向垂直于纸面向里,3个油滴a、b、c带有等量同种电荷,其中a静止,b向右匀速运动,c向左匀速运动.比较它们重力的关系,正确的是( )图5617A.G a最大B.G b最小C.G c最大D.G b最大【解析】由a静止可以判定它不受洛伦兹力作用,它所受力的重力与电场力平衡,如图所示,由电场力方向向上可知,a一定带负电,因3个油滴带有同种电荷,所以b、c也一定带等量的负电,所受电场力相同,大小都为F=qE,由于b、c在磁场中做匀速运动,它们还受到洛伦兹力作用,受力如图所示,由平衡条件得G a=qE,G b=qE-F1,G c=qE+F2,所以有G c>G a>G b,故B、C正确.【答案】BC[能力提升]9.(多选)方向如图5618所示匀强电场(场强为E)和匀强磁场(磁感应强度为B)共存的场区,一电子沿垂直电场线和磁感线方向以速度v0射入场区,则( )图5618A.若v0>E/B,电子沿轨迹Ⅰ运动,出场区时速度v>v0B .若v 0>E /B ,电子沿轨迹Ⅱ运动,出场区时速度v <v 0C .若v 0<E /B ,电子沿轨迹Ⅰ运动,出场区时速度v >v 0D .若v 0<E /B ,电子沿轨迹Ⅱ运动,出场区时速度v <v 0【解析】 当qv 0B =qE ,即v =E B 时,电子沿直线运动,当v 0>E B,即洛伦兹力大于静电力,因而轨迹向下偏转,静电力做负功,动能减小,出场区时速度v <v 0,B 正确,A 错误;v 0<EB,即洛伦兹力小于静电力,电子向上偏,静电力做正功,速度v >v 0,D 错误,C 正确. 【答案】 BC10.(多选)(2015·古田一中高二检测)北半球某处,地磁场水平分量B 1=0.8×10-4T ,竖直分量B 2=0.5×10-4T ,海水向北流动,海洋工作者测量海水的流速时,将两极板插入此海水中,保持两极板正对且垂线沿东西方向,两极板相距d =20 m ,如图5619所示,与两极板相连的电压表(可看作是理想电压表)示数为U =0.2 mV ,则( )图5619A .西侧极板电势高,东侧极板电势低B .西侧极板电势低,东侧极板电势高C .海水的流速大小为0.125 m/sD .海水的流速大小为0.2 m/s【解析】 由于海水向北流动,地磁场有竖直向下的分量,由左手定则可知,正电荷偏向西侧极板,负电荷偏向东侧极板,即西侧极板电势高,东侧极板电势低,故选项A 正确;对于流过两极板间的带电粒子有:qvB 2=q U d ,即v =U B 2d =0.2×10-30.5×10-4×20m/s =0.2 m/s ,故选项D 正确.【答案】 AD11.质量为m ,电荷量为q 的带负电的粒子自静止开始,经M 、N 板间的电场加速后,从A 点垂直于磁场边界射入宽度为d 的匀强磁场中,该粒子离开磁场时的位置P 偏离入射方向的距离为L ,如图5620所示.已知M 、N 两板间的电压为U ,粒子的重力不计.图5620(1)正确画出粒子由静止开始至离开匀强磁场时的轨迹图(用直尺和圆规规范作图); (2)求匀强磁场的磁感应强度B .【解析】 (1)作粒子经电场和磁场的轨迹图,如图(2)设粒子在M 、N 两板间经电场加速后获得的速度为v ,由动能定理得:qU =12mv 2①粒子进入磁场后做匀速圆周运动,设其半径为r ,则:qvB =m v 2r②由几何关系得:r 2=(r -L )2+d 2③ 联立①②③式得: 磁感应强度B =2L L 2+d 22mUq.【答案】 (1)轨迹图见解析 (2)2L L 2+d 22mUq12.如图5621所示,在空间中存在垂直纸面向里的匀强磁场,其竖直边界AB 、CD 的宽度为d ,在边界AB 左侧是竖直向下、场强为E 的匀强电场,现有质量为m 、带电量为+q 的粒子(不计重力)从P 点以大小为v 0的水平初速度射入电场,随后与边界AB 成45°射入磁场.若粒子能垂直CD 边界飞出磁场,穿过小孔进入如图所示两竖直平行金属板间的匀强电场中减速至零且碰不到正极板.图5621(1)请画出上述过程中粒子的运动轨迹,并求出粒子进入磁场时的速度大小v ; (2)求匀强磁场的磁感应强度B ; (3)求金属板间的电压U 的最小值.【解析】 (1)轨迹如图所示v =v 0sin 45°=2v 0.(2)粒子在匀强磁场中做匀速圆周运动设其轨道半径 为R ,由几何关系可知R =dsin 45°=2dqvB =m v 2R,解得B =mv 0qd. (3)粒子进入板间电场至速度减为零且恰不与正极板相碰时,板间电压U 最小,由动能定理有-qU =0-12mv 2解得U =mv 20q.【答案】 (1)轨迹见解析图 2v 0 (2)mv 0qd (3)mv 2q。