2019年浙教版初中数学中考试卷含答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝密★启用前
2019年浙教版初中数学中考模拟试卷含答案
题号一二三总分
得分
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上
第Ⅰ卷(选择题)
请点击修改第I卷的文字说明
评卷人得分
一.选择题(共10小题,3*10=30)
1.﹣2的绝对值是()
A.2 B.﹣2 C.0 D.
2.2014年广东省人口数超过105000000,将105000000这个数用科学记数法表示为()A.0.105×109B.1.05×109C.1.05×108D.105×106
3.用两块完全相同的长方体搭成如图所示的几何体,这个几何体的主视图是()
A.B.C.D.
4.在一个不透明的口袋中装有4个红球和若干个白球,它们除颜色外其它均相同,从袋中随机摸出一个球,记下颜色后放回.通过大量重复摸球试验后发现,摸到红球的频率在25%附近摆动,则口袋中的
白球可能有()
A.12个B.13个C.15个D.16个
5.已知反比例函数y=的图象经过点P(﹣1,2),则这个函数的图象位于()
A.第二,三象限B.第一,三象限
C.第三,四象限D.第二,四象限
6.如图所示,在平行四边形ABCD中,CE是∠DCB的平分线,且交AB于E,DB与CE相交于O,已知AB=6,BC=4,则等于()
A.B.C.D.不一定
7.如图:二次函数y=ax2+bx+2的图象与x轴交于A、B两点,与y轴交于C点,若AC⊥BC,则a 的值为()
A.﹣B.﹣C.﹣1 D.﹣2
8.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x名同学,根据题意,列出方程为()
A.x(x+1)=1035 B.x(x﹣1)=1035×2
C.x(x﹣1)=1035 D.2x(x+1)=1035
9.a,b,c为常数,且(a﹣c)2>a2+c2,则关于x的方程ax2+bx+c=0根的情况是()A.有两个相等的实数根B.有两个不相等的实数根
C.无实数根D.有一根为0
10.已知二次函数y=﹣(x﹣h)2+1(为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最大值为﹣5,则h的值为()
A.3﹣或1+B.3﹣或3+C.3+或1﹣D.1﹣或1+
第Ⅱ卷(非选择题)
请点击修改第Ⅱ卷的文字说明
评卷人得分
二.填空题(共8小题,3*8=24)
11.分解因式:ax2﹣ay2=.
12.我国高速公路发展迅速,据报道,到目前为止,全国高速公路总里程约为10.8万千米,10.8万用科学记数法表示为.
13.已知一个样本0,﹣1,x,1,3它们的平均数是2,则这个样本的中位数是.
14.如图,矩形ABCD的顶点A、C分别在直线a、b上,且a∥b,∠1=60°,则∠2的度数为.15.如图,DE是△ABC的中位线,F是DE的中点,CF的延长线交AB于G,AB=6,则AG=.
16.如图,AB,AC分别为⊙O的内接正六边形,内接正方形的一边,BC是圆内接n边形的一边,则n 等于.
17.如图,在△ABC中,∠CAB=75°,在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′
∥AB,则∠BAB′=.
18.如图,在平面直角坐标系中,A、B两点分别在x轴、y轴上,OA=3,OB=4,连接AB.点P在平面内,若以点P、A、B为顶点的三角形与△AOB全等(点P与点O不重合),则点P的坐标为.
评卷人得分
三.解答题(共8小题,66分)
19.(6分)先化简,再求值:(x+2)2﹣4x(x+1),其中x=.
20.(6分)如图,△AOB,△COD是等腰直角三角形,点D在AB上,
(1)求证:△AOC≌△BOD;
(2)若AD=3,BD=1,求CD.
21.(6分)解方程:+=1.
22.(8分)在四张编号为A,B,C,D的卡片(除编号外,其余完全相同)的正面分别写上如图所示正整数后,背面朝上,洗匀放好,现从中随机抽取一张,不放回,再从剩下的卡片中随机抽取一张.
(1)请用树状图或列表的方法表示两次抽取卡片的所有可能出现的结果(卡片用A,B,C,D表示);(2)我们知道,满足a2+b2=c2的三个正整数a,b,c成为勾股数,求抽到的两张卡片上的数都是勾股数的概率.
23.(8分)如图,在平面直角坐标系中,O为坐标原点,P是反比例函数y=(x>0)图象上任意一点,以P为圆心,PO为半径的圆与x轴交于点A、与y轴交于点B,连接AB.
(1)求证:P为线段AB的中点;
(2)求△AOB的面积.
24.(10分)如图,⊙O的直径AC与弦BD相交于点F,点E是DB延长线上的一点,∠EAB=∠ADB.(1)求证:EA是⊙O的切线;
(2)已知点B是EF的中点,求证:以A、B、C为顶点的三角形与△AEF相似;
(3)已知AF=4,CF=2.在(2)条件下,求AE的长.
25.(10分)如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,CD⊥AB于点D.点P从点D出发,沿线段DC向点C运动,点Q从点C出发,沿线段CA向点A运动,两点同时出发,速度都为
每秒1个单位长度,当点P运动到C时,两点都停止.设运动时间为t秒.
(1)①求线段CD的长;
②求证:△CBD∽△ABC.
(2)设△CPQ的面积为S,求S与t之间的函数关系式,并求出S的最大值.
(3)是否存在某一时刻t,使得△CPQ为等腰三角形?若存在,请直接写出满足条件的t的值;若不存在,请说明理由.
26.(12分)在正方形ABCD中,AB=8,点P在边CD上,tan∠PBC=,点Q是在射线BP上的一个动点,过点Q作AB的平行线交射线AD于点M,点R在射线AD上,使RQ始终与直线BP垂直.
(1)如图1,当点R与点D重合时,求PQ的长;
(2)如图2,试探索:的比值是否随点Q的运动而发生变化?若有变化,请说明你的理由;若没有变化,请求出它的比值;
(3)如图3,若点Q在线段BP上,设PQ=x,RM=y,求y关于x的函数关系式,并写出它的定义域.
参考答案与试题解析
一.选择题(共10小题)
1.﹣2的绝对值是()
A.2 B.﹣2 C.0 D.
【分析】根据绝对值的概念:数轴上某个数与原点的距离叫做这个数的绝对值可直接得到答案.
【解答】解:﹣2的绝对值是2,
故选:A.
【点评】此题主要考查了绝对值,关键是掌握绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.
2.2014年广东省人口数超过105000000,将105000000这个数用科学记数法表示为()A.0.105×109B.1.05×109C.1.05×108D.105×106
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n是负数.
【解答】解:将105000000用科学记数法表示为1.05×108.
故选:C.
【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.
3.用两块完全相同的长方体搭成如图所示的几何体,这个几何体的主视图是()
A.B.C.D.
【分析】根据主视图的定义,找到从正面看所得到的图形即可.
【解答】解:从物体正面看,左边1列、右边1列上下各一个正方形,且左右正方形中间是虚线,
故选:C.
【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图,解答时学生易将三种视图混淆而错误的选其它选项.
4.在一个不透明的口袋中装有4个红球和若干个白球,它们除颜色外其它均相同,从袋中随机摸出一个球,记下颜色后放回.通过大量重复摸球试验后发现,摸到红球的频率在25%附近摆动,则口袋中的白球可能有()
A.12个B.13个C.15个D.16个
【分析】设口袋中的白球可能有x个,利用频率公式得到=25%,然后解关于x的方程即可.【解答】解:设口袋中的白球可能有x个,
根据题意得=25%,解得x=12,
即口袋中的白球可能有12个.
故选:A.
【点评】本题考查了频数与频率:频率是指每个对象出现的次数与总次数的比值(或者百分比).即频率=频数:数据总数.
5.已知反比例函数y=的图象经过点P(﹣1,2),则这个函数的图象位于()
A.第二,三象限B.第一,三象限
C.第三,四象限D.第二,四象限
【分析】先把点代入函数解析式,求出k值,再根据反比例函数的性质求解即可.
【解答】解:由题意得,k=﹣1×2=﹣2<0,
∴函数的图象位于第二,四象限.
故选:D.
【点评】本题考查了反比例函数的图象的性质:k>0时,图象在第一、三象限,k<0时,图象在第二、四象限.
6.如图所示,在平行四边形ABCD中,CE是∠DCB的平分线,且交AB于E,DB与CE相交于O,已知AB=6,BC=4,则等于()
A.B.C.D.不一定
【分析】根据已知及角平分线的性质可得到△DOC∽△BOE,从而根据相似比不难求得.
【解答】解:∵CE是∠DCB的平分线,DC∥AB
∴∠DCO=∠BCE,∠DCO=∠BEC
∴∠BEC=∠BCE
∴BE=BC=4
∵DC∥AB
∴△DOC∽△BOE
∴OB:OD=BE:CD=2:3
∴=
故选:B.
【点评】解决本题的关键是利用相似得到所求线段有关线段的比值.
7.如图:二次函数y=ax2+bx+2的图象与x轴交于A、B两点,与y轴交于C点,若AC⊥BC,则a 的值为()
A.﹣B.﹣C.﹣1 D.﹣2
【分析】设A(x1,0),B(x2,0),C(0,t),由题意可得t=2;在直角三角形ABC中,利用射影定理求得OC2=OA•OB,即4=|x1x2|=﹣x1x2;然后根据根与系数的关系即可求得a的值.【解答】解:设A(x1,0)(x1<0),B(x2,0)(x2>0),C(0,t),
∵二次函数y=ax2+bx+2的图象过点C(0,t),
∴t=2;
∵AC⊥BC,
∴OC2=OA•OB,即4=|x1x2|=﹣x1x2,
根据韦达定理知x1x2=,
∴a=﹣.
故选:A.
【点评】本题主要考查了抛物线与x轴的交点.注意二次函数y=ax2+bx+2与关于x的方程ax2+bx+2=0间的转换关系.
8.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x名同学,根据题意,列出方程为()
A.x(x+1)=1035 B.x(x﹣1)=1035×2
C.x(x﹣1)=1035 D.2x(x+1)=1035
【分析】如果全班有x名同学,那么每名同学要送出(x﹣1)张,共有x名学生,那么总共送的张数应该是x(x﹣1)张,即可列出方程.
【解答】解:∵全班有x名同学,
∴每名同学要送出(x﹣1)张;
又∵是互送照片,
∴总共送的张数应该是x(x﹣1)=1035.
故选:C.
【点评】本题考查一元二次方程在实际生活中的应用.计算全班共送多少张,首先确定一个人送出多少张是解题关键.
9.a,b,c为常数,且(a﹣c)2>a2+c2,则关于x的方程ax2+bx+c=0根的情况是()A.有两个相等的实数根B.有两个不相等的实数根
C.无实数根D.有一根为0
【分析】利用完全平方的展开式将(a﹣c)2展开,即可得出ac<0,再结合方程ax2+bx+c=0根的判别式△=b2﹣4ac,即可得出△>0,由此即可得出结论.
【解答】解:∵(a﹣c)2=a2+c2﹣2ac>a2+c2,
∴ac<0.
在方程ax2+bx+c=0中,
△=b2﹣4ac≥﹣4ac>0,
∴方程ax2+bx+c=0有两个不相等的实数根.
故选:B.
【点评】本题考查了完全平方公式以及根的判别式,解题的关键是找出△=b2﹣4ac>0.本题属于基础题,难度不大,解决该题型题目时,根据根的判别式的符号,得出方程实数根的个数是关键.
10.已知二次函数y=﹣(x﹣h)2+1(为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最大值为﹣5,则h的值为()
A.3﹣或1+B.3﹣或3+C.3+或1﹣D.1﹣或1+
【分析】由解析式可知该函数在x=h时取得最小值1、x<h时,y随x的增大而增大、当x>h时,y 随x的增大而减小,根据1≤x≤3时,函数的最大值为﹣5,可分如下两种情况:①若h<1≤x≤3,x =1时,y取得最大值﹣5;②若1≤x≤3<h,当x=3时,y取得最大值﹣5,分别列出关于h的方程求解即可.
【解答】解:∵当x<h时,y随x的增大而增大,当x>h时,y随x的增大而减小,
∴①若h<1≤x≤3,x=1时,y取得最大值﹣5,
可得:﹣(1﹣h)2+1=﹣5,
解得:h=1﹣或h=1+(舍);
②若1≤x≤3<h,当x=3时,y取得最大值﹣5,
可得:﹣(3﹣h)2+1=﹣5,
解得:h=3+或h=3﹣(舍).
综上,h的值为1﹣或3+,
故选:C.
【点评】本题主要考查二次函数的性质和最值,根据二次函数的性质和最值分类讨论是解题的关键.二.填空题(共8小题)
11.分解因式:ax2﹣ay2=a(x+y)(x﹣y).
【分析】应先提取公因式a,再对余下的多项式利用平方差公式继续分解.
【解答】解:ax2﹣ay2,
=a(x2﹣y2),
=a(x+y)(x﹣y).
故答案为:a(x+y)(x﹣y).
【点评】本题主要考查提公因式法分解因式和平方差公式分解因式,需要注意分解因式一定要彻底.12.我国高速公路发展迅速,据报道,到目前为止,全国高速公路总里程约为10.8万千米,10.8万用科学记数法表示为 1.08×105.
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n是负数
【解答】解:10.8万=1.08×105.
故答案为:1.08×105.
【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.
13.已知一个样本0,﹣1,x,1,3它们的平均数是2,则这个样本的中位数是 1 .
【分析】根据平均数的公式先求出x,再根据中位数的定义得出答案.
【解答】解:∵0,﹣1,x,1,3的平均数是2,
∴x=7,
把0,﹣1,7,1,3按大小顺序排列为﹣1,0,1,3,7,
∴个样本的中位数是1,
故答案为1.
【点评】本题考查了中位数、算术平均数的定义,掌握平均数、中位数的定义是解题的关键.
14.如图,矩形ABCD的顶点A、C分别在直线a、b上,且a∥b,∠1=60°,则∠2的度数为60°.
【分析】延长AB交直线b于点E,利用平行的性质可求出∠AEC的度数,再利用矩形的性质即可求出∠2的度数.
【解答】解:延长AB交直线b于点E,
∵a∥b,
∴∠AEC=∠1=60°,
∵AB∥CD,
∴∠2=∠AEC=60°,
故答案为:60°
【点评】本题考查平行线的性质,解题的关键是熟练运用平行线的性质以及矩形的性质,本题属于基础题型.
15.如图,DE是△ABC的中位线,F是DE的中点,CF的延长线交AB于G,AB=6,则AG= 2 .
【分析】过E作EM∥AB与GC交于点M,构造全等三角形把DG转移到和AG有关的中位线处,可得所求线段的比,进而解答即可.
【解答】解:过E作EM∥AB与GC交于点M,
∴△EMF≌△DGF,
∴EM=GD,
∵DE是中位线,
∴CE=AC,
又∵EM∥AG,
∴△CME∽△CGA,
∴EM:AG=CE:AC=1:2,
又∵EM=GD,
∴AG:GD=2:1.
∵AB=6,
∴AD=3,
∴AG=,
故答案为:2
【点评】本题考查三角形中位线定理和全等三角形的性质,由中点构造全等三角形,从而将求解同一直线上的两条线段的比值问题转化为不共线的两条线段的比值问题.
16.如图,AB,AC分别为⊙O的内接正六边形,内接正方形的一边,BC是圆内接n边形的一边,则n 等于12 .
【分析】根据正方形以及正六边形的性质得出∠AOB==60°,∠AOC==90°,进而得出∠BOC=30°,即可得出n的值.
【解答】解:连接AO,BO,CO.
∵AB、AC分别为⊙O的内接正六边形、内接正方形的一边,
∴∠AOB==60°,∠AOC==90°,
∴∠BOC=30°,
∴n==12,
故答案为:12
【点评】此题主要考查了正多边形和圆的性质,根据已知得出∠BOC=30°是解题关键.
17.如图,在△ABC中,∠CAB=75°,在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′=30°.
【分析】首先证明∠ACC′=∠AC′C;然后运用三角形的内角和定理求出∠CAC′=30°即可解决问题.【解答】解:由题意得:
AC=AC′,
∴∠ACC′=∠AC′C;
∵CC′∥AB,且∠BAC=75°,
∴∠ACC′=∠AC′C=∠BAC=75°,
∴∠CAC′=180°﹣2×75°=30°;
由题意知:∠BAB′=∠CAC′=30°,
故答案为30°.
【点评】此题主要考查了旋转的性质以及平行线的性质,得出AC=AC′,∠BAC=∠ACC′=75°是解题关键.
18.如图,在平面直角坐标系中,A、B两点分别在x轴、y轴上,OA=3,OB=4,连接AB.点P在平面内,若以点P、A、B为顶点的三角形与△AOB全等(点P与点O不重合),则点P的坐标为(3,
4)或(,)或(﹣,).
【分析】由条件可知AB为两三角形的公共边,且△AOB为直角三角形,当△AOB和△APB全等时,则可知△APB为直角三角形,再分三种情况进行讨论,可得出P点的坐标.
【解答】解:如图所示:
①∵OA=3,OB=4,
∴P1(3,4);
②连结OP2,
设AB的解析式为y=kx+b,则
,
解得.
故AB的解析式为y=﹣x+4,
则OP2的解析式为y=x,
联立方程组得,
解得,
则P2(,);
③连结P2P3,
∵(3+0)÷2=1.5,
(0+4)÷2=2,
∴E(1.5,2),
∵1.5×2﹣=﹣,
2×2﹣=,
∴P3(﹣,).
故点P的坐标为(3,4)或(,)或(﹣,).
故答案为:(3,4)或(,)或(﹣,).
【点评】本题考查了全等三角形的性质及坐标与图形的性质,做这种题要求对全等三角形的判定方法熟练掌握.
三.解答题(共8小题)
19.先化简,再求值:(x+2)2﹣4x(x+1),其中x=.
【分析】原式利用完全平方公式,单项式乘以多项式法则计算,去括号合并得到最简结果,把x的值代入计算即可求出值.
【解答】解:原式=x2+4x+4﹣4x2﹣4x=﹣3x2+4,
当x=时,原式=﹣6+4=﹣2.
【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.
20.如图,△AOB,△COD是等腰直角三角形,点D在AB上,
(1)求证:△AOC≌△BOD;
(2)若AD=3,BD=1,求CD.
【分析】(1)根据等腰直角三角形得出OC=OD,OA=OB,∠AOB=∠COD=90°,求出∠AOC=∠BOD,根据全等三角形的判定定理推出即可;
(2)根据全等三角形的性质求出AC=BD=1,∠CAO=∠B=45°,求出∠CAD=90°,根据勾股定理求出CD即可.
【解答】(1)证明:∵△AOB,△COD是等腰直角三角形,
∴OC=OD,OA=OB,∠AOB=∠COD=90°,
∴∠AOC=∠BOD=90°﹣∠AOD,
在△AOC和△BOD中
∴△AOC≌△BOD(SAS);
(2)解:∵△AOB,△COD是等腰直角三角形,
∴OC=OD,OA=OB,∠AOB=∠COD=90°,
∴∠B=∠OAB=45°,
∵△AOC≌△BOD,BD=1,
∴AC=BD=1,∠CAO=∠B=45°,
∵∠OAB=45°,
∴∠CAD=45°+45°=90°,
在Rt△CAD中,由勾股定理得:CD===.
【点评】本题考查了全等三角形的性质和判定、勾股定理、等腰直角三角形的性质等知识点,能熟练地
运用全等三角形的判定定理求出两三角形全等是解此题的关键,注意:全等三角形的对应边相等,对应角相等;全等三角形的判定定理有SAS,ASA,AAS,SSS.
21.解方程:+=1.
【分析】首先确定最简公分母,然后方程两边同乘以最简公分母,简化方程,求解即可,最后要把x的值代入最简公分母进行检验.
【解答】解:原方程变形为:(x﹣2)2+4=x2﹣4
﹣4x+4+4=﹣4
x=3,
经检验下是原方程的解,
所以原方程的解是x=3.
【点评】本题主要考查解分式方程,关键在首先对方程的每一项进行化简,然后进行去分母简化方程,注意最后要进行检验.
22.在四张编号为A,B,C,D的卡片(除编号外,其余完全相同)的正面分别写上如图所示正整数后,背面朝上,洗匀放好,现从中随机抽取一张,不放回,再从剩下的卡片中随机抽取一张.
(1)请用树状图或列表的方法表示两次抽取卡片的所有可能出现的结果(卡片用A,B,C,D表示);(2)我们知道,满足a2+b2=c2的三个正整数a,b,c成为勾股数,求抽到的两张卡片上的数都是勾股数的概率.
【分析】(1)根据题意先画出树状图,得出共有12种等可能的结果数;
(2)根据勾股数可判定只有A卡片上的三个数不是勾股数,则可从12种等可能的结果数中找出抽到的两张卡片上的数都是勾股数的结果数,然后根据概率公式求解
【解答】解:(1)画树状图如下:
则共有12种等可能的结果数;
(2)∵共有12种等可能的结果数,抽到的两张卡片上的数都是勾股数的结果数为6种,
∴抽到的两张卡片上的数都是勾股数的概率==.
【点评】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.
23.如图,在平面直角坐标系中,O为坐标原点,P是反比例函数y=(x>0)图象上任意一点,以P为圆心,PO为半径的圆与x轴交于点A、与y轴交于点B,连接AB.
(1)求证:P为线段AB的中点;
(2)求△AOB的面积.
【分析】(1)利用圆周角定理的推论得出AB是⊙P的直径即可;
(2)首先假设点P坐标为(m,n)(m>0,n>0),得出OA=2OM=2m,OB=2ON=2n,进而利用三角形面积公式求出即可.
【解答】(1)证明:∵点A、O、B在⊙P上,且∠AOB=90°,
∴AB为⊙P直径,
即P为AB中点;
(2)解:∵P为(x>0)上的点,
设点P的坐标为(m,n),则mn=12,
过点P作PM⊥x轴于M,PN⊥y轴于N,
∴M的坐标为(m,0),N的坐标为(0,n),
且OM=m,ON=n,
∵点A、O、B在⊙P上,
∴M为OA中点,OA=2 m;
N为OB中点,OB=2 n,
∴S△AOB=OA•O B=2mn=24.
【点评】此题主要考查了反比例函数综合以及三角形面积求法和圆周角定理推论等知识,熟练利用反比例函数的性质得出OA,OB的长是解题关键.
24.如图,⊙O的直径AC与弦BD相交于点F,点E是DB延长线上的一点,∠EAB=∠ADB.(1)求证:EA是⊙O的切线;
(2)已知点B是EF的中点,求证:以A、B、C为顶点的三角形与△AEF相似;
(3)已知AF=4,CF=2.在(2)条件下,求AE的长.
【分析】(1)连接CD,由AC是⊙O的直径,可得出∠ADC=90°,由角的关系可得出∠EAC=90°,即得出EA是⊙O的切线,
(2)连接BC,由AC是⊙O的直径,可得出∠ABC=90°,由在RT△EAF中,B是EF的中点,可得出∠
BAC=∠AFE,即可得出△EAF∽△CBA,
(3))由△EAF∽△CBA,可得出=,由比例式可求出AB,由勾股定理得出AE的长.【解答】(1)证明:如图1,连接CD,
∵AC是⊙O的直径,
∴∠ADC=90°,
∴∠ADB+∠EDC=90°,
∵∠BAC=∠EDC,∠EAB=∠ADB,
∴∠EAC=∠EAB+∠BAC=90°,
∴EA是⊙O的切线.
(2)证明:如图2,连接BC,
∵AC是⊙O的直径,
∴∠ABC=90°,
∴∠CBA=∠ABC=90°
∵B是EF的中点,
∴在RT△EAF中,AB=BF,
∴∠BAC=∠AFE,
∴△EAF∽△CBA.
(3)解:∵△EAF∽△CBA,
∴=,
∵AF=4,CF=2.
∴AC=6,EF=2AB,
∴=,解得AB=2.
∴EF=4,
∴AE===4,
【点评】本题主要考查了切线的判定和相似三角形的判定与性质,解题的关键是作出辅助线运用三角形相似及切线性质求解.
25.如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,CD⊥AB于点D.点P从点D出发,沿线段DC向点C运动,点Q从点C出发,沿线段CA向点A运动,两点同时出发,速度都为每秒1个单位长度,当点P运动到C时,两点都停止.设运动时间为t秒.
(1)①求线段CD的长;
②求证:△CBD∽△ABC.
(2)设△CPQ的面积为S,求S与t之间的函数关系式,并求出S的最大值.
(3)是否存在某一时刻t,使得△CPQ为等腰三角形?若存在,请直接写出满足条件的t的值;若不存在,请说明理由.
【分析】(1)①先根据勾股定理求出AB的长,再由三角形的面积公式即可得出结论;
②根据两角相等的三角形相似即可判断;
(2)过点P作PH⊥AC,垂足为H,通过三角形相似即可用t的代数式表示PH,从而可以求出S与t 之间的函数关系式;
(3)根据题意画出图形,分CQ=CP,PQ=PC,QC=QP三种情况进行讨论.
【解答】(1)①解:∵∠ACB=90°,AC=8,BC=6,
∴AB=10.
∵CD⊥AB,
∴S△ABC=BC•AC=AB•CD.
∴CD===4.8.
∴线段CD的长为4.8.
②证明:∵∠B=∠B,∠CDB=∠BCA=90°,
∴△CBD∽△ABC
(2)过点P作PH⊥AC,垂足为H,如图2所示.
由题可知DP=t,CQ=t.
则CP=4.8﹣t.
∵∠ACB=∠CDB=90°,
∴∠HCP=90°﹣∠DCB=∠B.
∵PH⊥AC,
∴∠CHP=90°.
∴∠CHP=∠ACB.
∴△CHP∽△BCA.
∴=.
∴=.
∴PH=﹣t.
∴S△CPQ=CQ•PH=t(﹣t)=﹣t2+t;
(3)①若CQ=CP,如图1,
则t=4.8﹣t.
解得:t=2.4.
②若PQ=PC,如图2所示.
∵PQ=PC,PH⊥QC,
∴QH=CH=QC=.
∵△CHP∽△BCA.
∴=.
∴=,解得t=.
③若QC=QP,
过点Q作QE⊥CP,垂足为E,如图3所示.
同理可得:t=.
综上所述:当t为2.4秒或秒或秒时,△CPQ为等腰三角形.
【点评】本题考查了相似三角形的判定与性质、等腰三角形的性质、一元二次方程的应用、勾股定理等知识,具有一定的综合性,而利用等腰三角形的三线合一巧妙地将两腰相等转化为底边上的两条线段相等是解决第三小题的关键.
26.在正方形ABCD中,AB=8,点P在边CD上,tan∠PBC=,点Q是在射线BP上的一个动点,过点Q作AB的平行线交射线AD于点M,点R在射线AD上,使RQ始终与直线BP垂直.(1)如图1,当点R与点D重合时,求PQ的长;
(2)如图2,试探索:的比值是否随点Q的运动而发生变化?若有变化,请说明你的理由;若没有变化,请求出它的比值;
(3)如图3,若点Q在线段BP上,设PQ=x,RM=y,求y关于x的函数关系式,并写出它的定义域.
【分析】(1)先求出PC=6、PB=10、RP=2,再证△PBC∽△PRQ得,据此可得;
(2)证△RMQ∽△PCB得,根据PC=6、BC=8知,据此可得答案;
(3)由PD∥AB知,据此可得、PN=,由、RM=y知,根据PD∥MQ 得,即,整理可得函数解析式,当点R与点A重合时,PQ取得最大值,根据△ABQ∽△NAB知=,求得x=,从而得出x的取值范围.
【解答】解:(1)由题意,得AB=BC=CD=AD=8,∠C=∠A=90°,
在Rt△BCP中,∠C=90°,
∴,
∵,
∴PC=6,
∴RP=2,
∴,
∵RQ⊥BQ,
∴∠RQP=90°,
∴∠C=∠RQP,
∵∠BPC=∠RPQ,
∴△PBC∽△PRQ,
∴,
∴,
∴;
(2)的比值随点Q的运动没有变化,
如图1,
∵MQ∥AB,
∴∠1=∠ABP,∠QMR=∠A,
∵∠C=∠A=90°,
∴∠QMR=∠C=90°,
∵RQ⊥BQ,
∴∠1+∠RQM=90°、∠ABC=∠ABP+∠PBC=90°,∴∠RQM=∠PBC,
∴△RMQ∽△PCB,
∴,
∵PC=6,BC=8,
∴,
∴的比值随点Q的运动没有变化,比值为;(3)如图2,延长BP交AD的延长线于点N,
∵PD∥AB,
∴,
∵NA=ND+AD=8+ND,
∴,
∴,
∴,
∵PD∥AB,MQ∥AB,
∴PD∥MQ,
∴,
∵,RM=y,
∴
又PD=2,,
∴,
∴,
如图3,当点R与点A重合时,PQ取得最大值,∵∠ABQ=∠NBA、∠AQB=∠NAB=90°,
∴△ABQ∽△NAB,
∴=,即=,
解得x=,
则它的定义域是.
【点评】本题主要考查相似三角形的综合题,解题的关键是熟练掌握正方形的性质、勾股定理及相似三角形的判定与性质.。