驻波实验报告

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

驻波实验报告
The Standardization Office was revised on the afternoon of December 13, 2020
实验目的:
1、观察弦振动及驻波的形成;
3、在振动源频率不变时,用实验确定驻波波长与张力的关系;
4、在弦线张力不变时,用实验确定驻波波长与振动频率的关系;
4、定量测定某一恒定波源的振动频率;
5、学习对数作图法。

实验仪器:
弦线上驻波实验仪(FD-FEW-II型)包括:可调频率的数显机械振动源、平台、固定滑轮、可动刀口、可动卡口、米尺、弦线、砝码等;分析天平,米尺。

实验原理:
如果有两列波满足:振幅相等、振动方向相同、频率相同、有固定相位差的条件,当它们相向传播时,两列波便产生干涉。

一些相隔半波长的点,振动减弱最大,振幅为零,称为波节。

两相邻波节的中间一点振幅最大,称为波腹。

其它各点的振幅各不相同,但振动步调却完全一致,所以波动就显得没有传播,这种波叫做驻波。

驻波相邻波节间的距离等于波长λ的一半。

如果把弦线一端固定在振动簧片上,并将弦线张紧,簧片振动时带动弦线由左向右振动,形成沿弦线传播的横波。

若此波前进过程中遇到阻碍,便会反射回来,当弦线两固定端间距为半波长整数倍时,反射波与前进波便形成稳定的驻波。

波长λ、频率f和波速V满足关系:V = fλ (1)
又因在张紧的弦线上,波的传播速度V与弦线张力T及弦的线密度μ有如下关系:
(2)
比较(1)、(2)式得:(3)
为了用实验证明公式(3)成立,将该式两边取自然对数,得:
(4)
若固定频率f及线密度μ,而改变张力T,并测出各相应波长λ ,作ln T -lnλ图,若直线的斜率值近似为,则证明了的关系成立。

同理,固定线密度μ及张力T,改变振动频率f,测出各相应波长λ,作ln f - lnλ图,如得一斜率为的直线就验证了。

将公式(3)变形,可得: (5)
实验中测出λ、T、μ的值,利用公式(5)可以定量计算出f的值。

实验时,测得多个(n个)半波长的距离l,可求得波长λ为: (6)
为砝码盘和盘上所挂砝码的总重量;用米尺测出弦线的长度L,用分析天平测其质量,求出弦的线密度(单位长度的质量):(7)
实验内容:
1、验证横波的波长λ与弦线中的张力T 的关系(f不变)
固定波源振动的频率,在砝码盘上添加不同质量的砝码,以改变同一弦上的张力。

每改变一次张力(即增加一次砝码),均要左右移动可动卡口支架⑤的位置,使弦线出现振幅较大而稳定的驻波。

将可动刀口支架④移到某一稳定波节点处,用实验平台上的标尺测出④、⑤之间的距离l,数出对应的半波数n,由式(6)算出波长λ。

张力T改变6次,每一T下测2次λ,求平均值。

作lnλ- ln T图,由图求其斜率。

2、验证横波的波长λ与波源振动频率f的关系(T不变)
在砝码盘上放上一定质量的砝码不变,改变波源振动的频率,用驻波法测量各相应的波长λ(f改变6次,每一f下测2次λ,求平均值),作ln λ- ln f图,求其斜率。

f值的起始范围为:60~80Hz,其递增量可依次为10,15,15,20,20Hz。

3、测定波源的振动频率f
用米尺、分析天平测弦线的线密度μ。

固定波源振动的频率为f0不变,在砝码盘上依次添加砝码(6次),以改变弦上的张力,测每一张力下的稳定驻波的波长(2次,求其平均值)。

利用公式(5)算出f,将计算结果和实验时仪器所显示的频率比较,分析两者的误差及误差来源。

数据处理与结果:(实验报告中写)
1、验证λ与T的关系 ( f= 70 Hz )
根据以上数据作ln λ– ln T图,由图求出其斜率为 0.53 。

2、验证λ 与f的关系
张力T=mg= 1.289 N
根据以上数据作 ln λ– ln f图,由图求出其斜率为 -1.10 。

实验结果分析:
实验结果1、2表明:lnλ- ln T的斜率非常接近0.5;ln λ-ln f的斜率接近-1,验证了弦线上横波的传播规律,即横波的波长λ与弦线张力T的平方根成正比,与波源的振动频率f成反比。

相关文档
最新文档