专题11-3 反比例函数的实际应用(专项训练)-2023-2024学年八年级数(0002)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题11.3 反比例函数的实际应用(专项训练)
1.(2022秋•荔湾区校级期末)一辆汽车准备从甲地开往乙地.若平均速度为80km/h,则需要5h到达.
(1)写出汽车从甲地到乙地所用时间t与平均速度v之间的关系式;
(2)如果需要8h到达,那么平均速度是多少?
2.(2021秋•华州区期末)一艘轮船从相距200km的甲地驶往乙地,设轮船的航行时间为t(h),航行的平均速度为v(km/h).
(1)求出v关于t的函数表达式;
(2)若航行的平均速度为40km/h,则该轮船从甲地匀速行驶到乙地要多长时间?
3.(2022秋•固安县期末)汽车从甲地开往乙地,记汽车行驶时间为t小时,平均速度为v千米/小时(汽车行驶速度不超过100千米/小时).根据经验,v,t的一组对应值如表:
v(千米/小时)7580859095 t(小时) 4.00 3.75 3.53 3.33 3.16(1)根据表中的数据,分析说明平均速度v(千米/小时)关于行驶时间t(小时)的函数关系,并求出其表达式:
(2)汽车上午8:00从甲地出发,能否在上午10:30之前到达乙地?请说明理由.
4.(2021秋•丰南区期末)在工程实施过程中,某工程队接受一项开挖水渠的
工程,所需天数y(天)与每天完成工程量x米的函数关系图象如图所示,是双曲线的一部分.
(1)请根据题意,求y与x之间的函数表达式;
(2)若该工程队有2台挖掘机,每台挖掘机每天能够开挖水渠30米,问该工程队需要用多少天才能完成此项任务?
(3)工程队在(2)的条件下工作5天后接到防汛紧急通知,最多再给5天时间完成全部任务,则最少还需调配几台挖掘机?
5.(2022秋•河北期末)某标准游泳池的尺寸为长50米,宽25米,深3米,游泳池蓄水能游泳时,水深不低于1.8米.
(1)该游泳池能游泳时,最低蓄水量是多少立方米?
(2)游泳池的排水管每小时排水x立方米,那么将游泳池最低蓄水量排完用了y小时.
①写出y与x的函数关系式;
②当x=225时,求y的值;
③如果增加排水管,使每小时排水量达到s立方米,则时间y会减小(选
填“增大”或“减小”).
④在②的情况下,如果最低蓄水量排完不超过5小时,每小时排水量最少增
加多少立方米?
6.(2022秋•岳阳县期末)公元前3世纪,古希腊科学家阿基米德发现了杠杆
平衡,后来人们把它归纳为“杠杆原理”,即:阻力×阻力臂=动力×动力臂.小伟欲用撬根撬动一块石头,已知阻力和阻力臂分别是1200N和0.5m,则动力F(单位:N)关于动力臂l(单位:m)的函数解析式正确的是()A.F=B.F=C.F=D.F=7.(2022秋•和平区校级期末)在一个可以改变体积的密闭容器内装有一定质量的气体,当改变容器的体积时,气体的密度也会随之改变,密度ρ(kg/m3)是体积V(m3)的反比例函数,它的图象如图所示,当V=8m2时,气体的密度是()kg/m3.
A.1B.2C.4D.8
8.(2022秋•丛台区校级期末)验光师测的一组关于近视眼镜的度数y与镜片的焦距x的数据,如表:
y(单位:度)100200400500…
x(单位:米) 1.000.500.250.20…
则y关于x的函数关系式是.
9.(2022秋•禅城区期末)某校科技小组在一次野外考察中遇到一片烂泥湿地.为了安全、迅速通过这片湿地,他们沿着前进路线铺了若干块木板,构筑成一条临时近道.每块木板对地面的压强p(Pa)是木板面积S(m2)的反比例函数,其图象如图所示.
(1)请根据图象直接写出这反比例函数表达式和自变量取值范围;
(2)如果要求压强不超过8000Pa,选用的木板的面积至少要多大?
10.(2022秋•武功县期末)经研究发现,近视眼镜的度数y(度)与镜片焦距x(m)之间的关系满足反比例函数,已知小明的近视眼镜度数为200度,他的镜片焦距为0.5m.
(1)求y与x之间的函数关系式;
(2)已知王力的近视眼镜度数为400度,请你求出王力近视眼镜的镜片焦距.
11.(2022秋•滁州期中)某电子产品的售价为8000元,购买该产品时可分期付款:前期付款3000元,后期每个月分别付相同的数额,则每个月付款额y (元)与付款月数x(x为正整数)之间的函数关系式是()
A.B.
C.D.
12.(2023•未央区校级三模)某种商品上市之初采用了大量的广告宣传,其日
销售量y与上市的天数x之间成正比例函数关系,当广告停止后,日销售量y 与上市的天数x之间成反比例函数关系(如图所示),现已知上市20天时,当日销售量为200件.(1)写出该商品上市以后日销售量y(件)与上市的天数x(天)之间的表达式.
(2)当上市的天数为多少时,日销售量为100件?
13.(2022秋•新化县校级期末)某长方体的体积为100cm3,长方体的高h(单位:cm)与底面积S的函数关系式为()
A.h=B.h=C.h=100S D.h=100 14.(2022春•西陵区期中)一个皮球从高处落下后,会从地面弹起.下表记录了小球从不同高度落下时的弹跳高度,其中x表示落下高度,y表示弹跳高度.则符合表中数据的函数解析式是()
落下高度x(cm)80100160200
弹跳高度y(cm)405080100 A.y=x2B.y=2x C.D.y=x+25 15.(2021•饶平县校级模拟)如果等腰三角形的面积为10,底边长为x,底边上的高为y,则y与x的函数关系式为()
A.y=B.y=C.y=D.y=16.(2022秋•桥西区校级期末)三角形的面积为5,底边长为x,底边上的高为y,则y与x的函数表达式为()
A.B.C.D.17.(2023•武安市一模)初三年级甲、乙、丙、丁四个级部举行了知识竞赛,如图,平面直角坐标系中,x轴表示级部参赛人数,y轴表示竞赛成绩的优秀率(该级部优秀人数与该级部参加竞赛人数的比值),其中描述甲、丁两个级部情况的点恰好在同一个反比例函数的图象上,则这四个级部在这次知识竞赛中成绩优秀人数的多少正确的是()
A.甲>乙>丙>丁B.丙>甲=丁>乙
C.甲=丁>乙>丙D.乙>甲=丁>丙
18.(2022春•秦淮区期末)小明要把一篇27000字的调查报告录入电脑,则其录入的时间t(分)与录入文字的平均速度v(字/分)之间的函数表达式应为t=(v>0).
【答案】
19.(2022秋•津南区期末)码头工人每天往一艘轮船上装载30吨货物,装载完毕恰好8天时间.轮船到达目的地后开始卸货,平均卸货速度v(单位:吨/天)与卸货天数t之间的函数关系式为.
20.(2022秋•岑溪市期中)一艘载满货物的轮船到达目的地后开始卸货,平均卸货速度y(吨/天)随卸货天数t(天)的变化而变化.已知y与t是反比例函数关系,图象如图所示:
(1)求y与t之间的函数表达式;
(2)由于遇到紧急情况,要求船上的货物不超过6天卸载完毕,那么平均每天至少要卸货多少吨?
21.(2022秋•梅里斯区期末)某水果生产基地在气温较低时,用装有恒温系统的大棚栽培一种新品种水果,如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y(℃)与时间x(h)之间的函数关系,其中线段,表示恒温系统开启后阶段,双曲线的一部分CD表示恒温系统关闭阶段.
请根据图中信息解答下列问题:
(1)这个恒温系统设定的恒定温度为多少℃;
(2)求全天的温度y与时间x之间的函数关系式;
(3)若大棚内的温度低于10(℃)不利于新品种水果的生长,问这天内,相对有利于水果生长的时间共多少小时?
22.(2022秋•西丰县期末)为了做好校园疫情防控工作,学校每周要对办公室和教室进行药物喷洒消毒,消毒药物在每间教室内空气中的浓度y(单位:mg/m3)与时间x(单位:min)的函数关系如图所示,在进行药物喷洒时y
与x的函数关系式为y=2x,药物喷洒完成后y与x成反比例函数关系,两个函数图象的交点为A(5,n).
(1)n的值为;
(2)当x≥5时,y与x的反比例函数关系式为;
(3)当教室空气中的药物浓度不高于1mg/m3时,对人体健康无危害,当教室药物喷洒完成45min后,学生能否进入教室?请通过计算说明.
23.(2023•湘潭开学)近期,流感进入发病高峰期,某校为预防流感,对教室进行熏药消毒,测得药物燃烧后室内每立方米空气中的含药量y(mg)与时间x(min)之间的函数关系如图所示,已知药物燃烧时,满足y=2x;药物燃烧后,y与x成反比例,现测得药物m分钟燃毕,此时室内每立方米空气
中的含药量为10mg.请根据图中所提供的信息,解决下列问题:
(1)求m的值,并求当x>m时,y与x的函数表达式;
(2)研究表明,当空气中每立方米的含药量不低于4毫克且持续时间不低于10分钟时,才能有效杀灭空气中的病菌,则此次消毒是否有效?请计算说明.
24.(2022秋•桃城区校级期末)《城镇污水处理厂污染物排放标准》中硫化物的排放标准为 1.0mg/L.某污水处理厂在自查中发现,所排污水中硫化物浓度超标,因此立即整改,并开始实时监测.据监测,整改开始第60小时时,所排污水中硫化物的浓度为5mg/L;从第60小时开始,所排污水中硫化物的浓度y(mg/L)是监测时间x(小时)的反比例函数,其图象如图所示.
(1)求y与x之间的函数关系式;
(2)按规定所排污水中硫化物的浓度不超过0.8mg/L时,才能解除实时监测,此次整改实时监测的时间至少要多少小时?。

相关文档
最新文档