下党乡初中2018-2019学年七年级下学期数学第一次月考试卷

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

下党乡初中2018-2019学年七年级下学期数学第一次月考试卷
班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1.(2分)不等式组的所有整数解的和是()
A. 2
B. 3
C. 5
D. 6
【答案】D
【考点】一元一次不等式组的特殊解
【解析】【解答】解:
∵解不等式①得;x>﹣,
解不等式②得;x≤3,
∴不等式组的解集为﹣<x≤3,
∴不等式组的整数解为0,1,2,3,
0+1+2+3=6,
故答案为:D
【分析】先解不等式组求得不等式组的解集,再取在解集范围内的整数解即可.
2.(2分)如图,AB,CD相交于点O,AC⊥CD与点C,若∠BOD=38°,则∠A等于()
A. 52
B. 46
C. 48
D. 50
【答案】A
【考点】对顶角、邻补角
【解析】【解答】解:由对顶角的性质和直角三角形两锐角互余,可以求出∠A的度数为52.
故答案为:A
【分析】利用对顶角的性质,可知∠AOC=∠BOD,由直角三角形两锐角互余,可求出∠A的度数.
3.(2分)下列说法正确的个数有()
⑴过一点有且只有一条直线与已知直线平行⑵一条直线有且只有一条垂线⑶不相交的两条直线叫做平行线⑷直线外一点到这条直线的垂线段叫做这点到这条直线的距离
A. 0个
B. 1个
C. 2个
D. 3个
【答案】A
【考点】点到直线的距离,平行公理及推论,平面中直线位置关系
【解析】【解答】解:(1)过直线外一点有且只有一条直线与已知直线平行,故(1)错误;(2)一条直线无数条垂线,故(2)错误;(3)平面内,不相交的两条直线叫做平行线,故(3)错误;(4)直线外一点到这条直线的垂线段的长度叫做这点到这条直线的距离,故(4)错误.
故正确的有0个.故答案为:A.
【分析】(1)当点在直线上时不能作出直线和已知直线平行;
(2)一条直线由无数个点构成,所以一条直线无数条垂线;
(3)平行线是指在同一平面内,不相交的两条直线;
(4)点到这条直线的距离是指直线外一点到这条直线的垂线段的长度。

4.(2分)下列四个图形中,不能推出与相等的是()
A. B. C. D.
【答案】B
【考点】对顶角、邻补角,平行线的性质
【解析】【解答】解:A、和互为对顶角,
,故本选项错误;
B、,
两直线平行,同旁内角互补,
不能判断,故本选项正确;
C、,
两直线平行,内错角相等,故本选项错误;
D、如图,

两直线平行,同位角相等,
对顶角相等,
,故本选项错误;
故答案为:B.
【分析】(1)根据对顶角相等可得∠ 1 = ∠ 2 ;
(2)根据两直线平行同旁内角互补可得1+∠2=180;
(3)根据两直线平行,内错角相等可得∠1=∠2;
(4)先由两直线平行,同位角相等可得∠1=∠3,再由对顶角相等可得∠2=∠3,所以∠1=∠2。

5.(2分)已知a<b,则下列不等式中不正确的是()
A. a+4<b+4
B. a﹣4<b﹣4
C. ﹣4a<﹣4b
D. 4a<4b
【答案】C
【考点】不等式及其性质
【解析】【解答】解:A、两边都加4,不等号的方向不变,A不符合题意;
B、两边都减4,不等号的方向不变,B不符合题意;
C、两边都乘以﹣4,不等号的方向改变,C符合题意;
D、两边都乘以4,不等号的方向不变,D不符合题意;
故答案为:C.
【分析】本题是让找不正确的选项,因为a<b,所以两边同时加上4或减去4,不等号的方向不改变;当两边同时乘以或除以一个负数时,不等号的方向要改变.
6.(2分)如果关于的不等式的解集为,那么的取值范围是()
A.
B.
C.
D.
【答案】D
【考点】不等式的解及解集
【解析】【解答】解:根据题意中不等号的方向发生了改变,可知利用了不等式的性质3,不等式的两边同时
乘以或除以一个负数,不等号的方向改变,因此可知2a+1<0,解得.
故答案为:D
【分析】先根据不等式的性质②(注意不等式的符号)得出2a+1<0,然后解不等式即可得出答案。

7.(2分)若m是9的平方根,n= ,则m、n的关系是()
A.m=n
B.m=-n
C.m=±n
D.|m|≠|n|
【答案】C
【考点】平方根
【解析】【解答】因为(±3)2=9,所以m=±3;因为()2=3,所以n=3,所以m=±n
故答案为:C
【分析】由正数的平方根有两个,可以求得9的平方根,进而求得m的值,根据,可以求得n 的值,比较m与n的值即可得到它们的关系。

8.(2分)已知不等式组的解集中共有5个整数,则a的取值范围为()
A. 7<a≤8
B. 6<a≤7
C. 7≤a<8
D. 7≤a≤8
【答案】A
【考点】一元一次不等式组的特殊解
【解析】【解答】解:∵不等式组的解集中共有5个整数,
∴a的范围为7<a≤8,故答案为:A.
【分析】不等式组有5个整数解,即为3,4,5,6,7,从而可求得a的取值范围.
9.(2分)不等式3x<18 的解集是()
A.x>6
B.x<6
C.x<-6
D.x<0
【答案】B
【考点】解一元一次不等式
【解析】【解答】解:(1)系数化为1得:x<6
【分析】不等式的两边同时除以3即可求出答案。

10.(2分)为了了解所加工的一批零件的长度,抽取了其中200个零件的长度,在这个问题中,200个零件的长度是()
A. 总体
B. 个体
C. 总体的一个样本
D. 样本容量
【答案】C
【考点】总体、个体、样本、样本容量
【解析】【解答】解:A、总体是所加工的一批零件的长度的全体,错误,故选项不符合题意;
B、个体是所加工的每一个零件的长度,错误,故选项不符合题意;
C、总体的一个样本是所抽取的200个零件的长度,正确,故选项符合题意;
D、样本容量是200,错误,故选项不符合题意.
故答案为:C
【分析】根据总体、个体和样本、样本容量的定义进行判断即可解答.
11.(2分)关于x的不等式(a+2 014)x-a>2 014的解集为x<1,那么a的取值范围是()
A. a>-2 014
B. a<-2 014
C. a>2 014
D. a<2 014
【答案】B
【考点】不等式的解及解集,解一元一次不等式
【解析】【解答】解:(a+2 014)x>a+2 014
∵此不等式的解集为:x<1,
∴a+2 014<0
解之:a<-2 014
故答案为:B
【分析】先将不等式转化为(a+2 014)x>a+2 014,再根据它的解集为x<1,得出a+2 014<0,解不等式即可求解。

12.(2分)下列计算正确的是()
A. B. C. D. (-2)3×(-3)2=72
【答案】B
【考点】实数的运算
【解析】【解答】A、,A不符合题意;
B、,B符合题意;
C、,C不符合题意;
D、(-2)3×(-3)2=-8×9=-72,D不符合题意.
故答案为:B
【分析】(1)由算术平方根的意义可得=3;
(2)由立方根的意义可得=-2;
(3)由立方根的意义可得原式=;
(4)由平方和立方的意义可得原式=-89=-72.
二、填空题
13.(1分)点A,B在数轴上,以AB为边作正方形,该正方形的面积是49.若点A对应的数是-2,则点B对应的数是________.
【答案】5
【考点】数轴及有理数在数轴上的表示,算术平方根
【解析】【解答】解:∵正方形的面积为49,
∴正方形的边长AB==7
∵点A对应的数是-2
∴点B对应的数是:-2+7=5
故答案为:5
【分析】根据正方形的面积求出正方形的边长,就可得出AB的长,然后根据点A对应的数,就可求出点B 表示的数。

14.(2分)平方等于的数是________,-64的立方根是_______
【答案】;-4
【考点】平方根,立方根及开立方
【解析】【解答】解:∵(±)2=
∴平方等于的数是±;
-64的立方根是-4
故答案为:±;-4
【分析】根据平方根的定义及立方根的定义求解即可。

15.(1分)二元一次方程的非负整数解为________
【答案】,,,,
【考点】二元一次方程的解
【解析】【解答】解:将方程变形为:y=8-2x
∴二元一次方程的非负整数解为:
当x=0时,y=8;
当x=1时,y=8-2=6;
当x=2时,y=8-4=4;
当x=3时,y=8-6=2;
当x=4时,y=8-8=0;
一共有5组
故答案为:,,,,
【分析】用含x的代数式表示出y,由题意可知x的取值范围为0≤x≤4的整数,即可求出对应的y的值,即可得出答案。

16.(1分)如图,某煤气公司安装煤气管道,他们从点A处铺设到点B处时,由于有一个人工湖挡住了去路,需要改变方向经过点C,再拐到点D,然后沿与AB平行的DE方向继续铺设.已知∠ABC=135°,∠BCD =65°,则∠CDE=________.
【答案】110°
【考点】平行公理及推论,平行线的性质
【解析】【解答】解:过点C作CF∥AB,如图:
∵AB∥DE,CF∥AB,
∴DE∥CF,
∴∠CDE=∠FCD,
∵AB∥CF,∠ABC=135°,
∴∠BCF=180°-∠ABC=45°,
又∵∠FCD=∠BCD+∠BCF,∠BCD=65°,
∴∠FCD=110°,
∴∠CDE=110°.
故答案为:110°.
【分析】过点C作CF∥AB,由平行的传递性得DE∥CF,由平行线性质得∠CDE=∠FCD,由AB∥CF得∠BCF=45°,由∠FCD=∠BCD+∠BCF即可求得答案.
17.(2分)若方程组与有相同的解,则a=________,b=________。

【答案】3;2
【考点】二元一次方程组的解,解二元一次方程组
【解析】【解答】解:
由得:11x=22
解之:x=2
把x=2代入得:4-y=5
解之:y=-1

由题意得:把代入得
解之:
故答案为:
【分析】利用加减消元法解方程组,求出x、y的值,再将x、y的值代入,建立关于a、b的方程组,解方程组求出a、b的值即可。

18.(1分)二元一次方程组的解是________.
【答案】
【考点】解二元一次方程组
【解析】【解答】解:原方程可化为:,
化简为:,
解得:.
故答案为:
【分析】先将原方程组进行转化为并化简,就可得出,再利用加减消元法,就可求出方程组的解。

三、解答题
19.(9分)某中学对本校500名毕业生中考体育加试测试情况进行调查,根据男生1 000m及女生800m 测试成绩整理、绘制成如下不完整的统计图(图①、图②),请根据统计图提供的信息,回答下列问题:
(1)该校毕业生中男生有________人,女生有________人;
(2)扇形统计图中a=________,b=________;
(3)补全条形统计图(不必写出计算过程).
【答案】(1)300;200
(2)12;62
(3)解:由图象,得8分以下的人数有:500×10%=50人,
∴女生有:50﹣20=30人.
得10分的女生有:62%×500﹣180=130人.
补全图象为:
【考点】扇形统计图,条形统计图
【解析】【解答】解:⑴由统计图,得男生人数有:20+40+60+180=300人,女生人数有:500﹣300=200人.
故答案为:300,200;
⑵由条形统计图,得
60÷500×100%=12%,
∴a%=12%,
∴a=12.
∴b%=1﹣10%﹣12%﹣16%,
∴b=62.
故答案为:12,62;
【分析】(1)根据条形统计图对应的数据相加可得男生人数,根据调查的总数减去男生人数可得女生人数;(2)根据条形统计图计算8分和10分所占的百分比即可确定字母a、b的值;
(3)根据两个统计图计算8分以下的女生人数和得分是10分的女生人数即可补全统计图.
20.(5分)如图,∠ABC+∠BCD+∠EDC=360°.求证:AB∥ED.
【答案】证明:过C作AB∥CF,
∴∠ABC+∠BCF=180°,
∵∠ABC+ ∠BCD+ ∠EDC=360°,
∴∠DCF+ ∠EDC=180°,
∴CF∥DE,
∴ABF∥DE.
【考点】平行公理及推论,平行线的判定与性质
【解析】【分析】过C作AB∥CF,根据两直线平行,同旁内角互补,得∠ABC+∠BCF=180°,再结合已知条件得∠DCF+ ∠EDC=180°,由平行线的判定得CF∥DE,结合平行公理及推论即可得证.
21.(5分)如图,已知D为△ABC边BC延长线上一点,DF⊥AB于F交AC于E,∠A=35°,∠D=42°,求∠ACD的度数.
【答案】解:∵∠AFE=90°,
∴∠AEF=90°﹣∠A=90°﹣35°=55°,
∴∠CED=∠AEF=55°,
∴∠ACD=180°﹣∠CED﹣∠D=180°﹣55°﹣42°=83°.
答:∠ACD的度数为83°
【考点】余角、补角及其性质,对顶角、邻补角,三角形内角和定理
【解析】【分析】先根据两角互余得出∠AEF =55°,再根据对顶角相等得出∠CED=∠AEF=55°,最后根据三角形内角和定理得出答案。

22.(5分)如图,∠1= ∠2,∠1+∠2=162°,求∠3与∠4的度数.
【答案】解:∵∠1= ∠2,∠1+∠2=162°,
∴∠1=54°,∠2=108°.
∵∠1和∠3是对顶角,
∴∠3=∠1=54°
∵∠2和∠4是邻补角,
∴∠4=180°-∠2=180°-108°=72°
【考点】解二元一次方程组
【解析】【分析】将∠1= ∠2 代入∠1+∠2=162°,消去∠1,算出∠2的值,再将∠2的值代入∠1=
∠2算出∠1的值,然后根据对顶角相等及邻补角的定义即可分别算出∠3与∠4的度数.
23.(5分)在数轴上表示下列各数,并用“<”连接。

3, 0,,,.
【答案】解:数轴略,
【考点】实数在数轴上的表示,实数大小的比较
【解析】【解答】解:∵=-2,(-1)2=1,
数轴如下:
由数轴可知:<-<0<(-1)2<3.
【分析】先画出数轴,再在数轴上表示各数,根据数轴左边的数永远比右边小,用“<”连接各数即可. 24.(14分)为了解某县2014年初中毕业生的实验成绩等级的分布情况,随机抽取了该县若干名学生的
成绩等级A B C D
人数60 x y 10
百分比30% 50% 15% m
请根据以上统计图表提供的信息,解答下列问题:
(1)本次抽查的学生有________名;
(2)表中x,y和m所表示的数分别为:x=________,y=________,m=________;
(3)请补全条形统计图;
(4)若将抽取的若干名学生的实验成绩绘制成扇形统计图,则实验成绩为D类的扇形所对应的圆心角的度数
是多少.
【答案】(1)200
(2)100;30;5%
(3)解:补全的条形统计图如右图所示;
(4)解:由题意可得,实验成绩为D类的扇形所对应的圆心角的度数是:×360°=18°,
即实验成绩为D类的扇形所对应的圆心角的度数是18°
【考点】统计表,条形统计图
【解析】【解答】解:⑴由题意可得,本次抽查的学生有:60÷30%=200(名),
故答案为:200;
⑵由⑴可知本次抽查的学生有200名,
∴x=200×50%=100,y=200×15%=30,m=10÷200×100%=5%,
故答案为:100,30,5%
【分析】(1)根据人数除以百分比可得抽查的学生人数;
(2)根据(1)中的学生人数乘以百分比可得对应的字母的值;
(3)根据(2)得到B、C对应的人数,据此补全条形统计图即可;
(4)先计算D类所占的百分比,然后乘以360°可得圆心角的度数.
25.(5分)小明在甲公司打工.几个月后同时又在乙公司打工.甲公司每月付给他薪金470元,乙公司每月付给他薪金350元.年终小明从这两家公司共获得薪金7620元.问他在甲、乙两公司分别打工几个月? 【答案】解:设他在甲公司打工x个月,在乙公司打工y个月,依题可得:
470x+350y=7620,
化简为:47x+35y=762,
∴x==16-y+,
∵x是整数,
∴47|10+12y,
∴y=7,x=11,
∴x=11,y=7是原方程的一组解,
∴原方程的整数解为:(k为任意整数),
又∵x>0,y>0,
∴,
解得:-<k<,
k=0,
∴原方程正整数解为:.
答:他在甲公司打工11个月,在乙公司打工7个月.
【考点】二元一次方程的解
【解析】【分析】设他在甲公司打工x个月,在乙公司打工y个月,根据等量关系式:甲公司乙公司+乙公司乙公司=总工资,列出方程,此题转换成求方程47x+35y=762的整数解,求二元一次不定方程的正整数解时,可先求出它的通解。

然后令x>0,y>0,得不等式组.由不等式组解得k的范围.在这范围内取k的整数值,代人通解,即得这个不定方程的所有正整数解.
26.(5分)如图,已知DA⊥AB,DE平分∠ADC,CE平分∠BCD,∠1+ ∠2=90°.求证:BC ⊥ AB.
【答案】证明:∵DE平分∠ADC,CE平分∠BCD,
∴∠1=∠ADE,∠2=∠BCE,
∵∠1+∠2=90°,
即∠ADE+∠BCE=90°,
∴∠DEC=180°-(∠1+∠2)=90°,
∴∠BEC+∠AED=90°,
又∵DA ⊥AB,
∴∠A=90°,
∴∠AED+∠ADE=90°,
∴∠BEC=∠ADE,
∵∠ADE+∠BCE=90°,
∴∠BEC+∠BCE=90°,
∴∠B=90°,
即BC⊥AB.
【考点】垂线,三角形内角和定理
【解析】【分析】根据角平分线性质得∠1=∠ADE,∠2=∠BCE,结合已知条件等量代换可得∠1+∠2=∠ADE+∠BCE=90°,根据三角形内角和定理和邻补角定义可得∠BEC=∠ADE,代入前面式子即可得∠BEC+∠BCE=90°,由三角形内角和定理得∠B=90°,即BC⊥AB.。

相关文档
最新文档