27_-_Radiation_Detection_II
detectionmodel详细解析
detectionmodel详细解析Detection Model详细解析概述Detection Model,即检测模型,是计算机视觉中一种重要的算法模型。
它的主要任务是在图像或视频中识别和定位感兴趣的对象,如行人、车辆、动物等。
检测模型是计算机视觉领域中的基础模型之一,广泛应用于目标检测、人脸识别、自动驾驶等领域。
一、目标检测的基本原理目标检测的基本原理是通过对图像或视频中的每个像素进行分析和处理,识别出感兴趣的对象。
检测模型通常由两个主要部分组成:特征提取和目标分类。
1. 特征提取:特征提取是目标检测的前置工作,它通过对输入图像进行预处理和特征提取,将图像转化为一组有助于区分不同对象的特征向量。
常用的特征提取方法包括传统的手工设计特征和基于深度学习的卷积神经网络(Convolutional Neural Network,CNN)。
2. 目标分类:目标分类是目标检测的核心任务,它通过对提取的特征向量进行分类,判断图像中的每个区域是否含有目标对象。
常用的目标分类方法包括支持向量机(Support Vector Machine,SVM)、卷积神经网络(CNN)等。
二、常见的检测模型常见的检测模型主要包括传统的基于特征工程的方法和基于深度学习的方法。
1. 传统方法:(1)Haar特征检测:Haar特征检测是一种使用基于Haar小波的特征模板来检测对象的方法。
它通过计算图像中不同区域的灰度差异来判断对象的存在。
(2)HOG特征检测:HOG(Histogram of Oriented Gradients)特征检测是一种通过计算图像中像素梯度的方向和大小来判断对象的存在的方法。
它通过统计图像中不同区域的梯度直方图来提取特征。
2. 深度学习方法:(1)Faster R-CNN:Faster R-CNN是一种基于深度学习的目标检测算法,它通过引入区域提取网络(Region Proposal Network,RPN)和特征金字塔网络(Feature Pyramid Network,FPN)来提高检测的准确性和速度。
高分辨率雷达图像的目标检测与识别
高分辨率雷达图像的目标检测与识别高分辨率雷达图像的目标检测与识别是一项重要的技术,在无人驾驶、军事侦察、边境保护等领域具有广泛应用。
通过利用先进的算法和深度学习技术,可以实现对复杂场景中的目标进行准确、快速的检测和识别。
目标检测是指在雷达图像中确定目标的位置和边界框,并将其与背景区分开。
高分辨率雷达图像通常包含丰富的信息,但也因此面临一些挑战。
首先,雷达图像中的目标往往受到噪声、杂波干扰和多重散射等因素的影响,使得目标的特征不易被准确获取。
其次,复杂的场景中目标的形状、尺寸和方向可能存在较大的变化,对目标检测算法的鲁棒性提出了更高的要求。
因此,改进目标检测算法以克服这些挑战是非常重要的。
在高分辨率雷达图像的目标检测中,深度学习技术已经取得了很大的进展。
卷积神经网络(Convolutional Neural Network, CNN)是目标检测中常用的神经网络模型,通过多个卷积层和池化层构建了一个深层次的特征提取器,能够捕获图像中的局部和全局特征。
Yolo(You Only Look Once)和Faster R-CNN(Region-based Convolutional Neural Network)是目前最常用的两种深度学习模型,具有优秀的目标检测性能。
Yolo是一种快速、实时的目标检测算法,其优势在于通过单次前向传播即可在图像中定位多个目标,速度快且准确度高。
Yolo采用了分割网络结构,将图像划分为不同的网格,并在每个网格中预测目标边界框和类别概率。
Yolo还使用了锚框(Anchor Box)技术来适应不同尺寸和形状的目标。
Faster R-CNN是一种基于区域的卷积神经网络,通过两个子网络共同完成目标检测任务。
首先,候选区域生成网络(Region Proposal Network, RPN)通过滑动窗口的方式生成不同尺寸和位置的候选区域。
其次,候选区域通过卷积特征提取和分类器进行目标检测和分类。
殿廷版雅思阅读真题-第三册答案(2)
殿廷版雅思阅读真题库REAL IELTS READING EXAM QUESTIONS WITH ANSWERS_DT ENGLISH ACADEMY殿廷教育简介殿廷教育(DIAN TING ENGLISH ACADEMY)由前雅思考官Roxanne 创办,是一家致力于雅思在线培训的教学机构。
该机构全部由资深外教授课,老师均拥有丰富的教学经验(学生多为日、韩、中国考生,多少学生在考试中取得了7分及以上的好成绩)我们常年跟踪研究雅思出题动态,总结了一套行之有效的教学方法。
在殿廷教育,老师不仅仅是员工,同时也是合伙人,因此专业水平和服务态度是其他机构所不能比拟的。
我们因专注而专业,因专业所以值得您的信赖。
除了阅读真题库、听力机经,我们还提供个性化的口语答案,完全依照考生个人情况私人订制专属口语答案,避免在考场上和其他考生出现雷同答案,助您轻松得高分。
此外,我们还有前雅思考官口语一对一全真模考、辅导,以及写作批改等个性化服务。
您可以用手机扫描右下方的店铺二维码找到我们。
在备考雅思的路上您一直有我们的陪伴,殿廷教育是您最好的选择。
我们多用心一点,您少担心一点。
雅思阅读真题库使用说明雅思阅读真题库是殿廷雅思专业外教花费大量心血整理综合网上的资料并根据雅思阅读原文高度还原的真题库,还原后的考题与雅思官方考题出题点一致,只在表述上稍有不同。
需要指出的是,在每次考试中雅思官方都会对考题做一些调整,即文章相同,考题稍有不同。
因此阅读真题库的正确使用方法是,考生尽可能在有限的时间内去熟悉出题点,做到对文章的宏观把握,而不是机械地记忆答案。
掌握了出题点之后可以帮助考生在考场上大大节约时间去做其他的文章。
1342s3The Persuaders28YES29NOT GIVEN30YES31NO32B33C34D35C36trolleys37aisles38loyalty card39cosmetics40group1329s2Food for Thought14viii15ii16iv17x18i19v20vii21H22F23I24A25C26B27E1428s3Music:Language We All Speak27iii28vii29iv30i31viii32F33B34E35D36G37A38C39C40C1427s1Chinese Ancient Chariots14TRUE15FALSE16NOT GIVEN17elm1818to3219struts20bronze21dish22lubricating oil23neck24sand25complex14278s3The Rainmaker Design27.YES28.NO29.YES30.NOT GIVEN31.NO32.hot dry air33.moist34.heat35.condenser36.(pure)distilled water37.fans38.solar panels39.construction cost40.environmentally-friendly1411s1Animal's Self-Medicating1True2Not Given3False4True5pith6terpenes7alkaloids8detoxify9hooks10G11D12E13C1436s1PRT and RUF system1True2False3Not Given4Not Given5True6False7A8C9C10A11B12B13C,E,F1336s1Children and Food Advertising1viii2ii3vi4v5i6x7iii8NO9NO10YES11NOT GIVEN12YES13NOT GIVEN1449s2Pollution in the Bay1E2C3H4B5C6B7B8A9FALSE10NOT GIVEN11FALSE12TRUE13TRUE13167s1Seed Hunting14drugs and crops15extinction16pioneers17Sir Joseph Banks18underground vaults 19TRUE20NOT GIVEN21TRUE22TRUE23FALSE24TRUE25-26In any orderA foodB fuel1312s1Detection of a Meteorite Lake14TRUE15NOT GIVEN16FALSE17TRUE18FALSE19(high-pressure)air gun20sound energy/sound wave21(long)cable22hydrophones/underwater microphones 23ship container/shipping container24seismic reflection profiling25laboratory26three-dimensional/3D image27fishing nets1313s1Biomimetic Design1NOT GIVEN2FALSE3True4False5NOT GIVEN6False7True8the same way9carbon-fiber10limbs/legs and feets11self-cleaning12surveillance13lifesaving1311s2TV Addiction14TRUE15FALSE16TRUE17NOT GIVEN18-20ACD21D22B23A24E25popular pastime26TV addicts27orienting response14150s3Compliance or Noncompliance for Children27B28C29C30A31D32F33D34E35A36NO37YES38YES39YES40NOTGIVEN1311s1Bamboo1E2D3B4A5D6C7B8A9B10B11D12soil erosion 13paper15109s3Children's Literature14stories15America16folklore17fairy-stories18adventures19C20A21E22False23True24NotGiven25True26True1333s1Longaeva:Ancient Bristlecone Pine14H15B16C17A18D19A20C21energy,22stratification,23(bands of)bark,24(dry mountain)air,25ground cover,26distance15133s3Communication in Science27B28A29C30D31C32TRUE33NOT GIVEN34FALSE35FALSE36word choices37colloquial terminology38observer39description40general relativity1303s2Biodiversity14TRUE15FALSE16TRUE17TRUE18FALSE19NOT GIVEN20NOT GIVEN21keystone(species) 22fig family/figs23(sea)urchins24cactus moth25Australia26public education1348s2Australian water filter14.clay15.water16.straw17.cow manure18.950degrees19.60minutes20.FALSE21.TRUE22.NOT GIVEN23.NOT GIVEN24.C25.D26.A1435s1The Pearl1B2D3E4E5TRUE6FALSE7NOT GIVEN8B9J10K11F12C13D1411s2Amateur Naturalists27B28C29H30G31E32D33A34beekeeping(notes)35life cycle(s)36drought(s)37C38B39A40A1309s1T-rex Hunter 1TRUE2FALSE3NOT GIVEN4TRUE5NOT GIVEN6TRUE7FALSE8shin bone9slow walker10cheetah11run fast12blunt13crush10006s3Flight from Reality28navigation and communications 29radiation30antennae31smoke32C33D34B35E36A37TRUE38TRUE39NOT GIVEN40TRUE1430s1What Are You Laughing at?1D2B3A4C5B6A7H8F9I10D11FALSE12NOT GIVEN13TRUE1416s1Animal Minds:Parrot Alex14NOT GIVEN15NOT GIVEN16FALSE17TRUE18TRUE19FALSE20particularly chosen21chimpanzees22100English words23avian cognition24color25wrong pronunciation26teenager1307s1Learning by Examples14E15A16D17C18False19True20False21True22less23social24watched25observer26Nutcracker1422s1The Innovation of Grocery Stores14.D15A16.F17.C18.E19.clerk20.lobby21.galleries22.stockroom23.customers/shoppers24.C25B26.C1438s2Bird Migration28iv29i30ii31vii32x33v34viii35-36in any order35A36B37parental guidance38compass39(daytime)predators 40visible14273s1The Effects of Living ina Noisy World185dBA2secondhandnoise3high-frequency4stomach contractions5noise maps6D7A8C9E10B11Nonauditory effects12acoustical tile13street designs1333s2storytelling,From Prehistoric Caves to Modern Cinemas14D15G16A17B18H19B20B21C22A23Poetics24tragedy25landmarks26flaw/weakness1444s2left-handedor right-handed2814C29A30B31F32D33D34B35C36A37Yes38No39Not Given40Not Given1307s2Exploring theBritish Village14-19:14v15iii16iv17vi18x19i20-24:20cottages21Domesday Book22self-sufficient23remnants24triangular25-2625I26F1432s3The legend ofEaster Island27v28ii29iii30viii31NOT GIVEN32TRUE33FALSE34FALSE35NOT GIVEN36TRUE37growing population38racist assumption39archeologicaland historical40inhumane behavior14133s1Ecotourism1A2D3C4B5A6C7D8A9B10sustainable11adventure12tropical forest13illegal killing1304s2We have Star performers14C15F16B17G18NOT GIVEN19YES20NO21YES22analysts/star-stock analysts23performance star/star/star performer 24working environment/settings25salary26rivals10007Sand Dunes27i28v29x30vii31ix32ii33vi34iv35B36C37barchans38compound39tones40deserts1345s1The Color of Butterfly28E29B30G31F32D33False34True35NOT GIVEN36False37NOT GIVEN38True39D40B1201s1Consecutive and Simultaneous Translation1B2D3C4C5A62-3seconds710seconds8100-12092001095-16411B12C13E14F1332s2Art in Iron and Steel14C15E16H17B18A19G20Abraham Darby III21timber22Severn River23Coalbrookdale museum24B25D26G1327s1Radio Automation1chip2grit3molten zinc4milling machine5Robot hands6valves7loudspeakers8cheaper9components10lighter11cost12A13C1415s2Activities for Children ABCDTTNGFCBCAB1308s3Memory Decoding27E28D29B30F3130seconds32specific person33loci method34synesthesia35practice36YES37YES38NO39NOT GIVEN40NO1426s1Child Development in Western Societies28.TRUE29.FALSE30.FALSE31.NOT GIVEN32.TRUE33.FALSE34.TRUE35.Industrialization36.Social reformers37.play and educationeful child39.half-time schools40.going to school1337s1Amazing Animal:Otter1C2A3G4E5B6D7F8C9Salt water10Sight11Swimming speed12Coastal otters13Moles1449s1Brunel:'The Practical Prophet' ACBGGEFBCAustralia,4000,telegraphic cable,Suez Canal1338s2The Evolutional Mystery:Crocodile Survives14ii15vi16v17iv18ix19viii20x21dry season或者hot season;或者dry period均可22water23four months24body mass25dehydration:26growth。
基于均值偏移算法的双摄像机目标跟踪
基于均值偏移算法的双摄像机目标跟踪均值偏移算法(Mean Shift Algorithm)是一种非参数的密度估计方法,被广泛应用于目标跟踪领域。
它通过计算目标的颜色直方图和梯度直方图,使用迭代方法寻找样本点密度最大的区域,从而确定目标的位置。
在双摄像机目标跟踪中,通常需要首先对目标进行初始化,并在后续的帧中进行跟踪。
初始化可以通过在第一帧中手动选取目标区域来完成,也可以使用先进的目标检测算法进行自动初始化。
以下是基于均值偏移算法实现双摄像机目标跟踪的具体步骤:1.初始化:在第一帧中,选择目标区域作为初始窗口,并计算该区域的颜色直方图和梯度直方图。
将这些直方图作为目标的颜色和纹理特征。
2.特征匹配:在下一帧中,根据当前目标位置,确定窗口的位置。
使用均值偏移算法计算窗口内样本点的密度,并找到最大密度点作为新的目标位置。
同时,根据新的目标位置,更新窗口的大小。
3.视差计算:由于使用了双摄像机,可以通过计算两个摄像机之间的视差来获得目标的深度信息。
使用立体匹配算法,将左摄像机和右摄像机的图像进行匹配,并计算视差图。
根据视差图中的目标位置,更新目标的深度信息。
4.三维重建:根据目标的深度信息和在左摄像机图像中的位置,可以进行三维重建。
将目标在左摄像机图像中的位置和深度信息转换为三维坐标,并根据立体几何关系计算目标在右摄像机图像中的位置。
从而获得目标的三维坐标。
5.目标跟踪:在下一帧中,根据当前目标的位置和三维坐标,确定窗口的位置和大小,并使用均值偏移算法计算新的目标位置。
同时,根据新的目标位置,更新目标的深度信息和三维坐标。
6.结果展示:通过将目标的位置和三维坐标与原始图像进行叠加,可以实时展示目标的位置和运动轨迹。
同时,可以将三维坐标转换为世界坐标,并在三维空间中对目标位置进行可视化。
基于均值偏移算法的双摄像机目标跟踪不仅考虑了目标的颜色和纹理特征,还利用了双摄像机的优势进行深度估计和三维重建,从而提高了目标跟踪的精度和准确性。
单片机的U盘读写模块的设计
单片机的U盘读写模块的设计唐山学院毕业设计设计题目:基于单片机的U盘读写模块的设计系别:班级:姓名:指导教师:2021年6月6 日基于单片机的U盘读写模块的设计摘要介绍了一种USB总线的通用接口芯片CH375,并在此基础上提出了一种外部单片机读写U盘的基本方法及其硬件连接方法。
单片机只要在原硬件系统中增加1个CH375芯片就可以直接调用CH375提供的子程序库来直接读取U盘中的数据,从而实现了普通单片杌与U盘的通讯、方法简单、便于操作、综合成本比较低,具有较大的推广应用价值。
关键词:U盘;CH375;接口芯片;单片机RESEARCH ON IMAGE REGISTRATION TECHNOLOGY BASED ON MATLABAbstractA general purpose interface chip CH37 5 for USB is introduced in this paper.Based On which a new method of Using external single chip microcomputer to connect with the flash disk is given.Only add one CH375 chip to the single chip microcomputer s hardware system,the operator can use the program given by the CH375 to read the data from the flash disk and realize the communication between the single chip microcomputer and the flash disk.This method is very simple and can be operated easily.Key words: Powell; PSOUSB;CH375;interface chip;single chip microcomputer目录1 引言 ........................................................................... .. (1)1.1 论文背景和意义 ........................................................................... ................ 1 1.2 图像配准技术研究现状 ........................................................................... . (2)2 图像配准综述 ........................................................................... . (4)2.1 图像配准理论 ........................................................................... .................... 4 2.2 图像配准一般步骤 ........................................................................... ............ 4 2.3 特征空间 ........................................................................... . (5)2.3.1 基于灰度统计信息的配准 ................................................................ 5 2.3.2 基于特征的配准方法 (7)2.4 搜索空间 ..................................................................... 错误!未定义书签。
ASTM材料与实验标准.E94
Designation:E94–04Standard Guide forRadiographic Examination1This standard is issued under thefixed designation E94;the number immediately following the designation indicates the year of original adoption or,in the case of revision,the year of last revision.A number in parentheses indicates the year of last reapproval.A superscript epsilon(e)indicates an editorial change since the last revision or reapproval.1.Scope1.1This guide2covers satisfactory X-ray and gamma-ray radiographic examination as applied to industrial radiographic film recording.It includes statements about preferred practice without discussing the technical background which justifies the preference.A bibliography of several textbooks and standard documents of other societies is included for additional infor-mation on the subject.1.2This guide covers types of materials to be examined; radiographic examination techniques and production methods; radiographicfilm selection,processing,viewing,and storage; maintenance of inspection records;and a list of available reference radiograph documents.N OTE1—Further information is contained in Guide E999,Practice E1025,Test Methods E1030and E1032.1.3Interpretation and Acceptance Standards—Interpretation and acceptance standards are not covered by this guide,beyond listing the available reference radiograph docu-ments for castings and welds.Designation of accept-reject standards is recognized to be within the cognizance of product specifications and generally a matter of contractual agreement between producer and purchaser.1.4Safety Practices—Problems of personnel protection against X rays and gamma rays are not covered by this document.For information on this important aspect of radiog-raphy,reference should be made to the current document of the National Committee on Radiation Protection and Measure-ment,Federal Register,U.S.Energy Research and Develop-ment Administration,National Bureau of Standards,and to state and local regulations,if such exist.For specific radiation safety information refer to NIST Handbook ANSI43.3,21 CFR1020.40,and29CFR1910.1096or state regulations for agreement states.1.5This standard does not purport to address all of the safety problems,if any,associated with its use.It is the responsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.(See1.4.)1.6If an NDT agency is used,the agency shall be qualified in accordance with Practice E543.2.Referenced Documents2.1ASTM Standards:3E543Practice for Evaluating Agencies that Perform Non-destructive TestingE746Test Method for Determining Relative Image Quality Response of Industrial Radiographic Film SystemsE747Practice for Design,Manufacture,and Material Grouping Classification of Wire Image Quality Indicators (IQI)Used for RadiologyE801Practice for Controlling Quality of Radiological Ex-amination of Electronic DevicesE999Guide for Controlling the Quality of Industrial Ra-diographic Film ProcessingE1025Practice for Design,Manufacture,and Material Grouping Classification of Hole-Type Image Quality Indi-cators(IQI)Used for RadiologyE1030Test Method for Radiographic Examination of Me-tallic CastingsE1032Test Method for Radiographic Examination of WeldmentsE1079Practice for Calibration of Transmission Densitom-etersE1254Guide for Storage of Radiographs and Unexposed Industrial Radiographic FilmsE1316Terminology for Nondestructive ExaminationsE1390Guide for Illuminators Used for Viewing Industrial RadiographsE1735Test Method for Determining Relative Image Qual-ity of Industrial Radiographic Film Exposed to X-Radiation from4to25MVE1742Practice for Radiographic ExaminationE1815Test Method for Classification of Film Systems for Industrial Radiography2.2ANSI Standards:1This guide is under the jurisdiction of ASTM Committee E07on Nondestruc-tive Testing and is the direct responsibility of Subcommittee E07.01on Radiology (X and Gamma)Method.Current edition approved January1,2004.Published February2004.Originally approved st previous edition approved in2000as E94-00.2For ASME Boiler and Pressure Vessel Code applications see related Guide SE-94in Section V of that Code.3For referenced ASTM standards,visit the ASTM website,,or contact ASTM Customer Service at service@.For Annual Book of ASTM Standards volume information,refer to the standard’s Document Summary page on the ASTM website.Copyright©ASTM International,100Barr Harbor Drive,PO Box C700,West Conshohocken,PA19428-2959,United States.PH1.41Specifications for Photographic Film for Archival Records,Silver-Gelatin Type,on Polyester Base 4PH2.22Methods for Determining Safety Times of Photo-graphic Darkroom Illumination 4PH4.8Methylene Blue Method for Measuring Thiosulfate and Silver Densitometric Method for Measuring Residual Chemicals in Films,Plates,and Papers 4T9.1Imaging Media (Film)—Silver-Gelatin Type Specifi-cations for Stability 4T9.2Imaging Media—Photographic Process Film Plate and Paper Filing Enclosures and Storage Containers 42.3Federal Standards:Title 21,Code of Federal Regulations (CFR)1020.40,Safety Requirements of Cabinet X-Ray Systems 5Title 29,Code of Federal Regulations (CFR)1910.96,Ionizing Radiation (X-Rays,RF,etc.)52.4Other Document:NBS Handbook ANSI N43.3General Radiation Safety Installations Using NonMedical X-Ray and Sealed Gamma Sources up to 10MeV 63.Terminology3.1Definitions —For definitions of terms used in this guide,refer to Terminology E 1316.4.Significance and Use4.1Within the present state of the radiographic art,this guide is generally applicable to available materials,processes,and techniques where industrial radiographic films are used as the recording media.4.2Limitations —This guide does not take into consider-ation special benefits and limitations resulting from the use of nonfilm recording media or readouts such as paper,tapes,xeroradiography,fluoroscopy,and electronic image intensifi-cation devices.Although reference is made to documents that may be used in the identification and grading,where appli-cable,of representative discontinuities in common metal cast-ings and welds,no attempt has been made to set standards of acceptance for any material or production process.Radiogra-phy will be consistent in sensitivity and resolution only if the effect of all details of techniques,such as geometry,film,filtration,viewing,etc.,is obtained and maintained.5.Quality of Radiographs5.1To obtain quality radiographs,it is necessary to consider as a minimum the following list of items.Detailed information on each item is further described in this guide.5.1.1Radiation source (X-ray or gamma),5.1.2V oltage selection (X-ray),5.1.3Source size (X-ray or gamma),5.1.4Ways and means to eliminate scattered radiation,5.1.5Film system class,5.1.6Source to film distance,5.1.7Image quality indicators (IQI’s),5.1.8Screens and filters,5.1.9Geometry of part or component configuration,5.1.10Identification and location markers,and 5.1.11Radiographic quality level.6.Radiographic Quality Level6.1Information on the design and manufacture of image quality indicators (IQI’s)can be found in Practices E 747,E 801,E 1025,and E 1742.6.2The quality level usually required for radiography is 2%(2-2T when using hole type IQI)unless a higher or lower quality is agreed upon between the purchaser and the supplier.At the 2%subject contrast level,three quality levels of inspection,2-1T,2-2T,and 2-4T,are available through the design and application of the IQI (Practice E 1025,Table 1).Other levels of inspection are available in Practice E 1025Table 1.The level of inspection specified should be based on the service requirements of the product.Great care should be taken in specifying quality levels 2-1T,1-1T,and 1-2T by first determining that these quality levels can be maintained in production radiography.N OTE 2—The first number of the quality level designation refers to IQI thickness expressed as a percentage of specimen thickness;the second number refers to the diameter of the IQI hole that must be visible on the radiograph,expressed as a multiple of penetrameter thickness,T .6.3If IQI’s of material radiographically similar to that being examined are not available,IQI’s of the required dimensions but of a lower-absorption material may be used.6.4The quality level required using wire IQI’s shall be equivalent to the 2-2T level of Practice E 1025unless a higher or lower quality level is agreed upon between purchaser and supplier.Table 4of Practice E 747gives a list of various hole-type IQI’s and the diameter of the wires of corresponding EPS with the applicable 1T,2T,and 4T holes in the plaque IQI.Appendix X1of Practice E 747gives the equation for calcu-lating other equivalencies,if needed.7.Energy Selection7.1X-ray energy affects image quality.In general,the lower the energy of the source utilized the higher the achievable radiographic contrast,however,other variables such as geom-etry and scatter conditions may override the potential advan-tage of higher contrast.For a particular energy,a range of thicknesses which are a multiple of the half value layer,may be radiographed to an acceptable quality level utilizing a particu-lar X-ray machine or gamma ray source.In all cases the specified IQI (penetrameter)quality level must be shown on the radiograph.In general,satisfactory results can normally be obtained for X-ray energies between 100kV to 500kV in a range between 2.5to 10half value layers (HVL)of material thickness (see Table 1).This range may be extended by as much as a factor of 2in some situations for X-ray energies in the 1to 25MV range primarily because of reduced scatter.4Available from American National Standards Institute (ANSI),25W.43rd St.,4th Floor,New York,NY 10036.5Available from ernment Printing Office Superintendent of Documents,732N.Capitol St.,NW,Mail Stop:SDE,Washington,DC 20401.6Available from National Technical Information Service (NTIS),U.S.Depart-ment of Commerce,5285Port Royal Rd.,Springfield,V A22161.8.Radiographic Equivalence Factors8.1The radiographic equivalence factor of a material is that factor by which the thickness of the material must be multi-plied to give the thickness of a “standard”material (often steel)which has the same absorption.Radiographic equivalence factors of several of the more common metals are given in Table 2,with steel arbitrarily assigned a factor of 1.0.The factors may be used:8.1.1To determine the practical thickness limits for radia-tion sources for materials other than steel,and8.1.2To determine exposure factors for one metal from exposure techniques for other metals.9.Film9.1Various industrial radiographic film are available to meet the needs of production radiographic work.However,definite rules on the selection of film are difficult to formulate because the choice depends on individual user requirements.Some user requirements are as follows:radiographic quality levels,exposure times,and various cost factors.Several methods are available for assessing image quality levels (see Test Method E 746,and Practices E 747and E 801).Informa-tion about specific products can be obtained from the manu-facturers.9.2Various industrial radiographic films are manufactured to meet quality level and production needs.Test Method E 1815provides a method for film manufacturer classification of film systems.A film system consist of the film andassociated film processing ers may obtain a classi-fication table from the film manufacturer for the film system used in production radiography.A choice of film class can be made as provided in Test Method E 1815.Additional specific details regarding classification of film systems is provided in Test Method E 1815.ANSI Standards PH1.41,PH4.8,T9.1,and T9.2provide specific details and requirements for film manufacturing.10.Filters10.1Definition —Filters are uniform layers of material placed between the radiation source and the film.10.2Purpose —The purpose of filters is to absorb the softer components of the primary radiation,thus resulting in one or several of the following practical advantages:10.2.1Decreasing scattered radiation,thus increasing con-trast.10.2.2Decreasing undercutting,thus increasing contrast.10.2.3Decreasing contrast of parts of varying thickness.10.3Location —Usually the filter will be placed in one of the following two locations:10.3.1As close as possible to the radiation source,which minimizes the size of the filter and also the contribution of the filter itself to scattered radiation to the film.10.3.2Between the specimen and the film in order to absorb preferentially the scattered radiation from the specimen.It should be noted that lead foil and other metallic screens (see 13.1)fulfill this function.10.4Thickness and Filter Material —The thickness and material of the filter will vary depending upon the following:10.4.1The material radiographed.10.4.2Thickness of the material radiographed.10.4.3Variation of thickness of the material radiographed.10.4.4Energy spectrum of the radiation used.10.4.5The improvement desired (increasing or decreasing contrast).Filter thickness and material can be calculated or determined empirically.11.Masking11.1Masking or blocking (surrounding specimens or cov-ering thin sections with an absorptive material)is helpful in reducing scattered radiation.Such a material can also be usedTABLE 1Typical Steel HVL Thickness in Inches [mm]forCommon EnergiesEnergyThickness,Inches [mm]120kV 0.10[2.5]150kV 0.14[3.6]200kV 0.20[5.1]250kV0.25[6.4]400kV (Ir 192)0.35[8.9]1MV0.57[14.5]2MV (Co 60)0.80[20.3]4MV 1.00[25.4]6MV 1.15[29.2]10MV1.25[31.8]16MV and higher1.30[33.0]TABLE 2Approximate Radiographic Equivalence Factors for Several Metals (Relative to Steel)MetalEnergy Level100kV 150kV 220kV 250kV400kV1MV2MV4to 25MV192Ir60CoMagnesium 0.050.050.08Aluminum0.080.120.180.350.35Aluminum alloy 0.100.140.180.350.35Titanium0.540.540.710.90.90.90.90.9Iron/all steels 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0Copper 1.51.6 1.4 1.41.4 1.1 1.1 1.2 1.1 1.1Zinc 1.4 1.3 1.3 1.2 1.1 1.0Brass 1.4 1.3 1.3 1.2 1.1 1.0 1.1 1.0Inconel X 1.4 1.3 1.3 1.3 1.3 1.3 1.3 1.3Monel 1.7 1.2Zirconium2.4 2.3 2.0 1.7 1.5 1.0 1.0 1.0 1.2 1.0Lead 14.014.012.0 5.0 2.52.7 4.0 2.3Hafnium 14.012.09.03.0Uranium20.016.012.04.03.912.63.4to equalize the absorption of different sections,but the loss of detail may be high in the thinner sections.12.Back-Scatter Protection12.1Effects of back-scattered radiation can be reduced by confining the radiation beam to the smallest practical cross section and by placing lead behind thefilm.In some cases either or both the back lead screen and the lead contained in the back of the cassette orfilm holder will furnish adequate protection against back-scattered radiation.In other instances, this must be supplemented by additional lead shielding behind the cassette orfilm holder.12.2If there is any question about the adequacy of protec-tion from back-scattered radiation,a characteristic symbol (frequently a1⁄8-in.[3.2-mm]thick letter B)should be attached to the back of the cassette orfilm holder,and a radiograph made in the normal manner.If the image of this symbol appears on the radiograph as a lighter density than background, it is an indication that protection against back-scattered radia-tion is insufficient and that additional precautions must be taken.13.Screens13.1Metallic Foil Screens:13.1.1Lead foil screens are commonly used in direct contact with thefilms,and,depending upon their thickness, and composition of the specimen material,will exhibit an intensifying action at as low as90kV.In addition,any screen used in front of thefilm acts as afilter(Section10)to preferentially absorb scattered radiation arising from the speci-men,thus improving radiographic quality.The selection of lead screen thickness,or for that matter,any metallic screen thickness,is subject to the same considerations as outlined in 10.4.Lead screens lessen the scatter reaching thefilm regard-less of whether the screens permit a decrease or necessitate an increase in the radiographic exposure.To avoid image unsharp-ness due to screens,there should be intimate contact between the lead screen and thefilm during exposure.13.1.2Lead foil screens of appropriate thickness should be used whenever they improve radiographic quality or penetram-eter sensitivity or both.The thickness of the front lead screens should be selected with care to avoid excessivefiltration in the radiography of thin or light alloy materials,particularly at the lower kilovoltages.In general,there is no exposure advantage to the use of0.005in.in front and back lead screens below125 kV in the radiography of1⁄4-in.[6.35-mm]or lesser thickness steel.As the kilovoltage is increased to penetrate thicker sections of steel,however,there is a significant exposure advantage.In addition to intensifying action,the back lead screens are used as protection against back-scattered radiation (see Section12)and their thickness is only important for this function.As exposure energy is increased to penetrate greater thicknesses of a given subject material,it is customary to increase lead screen thickness.For radiography using radioac-tive sources,the minimum thickness of the front lead screen should be0.005in.[0.13mm]for iridium-192,and0.010in.[0.25mm]for cobalt-60.13.2Other Metallic Screen Materials:13.2.1Lead oxide screens perform in a similar manner to lead foil screens except that their equivalence in lead foil thickness approximates0.0005in.[0.013mm].13.2.2Copper screens have somewhat less absorption and intensification than lead screens,but may provide somewhat better radiographic sensitivity with higher energy above1MV.13.2.3Gold,tantalum,or other heavy metal screens may be used in cases where lead cannot be used.13.3Fluorescent Screens—Fluorescent screens may be used as required providing the required image quality is achieved.Proper selection of thefluorescent screen is required to minimize image unsharpness.Technical information about specificfluorescent screen products can be obtained from the manufacturers.Goodfilm-screen contact and screen cleanli-ness are required for successful use offluorescent screens. Additional information on the use offluorescent screens is provided in Appendix X1.13.4Screen Care—All screens should be handled carefully to avoid dents and scratches,dirt,or grease on active surfaces. Grease and lint may be removed from lead screens with a solvent.Fluorescent screens should be cleaned in accordance with the recommendations of the manufacturer.Screens show-ing evidence of physical damage should be discarded.14.Radiographic Image Quality14.1Radiographic image quality is a qualitative term used to describe the capability of a radiograph to showflaws in the area under examination.There are three fundamental compo-nents of radiographic image quality as shown in Fig.1.Each component is an important attribute when considering a specific radiographic technique or application and will be briefly discussed below.14.2Radiographic contrast between two areas of a radio-graph is the difference between thefilm densities of those areas.The degree of radiographic contrast is dependent upon both subject contrast andfilm contrast as illustrated in Fig.1.14.2.1Subject contrast is the ratio of X-ray or gamma-ray intensities transmitted by two selected portions of a specimen. Subject contrast is dependent upon the nature of the specimen (material type and thickness),the energy(spectral composition, hardness or wavelengths)of the radiation used and the intensity and distribution of scattered radiation.It is independent of time,milliamperage or source strength(curies),source distance and the characteristics of thefilm system.14.2.2Film contrast refers to the slope(steepness)of the film system characteristic curve.Film contrast is dependent upon the type offilm,the processing it receives and the amount offilm density.It also depends upon whether thefilm was exposed with lead screens(or without)or withfluorescent screens.Film contrast is independent,for most practical purposes,of the wavelength and distribution of the radiation reaching thefilm and,hence is independent of subject contrast. For further information,consult Test Method E1815.14.3Film system granularity is the objective measurement of the local density variations that produce the sensation of graininess on the radiographicfilm(for example,measured with a densitometer with a small aperture of#0.0039in.[0.1 mm]).Graininess is the subjective perception of a mottled random pattern apparent to a viewer who sees smalllocaldensity variations in an area of overall uniform density (that is,the visual impression of irregularity of silver deposit in a processed radiograph).The degree of granularity will not affect the overall spatial radiographic resolution (expressed in line pairs per mm,etc.)of the resultant image and is usually independent of exposure geometry arrangements.Granularity is affected by the applied screens,screen-film contact and film processing conditions.For further information on detailed perceptibility,consult Test Method E 1815.14.4Radiographic definition refers to the sharpness of the image (both the image outline as well as image detail).Radiographic definition is dependent upon the inherent un-sharpness of the film system and the geometry of the radio-graphic exposure arrangement (geometric unsharpness)as illustrated in Fig.1.14.4.1Inherent unsharpness (U i )is the degree of visible detail resulting from geometrical aspects within the film-screen system,that is,screen-film contact,screen thickness,total thickness of the film emulsions,whether single or double-coated emulsions,quality of radiation used (wavelengths,etc.)and the type of screen.Inherent unsharpness is independent of exposure geometry arrangements.14.4.2Geometric unsharpness (U g )determines the degree of visible detail resultant from an “in-focus”exposure arrange-ment consisting of the source-to-film-distance,object-to-film-distance and focal spot size.Fig.2(a)illustrates these condi-tions.Geometric unsharpness is given by the equation:U g 5Ft /d o(1)where:U g =geometric unsharpness,F =maximum projected dimension of radiation source,t =distance from source side of specimen to film,and d o =source-object distance.N OTE 3—d o and t must be in the same units of measure;the units of U g will be in the same units as F .N OTE 4—A nomogram for the determination of U g is given in Fig.3(inch-pound units).Fig.4represents a nomogram in metric units.Example:Given:Source-object distance (d o )=40in.,Source size (F)=500mils,andSource side of specimen to film distance (t)=1.5in.Draw a straight line (dashed in Fig.3)between 500mils on the F scale and 1.5in.on the t scale.Note the point on intersection (P)of this line with the pivot line.Draw a straight line (solid in Fig.3)from 40in.on the d o scale through point P and extend to the U g scale.Intersection of this line with the U g scale gives geometrical unsharpness in mils,which in the example is 19mils.Inasmuch as the source size,F ,is usually fixed for a given radiation source,the value of U g is essentially controlled by the simple d o /t ratio.Geometric unsharpness (U g )can have a significant effect on the quality of the radiograph;therefore source-to-film-distance (SFD)selection is important.The geometric unsharpness (U g )equation,Eq 1,is for information and guidance and provides a means for determining geometric unsharpness values.The amount or degree of unsharpness should be minimized when establishing the radiographic technique.Radiographic Image QualityRadiographic ContrastFilm System Granularity Radiographic DefinitionSubject Contrast Film Contrast •Grain size and distribution within the film emulsion •Processing conditions(type and activity of developer,temperature of developer,etc.)•Type ofscreens (that is,fluorescent,lead or none)•Radiation quality (that is,energy level,filtration,etc.•Exposure quanta (that is,intensity,dose,etc.)InherentUnsharpness Geometric Unsharpness Affected by:•Absorption differences in specimen (thickness,composition,density)•Radiation wavelength •Scattered radiationAffected by:•Type of film•Degree of development (type of developer,time,temperature and activity of developer,degree of agitation)•Film density •Type ofscreens (that is,fluorescent,lead or none)Affected by:•Degree of screen-film contact •Total film thickness •Single ordouble emulsion coatings •Radiation quality •Type and thickness of screens (fluorescent,lead or none)Affected by:•Focal spot or source physical size •Source-to-film distance •Specimen-to-film distance•Abruptness of thickness changes in specimen •Motion of specimen or radiation sourceReduced or enhanced by:•Masks and diaphragms •Filters•Lead screens •Potter-Bucky diaphragmsFIG.1Variables of Radiographic ImageQualityFIG.2Effects of Object-Film Geometry15.Radiographic Distortion15.1The radiographic image of an object or feature within an object may be larger or smaller than the object or feature itself,because the penumbra of the shadow is rarely visible in a radiograph.Therefore,the image will be larger if the object or feature is larger than the source of radiation,and smaller if object or feature is smaller than the source.The degree of reduction or enlargement will depend on the source-to-object and object-to-film distances,and on the relative sizes of the source and the object or feature (Fig.2(b )and (c )).15.2The direction of the central beam of radiation should be perpendicular to the surface of the film whenever possible.The object image will be distorted if the film is not aligned perpendicular to the central beam.Different parts of the object image will be distorted different amount depending on the extent of the film to central beam offset (Fig.2(d )).16.Exposure Calculations or Charts16.1Development or procurement of an exposure chart or calculator is the responsibility of the individual laboratory.16.2The essential elements of an exposure chart or calcu-lator must relate the following:16.2.1Source or machine,16.2.2Material type,16.2.3Material thickness,16.2.4Film type (relative speed),16.2.5Film density,(see Note 5),16.2.6Source or source to film distance,16.2.7Kilovoltage or isotope type,N OTE 5—For detailed information on film density and density measure-ment calibration,see Practice E 1079.16.2.8Screen type andthickness,FIG.3Nomogram for Determining Geometrical Unsharpness (Inch-PoundUnits)16.2.9Curies or milliampere/minutes,16.2.10Time of exposure,16.2.11Filter (in the primary beam),16.2.12Time-temperature development for hand process-ing;access time for automatic processing;time-temperature development for dry processing,and16.2.13Processing chemistry brand name,if applicable.16.3The essential elements listed in 16.2will be accurate for isotopes of the same type,but will vary with X-ray equipment of the same kilovoltage and milliampere rating.16.4Exposure charts should be developed for each X-ray machine and corrected each time a major component is replaced,such as the X-ray tube or high-voltage transformer.16.5The exposure chart should be corrected when the processing chemicals are changed to a different manufacturer’s brand or the time-temperature relationship of the processormay be adjusted to suit the exposure chart.The exposure chart,when using a dry processing method,should be corrected based upon the time-temperature changes of the processor.17.Technique File17.1It is recommended that a radiographic technique log or record containing the essential elements be maintained.17.2The radiographic technique log or record should con-tain the following:17.2.1Description,photo,or sketch of the test object illustrating marker layout,source placement,and film location.17.2.2Material type and thickness,17.2.3Source to film distance,17.2.4Film type,17.2.5Film density,(see Note 5),17.2.6Screen type andthickness,FIG.4Nomogram for Determining Geometrical Unsharpness (MetricUnits)。
NOVA PD540 Series Instruction Manual
DIGITAL CONTROLLERNOVA PD540 SeriesInstruction ManualPD540 - PD549PRECISION DIGITAL CORPORATION233 South Street ● Hopkinton MA 01748 USA Tel (800) 343-1001 ●Fax (508) 655-8990®©2009-2015 Precision Digital Corporation. All rights reserved.DisclaimerThe information contained in this document is subject to change without notice.Precision Digital Corporation makes no representations or warranties withrespect to the contents hereof, and specifically disclaims any implied warrantiesof merchantability or fitness for a particular purpose.Registered TrademarksMODBUS ® is a registered trademark of Schneider Automation Inc. All other trademarks mentioned in this document are the property of their respective owners.Nova PD540 Series Model Number Guide-Power00 = None PD540, PD54111 = 1 relay & 2 digital inputs 14 = 1 relay & RS-48531 = 1 analog output & digital inputs 34 = 1 analog output & RS-485PD544, PD545:04 = RS-48551 = 2 relays, 1 analog output& 2 digital inputs54 = 2 relays, 1 analog output& RS-485PD542, PD543:, PD546 to PD549:21 = 2 relays & 2 digital inputs 24 = 2 relays & RS-485PD540, PD541, PD544, PD545:A = 1 relay & 1 analog output PD542, PD543, PD546 to PD549:B = 1 relay & 2 analog outputs1. Safety Guide and Specifications52. Front Panel Buttons and LED Indicators 115. Controller Parameter Setup125.1 Input Group (G.IN)155.2 Output Group (G.OUT)195.5 PID Group (G.PID)275.6 Auto-Tuning Group (G.AT)315.7 Alarm Group (G.ALM)335.8 Retransmission Group (G.RET)365.9 Communication Group ()373. Parameter Map 156. Error Display and Correction 397. Installation407.1 Dimensions and Panel Cutouts 7.2 Panel Mounting457.3 Power Cable Specifications 467.4 Terminal Specifications467.5 Terminal Assignment, Connections, and Ratings47404. Operation Flow Chart 145.3 Control Group (G.CTL)225.4 SP Group (G.SP)251.1 Specifications77.7 Signal Input Connection 7.8 Analog Output Connection 537.9 Relay Output Connection (RELAY)547.10 Digital Input Connection (DI)547.11 Use of an External Relay 547.12 Communication Wiring (RS-485)5552Table of D-Registers567.6 Grounding and Power Cable Connection 52Table 1: Universal Input Selection 15Table 2: DI Operation 22Table 3: Alarm Selection 34Fig 2: Bias Formula Calculation17Fig 3: Time-Proportional PID Control Output 20Fig 4: Output Delay and Timer Functions 22Fig 5: Overshoot Suppression with Fuzzy Logic 27Fig 6: Heating and Cooling Outputs Using PID Control 29Fig 7: Heating On/Off and Cooling PID Outputs 29Fig 8: Heating PID and Cooling On/Off Outputs 30Fig 9: Auto-Tuning 31Fig 10: Auto-Tuning Gain 32Fig 11: Alarm Operation34Fig 1: Temperature Bias 17AppendixTables and FiguresThe following safety symbols are used in this manual(1)This symbol notifies the user of specific information relating to the safe operation of the controller.Information noted with this symbol must be observed to protect the user from injury and to prevent damage to the product.(A) For User:Be aware of this marking in the manual and refer to the explanation in the manual toprevent injury and damage.(2) For Installer:Study the warnings marked to prevent injury and damage.(2)Functional earth terminal: This symbol indicates that the terminal must be connected to ground.(3)This symbol indicates additional information on the features of the product.(4)This symbol directs the reader to further information on the current topic.NOTE!CAUTIONController Mounting Precautions⏹Keep the input circuit wiring as far as possible away from power and ground circuits.⏹Keep the units in 10 to 50ºC (50 to 110ºF) with 20% to 90% relative humidity (RH).The controller may need a warm up period to return to operating temperature ranges when below 10ºC.⏹To prevent electric shock, be sure to turn off the power source and circuit breaker before wiring.⏹The power requirements are 100 to 240 VAC, 50/60 Hz, 10 VA max. Do not switch power supplies without first disconnecting the power supply.⏹Follow the operating procedures and precautions in the manual to avoid fire, shock, damage to the unit, or injury. Follow the operations and mounting directions indicated in this manual.⏹Always create a ground connection where indicated, however do not ground to gas pipes,water pipes, lightening rods, or other potentially hazardous metal objects.⏹Do not apply power to the unit until all connections have been made.⏹Do not cover the venting holes in the rear of the unit.Operational Environment Precautions(1)Only operate the controller when it is properly installed.(2)When installing the controller, select a location where: ⏹Rear terminals are protected from accidental contact. ⏹Mechanical vibrations are minimal. ⏹No corrosive gas is present.⏹Temperature fluctuation is minimal.⏹Temperature can be maintained between 10 and 50 ºC (50 and 110ºF) with 20 to 90% RH.⏹No direct heat radiation is present.⏹High levels of electromagnetic interference are not present ⏹The unit is not exposed to water.⏹No flammable materials are present.⏹Dust particles are not present in the air.⏹Exposure to ultraviolet rays is minimal.⏹Openings on the rear of the controller are not blocked.(3)This unit is suitable for installation in an enviornment classified as Pollution Degree 2.(4)This unit is designated as Installation Category II.(5)If the equipment is used in a manner not specified by the manufacturer, the protection provided by the equipment may be impaired.(6)A switch or circuit-breaker acting as the disconnect device shall be included in the application or the installation.1.1 SPECIFICATIONSExcept where noted all specifications apply to operation at 23ºC.GeneralDISPLAY Dual 4 digits, red LED, -1999 to 9999DIN Sizes PV Display SP Display Weightmm (inch)mm (inch)g (oz)1/1611.3 (0.45)9.5 (0.37)198 (7.0)3/1614.0 (0.55)12.0 (0.47)324 (11.4)1/8 (H)19.8 (0.78)11.5 (0.45)306 (10.6)1/8 (V)13.6 (0.54)10.5 (0.41)304 (10.7)1/420.5 (0.81)11.0 (0.43)389 (13.7) FRONT PANEL1/16 & 1/8 DIN: IP65; 3/16 & 1/4 DIN: IP55SAMPLING TIME250 msOVERRANGE Over range PV reads ovR, under range PV reads -ovR PROGRAMMING Four front panel buttons and ModbusMETHODSPID ZONES 3 programmable PID zone ranges, 1 PID PV deviation zone NOISE FILTER Programmable from 1 to 120CALIBRATION All ranges are calibrated at the factoryPASSWORD Programmable password restricts modification ofprogrammed settingsPOWER100-240 VAC, 50/60 HZ, 10 WattsFUSE Required fuse: UL Recognized, 1 A, 250 V, slow blow ISOLATION2300 V input-to-output-to-power line;4 kV relay output-to-input/output/power lineNUMBER OF 4 programmable set pointsSET POINTSENVIRONMENTAL Operating temperature range: 10ºC to 50ºC (50ºF to 110ºF)Relative humidity: 20 to 90% non-condensingMOUNTING1/16, 3/16, 1/8, or 1/4 DIN size cutout requiredTwo panel mounting bracket assemblies providedOne one-piece bracket provided for the PD540 WARRANTY Three years parts and laborTempTempI n p u t T y p eUNIVERSAL INPUT TYPE AND ACCURACY*Performance within recommended operating conditions (10 to 50°C, 20 to 90% RH)**For a range scale of 0 to 100°C: +0.3°C +1 digit, and for a range scale of -100 to 100°C: +0.5°C +1 digitProcess and Temperature InputsTEMPERATURE DRIFT Refer to accuracy specifications below DECIMAL POINT Up to three decimal places for process inputs:9.999, 99.99, 999.9, or 9999REAR JUNCTION Automatic or off settings for temperature inputs. No user COMPENSATION calibration required.OFFSET ADJUSTMENT Four programmable input bias zonesSENSOR BREAK Open sensor indicated by PV display flashing S.O PN .DETECTIONAll PID control outputs transmit at the user programmed percent of full output scale set in parameters Po and Poc.Up or down scale, user selectable; alarm relays will follow the up or down scale selection.TRANSMITTER 14 to 18 VDC @ 20 mA; available at terminals OUT2 or SUPPLYOUT3, instead of a retransmitting analog outputRelay OutputsRATINGS Out1: 250 VAC @ 3 A or 30 VDC @ 3 A (resistive load)Sub1, Sub2: 250 VAC @ 1 A or 30 VDC @ 1 A (resistive load) ELECTRICAL NOISE A suppressor (snubber) should be connected to each SUPPRESSION relay contact switching inductive loads, to preventdisruption to the microprocessor's operation.Recommended suppressor value: 0.1 μF/470 Ω,250 VAC (PDX6901)DEADBAND For alarm operations, 0-100% of full scale, user selectable HIGH OR LOW User may program any relay for high or low trip pointALARMDEVIATION ALARM User may program any relay for a high, low, or range setpoint deivation alarm.RELAY OPERATION Any relay may be set as an alarm relay or for timeproportional PID control.TIME DELAY0 to 99 minutes 59 seconds alarm trip delay userselectable for each alarm. Time proportional PID controlrelay activation time delay of 0 to 99 minutes 59 secondsuser selectable.FAIL-SAFE ProgrammableOPERATION Independent for each alarm relayAUTO INITIALIZATION When power is applied to the controller, alarm relays willreflect the state of the input to the controller exceptstandby alarms.Analog OutputsOUTPUT RANGE Continuous PID or retransmitting: 4-20 mA (600 Ω maximum)Time Proportional PID: 15 VDC pulse (600 Ω minimum,current limited at 30 mA) high, less than 0.1 VDC low, cycletime 1 to 300 seconds, user selectableSCALING RANGE Retransmitting 4-20 mA outputs can be scaled for anydisplay range low and highACCURACY+0.1% of full scaleDigital InputsCONFIGURATION Two contacts, two operating modesCONTACTS Normally open switches (external excitation not required)or open collector transistorOPEN CIRCUIT Approximately 5 VDCVOLTAGELOGIC LEVELS LO = 0 to 0.8 VDC, HI = 4.7 to 28 VDCOPERATION MODES Mode 1: Control output run/stop, selection of set point1 or 2Mode 2: Selection of set points 1 to 4Serial CommunicationsPROTOCOLS Modbus (ASCII, RTU), PC software,Sync (master/slave SP control)UNIT ADDRESS 1 to 99 (Max 31 units connected)BAUD RATE600, 1200, 2400, 4800, 9600, 19200 bps, user selectable RESPONSE TIME0 to 100 ms delay response time10 ms increments user selectableDATA7 or 8 bit user selectablePARITY None, even, or oddApprovalsUL RECOGNIZED USA and CanadaProcess Control EquipmentUL FILE NUMBER E244207CE COMPLIANT: Optional feature: Menu only used if OUT2 or OUT3 selected for Heat or Cool control: OUT3 is an option for the PD540, PD541, PD544, and PD545, and standard on all other models : Option not available on the PD540 or PD541: Selection in H/C model controllers only (H/C models and ON/OFF mode display HYS): This setting is active only when integral time is 0 and Heat or Cool is selected.PwD : Lockout Password Use the ☐❑ arrows to enter thepassword and press the SET/ENT key. The default password is 0.'STOP' appears in the SP display when the controller has stopped output operation due to running timeparameters. The Set Point may be changed while in 'Stop' mode.Operation Display-1 : Initial display after power on. Active Set Point may be set through this menu.Operation Display-2 : Output control display shows level of output as % of full output scale. May beset manually if output configured for manual operation.Heating output display in Heating/Cooling models only.Cooling output display in Heating/Cooling models only.Only displayed when User Screen 1 is set in US1.Only displayed when User Screen 2 is set in US2.note 1:note 2:note 3:note 4:note 5:note 6:note 7:5.1 Input Group (G.IN)Input group parameters should be established first, as changes to the input type may reset other parameter settings in other groups to their default value.4-20 mA Input Selection:To accept a 4-20 mA signal, select 0.4 to 2.0 VDC input and connect a 100 Ω resistor across the input terminals.NOTEThe original temperature is shown within the range of 0ºC (Range Low) and 100ºC (Range High).Bias points have been used to adjust the displayed temperature as shown in the graph in Fig 1.To establish this bias, the settings are shown below.Temperature Bias Value (BS0 through BS4) = Temperature After Bias - Actual TemperatureDisplay temperature after bias at 600ºC actual temperature = PFig 2: Bias Formula CalculationFig 1: Temperature BiasExample 1: Temperature Settings to Establish Where the Bias Occurs RL BSP1BSP2BSP3 RH0ºC 25ºC 50ºC 75ºC 100ºC Bias Offset for Each Point BS0 BS1 BS2 BS3BS40ºC -2ºC +1ºC -3ºC0ºCP = 600 + (600 - BPS2) x BSP3 - BSP2BS3 - BS2+ BS2Example 2:100ºC0ºC500ºC800ºC1000ºCP = 600 + (600 - 500) x800 - 50050 - 10+ 10 = 623ºC Temperature After BiasInput Group Parameter SummaryNOTE 5.2 Output Group (G.OUT)Output Group Menu Progression Example:The following settings establish relay output 1 (OUT1) to trigger based on alarm 1, for analog output 2 (OUT2) tooperate as a heating temperature controller outputting a voltage pulse, for analog output 3 (OUT 3) to output a retransmitting 4-20 mA signal, and for auxiliary relay outputs SUB1 and SUB2 to trigger with alarm 2 and alarm 3.PVSPPVSPPVSPPVSPPVSPPVSPoUT1oUT2oUT3HEATsUB1SUB2alm1ret HEATalm2Alm3ssrOutput Group Parameter SummaryNote: In H/C models, HYS.H and HYS.L replaced by HYS, and range high and low is 1/2 HYS setting5.3 Control Group (G.CTL)Fig 4: Output Delay and Timer FunctionsControl Group Parameter Summary5.4 SP Group (G.SP)Set Point Group Parameter SummaryFig 5: Overshoot Suppression with Fuzzy LogicSPFig 8: Heating PID and Cooling On/Off Outputs PID Group Parameter Summary2.PID1.PIDFig 9: Auto-TuningAuto-Tuning the Heating/Cooling Outputs:Auto-tuning of the heating/cooling outputs is the same process as the normal outputs. The PID heating/ cooling parameters will be calculated. The parameters for the PID derivation time (1.D) will be the same for both the heating and cooling outputs.Display During Auto-Tuning:The MAN LED on the front panel will blink at a 500 ms time interval.Changing the Set Point During Auto-Tuning:If the set point is changed during the auto-tuning process, the original set point will be maintained for the duration of the auto-tuning process. After auto-tuning is complete, the controller will change to the new set point.Changing PID Parameters During Auto-Tuning:The PID values can be changed during the auto-tuning process. After auto-tuning is complete, it will then use the auto-tune calculated PID values. Values changed after auto-tuning will remain set until auto-tuning is run again.Auto-Tuning Interruptions or Errors:The auto-tuning process will end without effect for any of the following reasons:- Auto-tuning forced to end (Example: Controller power down or stop condition)- Open sensor (S.OPN) input error detected during the auto-tuning process- Auto-tuning cycle exceeds 24 hours.- Control changed to manual (MAN) operation during auto-tuning.Fig 10: Auto-Tuning Gain5.7 Alarm Group (G.ALM)Fig 11: Alarm OperationAlarm Group Parameter Summary0.0%(No Output)100.0%(Maximum Output)MV Type Retransmission ScaleMV type retransmits based on the full scale output and what is currently being transmitted by the control outputsRetransmission Group Parameter Summary LPS Type RetransmissionLPS (Loop Power Suppy) retransmitting outputs will transmit a 14-18 VDC @ 20 mA power supply output.Communication Group Parameter Summarym (inch) - for reference only7.1 Dimensions and Panel CutoutsUnits:m1/4 DINm Units:m(1.89XN)1/8 (V) DINm Units:m3/16 DINm Units:m92120+0.645+0.6 070(3.62)(1.77)(4.72)(2.76)1/8 (H) DINm(1.89XN) Units:m7.2 Panel Mounting7.3 Power Cable SpecificationMake power connections using 0.9 to 2.0 mm2 or 16 AWG vinyl insulated wire. (Voltage rating of 300 VAC) 7.4 Terminal SpecificationUse M3.5 screw-compatible crimp on terminals with insulating sleeve as shown below.Minimum Diameter7.5 Terminal Assignment, Connections, and RatingsNO switches (external excitation not required) or open collector transistorNO switches (external excitation not required) or open collector transistor30 VDC @ 1 A30 VDC @ 1 A。
深度学习图像重建算法在低剂量扫描对肺结节显示及测量的影响
深度学习图像重建算法在低剂量扫描对肺结节显示及测量的影响金鑫;陈杭美;傅钰沁【期刊名称】《医学影像学杂志》【年(卷),期】2024(34)3【摘要】目的探讨肺结节胸部CT低剂量对深度学习图像重建(DLIR)图像质量及结节检测的影响。
方法选取肺结节患者120例,在低剂量扫描条件下应用低剂量迭代重建算法(ASIR-V),评估低剂量下重建图像总体噪声(NI)、肺组织信噪比(SNR)、对比噪声比(CNR),实性、磨玻璃结节噪声、SNR、CNR及结节可见度、筛查准确性。
结果DLIR-H总NI和肺组织CNR为(21.14±1.35)Db、(13.70±1.96),低于ASIR-V和DLIR-M,DLIR-M低于ASIR-V(均P<0.05)。
肺组织SNR为(26.85±3.46),高于ASIR-V和DLIR-M,DLIR-M高于ASIR-V(均P<0.05)。
实性结节、磨玻璃结节NI和CNR均低于ASIR-V和DLIR-M,DLIR-M低于ASIR-V(均P<0.05)。
实性结节、磨玻璃结节SNR高于ASIR-V和DLIRM结果,DLIR-M高于ASIR-V(均P<0.05)。
DLIR-H图像质量评分、实性结节、磨玻璃结节可见评分均高于ASIR-V 和DLIR-M结果,DLIR-M结果高于ASIR-V(均P<0.05)。
DLIR-H肺结节准确率86.67%,高于ASIR-V和DLIR-M(P<0.05)。
结论胸部CT扫描肺结节应用低剂量DLIR算法能够有效降低噪声,保证图像质量前提下提高诊断率。
【总页数】3页(P140-142)【作者】金鑫;陈杭美;傅钰沁【作者单位】浙江省诸暨市第四人民医院放射科【正文语种】中文【中图分类】R734.2;R814.42【相关文献】1.肺结节加强观察功能对双源CT低剂量扫描图像肺结节检出效能的影响2.不同CT图像重建算法下基于深度学习的肺结节检测算法效能3.不同混合权重深度学习重建算法对低剂量CT扫描肺结节定量分析准确性的影响4.超低剂量CT能谱纯化技术联合高级建模迭代重建对显示肺磨玻璃结节及测量其体积的影响:体模研究5.深度学习重建算法对胸部低剂量CT肺结节测量及显示影响的模体研究因版权原因,仅展示原文概要,查看原文内容请购买。
《城镇污水厂污泥园林绿化利用泥质标准》(征求意见稿)
II
目次
1 2 3
总则.............................................................................................................................................1 术语.............................................................................................................................................2 城镇污水厂污泥产物园林绿化利用质量要求........................................................................ 3 3.1 一般规定............................................................................................................................... 3 3.2 用作园林绿化栽培介质土................................................................................................... 3 3.3 用作园林土壤改良材料....................................................................................................... 4 3.4 作为制作有机肥原材料....................................................................................................... 5
p2dr模型中detection环节使用的方法
p2dr模型中detection环节使用的方法P2DR模型中Detection环节使用的方法1. 目标检测方法概述目标检测是计算机视觉领域的一项重要任务,旨在识别图像或视频中特定目标的位置和类别。
在P2DR模型中,Detection环节是指根据输入的图像或视频数据,通过使用一系列方法来实现目标检测。
2. 常用的目标检测方法R-CNN系列方法•R-CNN(Regions with CNN features)是一种基于候选区域的目标检测方法。
它首先通过选择性搜索等算法生成大量候选区域,然后将这些区域输入卷积神经网络(CNN)进行特征提取和分类。
•Fast R-CNN是在R-CNN的基础上进行了改进,使用RoI池化层来共享特征提取,整体速度更快。
•Faster R-CNN进一步提升了速度,引入了Region Proposal Network(RPN)来生成候选区域,与Fast R-CNN结合进行端到端的训练。
SSD(Single Shot MultiBox Detector)SSD是一种单阶段的目标检测方法,与R-CNN系列方法相比,它无需生成候选区域,直接通过一个多尺度的卷积网络对目标进行分类和位置回归。
SSD使用了多个不同尺度的特征图进行检测,能够在不同尺度下捕捉到不同大小的目标。
YOLO(You Only Look Once)YOLO是另一种单阶段的目标检测方法,通过一个卷积神经网络直接对整张图像进行分类和位置回归。
相比于R-CNN系列方法和SSD,YOLO的优势在于速度更快,能够实时地进行目标检测。
RetinaNetRetinaNet是一种基于特征金字塔网络(Feature Pyramid Network)的目标检测方法。
它通过在不同尺度的特征图上进行检测,解决了传统方法在不同尺度下检测效果不佳的问题。
RetinaNet还引入了一种新的损失函数,解决了目标不平衡问题,提升了检测的准确性。
3. 总结本文介绍了P2DR模型中Detection环节使用的一些常用方法。
detectron2 参数
detectron2 参数摘要:1.检测RPN2.锚点生成3.锚点回归4.损失函数5.训练与评估正文:Detectron2 是一个用于目标检测的PyTorch 框架,它提供了一组灵活的API,使得用户可以方便地实现各种目标检测任务。
在Detectron2 中,参数设置是一个非常重要的环节,合理的参数设置可以大大提高模型的性能。
下面我们来详细介绍一下Detectron2 的一些主要参数设置。
1.检测RPNRPN 是Region Proposal Network 的缩写,它是一种用于生成目标候选区域的网络。
在Detectron2 中,可以通过设置`rpn_ proposal_size` 参数来控制RPN 生成的候选区域的大小,该参数默认值为128。
同时,还可以通过设置`rpn_anchor_size` 参数来控制RPN 生成的锚点大小,该参数默认值为32。
2.锚点生成在目标检测任务中,锚点的选择也是非常重要的。
Detectron2 提供了一种简单的锚点生成方法,通过设置`anchor_generator` 参数来指定。
默认情况下,Detectron2 使用的是`DefaultAnchorGenerator`,它可以生成一组默认的锚点。
当然,用户也可以自定义锚点生成器,以适应不同的任务需求。
3.锚点回归锚点回归是目标检测任务中的一个关键环节,它用于将预测的边界框回归到真实的边界框。
在Detectron2 中,可以通过设置`anchor_regression` 参数来控制锚点回归的策略,该参数默认值为`Multiply(量化)`。
此外,还可以通过设置`anchor_regression_loss` 参数来控制锚点回归的损失函数,该参数默认值为`平滑L1 损失`。
4.损失函数损失函数是目标检测任务中的一个重要概念,它用于衡量模型预测与真实标签之间的差距。
在Detectron2 中,可以通过设置`loss_weight` 参数来控制损失函数的权重,该参数默认值为1。
科技英语综合教程习题答案
II. Word and phrase translation (P50, Unit 2) A. 1.磁共振成像 磁共振成像 2.氢质子 氢质子 3.磁性 磁性 4.纳米晶体 纳米晶体 5.造影剂 5.造影剂,对比剂 造影剂, 6.量子点 量子点 7.硒化镉 硒化镉 8.纳米碳管 纳米碳管 9.上皮细胞 上皮细胞 10.近红外线激光 近红外线激光
B. (P153, Unit 5) 1. flashy memory 2. mobile-phone watchers 3. projection keyboard 4. defenders of the PC 5. speech-recognition system 6. “dual hinge” design 7. the touch-tone pad 8. a phone guy 9. the luxuriously large screen 10. smart-phones
Key to Ex on P43-46 +49-50 (Unit 2) IV. Multiple Choice 1-5: CABDB 6-10: CADAB V: Blank Filling 1. malignancies 2. adjuvant 3. concerned 4. sensation 5. reactions 6. advanced 7. agents 8. blood vessels 9. sensitive 10. cure VI. Cloze 1-5: BABCD 6-10: CADBC 11-15: ABCDA 16-20: BCBDA
B. (P218, Unit 7) 1. CDMA (Code Division Multiple Access) 2. GPS (Global Position System) 3. Assisted-GPS 4. base station 5. AP (access point) 6. licensed bands 7. multipath propagation 8. VPN (Virtual Private Network) 9. RF fingerprinting 10. roaming capability
6-1切伦科夫探测器解析
cos2
sin2
1 n2 2
1 n2
1
1 n2 1
0
1 n2 1
发生全反射和不发生全反射时,透过介质 的辐射强度有很大变化,在侧面记录多次
全反射,即记录>0的粒子。
已知,对折射率n而言,发生全反射的条
件:
n
1
1 2
2
11
三、光探测器
要求对紫外光透过率好的高灵敏度低噪音的光探测器。
光电倍增管:
位置灵敏探测器
13
混合光探测器HPD
• 由固体光电转换体和电子倍增器组合而成。电子倍增可以在 真空器件中进行也可以在气体探测器中进行。
• CsI光电转换体,入射光子光电子。 • 气体预放大区,光电子倍增, • 保证其良好的位置和时间特性。 • 二次放大,富He混合气体,低气压或1个大气压。 • MWPC记录。 • M>107, 允许计数率106Hz/mm2。
4)加大辐射体长度L;
5)气体阈式C计数器可加大气压以增加n。
L辐射体长度
17
速度分辨:
• 要有效地区分粒子,要求阈式C计数 器对于>T的粒子有尽可能高的探 测效率(~100%)。
• 效率曲线有一定的斜度,说明计数器 的阈速度不是绝对单值的,存在着一 定大小的速度分辨范围。
• 阈式C计数器的速度分辨率定义为探 测效率曲线由0-63%变化时对应 的速度的变化
电离能损 ~400keV/cm
(8)发光时间短10-9-10-11秒,取决于粒子穿越辐射体的时间。
8
§6-2 切伦科夫探测器的组成
一、辐射体
可以是气体、液体和固体,应根据不同的用途选择不同 的辐射体。对不同速度的粒子,必须选择适当折射率的辐 射体。
《二次监视雷达信号的处理和分析》范文
《二次监视雷达信号的处理和分析》篇一一、引言随着航空业的迅猛发展,雷达系统作为现代航空管制与空中交通管理系统的重要一环,起着至关重要的作用。
二次监视雷达(Secondary Surveillance Radar,SSR)作为一种特殊类型的雷达系统,具有高度精准和稳定的监测性能,对空中飞行器进行准确监测与定位。
为了实现这一功能,需要对二次监视雷达信号进行有效的处理和分析。
本文旨在阐述二次监视雷达信号处理和分析的方法与过程,探讨其在航空安全中的应用和意义。
二、二次监视雷达信号的处理1. 信号接收二次监视雷达信号的接收是整个处理过程的第一步。
接收机通过天线接收来自空中飞行器的应答信号,这些信号中包含了飞行器的识别码、高度、速度等关键信息。
接收机将接收到的信号进行初步的放大和滤波处理,以消除噪声干扰。
2. 信号解调经过初步处理的信号需要进行解调处理。
解调是将接收到的信号从调制状态恢复到原始状态的过程。
二次监视雷达的信号通常采用编码方式对信息进行传输,因此需要解调器对信号进行解码处理,提取出原始的识别码和数据信息。
3. 数据分析解调后的数据需要进一步的分析处理。
数据处理中心通过对这些数据的分析和计算,得出飞行器的高度、速度等关键信息,并通过这些信息实现对飞行器的精确跟踪和定位。
此外,数据处理中心还可以对数据进行进一步的处理和优化,以提高信息的准确性和可靠性。
三、二次监视雷达信号的分析1. 识别码分析二次监视雷达信号中的识别码是空中飞行器身份的标识,具有唯一性。
通过对识别码的分析,可以实现对飞行器的快速识别和跟踪。
此外,通过对识别码的统计和分析,还可以了解不同类型飞行器的分布情况和活动规律。
2. 高度和速度分析通过对二次监视雷达信号的处理和分析,可以得出飞行器的高度和速度等关键信息。
这些信息对于航空安全具有重要意义。
通过对高度和速度的实时监测和分析,可以及时发现潜在的飞行安全隐患,并采取相应的措施进行应对和处理。
基于EPICS的粒子加速器辐射安全联锁PLC系统设计
序号
1 2 3 4 5 6 7
控制站名称
直线电源厅 增强器真空设备厅 环 隧 道 顶 M 03区 环 隧 道 顶 M 15区 环 隧 道 顶 M 27区 环 隧 道 顶 M 39区
中控室机房
表 2 HEPS安 全 联 锁 控 制 器 模 块 统 计 表
模块类型与数最
F3SP 76-7S
F3BU 13-0 N
粒子加速器是一种利用电场加速或增加 粒 子 束 的 能 量 ,从 而 研 究 粒 子 和 原 子 核 结 构 的 高能物理研究装置m 。在粒子加速器调试和运 行 过 程 中 ,同 步 辐 射 、束流 与束流管残余气体作 用 产 生 的 轫 致 辐 射 、损 失 的 束 流 ,都会形成瞬发 辐 射 ,瞬 发 辐 射 场 能 量 高 、辐 射 强 ,产 生的 中子 和 y 射 线 将 对 人 引 起 直 接 的 辐 射 剂 量 ™ 。如果 有 人 员 在 加 速 器 开 机 时 ,进 人 或 者 被 困 在 隧 道 内 受 到 瞬 发 辐 射 照 射 ,将 会 引 起 严 重 的 辐 射 伤 害 事 故 ,因 此 ,一 套稳 定可 靠的辐 射 安全 联锁 系 统 就 成 了 粒 子 加 速 器 的 必 备 设 施 [3_5]。本文以 高 能 同 步 辐 射 光 源 为 例 ,介 绍 一 种 基 于 e p i c s
( 1 . 东 莞 中 子 科 学 中 心 ,东 莞 5 2 3 8 0 3 ; 2 . 中 国 科 学 院 高 能 物 理 研 究 所 ,北 京 100049; 3 . 中 国 科 学 院 大 学 ,北 京 100049)
detectron2 参数
detectron2 参数Detectron2是Facebook AI Research团队开源的计算机视觉库,是在Detectron的基础上进行重构的工具集。
它提供了一种高效灵活的方式来实现复杂的计算机视觉算法,并且在训练和推理性能上都有很大的提升。
Detectron2的设计目标是为了方便研究人员和开发人员快速实现和部署最先进的目标检测、实例分割和关键点检测模型。
Detectron2具有很多强大的功能和灵活的参数设置,接下来我们将介绍一些Detectron2的常用参数。
一、数据集相关参数在使用Detectron2训练模型之前,需要先设置数据集相关的参数。
Detectron2中的数据集是通过`DatasetCatalog`和`MetadataCatalog`来管理的。
`DatasetCatalog`用于注册和访问数据集,而`MetadataCatalog`用于存储数据集的元数据信息,比如类别名字、类别ID等。
1. 数据集注册数据集的注册可以通过调用`register_dataset`方法来实现,其参数包括`name`、`dataset`和`metadata`。
`name`是数据集的名称,`dataset`是由样本组成的列表,`metadata`是数据集的元数据。
2. 数据集预处理Detectron2提供了很多数据集预处理的方法,比如对图像进行缩放、随机水平翻转、随机扩展和归一化等。
这些预处理方法可以通过配置项`InputRescale`、`RandomFlip`和`RandomExtension`来设置。
3. 数据集拆分在训练过程中,我们通常需要将数据集划分为训练集、验证集和测试集。
Detectron2提供了两种划分数据集的方式:按比例划分和按索引划分。
按比例划分可以通过配置项`DatasetSplitter.split_fraction`来设置,按索引划分可以通过配置项`DatasetSplitter.indices`来设置。
detectron2 参数
detectron2 参数摘要:一、背景介绍1.detectron2 的概述2.detectron2 在计算机视觉领域的重要性二、detectron2 参数概述1.参数的作用2.参数的类型3.参数的设置方法三、detectron2 参数详解1.数据集参数a.数据集路径b.数据集类别c.数据集预处理2.模型参数a.模型架构b.损失函数c.优化器d.学习率3.训练参数a.训练轮数b.批量大小c.学习率衰减策略d.验证率4.推理参数a.输入图像尺寸b.最大检测数量c.类别阈值四、参数调整策略1.数据增强2.超参数搜索3.网格搜索4.验证集的使用五、总结1.detectron2 参数的作用和设置方法2.如何调整参数以优化模型性能正文:一、背景介绍近年来,计算机视觉在人工智能领域取得了显著的发展,其中目标检测技术是计算机视觉的重要分支。
detectron2 是Facebook AI Research 开发的一个用于目标检测和语义分割的PyTorch 框架,它在ImageNet 等大型数据集上训练得到了出色的性能,被广泛应用于各种计算机视觉任务。
二、detectron2 参数概述在detectron2 中,为了实现模型的训练和推理,需要设置一系列参数。
这些参数可以分为数据集参数、模型参数、训练参数和推理参数等。
数据集参数包括数据集路径、数据集类别和数据集预处理等;模型参数包括模型架构、损失函数、优化器和learning rate 等;训练参数包括训练轮数、批量大小、学习率衰减策略和验证率等;推理参数包括输入图像尺寸、最大检测数量和类别阈值等。
三、detectron2 参数详解1.数据集参数数据集参数是模型训练的基础,需要设置数据集的路径、类别和预处理方法。
数据集路径指定数据集文件的位置;数据集类别指定数据集中的目标类别;数据集预处理包括图像缩放、裁剪等操作,用于统一数据集的图像尺寸。
2.模型参数模型参数是影响模型性能的关键因素,需要根据任务选择合适的模型架构、损失函数、优化器和learning rate。
pyrealsense2 畸变参数
Pyrealsense2 畸变参数1. 简介Pyrealsense2 是一个基于英特尔的深度摄像头技木库,可以用于进行实时的三维感知和场景理解。
在使用这个库的过程中,我们经常会遇到畸变参数的问题,而了解和理解畸变参数对于正确使用该库非常重要。
2. 什么是畸变参数深度摄像头在成像时,由于镜头形状、材料、加工精度等因素的影响,会产生畸变。
而畸变参数则是用来描述这种畸变的参数。
在实际应用中,通过畸变参数的校准,可以对图像进行矫正,从而得到更加准确的图像信息。
3. 畸变参数的分类畸变参数一般分为径向畸变和切向畸变两种。
- 径向畸变是由于镜头的非理想球面、或者透镜材料的非均匀性等因素导致的畸变,它的表现形式是图像中心附近的物体会像鱼眼一样变形,一般使用一到多个径向畸变参数进行描述。
- 切向畸变是由于镜头装配的不精确、镜头与成像平面不平行等因素导致的畸变,它的表现形式是图像中心的物体会出现水平或垂直偏移,一般使用两到多个切向畸变参数进行描述。
4. 畸变参数的应用了解和理解畸变参数对于深度摄像头的使用非常重要。
在使用深度摄像头获取图像后,我们需要对图像进行畸变校正,从而得到准确的三维信息。
通过畸变校正可以帮助我们准确地测量物体的尺寸、进行精准的定位等。
5. 使用 pyrealsense2 进行畸变参数的获取pyrealsense2 库提供了丰富的API来进行深度摄像头的畸变参数的获取。
我们可以使用该库提供的函数来获取径向畸变参数和切向畸变参数。
可以通过对深度图和彩色图进行匹配和校准来得到畸变参数。
6. 使用畸变参数进行图像矫正在根据深度摄像头获取的图像进行畸变矫正时,我们可以使用得到的径向畸变参数和切向畸变参数,通过对图像进行透视变换,从而得到矫正后的图像。
这样可以最大程度的减小畸变对图像准确性的影响。
7. 结语了解和理解畸变参数对于深度摄像头的使用非常重要。
通过了解畸变参数的分类和获取,以及如何使用畸变参数进行图像矫正,我们可以得到更加准确的图像信息,从而为实时三维感知和场景理解提供更加准确的数据。
《二次监视雷达信号的处理和分析》范文
《二次监视雷达信号的处理和分析》篇一一、引言随着航空业的快速发展,对航空器飞行中的监控与安全管理提出了更高的要求。
二次监视雷达(Secondary Surveillance Radar,SSR)作为一种重要的空中交通管理系统,在飞行安全监控、交通流量管理等方面发挥着重要作用。
因此,对二次监视雷达信号的处理和分析技术的研究显得尤为重要。
本文将重点探讨二次监视雷达信号的处理和分析方法,为相关领域的研究提供参考。
二、二次监视雷达信号的概述二次监视雷达信号是通过询问-应答机制实现的。
在飞行器上安装的应答机接收到询问信号后,根据预设的编码规则发出应答信号。
这些应答信号包含飞行器的识别码、高度、速度等信息,供地面监控系统分析处理。
三、二次监视雷达信号的处理1. 信号接收:二次监视雷达系统首先通过天线接收来自飞行器应答机的应答信号。
这些信号经过接收机进行初步的放大、滤波等处理。
2. 信号解码:接收到的应答信号需要进行解码处理,以提取出飞行器的识别码、高度、速度等信息。
这一过程需要借助数字信号处理技术,如频谱分析、数字滤波等。
3. 数据处理:经过解码后的信息需要进行进一步的处理,如数据格式化、数据关联等。
这些处理有助于将原始的雷达信号转化为有意义的飞行器信息。
4. 显示与存储:处理后的信息通过显示器进行展示,同时可以存储在计算机系统中,供后续分析使用。
四、二次监视雷达信号的分析1. 信号质量分析:通过对接收到的应答信号进行质量分析,可以评估雷达系统的性能。
如信噪比、多径效应等参数的分析,有助于优化雷达系统的设计和运行。
2. 飞行器信息分析:通过对提取的飞行器信息进行统计分析,可以了解航空器的飞行状态、交通流量等信息。
这些信息对于航空安全管理、交通流量管理具有重要意义。
3. 异常检测与识别:通过对比分析历史数据和实时数据,可以检测出潜在的异常情况,如飞行器的高度变化异常、速度异常等。
这些异常情况可能涉及到飞行安全,需要及时进行处理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Interactions (cont.)
• Detectors normally shielded to reduce effects of natural background radiation and nearby radiation sources • An x-ray or gamma-ray may interact in the shield of the detector and deposit energy in the detector:
Energy discrimination occurs by rejection of pulses above or below the energy window set by the operator
SCA energy modes
• LL/UL mode – one knob directly sets the lower level and the other sets the upper level • Window mode – one knob (often labeled E) sets the midpoint of the range of acceptable pulse heights and the other knob (often labeled E or window) sets a range of voltages around this value.
Spectrum of Cesium-137
• Cs-137 decays by beta particle emission to Ba137m, leaving the Ba-137m nucleus in an excited state • The Ba-137m nucleus attains its ground state by the emission of a 662-keV gamma ray 90% of the time • In 10% of decays, a conversion electron is emitted instead, followed by a ~32-keV K-shell characteristic x-ray
– Lower-level voltage is E - E/2 and upper-level voltage is E + E/2
Example of a single-channel analyzer
Plotting a spectrum using a SCA
• The SCA is placed in window mode, the E setting is set to zero, and a small window (E) is selected A series of counts is taken for a fixed length of time per count, with the E setting increased before each count but without changing the window setting Each count is plotted on graph paper as a function of baseline (E) setting
• Two types of PHAs – single-channel analyzers (SCAs) and multichannel analyzers (MCAs) • Pulse height discrimination circuits incorporated in scintillation cameras and other nuclear medicine imaging devices to reduce effects of scatter
Single-channel analyzer systems
• High-voltage power supply typically provides 800 to 1,200 volts to the PMT
– Raising voltage increases magnitude of voltage pulses from PMT
• A photon will deposit only a fraction of its energy if it interacts by Compton scattering and the scattered photon escapes the detector (C)
– Energy deposited depends on scattering angle, with larger angle scatters depositing larger energies
Interactions of photons with a spectrometer
• An incident photon can deposit its full energy by:
– A photoelectric interaction (A) – One or more Compton scatters followed by a photoelectric interaction (B)
Radiation Detection & Measurement II
Pulse height spectroscopy Nonimaging detector applications Counting statistics
Pulse height analyzers
• Many radiation detectors produce electrical pulses whose amplitudes are proportional to the energies deposited in the detector by individual interactions • PHAs are electronic systems that may be used with these detectors to perform pulse height spectroscopy and energy-selective counting • In energy-selective counting, only interactions that deposit energies within a certain energy range are counted
SCA systems (cont.)
• Amplifier further amplifies the pulses and modifies their shapes – gain typically adjustable • SCA allows user to set two voltage levels, a lower level and an upper level
Interactions (cont.)
• Even if the incident photon interacts by the photoelectric effect, less than its total energy will be deposited if the inner-shell electron vacancy created by the interaction results in emission of a characteristic x-ray that escapes the detector (D)
Modern, computer-based multichannel analyzer
After the analog pulses are digitized by the ADC, they are sorted into bins (channels) by height, forming an energy spectrum.
•
•
Energy calibration of SCA
• On most SCAs, each of the two knobs permits values from 0 to 1,000 to be selected • By adjusting the amplification of the pulses reaching the SCA – either by changing the voltage applied to the PMT or by changing the amplifier gain – the system can be calibrated so that these knob settings directly indicate keV • A Cs-137 source, which emits 662-keV gamma rays, is often used for calibration
Multichannel analyzer systems
• An MCA system permits an energy spectrum to be automatically acquired much more quickly and easily than does a SCA system • The detector, HV power supply, preamp, and amplifier are the same as for SCA systems • The MCA consists of an analog-to-digital converter, a memory containing many storage locations called channels, control circuitry, a timer, and a display