2015年香港特别行政区数据统计摘要

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、假设K1,…,Kn是n个关键词,试解答:
试用二叉查找树的插入算法建立一棵二叉查找树,即当关键词的插入次序为K1,K2,…,Kn
时,用算法建立一棵以LLINK / RLINK 链接表示的二叉查找树。

2、请编写一个判别给定二叉树是否为二叉排序树的算法,设二叉树用llink-rlink法存储。

3、(1)p->rchild (2)p->lchild (3)p->lchild (4)ADDQ(Q,p->lchild) (5)ADDQ(Q,p->rchild)
25. (1)t->rchild!=null (2)t->rchild!=null (3)N0++ (4)count(t->lchild) (5)count(t->rchild)
26. .(1)top++ (2) stack[top]=p->rchild (3)top++ (4)stack[top]=p->lchild
27. (1)*ppos // 根结点(2)rpos=ipos (3)rpos–ipos (4)ipos (5)ppos+1
4、我们用l代表最长平台的长度,用k指示最长平台在数组b中的起始位置(下标)。

用j
记住局部平台的起始位置,用i指示扫描b数组的下标,i从0开始,依次和后续元素比较,
若局部平台长度(i-j)大于l时,则修改最长平台的长度k(l=i-j)和其在b中的起始位
置(k=j),直到b数组结束,l即为所求。

void Platform (int b[ ], int N)
//求具有N个元素的整型数组b中最长平台的长度。

{l=1;k=0;j=0;i=0;
while(i<n-1)
{while(i<n-1 && b[i]==b[i+1]) i++;
if(i-j+1>l) {l=i-j+1;k=j;} //局部最长平台
i++; j=i; } //新平台起点
printf(“最长平台长度%d,在b数组中起始下标为%d”,l,k);
}// Platform
5、(1)p->rchild (2)p->lchild (3)p->lchild (4)ADDQ(Q,p->lchild) (5)ADDQ(Q,p->rchild)
25. (1)t->rchild!=null (2)t->rchild!=null (3)N0++ (4)count(t->lchild) (5)count(t->rchild)
26. .(1)top++ (2) stack[top]=p->rchild (3)top++ (4)stack[top]=p->lchild
27. (1)*ppos // 根结点(2)rpos=ipos (3)rpos–ipos (4)ipos (5)ppos+1
6、设有一组初始记录关键字序列(K1,K2,…,Kn),要求设计一个算法能够在O(n)的时间
复杂度内将线性表划分成两部分,其中左半部分的每个关键字均小于Ki,右半部分的每个关
键字均大于等于Ki。

void quickpass(int r[], int s, int t)
{
int i=s, j=t, x=r[s];
while(i<j){
while (i<j && r[j]>x) j=j-1; if (i<j) {r[i]=r[j];i=i+1;}
while (i<j && r[i]<x) i=i+1; if (i<j) {r[j]=r[i];j=j-1;}
}
r[i]=x;
}
7、设有一组初始记录关键字序列(K1,K2,…,Kn),要求设计一个算法能够在O(n)的时间复杂度内将线性表划分成两部分,其中左半部分的每个关键字均小于Ki,右半部分的每个关键字均大于等于Ki。

void quickpass(int r[], int s, int t)
{
int i=s, j=t, x=r[s];
while(i<j){
while (i<j && r[j]>x) j=j-1; if (i<j) {r[i]=r[j];i=i+1;}
while (i<j && r[i]<x) i=i+1; if (i<j) {r[j]=r[i];j=j-1;}
}
r[i]=x;
}。

相关文档
最新文档