第09讲 函数(一次函数二次函数和幂函数)模型及其应用高中数学常见题型解法归纳反馈训练及详细解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【知识要点】
一、在现实生活中有许多问题,往往隐含着量与量之间的关系,可通过成立变量之间的函数关系和对所得函数的研究,使问题取得解决.
数学模型方式是把实际问题加以抽象归纳,成立相应的数学模型,利用这些模型来研究实际问题的一般数学方式;数学模型那么是把实际问题用数学语言抽象归纳,再从数学角度来反映或近似地反映实际问题时所得出的关于实际问题的数学描述.
数学模型来源于实际,它是对实际问题抽象归纳加以数学描述后的产物,它又要回到实际中去查验,因此对实际问题有深刻的理解是运用数学模型方式的前提.
二、函数是描述客观世界转变规律的根本数学模型,不同的转变现象需要用不同的函数模型来描述,数学应用题的建模进程就是信息的获取、存储、处置、综合、输出的进程,熟悉一些根本的数学模型,有助于提高咱们解决实际问题的能力.
三、一次函数、二次函数和幂函数的图像和性质
一、一次函数的一般形式为,y kx b =+当0k >时,函数单调递增,当0k <时,函数单调递减,当0k =时,函数是常数函数.
二、二次函数的一般形式是2
(0)y ax bx c a =++≠,当0a >时,函数的图像抛物线开口向上,极点坐标为24(,)24b ac b a a --,函数在(,)2b a -∞-单调递减,在(,)2b a -+∞2b x a
=-时,函数有最小值244ac b a -.当0a <时,函数的图像抛物线开口向下,极点坐标为24(,)24b ac b a a --,函数在(,)2b a
-∞-单调递增,在(,)2b a -+∞2b x a
=-时,函数有最大值244ac b a -. 3、 幂函数的一般形式为(,a y x a R a x =∈是常数,是自变量),其特征是以幂的底为自变量,指数为常数,其概念域随着常数a 取值的不同而不同. 所有幂函数都在(0,)+∞有概念,而且图像都过点〔1,1〕;0,a >幂函数在(0,)+∞是增函数,0a <,幂函数在(0,)+∞是减函数.
四、解决实际问题的解题进程
一、 对实际问题进展抽象归纳:研究实际问题中量与量之间的关系,肯定变量之间的主、被动关系,并用x 、y 别离表示问题中的变量;
二、成立函数模型:将变量y表示为x的函数,在中学数学内,咱们成立的函数模型一般都是函数的解析式;
3、求解函数模型:按如实际问题所需要解决的目标及函数式的构造特点正确选择函数知识求得函数模型的解,并恢复为实际问题的解.
这些步骤用框图表示:
五、解应用题的一般程序
1读:阅读理解文字表达的题意,分清条件和结论,理顺数量关系,这一关是根底;
2建:将文字语言转化为数学语言,利用数学知识,成立相应的数学模型.熟悉根本数学模型,正确进展建“模〞是关键的一关;
3解:求解数学模型,取得数学结论.一要充分注意数学模型中元素的实际意义,更要注意巧思妙作,优化进程;
4答:将数学结论恢复给实际问题的结果.
六、常见的函数模型有一次函数模型、二次函数模型、指数函数模型、对数函数模型、幂函数模型、分段函数模型、三角函数模型、数列函数、线性目标函数模型和综合函数模型等. 学科@网
【方式讲评】
【例1】某地域1995年底沙漠面积为95万公顷,为了解该地域沙漠面积的转变情况,进展了持续5年的观测,并将每一年年末的观测结果记录如下表.按照此表所给的信息进展预测:〔1〕若是不采取任何办法,那么到2010年末,该地域的沙漠面积将大约变成多少万公顷;〔2〕若是从2000年末后采取植树造林等办法,每一年改造0.6万公顷沙漠,那么到哪一年年末该地域沙漠面积减少到90万公顷?
〔2〕设从1996年算起,第x年年末该地域沙漠面积能减少到90万公顷,由题意得
+--=,
x x
950.20.6(5)90
x=〔年〕
解得20
故到2015年年末,该地域沙漠面积减少到90万公顷.
=+的图【点评】〔1〕由表观察知,沙漠面积增加数y与年份数x之间的关系图象近似地为一次函数y kx b
象,这是解题的切入点和关键点.〔2〕求一次函数的解析式一般利用待定系数法.
【反映检测1】某工厂在甲、乙两地的两个分厂各生产某种机械12台和6台,现销售给A地10台,B地8
台,从甲地调运1台至A地、B地的运费别离为400元和800元,从乙地调运1台至A地、B地的运费别离为300元和500元.
〔1〕设从乙地调运x台至A地,求总运费y关于x的函数关系式;
〔2〕假设总运费不超过9000元,问共有几种调动方案?
〔3〕求出总运费最低的调运方案及最低的费用.
【例2】某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全数租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每一个月需要保护费150元,未租出的车每辆每一个月需要保护费50元.
〔1〕当每辆车的月租金定为3600元时,能租出多少辆车?
〔2〕当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?
【点评】〔1〕在实际问题背景下,成立收益、利润的函数模型,一般是利润=收入-各项支出.〔2〕依照公司的月收益为:租出车辆⨯〔月租金-保护费〕-未租出车辆⨯保护费,将月收益视为月租金的函数,构造函数模型求解问题.
【反映检测2】某化工厂引进一条先进生产线生产某种化工产品,其生产的总本钱y〔万元〕与年产量
x〔吨〕之间的函数关系式可以近似地表示为
2
488000
5
x
y x
=-+,此生产线年产量最大为210吨.
〔1〕求年产量为多少吨时,生产每吨产品平均本钱最低,并求最低本钱.
〔2〕假设每吨产品平均出厂价为40万元,那么昔时产量为多少吨时,可以取得最大利润?最大利润是多少?
【例3】有一片树林现有木材储蓄量为7100c m3,要力争使木材储蓄量20年后翻两番,即抵达28400 c m3.〔1〕求平均每一年木材储蓄量的增加率;〔2〕若是平均每一年增加率为8%,几年可以翻两番?
【点评】〔1〕增加率〔降低率〕的问题一般是指数或幂函数模型,若是时间求增加率〔降低率〕,多是幂函数模型.〔2〕“翻两番〞指此刻是原来的4倍,“翻n番〞指的是此刻是原来的2n倍.
【反映检测3】〔1〕在1975年某市每千克猪肉的平均价钱是1.4元,而到了2021年,该市每千克猪肉的平均价钱是15元,假定这30年来价钱年平均增加率一样,求猪肉价钱的年平均增加率.
〔2〕另一方面,1975年时该市职工月平均工资是40元,而到了2021年,该市职
工月平均工资是860元,通过猪肉价钱的增加和工资增加的对照,试说明人们的生活水平是日趋提高,并计算假设按这种速度,到2021年,估量该市职工月平均工资是多少元?
高中数学常见题型解法归纳及反映检测第09讲:
函数(一次函数、二次函数和幂函数〕模型及其应用参考答案
【反映检测1答案】〔1〕2008600(06,)y x x x z =+≤≤∈;〔2〕共有3种调运方案;〔3〕乙分厂的6 台机械全数调往B 地,从甲分厂调往A 地10 台,调往B 地2台,最小值是8600元.
【反映检测2答案】〔1〕年产量为200吨时,每吨平均本钱最低为32万元;〔2〕年产量为210吨时,可取得最大利润1660万元.
【反映检测2详细解析】(1)每吨平均本钱为y x
(万元), 那么80008000482483255y x x x x x
=+-≥-=,当且仅当80005x x =,即200x =时取等号, ∴年产量为200吨时,每吨平均本钱最低为32万元.
(2)设年取得总利润为()R x 万元,那么R(x)=40x-y=40x-25x +48x-8 000=-2
5
x +88x-8 000=-15 (x-220)2+1 680(0≤x ≤210),∵()R x 在[0,210]上是增函数, ∴210x =时,()R x 有最大值为-(210-220)2+1 680=1 660,∴年产量为210吨时,可取得最大利润1 660万元.
【反映检测3答案】〔1〕8.2%;(2)4000元.
【反映检测3详细解析】〔1〕设猪肉价钱的年平均增加率是%x ,那么有30
15 1.4(1%)x =+.利用计算器可得
8.2x =.〔2〕该市职工月工资和年平均增加率是%x ,那么有3084040(1%)x =+,利用计算器可得10.8x =.因为10.88.2>,因这人们的生活水平是日趋提高.
照这样的速度到2021年,职工月平均工资是15860(110.8%)4000+≈元.。

相关文档
最新文档